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Abstract: We investigate how the performance of an adiabatic coupler depends on the detailed
coupler properties. After verifying the accuracy of an analytic expression for the fraction of
energy that is not coupled into the desired waveguide (i.e., the crosstalk), we consider how the
center and the ends of adiabatic couplers contribute to the total crosstalk. We find that for short
coupler lengths the center dominates, whereas for longer devices the two ends dominate.
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1. Introduction

Coupling light between twowaveguides is a basic and ubiquitous functionality in waveguide optics.
There are broadly two classes of couplers: directional- and adiabatic- couplers. Directional
couplers are formed by two neighbouring parallel waveguides, where the parameters do not
depend on position [1,2]. Light at the input is coupled into a superposition of waveguide
supermodes with different propagation constants, so that power transfers periodically between the
individual waveguides due to modal interference. Terminating the coupler at a specific position
then allows a particular fraction of the power to be transferred to the desired output waveguide;
in a half-beat length coupler, for example, light completely transfers from one waveguide to the
next, provided that the two supermodes have the same amplitudes. However, since the beat length
depends on wavelength, directional couplers have a finite bandwidth and are thus unsuitable
for some applications, e.g. nonlinear optics, which requires intense ultrashort pulses with large
bandwidths.
Adiabatic couplers operate on a different principle: light is coupled into a single mode (e.g.,

the fundamental mode), and at least one of the waveguide parameters depends on propagation
distance [3]. If the waveguide parameters evolve sufficiently slowly, then light remains in that
mode, even when its nature changes completely during propagation. Adiabatic couplers enable
complete power transfer between waveguides but, since the underlying mechanism does not
depend on interference, their bandwidth can in principle be very large and fabrication tolerances
may be relaxed. This has led to many implementations of adiabatic couplers, for both complete
power transfer [4–6] and for power splitting [7]. Here, we concern ourselves with complete power
transfer, where the principles of adiabatic coupling can be used, for example, for mode conversion
[8,9], polarization switching [10], and efficient coupling between waveguides of vastly different
optical properties and geometry [11–13].
The directional coupler is conceptually more straightforward to design: since the parameters

do not vary with propagation, the amount of coupling is only determined by the ratio of the
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coupler length and the beat length of the supermodes. Adiabatic couplers are somewhat more
complicated: not only do the parameters vary with propagation, but choosing the appropriate
length requires balancing the incompatible needs of a small footprint (requiring a compact device)
while maintaining adiabaticity (requiring a long device). In the context of integrated photonics
[14,15] for example, the large footprint of adiabatic couplers (typically several hundreds of
µm2[4]) has discouraged their widespread use[5].
In this paper, we consider the case in which all the light needs to be adiabatically coupled from

one waveguide to another, and, following the convention of Louisell [16], we refer to the amount
of power remaining in the initial waveguide as the crosstalk. This analysis can broadly rely on
one of two approaches. The first approach uses fully electromagnetic calculations (e.g., the Finite
Element Method (FEM) and the Finite Difference Time Domain (FDTD) method) to calculate
the performance of a particular device. This provides a direct result, and such calculations
often form an integral part of detailed designs. However, these calculations are relatively slow,
and do not provide much insight into why a particular result is obtained, or whether it can be
improved (besides repeating a similar calculation on a different geometry). The second approach
relies on coupled mode theory, where the coupler is described by a set of two coupled ordinary
differential equations for the field amplitudes in the two waveguides. Two functions ∆β(z) and
κ(z) describe, respectively, the mismatch in propagation constant between the modes, and the
strength of their coupling. These equations can then be efficiently solved numerically, and
sometimes also analytically – at least to some approximation. Though this method is poorly
suited for the final design of a particular coupler, it can provide valuable insight into how the
parameters need to be changed to improve performance. In this paper we use both numerical and
analytic approaches in three ways: we describe couplers through the functions ∆β(z) and κ(z) to
investigate performance (both numerically and analytically), and we show explicitly how these
quantities relate to a physical embodiment of such adiabatic couplers through FEM calculations.

We now consider the question how to appropriately choose the profile and length of an adiabatic
coupler. Much has been written on this topic, going back decades [6,8,12,13,16–22]. In a 1955
paper Louisell [16] gave a comprehensive analysis of adiabatic couplers, and provided an analytic
expression for the crosstalk µ, which was based on an approximate solution to the coupled
differential equations describing the system. He found that, in this approximation and for long
couplers, the critical areas are the two ends of the coupler. There is a large literature on adiabatic
processes in quantum mechanics with a well-known adiabaticity condition (see e.g., [23,24]),
that seems to contradict the condition of Louisell: their criterion [23,24] concentrates on the
region where the parameters vary fastest and the energy mismatch between the states is smallest,
corresponding to the central part of a coupler. In a paper by Sun et al. [22], a particular family of
adiabatic profiles is claimed to lead to the shortest adiabatic coupler for a given level of crosstalk
µ. They exemplified their result by comparing one member of the family they identified with
results from a number of other profiles. A key result of this approach is that µ ∝ `−2, where ` is
the coupler length.
Here we report a systematic study of the crosstalk of adiabatic couplers, which allows us

to conclude under what conditions the center and the ends of the coupler are critical to the
performance. We can also investigate the claim of Sun et al. [22]. While the issues raised above
are conceptual, they cannot be resolved by the results reported to date, in spite of a large literature
of numerical designs [8] and experiments [11]. To address the conceptual issue we consider a set
of couplers in which the tapering function is given by a set of increasingly smooth polynomials
Pn(ζ), where ζ varies between 0 and 1, which allow us to tailor the relative contributions of
the center and the ends. This allows us to find approximate analytic expressions for all relevant
parameters, and we can also vary the importance of the coupler edges and center in a systematic
way. This work is based on a closed-form expression for the crosstalk provided by Louisell [16].
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The outline of this paper is as follows. In Section 2 we discuss the coupled mode framework
that we adopt. We then evaluate the accuracy of the expression of Louisell for the crosstalk
in Section 3 by comparing it with the results of a full two-dimensional COMSOL simulation
and with the results of solving the coupled mode equations numerically. Then in Section 1 we
conduct a systematic investigation of the effects of the ends and the center region of the coupler
by using increasingly smooth taper profiles.

2. Theory

To systematically investigate the behaviour of adiabatic couplers, we start with the coupled mode
equations

dE1
dz

= +iβ1E1 − iκE2,

dE2
dz

= −iκE1 + iβ2E2

(1)

where E1,2 are normalized electric field amplitudes in the respective waveguides, and the power
is given by |E1,2 |2. The β1,2 are the modal propagation constants and κ is the coupling strength
between the waveguides. Though derived for identical waveguides, Eq. (1) can also be used to
good approximation for dissimilar waveguides [25,26], provided that the waveguides are not
too strongly coupled, as discussed by Snyder and Love [25]. While it is difficult to evaluate the
accuracy of such an assumption a priori, it can be confirmed a posteriori, as we do here.
We define E1,2 = F1,2eiβ̄z, where β̄ = (β1 + β2)/2 and ∆β = (β2 − β1)/2, allowing Eq. (1) to

be rewritten as
d
dz

©«
F1

F2

ª®¬
= −i ©«

∆β κ

κ −∆β
ª®¬
©«
F1

F2

ª®¬
. (2)

The eigenvalues of this matrix are ±Γ, where

Γ =

√
κ2 + ∆β2. (3)

Defining
∆β = Γ cos χ, κ = Γ sin χ, (4)

we can write the eigenvectors of the matrix in Eq. (2) as

ν+ =
©«
− sin χ

2

cos χ
2

ª®¬
, ν− =

©«
cos χ

2

sin χ
2

ª®¬
. (5)

Thus, by varying χ from 0→ π over the length of the coupler, the eigenstates evolve from one of
the waveguides at the beginning of the coupler, to the other waveguide at the end of the coupler.
Provided that the tuning angle χ is varied slowly enough, light remains in its original eigenstate,
and thus couples from one guide to the other. In other words, light is coupled into one of the
waveguides, then emerges from the other waveguide, provided that the variation is sufficiently
slow. Physically, this is achieved by tuning ∆β through zero (i.e., from negative to positive, or
vice versa) and by choosing |∆β| � κ at either end of the device. The exact shapes of ∆β and κ
are not prescribed, leading to a great variety in the possible implementations. The rate at which
χ can be varied is given by the adiabaticity criterion η(z) � 1, where [16]

η(z) = 1
2Γ

dχ
dz

, (6)

which is very similar (to within a factor of 2) to the conventional criterion for adiabaticity
from quantum mechanics [23,24], and is equivalent to Eq. (5) in the paper by Sun et al. [22].
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This criterion is often used as guideline for adiabatic coupler designs, but it does not provide
information on the performance of the design. Louisell [16] showed that the performance could
be more directly quantified by calculating the crosstalk µ, corresponding to the optical power
remaining in the initial waveguide at the end of the device, estimated via

µ =
1
4

����
∫ `

0

dχ
dz′

e−2iρ(z′) dz′
����
2

=
1
4

�����
∫ ρ(`)

0

dχ
dρ′

e−2iρ(z′) dρ′
�����
2

, (7)

where ` is the length of the device and

ρ(z) =
∫ z

0
Γ(z′) dz′. (8)

This calculated crosstalk corresponds to the square modulus of the Fourier transform of the
derivative of χ with respect to Γ. When Γ is constant it corresponds to the scaled Fourier
transform with respect to position. Equation (7) is based on an approximate solution to the
coupled mode equations [16]. Though it is known that Eq. (7) is not accurate for short devices
[16], it is not clear what “short” means in this context. In Section 3 we therefore compare the
results of Eq. (3) with exact results based on coupled mode theory.

3. Verification of the expression for µ

To check the accuracy of Eq. (7), and thereby to verify that the crosstalk is given by the square
modulus of the Fourier transform of the derivative of χ, we consider the particular example
consisting of an adiabatic coupler consisting of two, 2-dimensional silica [27] waveguides (WGs)
in air at λ = 1.55 µm, shown in Fig. 1. We label the physical device length as `, i.e., 0 ≤ z ≤ `.
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Fig. 1. Adiabatic coupler considered for calculation of the crosstalk µ. (a) Waveguide widths
(blue and orange curves) and their edge-to-edge separation (green curve). The light enters in
waveguide 2 and exits through waveguide 1. (b) Top view of the waveguides with Poynting
vector superimposed for the particular case with ` = 40 µm.

Fig. 1. Adiabatic coupler considered for calculation of the crosstalk µ. (a) Waveguide
widths (blue and orange curves) and their edge-to-edge separation (green curve). The light
enters in waveguide 2 and exits through waveguide 1. (b) Top view of the waveguides with
Poynting vector superimposed for the particular case with ` = 40 µm.
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However, since we consider how the device performance depends on `, we define a relative
coordinate ζ = z/`, so 0 ≤ ζ ≤ 1.

Figure 1(a) shows the width of each of the waveguides and their edge-to-edge spacing, which
all depend on position. The white curves in Fig. 1(b) give an overview of the coupler. The colors
show the Poynting vector for the particular example of ` = 40 µm, and demonstrates that the
majority of the light couples between the waveguides in the region where they approach each
other most closely.

The solid curves in Fig. 2(a) show the instantaneous propagation constants (normalized to the
free space wavenumber k0) of the supermodes of the two waveguides as a function of position,
whereas the dashed lines give those of the fundamental modes of the isolated waveguides. We
define the instantaneous propagation constant at position ζ to be the propagation constant of a
mode in an infinite, z-independent system with parameters equal to those at ζ . From the results
in Fig. 2(a) we can find the coupled-mode parameters κ, ∆β and Γ as shown in Fig. 2(b). Note
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Fig. 2. Coupled-mode parameters for the adiabatic coupler shown in Figs 1 at λ = 1.55 µm.
(a) The (instantaneous) propagation of the supermodes (solid curves) and the individual
waveguides (dashed). (b) Parameters ∆β (red), κ (orange) and Γ (blue). (c) Parameter χ. (d)
Parameter ρ.
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whereas the dashed lines give those of the fundamental modes of the isolated waveguides. We
define the instantaneous propagation constant at position ζ to be the propagation constant of a
mode in an infinite, z-independent system with parameters equal to those at ζ . From the results
in Fig. 2(a) we can find the coupled-mode parameters κ, ∆β and Γ as shown in Fig. 2(b). Note
that according to Eq. (2) parameter ∆β corresponds to half of the difference of the dashed curves
in Fig. 2(a), whereas Γ is half of the difference between the solid curves. Parameter κ can then
be extracted using Eq. (3). Similarly, parameter χ can be found from Eqs. (4), and is shown in
Fig. 2(c). We note that, for this design, dχ/dζ is negligible at the ends and large in the center,
and therefore that the center significantly impacts Eq. (6). The energy in WG 2 in this coupler,
for a coupler length of 200 µm, is given in the inset of Fig. 3. The two colours refer to different
methods of calculation, as discussed below.

Knowing now both the system’s physical parameters as well as the coupled-mode parameters,
we can calculate the crosstalk µ (or alternatively, the total power in waveguide 2 at z = `,
normalized to the total intensity at z = 0) in three different ways. The results are summarized in
Fig. 3(a) which shows µ versus device length `. The blue curve gives the result of integrating
Eq. (7), whereas the orange curve gives the result obtained by integrating coupled mode
equations (2) directly. The agreement between these curves shows that Eq. (7) is accurate, at least
for the parameters in this example. The largest discrepancy occurs for short lengths, where Eq. (7)
is not expected to be valid [16]. Finally, the black curve gives the result of a full two-dimensional
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Parameter ρ.
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in Fig. 2(a), whereas Γ is half of the difference between the solid curves. Parameter κ can then
be extracted using Eq. (3). Similarly, parameter χ can be found from Eq. (4), and is shown in
Fig. 2(c). We note that, for this design, dχ/dζ is negligible at the ends and large in the center,
and therefore that the center significantly impacts Eq. (6). The energy in WG 2 in this coupler,
for a coupler length of 200 µm, is given in the inset of Fig. 3. The two colours refer to different
methods of calculation, as discussed below.

Knowing now both the system’s physical parameters as well as the coupled-mode parameters,
we can calculate the crosstalk µ (or alternatively, the total power in waveguide 2 at z = `,
normalized to the total intensity at z = 0) in three different ways. The results are summarized in
Fig. 3(a) which shows µ versus device length `. The blue curve gives the result of integrating
Eq. (7), whereas the orange curve gives the result obtained by integrating coupled mode Eq. (2)
directly. The agreement between these curves shows that Eq. (7) is accurate, at least for the
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calculation (black). Inset: power inside waveguide 1 during propagation, calculated by
integrating Eq. (2) (orange), and using COMSOL (black) for ` = 200 µm. (b) COMSOL
calculations for the crosstalk as a function of wavelength for ` = 105 µm (brown) and
` = 150 µm (purple). Dashed lines indicate the crosstalk envelope.

COMSOL calculation of the system in Fig. 1(a). Note the excellent agreement between the
three curves. The only difference is that the nodes, which are quite prominent in the blue and
orange curves, are somewhat less so in the black curve. This is because calculations of the small
crosstalk near the nodes are susceptible to small errors. In contrast, the agreement between the
overall trends is excellent, confirming the validity of Eqs. (1). We note that, as expected, the
crosstalk decreases with increasing device length. An analysis of Eq. (7) shows that for this
example the overall trend is, approximately, µ ∝ `−6.

Having established the veracity of Eq. (7), we now consider some of its consequences. Recall
that the Fourier transform of a function with discontinuous mth derivative, asymptotically
approaches zero as the −(m + 1) power [28]. Since dχ/dρ enters Eq. (7), we conclude that for
sufficiently long lengths, for adiabatic couplers for which the mth derivative of χ is discontinuous,
the crosstalk decreases as `−2m. For the example considered here we find that m = 3 at the edges
of the coupler, and thus µ ∝ `−6, consistent with the numerical result in the previous paragraph.
The distinctive oscillations arise from the interference between the discontinuities at z = 0 and
at z = `. We thus conclude that, based on our expression (7) for µ, at long lengths the lowest
crosstalk is achieved for couplers that are increasingly smooth at the ends. We investigate this
conclusion in more detail in the next section.
The crosstalk envelope is not only amenable to analytic arguments following from Eq. (7),

but it is arguably more important than the full curve itself. Since all parameters depend on
wavelength, the position of the nodes in Fig. 3 is also wavelength-dependent, as shown in Fig. 3(b)
for two different device lengths. In this case the envelope is therefore the relevant measure for
device performance. Figure 3(b) confirms the large bandwidth of our devices: for the ` = 150 µm
devices, the cross talk remains less than the 20 dB envelope over almost the entire wavelength
range 1.3 < λ < 1.65 µm shown.

4. Coupler profiles

In this section we systematically investigate the performance of the adiabatic couplers, and in
particular the effect of the coupler ends using expression (7) for µ. We do so by taking Γ to be
constant and by choosing χ to be a member of the set of polynomials πPn(ζ), where Pn(0) = 0
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and Pn(1) = 1 for all n. The Pn(ζ) are most easily defined via their first derivatives P′n(ζ)

P′n(ζ) =
(2n + 1)!
(n!)2 (ζ(1 − ζ))

n, (9)

so that Pn(ζ) is a (2n + 1)th-order polynomial. As an example, for n = 2 we find that
P′2(ζ) = 30ζ2(1 − ζ)2 so P2(ζ) = 10ζ3 − 15ζ4 + 6ζ5. It is easy to see that the Pn(ζ) has its first n
derivatives equal to zero both at ζ = 0 and at ζ = 1. The polynomials P0 to P6 are illustrated in
Fig. 4. It confirms that the smoothness at the edges increases with the polynomial order, but that
the central region then becomes steeper. The values of the Pn(ζ) for ζ<0 and ζ>1 are irrelevant
for our purposes here.
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With this choice for χ, and using Eq. (4) we can thus write

κ(z) = Γ sin(πPn(ζ)),
∆β(z) = Γ cos(πPn(ζ)).

(10)

Figure 5 shows the crosstalk µ for n = 1, 2, . . . , 6 versus the device length in units of `b = π/2Γ,
which corresponds to the device length of a directional coupler with coupling coefficient Γ. The
blue curve follows from Eq. (7), whereas the orange curve follows from solving the coupled
mode equations (2). Consistent with Section 3 these two results are very similar for low orders n,
but deviate for larger n, particularly for short lengths. According to the argument in Section 3,
for sufficiently large device lengths `, the envelope should decrease as `−2(n+1).
For the polynomials we are using here, we can use Eq. (7) to find analytic expressions for µ.

This is so because Γ is constant and the Fourier transform of any polynomial can be found in
closed form. For n = 0, 1, 2 we find,
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in obvious notation. We do not show results for higher order polynomials as these become
increasingly complicated. We note that these are related to the squares of the spherical Bessel
functions, but we do not pursue this further here.
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By taking the maximum value of the oscillating terms we can find expressions for the envelope
µ̄n(`). For n = 0 to 3 this leads to
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with the results for higher orders more complicated but known [29]. However, it can be shown
that the leading term is of the form µ̄n = ((2n + 1)!!/(2πn`(n+1)))2. These results confirm the
general result derived earlier that µn ∝ `−2(n+1) for sufficiently large `. In Figure 6 we show these
envelopes for n = 0 to 6 (dashed lines). It shows that at increasingly long coupler lengths, the
high-order couplers have the lowest crosstalk. The corresponding result obtained by solving the
coupled mode equations (2) numerically is also shown (circles). Deviations again occur for short
device lengths, though for long device lengths the results are identical.
To finish this section, we show in Fig. 7(a) the order n polynomial with the lowest crosstalk

envelope versus device length. In Fig. 7(b), the blue and orange curves give the associated value
of the crosstalk. These results confirm that higher order polynomials are optimal for long devices,
consistent with our earlier results.

4.1. Conventional criterion for adiabaticity

Expression (6) is the conventional criterion for adiabaticity. Here we investigate how it is related
to the analytic and numerical results for the crosstalk µ discussed in Section 4. For the particular
case of the polynomials (9), criterion (6) can be written as

π

`
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calculated by Eqs. (2) numerically (blue) and from Eq. (7) (orange).
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Fig. 6. Envelopes of the crosstalk µ calculated by solving couped mode equations (2)
numerically (circles) and from Eq. (7) (dashed lines).

Now the derivative of the polynomials peaks at ζ = 0.5, where it takes the value (2n+1)!/(n! 2n)2.
Combining this with Eq. (13), then leads to

`

`b
� (2n + 1)!
(n! 2n+1)2 . (14)

This result is superimposed in Fig. 7. The black dots on the left-hand side of this figure indicate
the equality in this figure, whereas the gray dots indicate the equality where the left-hand side is
four times as large as the right-hand side.

In discussing these results we note that result (7) highlights the ends of the coupler, at least for
long couplers, whereas inequality (14), which is derived from it, only depends on the properties
of the tapered region in the center. These seemingly contradictory results arise since the argument
leading to coupler ends being crucial is an asymptotic argument. Indeed, we find that for moderate
value of the crosstalk (i.e., µ & 10−4), criterion (14) is more relevant, whereas for lower values of
the crosstalk, µ . 10−6, the asymptotic analysis is more appropriate.

5. Discussion and conclusions

We have demonstrated that the crosstalk µ accurately predicts the performance of adiabatic
couplers, with a strong agreement between the analytic, numeric and simulation methods
presented here, particularly for long designs. This form of the crosstalk is useful in providing
insights into general features of adiabatic couplers, such as the emergence of oscillations as a
function of length. We have also considered the crosstalk of adiabatic couplers using a systematic
approach that relies on the use of increasingly smooth polynomials to describe the taper function.
Using these polynomials, it is possible to find analytic expressions for many of the relevant
criteria for the performance of the adiabatic coupler, including the crosstalk.
The evaluation of different criteria for adiabaticity can be confusing since some authors

emphasize the center of the coupler, where the coupler properties tend to vary most rapidly,
whereas other authors emphasize the ends, where the coupler properties inevitably exhibit
discontinuities. We find that both affect the performance of the design, with the former more
relevant for relatively short couplers with modest values for the crosstalk, and the latter more
relevant to longer couplers for which the crosstalk is much lower. Which of these criteria is most
relevant in a particular situation depends on the crosstalk that is required, which, in part, depends
on the fabrication quality that can be achieved. However, as a rough guide, Fig. 6 shows that the

Fig. 6. Envelopes of the crosstalk µ calculated by solving couped mode Eq. (2) numerically
(circles) and from Eq. (7) (dashed lines).
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Fig. 7. (a) Black: lengths satisfying the adiabatic criterion (Eq. 6) for different n, where
Pn are the polynomials used for χ. Grey: 4× the length satisfied by Eq. 6. The straight
horizontal lines show the range of ` over which polynomial order n has the lowest crosstalk,
using Eq. (7) (blue) and solving Eq. (2) (orange). (b) Lowest calculated crosstalk across all
polynomial orders at each length, using Eq. (7) (blue) and solving Eq. (2) (orange).

device’s ends determine the cross coupling for ` � `b, whereas the center limits the device’s
performance for ` <∼ `b

We are now also in a position to evaluate the claim of Sun et al. [22]: that theirs is the shortest
coupler for a given value of the crosstalk. In fact, they propose a family of couplers with this
property, one member of which is considered in detail in the paper [22]. It can be shown that
another member of this family is also one of the polynomials considered in Section 4, namely
P0(ζ). As discussed, the crosstalk for couplers following this polynomial scales as `−2. We saw
in Section 4 that couplers following higher-order polynomials scale in a superior way with length,
and therefore a coupler that follows a polynomial of higher order performs better at sufficiently
long coupler lengths.

We note that we have not considered the couplers that follow from adiabatic invariants and the
introduction of counterdiabatic terms [30–32], and which can have reduced cross talk in short
devices. We will consider these types of approaches in future publications.

In conclusion, we have conducted a systematic study of the crosstalk in adiabatic couplers and
reconciled two seemingly contradictory adiabaticity criteria. We find that the central coupler
region determines the crosstalk for short devices, whereas for longer devices the crosstalk is
determined by the smoothness of the coupler ends. Though we have considered only a single set
of functions for which analytic results can be obtained, our conclusions are general and apply to
a broad set of couplers.
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of the tapered region in the center. These seemingly contradictory results arise since the argument
leading to coupler ends being crucial is an asymptotic argument. Indeed, we find that for moderate
value of the crosstalk (i.e., µ & 10−4), criterion (14) is more relevant, whereas for lower values
of the crosstalk, µ . 10−6, the asymptotic analysis is more appropriate.

5. Discussion and conclusions

We have demonstrated that the crosstalk µ accurately predicts the performance of adiabatic
couplers, with a strong agreement between the analytic, numeric and simulation methods
presented here, particularly for long designs. This form of the crosstalk is useful in providing
insights into general features of adiabatic couplers, such as the emergence of oscillations as a
function of length. We have also considered the crosstalk of adiabatic couplers using a systematic
approach that relies on the use of increasingly smooth polynomials to describe the taper function.
Using these polynomials, it is possible to find analytic expressions for many of the relevant
criteria for the performance of the adiabatic coupler, including the crosstalk.
The evaluation of different criteria for adiabaticity can be confusing since some authors

emphasize the center of the coupler, where the coupler properties tend to vary most rapidly,
whereas other authors emphasize the ends, where the coupler properties inevitably exhibit
discontinuities. We find that both affect the performance of the design, with the former more
relevant for relatively short couplers with modest values for the crosstalk, and the latter more
relevant to longer couplers for which the crosstalk is much lower. Which of these criteria is most
relevant in a particular situation depends on the crosstalk that is required, which, in part, depends
on the fabrication quality that can be achieved. However, as a rough guide, Fig. 6 shows that the
device’s ends determine the cross coupling for ` � `b, whereas the center limits the device’s
performance for ` . `b

We are now also in a position to evaluate the claim of Sun et al. [22]: that theirs is the shortest
coupler for a given value of the crosstalk. In fact, they propose a family of couplers with this
property, one member of which is considered in detail in the paper [22]. It can be shown that
another member of this family is also one of the polynomials considered in Section 4, namely
P0(ζ). As discussed, the crosstalk for couplers following this polynomial scales as `−2. We saw
in Section 4 that couplers following higher-order polynomials scale in a superior way with length,
and therefore a coupler that follows a polynomial of higher order performs better at sufficiently
long coupler lengths.

We note that we have not considered the couplers that follow from adiabatic invariants and the
introduction of counterdiabatic terms [30–32], and which can have reduced cross talk in short
devices. We will consider these types of approaches in future publications.

In conclusion, we have conducted a systematic study of the crosstalk in adiabatic couplers and
reconciled two seemingly contradictory adiabaticity criteria. We find that the central coupler
region determines the crosstalk for short devices, whereas for longer devices the crosstalk is
determined by the smoothness of the coupler ends. Though we have considered only a single set
of functions for which analytic results can be obtained, our conclusions are general and apply to
a broad set of couplers.
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