A role for growth hormone in neurorestoration and neurogenic processes in the brain

Praneeti Pathipati

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Molecular Medicine, University of Auckland, 2010
ABSTRACT

The cerebral growth hormone (GH) axis plays an active role following ischemic injury to the brain. Studies have shown that both GH and its receptor are endogenously upregulated in response to ischemic injury and that GH administration post-injury confers significant neuroprotection. Furthermore, there is evidence that GH has trophic effects on neural stem cells (NSCs). However, whether GH can also aid long term recovery and/or have direct effects on neurogenic processes is unclear. Both in vivo and in vitro studies were carried out to address these issues.

In vivo studies using the endothelin-1 model of focal ischemic stroke in adult rats demonstrated that a long-term unilateral continuous intracerebroventricular (ICV) infusion of GH is capable of targeting specific areas of active remodelling and neurogenic processes. Immunohistochemistry analyses revealed that ipsilaterally infused GH localised specifically to neuronal and glial progenitor cells within the ipsilateral subventricular zone, white matter tract, lesion and penumbral regions. Treatment with GH commencing 4 days after stroke accelerated recovery in one out three tests of motor function and improved spatial memory on the morris water maze test with no effect on learning. In vitro studies were then carried out to further elucidate the role of GH in mediating neurogenic processes that could potentially contribute to long-term recovery. Studies were also conducted using the hormone prolactin (PRL) since it is closely related to GH and has similar trophic effects on NSCs. Using NSCs with properties of neurogenic radial glia derived from fetal human forebrains, it was determined that exogenously applied GH and PRL promote the proliferation of neural stem cells in the absence of epidermal growth factor or basic fibroblast growth factor. When applied to differentiating NSC’s, they both induce neuronal progenitor proliferation but only PRL has proliferative effects on glial progenitors. Both GH and PRL also promote NSC migration, particularly at higher concentrations. Interestingly, migration studies using receptor antagonists identified that both GH and PRL signal via the PRL receptor to promote migration.

In summary, these findings show that delayed treatment with GH may accelerate some aspects of functional recovery and improve spatial memory in the long-term. Furthermore, some of these beneficial effects may be mediated via its trophic effects on NSCs and thus is supportive of a role for GH in post-injury repair processes as well as developmental mechanisms in the brain.
Completing this thesis has certainly been an interesting and educational journey. Three primary supervisors, numerous funding issues and several technical issues later, I feel like I can face anything. All through this, I have been very fortunate to have the support of numerous people who helped make this thesis possible.

Dr. Mhoyra Fraser who helped me complete this journey – Your support and advice have helped me look forward and I am grateful to you for taking me on board. Dr. Arjan Scheepens who was not only my first supervisor but also a valuable mentor and friend: Thank you for initiating and seeing me through this journey, your guidance and mentorship have taught me a lot. Assoc. Prof. Christopher Williams for being an excellent director; constantly reminding me of the big picture and how to plan for the future. Dr. Thorsten Gorba for giving me a direction when I couldn’t find one. You gave me skills that helped me to not only develop as a researcher but also further my thesis work. I feel deeply indebted for your financial and intellectual support. Prof. Laura Bennet who has always been much more than just a scientific advisor; thank you for providing me with physical and emotional support when I needed it the most. I will always remain extremely grateful to you for always being there for me and giving me the strength to keep going forward.

I would also like to thank several people who have extended material and technical support. Mr. Andrzej Surus for his help with the IGF1 RIAs and GH RRA, Mrs Chris Keven for SEC analyses, Mr. Eric Thorstensen for CORT Mass Spec and Urea analysis, Mr. Wing Leong for help with the surgeries, Mr. Nagarajan Kannan, Mrs Prudence Grandison, Mr. Vijay Pandey, Mr. Nethaji Muniraj and Mr. Brahmanaspati Shastri for advice and guidance with molecular work. In addition, I’m extremely grateful to Prof. Peter Lobie and Dr. Jo Perry for giving me B2036, Prof Vincent Goffin (InSerm, France) for his invaluable intellectual advice, critique and comment on my in vitro work along with providing me with the PRL and PRLR antagonist, Prof. Wayne Cutfield for the Genotrophin, Prof. Austin Smith and Dr. Yirui Sun (Wellcome Trust Centre for Stem Cell Research, Cambridge) for providing me with the very valuable human NSCs.

My heartfelt gratitude towards all members of what was the Baby Brain Injury group. Dr. Sumudu Ranasinghe, who was always there for any kind of support I needed and
gave me strength especially for the home run. Mrs. Larissa Christophidis who’s always been a constant source of inspiration and support both as a friend and as a fellow student. Dr. Tanja Modersheim, the first out the door, for showing us the path and that it can certainly be done. Dr. Malin Gustavsson for being an awesome friend, supporter and well-wisher and Dr. Mariella Giovannangelo for being an excellent, efficient technician and a great friend.

Sincere thanks also to fellow residents of my Grad Room; Drs Sarah Hopkins, Severine Brunet-Dunand, Naeem Amiry and Nic Bougen. You guys certainly kept me sane in the most insane of periods and words can never express how much I appreciate all the fun times and fond memories. My precious friends Vinthiya, Swati, Pradeep, Megha, Anchal, Siva, Vishala, Ashwin, Akshat, and Wencke, thanks ever so much for all the fun times, hearing me out and putting up with me on strenuous days, giving me company on my late nights and for taking such good care of me when I couldn’t do it myself.

I would also like to acknowledge my in-laws Mr & Mrs Veeramachaneni for all their support and encouragement and the Param family for always being there, welcoming me with open arms every single time I needed them. My husband Ram, for putting up with my emotional last phase, patiently reminding me of my capabilities and constantly supporting me from the day I know him. Finishing would have been a hell of a lot rougher without him. And lastly but most importantly, my family. Mom, dad, sis and jiju – you have always believed in me a lot more than I did myself and to say that you’ve supported me always would be an understatement. This would have never even been possible without you. Thank you for everything. Finally, my lil bud Rayan; everything just got better since you stepped into this world. I hope one day you will understand what your smiles, hugs and ‘love yous’ did for me during my PhD. I love you to bits.
TABLE OF CONTENTS

ABSTRACT .. I

ACKNOWLEDGEMENTS .. II

TABLE OF CONTENTS .. IV

LIST OF FIGURES .. VII

LIST OF TABLES .. VIII

LIST OF ABBREVIATIONS .. IX

1 GENERAL INTRODUCTION .. 2
 1.1 OVERVIEW ... 2
 1.2 STROKE .. 3
 1.2.1 Incidence and prognosis ... 3
 1.2.2 Risk Factors .. 4
 1.2.3 Etiology and subtypes ... 4
 1.2.4 Animal models ... 6
 1.2.5 Pathophysiology of ischemic stroke ... 11
 1.2.6 Endogenous Response to Ischemic injury ... 18
 1.2.7 Brain plasticity ... 20
 1.3 CURRENT TREATMENTS FOR ISCHEMIC STROKE .. 31
 1.4 GROWTH HORMONE ... 35
 1.5 PROLACTIN ... 51
 1.6 AIMS .. 55

2 MATERIALS AND METHODS .. 58
 2.1 IN VIVO STUDIES ... 58
 2.1.1 Animals .. 58
 2.1.2 Rat growth hormone buffer (rGH buffer) ... 58
 2.1.3 Stereotactic Endothelin-1 (ET1) infusion surgery .. 59
 2.1.4 Overview of the in vivo studies ... 61
 2.1.5 ICV Cannula and pump placement ... 62
 2.1.6 Behavioural Testing ... 64
 2.1.7 Blood and CSF sampling ... 66
 2.1.8 Catheter status at post-mortem ... 66
 2.1.9 Post-mortem, tissue harvesting and processing ... 67
 2.1.10 Radioimmunnoassay (RIA) for IGFI ... 68
 2.1.11 Corticosterone high performance liquid chromatography (HPLC) coupled with mass spectrometry 69
 2.1.12 Urea measurements ... 70
 2.1.13 Acid Fushcin-Thionin Staining and measurement of tissue survival ... 71
 2.1.14 Immunohistochemistry ... 71
 2.1.15 Quantification of GH and DCX labeling: dose response study .. 72
 2.1.16 Statistics ... 73
 2.2 IN VITRO STUDIES ... 74
 2.2.1 Cell culture .. 74
 2.2.2 Functional Assays .. 77
 2.2.3 Molecular Biology ... 80
 2.2.4 Statistics ... 85

3 CENTRAL INFUSION OF GH POST-ISCHEMIA IN THE ADULT BRAIN: BEHAVIOURAL AND ENDOCRINE EFFECTS 86
 3.1 INTRODUCTION .. 86
 3.2 RESULTS ... 87
 3.2.1 Buffer formulation and testing ... 87
 3.2.2 Behavioural analysis ... 88
 3.2.3 Plasma and CSF measurements ... 91
 3.2.4 Body and brain weights ... 92
 3.3 DISCUSSION ... 94
4 CENTRAL INFUSION OF GH POST–ISCHEMIA IN THE ADULT BRAIN: REGION AND CELL-SPECIFIC TARGETING OF INFUSED GH

4.1 INTRODUCTION .. 98
4.2 RESULTS .. 98
4.2.1 GH infusion after stroke may alter the tissue survival ... 99
4.2.2 ICV GH following injury localises to neurogenic regions and the infarct penumbral area 100
4.2.3 Quantification of GH immunoreactive cells .. 103
4.2.4 GH immunopositive cells double-label with DCX and GFAP .. 106
4.2.5 Quantification DCX staining ... 108
4.3 DISCUSSION ... 111

5 DELAYED AND CHRONIC TREATMENT WITH GH AFTER STROKE MAY BE BENEFICIAL

5.1 INTRODUCTION .. 116
5.2 RESULTS .. 117
5.2.1 Delayed onset of GH-treatment does not provide any neuroprotection 117
5.2.2 Delayed and chronic treatment of GH after stroke may accelerate some aspects of functional recovery118
5.2.3 Delayed and chronic GH treatment improved spatial memory .. 121
5.2.4 Delivered GH was bioactive for the duration of infusion .. 122
5.2.5 GH treatment caused a transient increase in overall body weight but a decrease in spleen weight ... 123
5.3 DISCUSSION... 125

6 GH HAS PROLIFERATIVE AND CHEMOATTRACTIVE EFFECTS ON NSCS IN VITRO

6.1 INTRODUCTION .. 130
6.2 RESULTS .. 130
6.2.1 Characterisation of hNSCs .. 130
6.2.2 Physiological potency of Genotropin® .. 131
6.2.3 Basal expression of GHR, IGF1R and IGF1 but no GH or IGF2 in hNSCs 132
6.2.4 GH promotes the proliferation of hNSCs in the absence of EGF and bFGF 135
6.2.5 GH promotes the proliferation of neuroblasts but not glial progenitors 136
6.2.6 GH promotes the maturation of neurons but inhibits neurogenesis 137
6.2.7 GH promotes the migration of hNSCs .. 140
6.3 DISCUSSION... 142

7 PRL ALSO HAS PROLIFERATIVE AND CHEMOATTRACTIVE EFFECTS ON NSCS IN VITRO

7.1 INTRODUCTION .. 149
7.2 RESULTS .. 149
7.2.1 hNSCs predominately express full length PRLR, with weak expression of the intermediate form 149
7.2.2 rhPRL promotes the proliferation of hNSCs in the absence of EGF and bFGF 150
7.2.3 rhPRL promotes the proliferation of neuroblasts and glial progenitors 151
7.2.4 PRL can inhibit or promote migration of hNSCs .. 152
7.3 DISCUSSION... 154

8 GENERAL DISCUSSION

8.1 OVERVIEW ... 158
8.2 MAJOR FINDINGS ... 159
8.2.1 Central infusion of GH post ischemia in the adult brain; Behavioural and endocrine effects 160
8.2.2 Central infusion of GH post–ischemia in the adult brain; region and cell-specific targeting of infused GH 160
8.2.3 Delayed and chronic treatment with GH after stroke may be beneficial 160
8.2.4 GH has proliferative and chemotactic effects on NSCs in vitro 161
8.2.5 PRL has proliferative and chemotactic effects on NSCs in vitro 161
8.3 IMPLICATIONS ... 162
8.3.1 ET1 model of stroke and ICV infusion of GH ... 162
8.3.2 Effects of GH on neurogenic processes ... 164
8.3.3 Effects of GH on functional recovery following stroke ... 166
8.3.4 Effects of PRL on neurogenic processes .. 168
8.3.5 Use of GH and PRL in the brain: Factors to consider ... 171
8.4 LIMITATIONS .. 172
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Overview of animal models of global and focal ischemia</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Graph representing the temporal profile of the major pathophysiological events underlying acute focal cerebral ischemia</td>
<td>12</td>
</tr>
<tr>
<td>1.3</td>
<td>Overview of cell death processes that occur in response to ischemia</td>
<td>14</td>
</tr>
<tr>
<td>1.4</td>
<td>Sites of adult neurogenesis in the human and rodent brains</td>
<td>25</td>
</tr>
<tr>
<td>1.5</td>
<td>Growth Hormone Receptor (GHR) signalling pathway</td>
<td>37</td>
</tr>
<tr>
<td>1.6</td>
<td>Mediators of GH release</td>
<td>43</td>
</tr>
<tr>
<td>2.1</td>
<td>An illustration of the rat skull showing the target sites for Endothelin-1 infusion and ICV cannula placement</td>
<td>60</td>
</tr>
<tr>
<td>2.2</td>
<td>Timeline and schematics of the dose response and delayed treatment studies</td>
<td>62</td>
</tr>
<tr>
<td>2.3</td>
<td>SDS-PAGE gel electrophoresis validation for Genotropin® solution integrity</td>
<td>77</td>
</tr>
<tr>
<td>3.1</td>
<td>Specific activity of rGH incubated for 2 weeks in the designed rGH buffer</td>
<td>88</td>
</tr>
<tr>
<td>3.2</td>
<td>ICV administration of GH commencing immediately after stroke has no significant effects on sensorimotor function at any of the doses studied</td>
<td>90</td>
</tr>
<tr>
<td>4.1</td>
<td>Long-term GH treatment commencing immediately after stroke may not confer neuroprotection</td>
<td>93</td>
</tr>
<tr>
<td>4.2</td>
<td>GH delivered via implanted minipumps localises to cells in known neurogenic regions as well as those surrounding the infarct penumbra</td>
<td>100</td>
</tr>
<tr>
<td>3.3</td>
<td>Quantification of GH immunoreactive cells in vehicle and GH-treated brains</td>
<td>103</td>
</tr>
<tr>
<td>4.4</td>
<td>Infused GH localised to DCX positive cells lining blood vessels, in the infarct penumbral region as well as in and surrounding the WMTs on the ipsilateral side</td>
<td>107</td>
</tr>
<tr>
<td>4.5</td>
<td>GH also co-localised to GFAP positive cells</td>
<td>108</td>
</tr>
<tr>
<td>4.6</td>
<td>Quantification of DCX immunoreactive cells</td>
<td>111</td>
</tr>
<tr>
<td>5.1</td>
<td>Delayed, long-term GH treatment after stroke did not alter lesion size</td>
<td>118</td>
</tr>
<tr>
<td>5.2</td>
<td>Delayed and long term ICV GH treatment accelerates motor function recovery as measured by the forepaw inhibition test</td>
<td>120</td>
</tr>
<tr>
<td>5.3</td>
<td>Delayed and long-term ICV GH treatment improved spatial memory as assessed by the Morris water maze</td>
<td>122</td>
</tr>
<tr>
<td>5.4</td>
<td>Delivered GH for bioactive for the duration of infusion</td>
<td>123</td>
</tr>
<tr>
<td>5.5</td>
<td>GH treatment leads to a transient increase in body weight for the duration of infusion</td>
<td>124</td>
</tr>
<tr>
<td>6.1</td>
<td>hNSCs are grown in an adherent monolayer and propagated in EGF and bFGF</td>
<td>131</td>
</tr>
<tr>
<td>6.2</td>
<td>The physiological potency of Genotropin is equivalent to pituitary-derived hGH</td>
<td>132</td>
</tr>
<tr>
<td>6.3</td>
<td>hNSCs express hGHR but not hGH</td>
<td>133</td>
</tr>
<tr>
<td>6.4</td>
<td>hNSCs endogenously express IGF1</td>
<td>135</td>
</tr>
<tr>
<td>6.5</td>
<td>GH has differential effects on the proliferation of hNSCs at various stages of differentiation</td>
<td>137</td>
</tr>
<tr>
<td>6.6</td>
<td>Preliminary results show rhGH has considerable effects on the neuronal differentiation of hNSCs</td>
<td>139</td>
</tr>
<tr>
<td>6.7</td>
<td>rhGH signals via the PRLR to promote hNSC migration</td>
<td>142</td>
</tr>
<tr>
<td>7.1</td>
<td>hNSCs express hPRLR but not hPRL</td>
<td>150</td>
</tr>
<tr>
<td>7.2</td>
<td>PRL promotes the proliferation of hNSCs at various stages of differentiation</td>
<td>152</td>
</tr>
<tr>
<td>7.3</td>
<td>PRL can suppress or induce migration of hNSCs</td>
<td>153</td>
</tr>
</tbody>
</table>
LIST OF TABLES

TABLE 1.1: A BRIEF DESCRIPTION OF THE IONIC AND METABOLIC CHANGES OCCURRING IN THE CORE AND THE PENUMBRA DURING ISCHEMIA

TABLE 2.1: PERCENTAGE OF IMPAIRMENT OF EACH MATCHED PAIR POST-STROKE

TABLE 2.2: SEQUENTIAL PROCESS OF AUTOMATED TISSUE PROCESSING

TABLE 2.3: REHYDRATION OF SLIDE-MOUNTED SECTIONS PRIOR TO STAINING

TABLE 2.4: FOUR-POINT SCALE USED FOR GH/DCX QUANTIFICATION

TABLE 2.5: NANODROP RESULTS OF A REPRESENTATIVE RNA SAMPLE EXTRACTED USING THE RNEASY MINI KIT

TABLE 2.6: LIST OF PRIMERS

TABLE 2.7: LIST OF POSITIVE CONTROLS FOR EACH GENE EXAMINED USING PCR
LIST OF ABBREVIATIONS

24h – 24 hours
AC – PKA – Adenylyl cyclise – protein kinase A
ACTH – Adenocorticotropic hormone
AMPA - α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate
APCI – Atmospheric pressure chemical ionization
βIIIITubulin – Neuron-specific marker
DAB – 3,3’-Diaminobenzidine
DAPI - 4',6-diamidino-2-phenylindole, DNA stain to label nuclei
BBB – Blood brain barrier
BDNF – Brain-derived neurotrophic factor
bFGF – Basic fibroblast growth factor
BrdU - Bromodeoxyuridine
BSA – Bovine serum albumin
BV – Blood Vessels
CBF – Cerebral blood flow
CM – Conditioned medium
CNS – Central nervous system
CSF – Cerebrospinal fluid
CXCL4 – Chemokine ligand 4
DCX – Doublecortin
DCX+ - Doublecortin positive
DG – Dentate gyrus
DPX – Dibutyl phthalate (mounting medium)
E# – Embryonic day #
EGF – Epidermal growth factor
ERK – Extracellular regulated kinase
EPO - Erythropoietin
ET1 – Endothelin-1
GABA – Gamma-amino butyric acid
GAP43 – Growth-associated protein 43
GCL – Granule cell layer
GF – Growth factor
GFAP – Glial fibrillary acid protein
GH – Growth hormone
GH+ - Growth hormone positive
GHBP – Growth hormone binding protein
GHD – Growth hormone deficiency
GHR – Growth hormone receptor
GHRA – Growth hormone receptor antagonist
GHRH – Growth hormone releasing hormone
GHRS – Growth hormone receptor substrate
GLDH – Glutamate dehydrogenase
GnRH – Gonadotrophin-releasing hormone
HCl – Hydrochloric acid
hGH/PRL/NSC – Human growth hormone/prolactin/neural stem cells
hpGH – Human pituitary growth hormone
HI – Hypoxia ischemia
HPLC – High-performance liquid chromatography
ICV - Intracerebroventricular
IGF1 – Insulin-like growth factor 1
IGFBP – Insulin-like growth factor binding protein
IRS – Insulin receptor substrate
JAK-STAT- Janus activated kinase - signal transducer and activator of transcription
KPBS – Potassium phosphate buffered saline
LV – Lateral ventricle
M1 – Primary motor cortex region
MAPK – Mitogen-activated protein kinase
min - Minutes
MCA – Middle cerebral artery
MCAO – Middle cerebral artery occlusion
MWM – Morris water maze
Na2B4O7 – Sodium tetraborate (borax)
NeuN – Neuronal nuclei
NGS – Normal goat serum
NMDA – N- Methyl-D-Aspartate
NSC – Neural stem cell
NZ – New Zealand
O/N – Overnight
PBS – Phosphate buffered saline
PCNA – Proliferating cell nuclear antigen
PEG – Polyethylene glycol
PFA – 4% Paraformaldehyde
PI3K – Phosphatidylinositol triphosphate
PLC – Phospholipase C
PKC – Protein kinase C
PRL - Prolactin
PRLBP – Prolactin receptor binding protein
PRLR – Prolactin receptor
PRLRA – Prolactin receptor antagonist
RG – Radial glia
rGH/PRL/NSC – rat growth hormone/prolactin/neural stem cells
RG – Radial glia
RIA - Radioimmunoassay
RRA – Radioreceptor assay
RT – Room temperature
rtPA – recombinant tissue plasminogen activator
RT-PCR – Reverse transcriptase polymerase chain reaction
SDS PAGE - Sodium dodecyl sulfate polyacrylamide gel electrophoresis
S100β - S100 calcium binding protein B, marker for immature astrocyte
SEC – Size-exclusion chromatography
SGZ – Sub-granular zone
SHC – Src homology containing domain
SOCS – Suppressors of cytokine signalling
SS- Somatostatin
STATs – Signal transducers and activators of transcription
SVZ – Sub-ventricular zone
WM – White matter
WMT – White matter tracts
WT – Wild-type