Experimental Astronomy
https://doi.org/10.1007/510686-022-09888-z

ORIGINAL ARTICLE

®

Check for
updates

Pulsar search acceleration using FPGAs and OpenCL
templates

Julian Oppermann’ © . Mitchell B. Mickaliger? - Oliver Sinnen3

Received: 17 August 2021 / Accepted: 13 December 2022
© The Author(s) 2023

Abstract

The Square Kilometre Array (SKA) is the world’s largest radio telescope cur-
rently under construction, and will employ elaborate signal processing to detect new
pulsars, i.e. highly magnetised rotating neutron stars. This paper addresses the accel-
eration of demanding computations for this pulsar search on Field-Programmable
Gate Arrays (FPGAs) using a new high-level design process based on OpenCL
templates that is transferable to other scientific problems. The successful FPGA
acceleration of large-scale scientific workloads requires custom architectures that
fully exploit the parallel computing capabilities of modern reconfigurable hardware
and are amenable to substantial design space exploration. OpenCL-based high-
level synthesis toolchains, with their ability to express interconnected multi-kernel
pipelines in a single source language, excel in this domain. However, the achievable
performance strongly depends on how well the compiler can infer desirable hardware
structures from the code. One key aspect to excellent performance is commonly the
uninterrupted, high-bandwidth streaming of data into and through the design. This is
difficult to achieve in complex designs when data order needs to be re-arranged, e.g.
transposed. It is equally hard to pre-fetch and burst-load from DDR memory when
reading occurs in non-trivial patterns. In this paper, we propose new approaches to
these two problems that use OpenCL-based code templates.

We demonstrate the practical benefits of these approaches with the acceleration
of a key component in the SKA’s pulsar search pipeline: the Fourier Domain Accel-
eration Search (FDAS) module. Using our proposed methodology, we are able to
develop a more scalable FDAS accelerator architecture than previously possible. We
explore its design space to eventually achieve a 10x throughput improvement over a
prior, thoroughly optimised implementation in plain OpenCL.

Research was conducted while J. Oppermann was employed at the University of Auckland, New
Zealand

P4 Julian Oppermann
oppermann @esa.tu-darmstadt.de

Extended author information available on the last page of the article.

Published online: 23 January 2023 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10686-022-09888-z&domain=pdf
http://orcid.org/0000-0002-8073-720X
mailto: oppermann@esa.tu-darmstadt.de

Experimental Astronomy

Keywords Radio astronomy - Pulsar search - FPGA - OpenCL -
High-level synthesis - Template code generation

1 Introduction and related work

The design of FPGA-based accelerators for real-world scientific problems using
OpenCL has received an increasing amount of academic attention over the last years.
Examples include cancer treatment simulations [20], convolutional neural networks
[12], accelerating matrix multiplications [4], solving Maxwell’s equations [9], and
general stencil computations [21], to mention only the most recent publications —
refer to [7, 15] for a broader overview. This is no surprise, as OpenCL-based high-
level synthesis toolchains, with their ability to express interconnected multi-kernel
pipelines in a single source language, excel in this domain.

This trend coincides with general maturing of the Intel toolchain, but also with
the introduction of FPGA-specific extensions to the base OpenCL language. It is
well recognised today that OpenCL is functionally portable between different tar-
get architectures, but usually not performance portable. In order to obtain very good
performance on FPGAs, OpenCL designs need to be developed with a hardware
architecture in mind, in other words FPGA -centric.

One of the most profound differences to CPU and GPU programming is the con-
cept of the single work-item (SWI) kernel, which practically abandons the standard’s
data-parallel execution model, defined in terms of work-items and work-groups, for
the automatic formation of computational pipelines from loops, a classic high-level
synthesis technique. Using SWI kernels is a recommendation in Intel’s Best Practices
Guide [6], one of the first steps in the optimisation framework proposed by Sanaullah
et al. [16], and the default choice in the analysis tool presented by Jiang et al. [7].
Other FPGA-specific idioms are the inference of shift registers [21], and influenc-
ing the banking of local memory buffers with the help of attributes [6], or better by
statically separating arrays in the source code [16].

Relying on low-latency channels (or pipes), instead of communicating via global
memory, is the second outstanding concept in FPGA-centric OpenCL programming.
In principle, this enables the single-source specification of systolic arrays and other
multi-stage pipelines, and therefore plays well into the FPGA’s key strength, laying
out computations spatially.

Large scientific applications, as targeted in our case study in this paper, require
custom architectures that fully exploit the parallel computing capabilities of mod-
ern FPGAs and are amenable to substantial design-space exploration, especially if
adaptability across multiple FPGA generations is desired. To that end, we employ
an interconnected multi-kernel pipeline architecture, expressed exclusively as SWI
kernels in OpenCL.

However, the language support to actually form such pipelines from multiple ker-
nels is lacking in Intel’s toolchain. The parameterisation of an architecture can lead to
code that is either inefficient to synthesise, because optimisation opportunities might
be obscured for the compiler, or cuambersome to write and maintain, due to the neces-
sary manual code duplication and specialisation. SWI kernels may be duplicated with

@ Springer

Experimental Astronomy

a set of vendor-specific attributes [21], but cannot take arguments or access the global
memory then. Some authors have resorted to workarounds, such as unrolling arrays
of processing elements inside a single kernel, which can be challenging to get right
[20], or by using preprocessor macros to wrap individual kernel declarations around
the actual algorithm [4]. We propose to prepend a lightweight code-generation step
to the OpenCL synthesis flow: The design is specified using OpenCL templates, i.e.
kernel code augmented with snippets of Python code. We use a template engine to
produce standard OpenCL code, specialised to a concrete set of parameter values,
which is then processed by the Intel toolchain. Our approach is more capable than the
“knobs” used to generate variants of the benchmark kernels in the suite presented by
Gautier et al. [3], but more lightweight than the full-fledged code generation from an
application-class-specific intermediate representation as proposed by Mu et al. [12].

With the large computing resources of modern devices, one key aspect to excel-
lent performance is commonly the uninterrupted, high-bandwidth streaming of data
into and through the design. This is difficult to achieve in complex, scientific
designs, when data order needs to be re-arranged, e.g. transposed or reversed. It is
equally hard to pre-fetch and burst-load from DDR memory when reading occurs in
non-trivial patterns. In this paper, we propose OpenCL approaches to these two prob-
lems, leveraging the template-based approach to generalise them and to make them
parametrisable for design-space exploration.

We demonstrate the use of a combination of the proposed approaches in the
design of a hardware architecture for a large scientific high-performance computing
problem, namely for a pulsar search pipeline.

Pulsars are extremely dense, highly magnetised, and fast-rotating neutron stars
that were formed from the remnants of supernovae. Their physical properties, and
in consequence, the emission of electromagnetic radiation, are very stable over time,
making them useful reference objects for astronomers. Finding new pulsars is a
key objective for the Square Kilometre Array (SKA) [1], which is currently being
constructed, and will become the world’s largest radio telescope when finished.

As pulsar signals usually arrive very weak on Earth, multiple radio telescopes,
distributed over the surface of our planet, have to work together to form a highly sen-
sitive receiver. Still, elaborate signal processing is required for detection. The SKA’s
pulsar search subelement contains modules to filter out terrestrial radio interference
and cosmic noise, and to compensate for the unknown distance and movement of a
pulsar candidate.

The focus of this work is the Fourier domain acceleration search (FDAS) module,
which aims to reverse smearing of the received signal due to the acceleration of a
pulsar orbiting another object, e.g., a second pulsar.

To the best of our knowledge, Wang et al. [17-19] conducted the only thorough
investigation into the problem, and developed and evaluated an FPGA-based accel-
erator for FDAS. They established that FPGAs offer better energy efficiency than
GPU-based accelerators for this application, and showcased the benefits of describ-
ing hardware accelerators, to be deployed in a global science project, in OpenCL.
Our work builds upon their research.

The acceleration of the FDAS algorithm is, admittedly, a niche problem because
it concerns a very specialised scientific community. Nevertheless, it is an important

@ Springer

Experimental Astronomy

problem to research, as due to the scale of the SKA telescope, thousands of FDAS
accelerators will need to run continuously for months, so any improvements in
throughput and energy-efficiency will yield significant practical savings.

More importantly, it is somewhat representative of large scientific high-
performance computing problems: i) it consists of several high-level stages; ii) it is
a large scale problem, with strong requirements; iii) data order needs to be adjusted
on the fly; iv) it needs to use large amounts of external (DRAM) memory; v) it loads
from memory with non-trivial patterns.

The main contributions of this work are

— the study of OpenCL constructs for stream data reordering,

— the proposal of an OpenCL kernel structure for pre-fetched burst loads at
different speeds,

— the use of a template engine for parametrisable and maintainable code that can
be effectively synthesised,

— the proposal of a new architecture for accelerating FDAS inside the pulsar search
subelement, employing the proposed techniques, and

— the experimental evaluation of the new FDAS architecture, which achieves a 10x
speedup over a previous design on the same hardware.

The presented FDAS implementation is parameterisable, and thus enables auto-
matic design-space exploration for our current, Arria 10-based target card, as well as
for more capable FPGA devices. This is a key requirement, because the SKA project
has not yet finalised its decision for a particular accelerator device. The key to our
very substantial 10x speedup was: i) a holistic approach that optimises connected
major pipeline stages at the same time; ii) the focus of the new design on data read
performance through the proposed techniques and a new systolic array architecture
for parts of FDAS; iii) finding the right configurations and replications of the various
kernels with an extensive design-space exploration.

The remainder of this paper is organised as follows. Section 2 studies and pro-
poses the advanced OpenCL aspects and techniques we are going to employ in our
new FDAS architecture design. Section 3 explains the radio-astronomical context of
the FDAS algorithm, and the computer-engineering challenges its implementation
poses. In Section 4, we summarise key design choices from the state-of-the-art work,
analyse its limitations and propose a novel accelerator design. Section 5 presents the
new proposed architecture, detailing the major aspects that lead to the increase in
performance. We present design-space exploration results in Section 6, and conclude
in Section 7.

2 Advanced OpenCL aspects of multi-kernel architectures

The case study in the second part of this paper demonstrates that parametrisable
multi-kernel architectures are a powerful methodology to guide an high-level synthe-
sis compiler into laying out an algorithm spatially in a way that efficiently utilises
the available hardware resources. Before we dive into the details of the concrete
signal-processing algorithm, we highlight three aspects of “programming” such an

@ Springer

Experimental Astronomy

accelerator in OpenCL, which we expect to be applicable to a broader class of
FPGA-based designs.

2.1 Kernel replication

The ability to replicate the functionality of a kernel multiple times is a crucial build-
ing block for any scalable architecture. In the following, we revisit the three options
available in the Intel OpenCL compiler, and propose the use of an external template
engine to achieve a more compact and concise coding style.

Using compiler-specific attributes The vendor-specific attribute num_compute_units(N)
instructs the compiler to instantiate the annotated kernel N times' internally, as
illustrated in Listing 1.

—attribute_((num_compute_units(N)))
__attribute_((autorun)) // mandatory
—attribute_((max_global_work_dim(0))) // mandatory
kernel void K(/+ no arguments allowed /) {

uint id = get_compute_id(0);

/* code *x/

~N N B W =

}

Listing 1 Replication via compiler-specific attributes

This replication is not visible at the language level, hence it is mandatory to anno-
tate such kernels with the autorun attribute, as the individual instances cannot be
interacted with from the host code. In consequence, no kernel arguments are allowed,
which makes it impossible to access the global memory, and impractical to reuse an
instance at different locations within the accelerator pipeline.

Each kernel instance can be customised based on the identifier returned by the
get_compute_id intrinsic. While the identifier’s concrete value will be constant-
propagated in each instance, language-wise it is prohibited to be used when a literal
is expected, e.g. as a dimension in an array declaration as shown in Listing 2.

1 | float buffer[get_compute_id(0)+11[1024]1; // error!

Listing 2 Forbidden use of intrinsic function in buffer declaration

Using preprocessor directives OpenCL C supports the usual preprocessor directives
to define macros and conditionally select parts of the source code. These can be
combined to facilitate kernel replication.

I'Similar to the OpenCL workgroup concept, up to three dimensions may be specified. For brevity of the
discussion, we only show the one-dimensional case here.

@ Springer

Experimental Astronomy

In the example in Listing 3, the functionality intended to be instantiated multiple
times is contained in a helper function k_func. The actual kernel function is wrapped
in the macro KERNEL(name). The compiler will inline k_func into its body. Now,
as the preprocessor does not offer a looping construct, one needs to manually invoke
the macro, with different kernel names and wrapped in nested #ifs, “enough” times,
i.e. up to an expected maximum number of replicas. Optionally, a macro representing
the instance number, may be defined and used inside k_func.

inline void k_func(/x arguments =/) { /* code %/ }

1

2

3 |#define KERNEL (name) \

4 kernel void name (/* arguments /) { k_func(/* arguments =/); }
5

6 |#if N > 0

7 | #define ID 0

8 | KERNEL(K_0)

9 | #undef ID

10 |[#if N > 1

11 | #define ID 1
12 | KERNEL(K_1)

13 | #undef ID

14 | ... // repeat until an upper bound for N is reached
15 | #endif

16 | #endif

Listing 3 Replication with the help of the preprocessor

The resulting instances behave like normal kernels, e.g. they can have arguments
and are visible to the host. However, as evident in the example above, the manual
effort required makes this method error-prone and verbose.

Using code transformations The last built-in method, as depicted in Listing 4, does
not actually instantiate multiple kernels.

inline void k_func(uint id, /% arguments x/) { /* code %/ }

kernel void K(/+ arguments /) {
#pragma unroll
for (uint k = 0; k < N; ++k)
k_func(k, /* arguments #/);

~N N B WD =

Listing 4 Replication through code transformations

Using a combination of the compiler’s loop unrolling and inlining transformations,
the desired functionality, which in this example is contained in the helper function
k_func, is replicated inside a single kernel. This method is only suited for simple,
regular and non-stalling computations, as the replicas are all part of the same pipeline
in the surrounding kernel. If k_func contains loops, the underlying C semantics may
force the compiler to execute their replicas sequentially.

@ Springer

Experimental Astronomy

Using a template engine For maximum flexibility, we propose to introduce a
lightweight template engine to the compile flow. An example is shown in Listing 5. In
this paper, we specifically use Mako? to augment OpenCL source files with snippets
of Python code, but expect other templating languages to work just as well.

With Mako’s % for loop—, we can replicate the kernel as concisely as with the
num_compute_units-attribute, but are not subject to that method’s limitations.

—_

% for k in range(N):
2 | kernel void K_${k}(/* arguments */) { /* code %/}
% endfor

Listing 5 Proposed replication using Mako

In fact, the template engine can be thought of as a better preprocessor that
enables instance customisation with the full expressiveness of Python. Consider the
example in Listing 6, which is representative of code used in the preload-kernels
discussed in Section 5.2. Here, we again use a Mako loop to instantiate a parameter-
dependent number of buffers. The concrete number is a non-linear function of a
global parameter and the instance identifier, and is computed in the Python snippets.

1 | <% import math

2 def num_buffers(u, v):

3 return ...

4 | %>

5

6 |% for k in range(N):

7 | kernel void K(/* arguments */) {

8 <% n_buf = num_buffers(someParam, k+1l) %>
9 % for p in range(n_buf)

10 float buffer_${p}[1024];

11 % endfor

12 for (uint i = 0; i < 1024; ++i) {
13 % for p in range(n_buf)

14 buffer_${p}[i] = ...

15 % endfor

16 }

17

18 |}

19 | % endfor

Listing 6 Proposed instantiation of a parametrisable number of buffers using Mako

Additionally, the template mechanism allows us to use subscripted names to com-
municate to the compiler that these buffers shall be independently accessible. While
the same effect can often be achieved in plain OpenCL with unrolled loops and the
automatic (or user-assisted) banking of multi-dimensional arrays, the programmer
must be a aware of certain pitfalls, e.g. that all dimensions but the first must be pow-
ers of two. In situations in which the programmer cannot or does not want to cater

Zhttps://www.makotemplates.org

@ Springer

https://www.makotemplates.org

Experimental Astronomy

to the constraints of the automatic banking, the illustrated approach is a valuable
alternative.

In our case study, we use the template-based replication to distribute work to a
parametrisable number of fast Fourier transformation (FFT) engines, and the instance
customisation to compute the exact minimum number of load units and buffers in
kernels that feed data into a systolic array structure.

2.2 Variable-speed burst loading

Getting data from the global memory into the compute pipeline as fast and efficient
as possible is one of the key problems in FPGA-based accelerator designs. With the
prefetching load unit (PFLU), the Intel OpenCL toolchain already offers a component
to efficiently stream chunks of data.

Suppose we want to gather data from different parts of a large global memory
buffer. These accesses should be independent in the sense that a stall in one should
not thwart progress in the others. To achieve such a decoupling, it is desirable to
wrap PFLUs in simple kernels that feed the data to the compute parts of the pipeline
via channels. However, instantiating a parametrisable number of such load kernels is
impractical because of the limitations of the built-in replication methods discussed in
the previous section. In contrast, the template method makes this easy to express, as
illustrated in Listing 7.

channel float4 data_out[${N}];

1

2 |% for k in range(N):

3 | kernel void loader_${k}(global float4 x ptr, const uint n_bundles) {
4 for (uint b = 0; b < n_bundles; ++b) {

5 floatd4 data = ptr[b]; // simple access pattern, results in PFLU
6 write_channel_intel(data_out[${k}], data);

7 }

8 |}

9 |% endfor

Listing 7 Instantiation of a parametrisable number of prefetching load units wrapped in simple kernels

An additional benefit of this concept is that the consumer can control the pace of
the data, e.g. request data every three cycles, without introducing complex control
flow in the load kernel. Keeping the kernel structure and the memory access pattern
simple is key to guarantee that the compiler will actually infer’ a PFLU.

In context of our case study, we employ this technique for feeding the input data
provided by the host into the accelerator pipeline. Furthermore, in the second phase
of the FDAS algorithm, being able to combine data streamed from multiple locations
and at different speeds turned out to be the missing piece for achieving a bandwidth-
efficient access pattern.

3Intel recently introduced the __prefetching load intrinsic to let the programmer manually request this
particular type of load unit.

@ Springer

Experimental Astronomy

2.3 In-stream reordering

FPGAs excel at pipeline processing, but not every algorithm can be mapped to a
perfect pipeline. Instead, an intermediate stage for reordering the stream at the gran-
ularity of a tile of data is often required. Double buffering allows a back-to-back

processing of tiles without impairing the pipeline’s throughput.

We present a generic recipe to implement such a kernel in OpenCL. To make the
discussion more illustrative, we show how to perform a simple transpose operation

on a stream of bundles (here, comprised of four floating-point values) in Fig. 1.

| sideA(eventienumben |
${bundles_per_tile}
NN\ N\
E in.s@ E/ ARRR ban /] ﬂ out.s0@ E
.. in.sl LITT] bank [1 out.sl
in.s2 ban 2 out.s2
in.s3 ban 3 out.s3
b b b b b b
+ o+ [${bundles_per_tile} - -
21 12
1 | <% # Example parameters
2 bundle_sz =4
3 bundles_per_tile = 512
4 | %>
5 | channel float4 bundle_in; channel float4 bundle_out;
6
7 | kernel void transpose(const uint n_tiles) {
8 float _attribute_((numbanks(${bundle_sz})))
9 buffer[${bundle_sz}]1[2][${bundles_per_tile}];
10
11 for (uint t = 0; t < n_tiles + 1; ++t) {
12 for (uint b = 0; b < ${bundles_per_tile}; ++b) {
13 if (t < n_tiles) {
14 // read bundle from input channel
15 float4 in = read_channel_intel(bundle_in);
16
17 // write entire bundle to one bank
18 <% bundles_per_bank = bundles_per_tile // bundle_sz %>
19 uint bank = b / ${bundles_per_bank};
20 uint index = b % ${bundles_per_bank} * ${bundle_sz};
21 % for i in range(bundle_sz):
22 buffer[bank][t & 1][index + ${i}] = in.s${i};
23 % endfor
24 }
25
26 if (t >0) {
27 // emit bundle to output channel
28 float4 out;
29
30 // read one element from each bank: using a Mako loop
31 // to "iterate" over the vector lanes
32 % for i in range(bundle_sz):
33 out.s${i} = buffer[${i}]1[1 - (t & 1)1[b];
34 % endfor
35
36 // write bundle to output channel
37 write_channel_intel(bundle_out, out);
38 }
39 }
40 }
41 |}

Fig. 1 Transposition as an example of double-buffered, in-stream reordering

@ Springer

Experimental Astronomy

In the example, we use the built-in* vector type float4 to represent a bundle of
data, and assume that each tile contains 512 such bundles. As the incoming data rate
must match the outgoing data rate, we use this type for both the input and the output
channel (line 5).

In lines 8-9, the reorder buffer is declared. Together with the numbanks attribute,
this particular order of dimensions results in a layout and banking as shown at the
top of Fig. 1, which allows one bundle to be stored and one bundle to be read in each
cycle, stall-free, which is essential to sustain a continuous operation of the reorder
kernel.

The kernel processes n_tiles tiles per launch. The main loop (lines 11-40) runs
for n_tiles +1 iterations, and implements the desired double buffering via the middle
dimension: New tiles are written into the buffer at [t & 1] in iterations O. . . n_tiles -1
(lines 13-24), whereas transposed tiles are emitted from the buffer at [1 - (t & 1)]
in iterations 1... n_tiles (lines 26-38). The compiler can infer from this idiomatic
coding style that the read and write accesses are mutually-exclusive in all iterations.

Up until this point, the presented structure is generic. The operation-specific parts
are in lines 17-23, i.e. the handling of the input bundle, and in line 30-34, i.e. the
preparation of the output bundle. These parts can be replaced with arbitrary access
patterns, e.g. bit-reversal of the bank number or element index, as long as no more
than one stall-free access is issued per bank. The example satisfies this constraint:
In the input part, the entire bundle is written to one of the banks using a single, wide
store operation, whereas in the output part, one element is read from each bank.

In the case study, we apply this recipe for a frictionless integration of FFT engines
into the accelerator pipeline. The particular engines used in this work expect a trans-
posed stream of bundles with bit-reversed elements as input, and emit the output tile’s
bundles in a bit-reversed order.

3 Pulsar Search with the SKA

Pulsars emit electromagnetic radiation at a characteristic spin frequency, coupled to
their very slowly decreasing rotation speed. Once a pulsar’s location and rotational
parameters are known, it can serve as a cosmic reference point for maps and probes
into the interstellar medium. However, detecting new pulsars is a challenge due to a
number of unknowns, as summarised in Fig. 2. Under ideal conditions, a pulsar would
appear as an easily identifiable peak in a frequency spectrum received by a radio
telescope. In reality, the signal is overlain by interference from other terrestrial or
cosmic sources, distorted from travelling an unknown distance through an unknown
interstellar medium (e.g. gas clouds), and smeared across a range of frequencies due
to the potential movement of the object towards or away from the observer.

The SKA’s PSS pipeline [10], outlined in Fig. 3 as part of the central signal pro-
cessor, attempts to mitigate these effects. The pipeline operates according to the
parameters that we introduce in the following paragraphs, and summarise in Table 1.

4User-defined data types would work as well, and could even be subject to a template parameter.

@ Springer

Experimental Astronomy

unknown rotation

i

interference
(cosmic/terrestrial)

unknown acceleration
towards observer

“another ™,
. objectin !
. orbit L’

Fig.2 Challenges of pulsar search

A single observation spans Tops = 536.86 seconds and produces Ngamp = 223

samples. Npeam € 1000. .. 2000 different sky locations are recorded at the same time,
and RF interference mitigation techniques are applied to the resulting beams. The
dedispersion module tries Ngy, = 6000 dispersion measures (DMs) to reverse the
effects of different distances and medium properties. Each dedispersed data chunk
then goes through further preprocessing steps (detailed in [10]), including a complex
Fourier transformation, which yields a frequency spectrum comprising Nfieq = 222
points. A cleaned version of this spectrum is the input for the FDAS module, which is
the focus of this paper and will be introduced in the next paragraph. Due to the high
data rate coming from the telescope’s receivers, long-term storage of the raw data is

/ ’ =

/ / Preprocessing é

[BeamI—r DM] Nsamp incl. complex §

% - - "time series" Fourier 5

é N N transform FDAS 2

. R o
Npeam beams formed Ny, dispersion
(different sky directions) measures tried

(different distances/

medium properties)

FDAS

Nfreq MT~~nng Ntmpl Nfreq o inal th Ntmpl NfreqL | th Neang
CONV HSUM DET
'spectrum’| =——— Fopr L= ppsr L—=—— [candidate list"

Nimpi Precomputed templates applied
(different accelerations of object)

Fig.3 Overview of the pulsar search subelement inside SKA’s central signal processor

@ Springer

Experimental Astronomy

Table 1 Summary of pulsar search subelement parameters

Parameter Description Value

Tobs Observation time 536.86 s

Npeam Number of beams 1000-2000

Ndm Number of dispersion measures 6000

Nsamp Number of samples per observation 23

Nireq Number of frequency bins 222

Nimpl Number of templates 85

Nipas Number of templates per accelera- [Nempl/2]
tion sign

Ntcf Maximum number of template 421
coefficients

Nhp Number of harmonic planes 8

Ncand Number of candidates per harmonic plane 64

source: project-internal documents [8, 11]

infeasible, and thus the pipeline must be able to process data within the observation
time. To this end, all preprocessing steps, as well as the FDAS module, should operate
with an initiation interval (II) of at most 90 ms (= Tobs/ Nam), assuming that we have
separate compute resources per beam, and handle all dispersion measure trials in a
pipelined fashion.

The SKA’s FDAS module [11] is based on work by Ransom et al. [14]. Its objec-
tive is to detect binary pulsars, which are pulsars in a close orbit with other massive
objects, and thus are of particular interest to astronomers as they allow the study
of gravitational waves. In contrast to individual pulsars, the signal received from a
binary pulsar will be smeared depending on its movement relative to the observing
telescope.

As shown in Fig. 3, FDAS conceptually comprises three phases: convolu-
tion (labelled “CONV”), harmonic summing (‘“harmonic summing”), and detection
(“DET”). In the convolution phase, the input spectrum is convolved with a set of
Ntmpl precomputed templates’, which compensate the smearing for a specific accel-
eration. In context of the SKA, Nyypl = 85 such templates, modelling accelerations
from —350m/s2 to 350m /s2, and comprising up to Neeef = 421 coefficients, are
used. There are Nipas = | Nmpl/2] templates per acceleration sign, which we number
as follows: Templates — Nypas - - - — 1 correct for the negative accelerations, template
0 models zero acceleration, i.e. it passes through the input unmodified, and templates
1... Nipas compensate the positive accelerations. The result of this phase is called

SPlease note the name clash between the acceleration templates introduced here, and the OpenCL code
templates referenced elsewhere in this paper.

@ Springer

Experimental Astronomy

the filter-output plane (FOP)6, a two-dimensional data structure with Nimpi Nfreq
elements.

The harmonic summing phase aims to isolate potential pulsar signals further from
the noise floor: If a peak at a certain frequency, in the spectrum corrected for a partic-
ular acceleration, actually originates from a pulsar, we expect to detect smaller peaks
at the harmonics, i.e. integer multiples, of that frequency and acceleration. To that
end, Npp = 8 harmonic plane HPy, ..., HPy, , are computed from the FOP, accord-
ing to Equation 1. The recursive definition relies on a stretched view (by an integer
factor k) of the FOP. Analogously to the FOP, the harmonic planes are indexed by a
template number # in the range [—Nipas, Nipas] and a frequency bin number f in the
range [0, Nfreq).

FOP(t, f) k=1
Py,) +FOP([£]. | £]) k=2 Np

In the detection phase, we compare the signal power, obtained by squaring the mag-
nitude of each complex point in each of the harmonic plane, with a threshold value:
If it is greater, then we record this detection as a candidate (k, ¢, f, |HPx(z, f)|2),
represented by the point’s harmonic, template and frequency bin numbers, as well as
the corresponding peak power. Afterwards, a candidate list containing Ncang entries
(here: 64) per HP is passed to postprocessing modules that validate and refine
the detections, before passing the results to the science data processor for further
analysis.

HP.(z, f) = = ey

4 Improved baseline architecture

In this section, we establish an improved baseline architecture, incorporating the
insights from prior work and current best-practices for OpenCL-based accelerator
design.

4.1 Algorithmic tweaks

We include the following design decisions and algorithmic tweaks proposed by Wang
et al. [17—-19] in our baseline architecture.

FT convolution and choice of FFT parameters Wang et al. found that implementing
the convolution phase with the help of the convolution theorem (“FT convolution™)
is more resource-efficient than the direct approach for supporting up to Neeef coef-
ficients, but a suitable FFT engine for Nfeq points could not be fit on the device.
To that end, the authors use the overlap-save (OLS) algorithm [13], which splits the
input into smaller tiles of S elements, and thus reduces the required FFT size to
that value. For semantic correctness, the neighbouring tiles must overlap by at least

The use of the term ‘filter* here refers to an engineer’s viewpoint, as the convolution of an input with a
set of coefficients is equivalent to applying an FIR filter to a signal.

@ Springer

Experimental Astronomy

__L—L_[— ~~. N,
tile
Solap Spyld LS | S~ ‘
- T
Fig. 4 Tiling scheme, according to the overlap-save algorithm, to split a single Nreq-point Fourier trans-

formation into Nyje smaller ones. S is the tile size, Soiap is the required overlap (or zero-padding) between
neighbouring tiles, and Syy1q is the resulting payload, i.e. the usable chunk of input data in each tile

Solap = Necoet — 1 points. The first and the last tile are simply padded with zeros. It
follows that each tile carries a payload of Spylq = S — Solap points, and the process
yields Nijle = [Nfreq/Spyid | tiles in total. This scheme is illustrated in Fig. 4. Each tile
is Fourier-transformed, then multiplied element-wise with the Fourier transformation
of one template’s coefficients. The result undergoes an inverse Fourier transforma-
tion. The overlapping parts of the tiles are discarded, and the concatenation of the
payloads yields the convolution result. Wang et al. investigated various tile sizes S
and FFT implementations handling P points in parallel per cycle, and recommend
S =2048 and P = 4.

Early computation of spectral power After the convolution phase, the FOP conceptu-
ally contains multiple, de-smeared versions of the input spectrum, i.e. it is comprised
of complex amplitudes per frequency bin, but the detection phase only evaluates the
signal power, a real quantity. Therefore, the power computation is hoisted towards
the end of the convolution phase, before writing the FOP to global memory, which
halves the amount of data that needs to transferred and stored.

On-the-fly harmonic summing and detection Instead of explicitly computing and
storing Npp planes as input for the detection phase, precious bandwidth can be saved
by interleaving it with the harmonic summing phase: Each coordinate (¢, f) is “vis-
ited” only once, during which all HP (¢, f) are computed and compared to the
respective thresholds together.

Parallel trials for positive and negative accelerations Each DM trial can be split
trivially across two accelerator cards: During harmonic summing, the FOP-halves,
representing positive respectively negative candidate accelerations, are independent
except for template 0. An individual FDAS accelerator therefore needs to handle
merely Nipas + 1 = 43 templates.

@ Springer

Experimental Astronomy

fft_ifft
float2 load_) store_| | float2 tiles
input [Nfeq] >input-> tile tiles [[Nyl [S] d
mult
float2 tmpls
[Nipas+1] [S]
] B s e s
lscar tpas+ freq hsum_ hp'Vcand
float thrsh | detect q float pwr
[th] [thNcand]

Fig. 5 Baseline architecture. Host and kernels (grey) communicate either via global memory buffers
(white) or channels (arrows)

4.2 Baseline architecture

Figure 5 shows our baseline architecture, comprised of seven SWI kernels, arranged
into a pipeline. The computation is implemented using single-precision floating-point
arithmetic.

Convolution The pipeline’s first six kernels implement the FT convolution. The main
component, the fft_ifft kernel, is used twice, to perform an FFT as well as to com-
pute its inverse. The kernel wraps a 2048-point, 4-parallel radix-2? feed-forward FFT
engine based on the work of Garrido et al. [2], and adapted from an Altera refer-
ence implementation [5]. The engine is fully pipelined and processes four points per
cycle. This characteristic defines the design of the FT convolution pipeline: In order
to match the data rate of the engine, the surrounding kernels also process four points
per cycle, and are connected by 256-bit wide OpenCL channels. While the engine’s
raw output is in the FFT-typical bit-reversed order, we employ double-buffering as
outlined in Section 2.3 to linearise it before emission to the wrapper kernel’s output
channels.

The pipeline starts with the input buffer, which is filled by the host. The ker-
nel load_input, which wraps a prefetching load unit to ensure bandwidth-efficient
burst-reads from global memory (cf. Section 2.2), linearly reads packs of four com-
plex values from the buffer and emits these to the output channels. Next, the tile
kernel combines two functions: First, it uses a shift register to generate the partly
overlapping tiles, as mandated by the OLS algorithm, from the stream of input
points. Secondly, it uses the recipe from Section 2.3 to reorder the tile elements
to accommodate the FFT engine’s internal design, which requires that elements
(0, 1024, 512, 1536) arrive in step 0, elements (1, 1025, 513, 1537) arrive in step 1,
and so forth. The store_tiles kernels linearly stores the packs it receives from fft_ifft
to the tiles buffer.

During initialisation, the host uploads the template coefficients, which are already
Fourier-transformed and arranged to match the order in the tiles buffer, to the global
memory buffer tmpls. The mult kernel first burst-loads one template to an internal

@ Springer

Experimental Astronomy

buffer. We then continuously load packs of tile elements and template coefficients,
perform the element-wise multiplication, and feed the result to the fft_ifft kernel.
Lastly, the power_discard kernel computes the magnitude of the complex points it
receives, and discards the overlapping parts of the tiles while writing the convolu-
tion result linearly to the fop buffer. Note that mult, fft_ifft in inverse mode and
power_discard are launched for each of the Nyy,s + 1 templates.

Harmonic summing and detection The hsum_detect kernel loads the detection
thresholds from the global memory buffer thrsh. We iterate over all template num-
bers ¢ and frequency bins f, compute all HP (¢, f) with the unrolled form of
Equation 1, and compare them to the threshold values in parallel. Detections are
stored stall-free to two intermediate ring buffers, which are copied to the global mem-
ory buffers loc (k, r and f packed into an uint value) and pwr (peak power) at the
end of execution.

4.3 Comparison to prior work

Using the same FPGA card as in this work (see Section 6.1), Wang et al.
[17] report an II of 570 ms for their best-performing architecture (“AOLS-
2048+NaiveMultipleHP”), which is algorithmically very similar to our baseline
architecture. The main differences between their and our work is that our pipeline
exclusively contains SWI kernels, requires no explicit FOP preparation phase, and
is compiled using the newest board support package (BSP) and OpenCL toolchain
available for the target board. Our baseline architecture operates at 267 MHz and
achieves a steady-state II of 772 ms (corresponding to the latency of the hsum_detect
kernel), but also processes twice the number of frequency bins (Nfeq = 222 ys. 221
in [17]), and thus already outperforms the state-of-the-art FDAS accelerator design.
The roughly 1.5x increase in throughput is welcome, but still insufficient to fulfil
the SKA requirements. On the other hand, the resource utilisation is quite low (20
% logic, 13 % DSP blocks, 25 % RAM blocks). To that end, we investigate further
parallelisation and optimisation opportunities in the next section.

5 Proposed architecture

Figure 6 shows our proposed, novel FDAS accelerator architecture. We will discuss
its features and underlying design decisions in the following sections.

5.1 Parallelisation of FT convolution
The obvious way to reduce the latency of the first phase is to add additional FFT
engines to the pipeline, in order to perform the inverse FFT for multiple FT convo-

lutions in parallel. To that end, we instantiate E kernels wrapping one engine each,
using the template-based replication introduced in Section 2.1. This method allows

@ Springer

Experimental Astronomy

fft_ifft_1

float2 tiles power_
[Niie] [S] 1 discard_1

float2 tmpls ifft power

| MUX_ | |] =
[thas+1] [S] mult _2 discard_2

ifft power_
e _E *discard_E

float fop
[Nipast1] [Npreq]

:>| load_1 |->| delay_1 |->| detect_1 |
| R

——-l>| load_2 |—>| delay_2 |—>| detect_2 |
| R

-l>| load_3 |->| delay_3 |->| detect_3 |

i : vViv
-|>| load_th |—>|de1ay_th|->|detect_th|

uint loc store_ float pwr
[NhpNoand] cands [NnpNoand]

Fig. 6 Proposed architecture. The input tiling (omitted here) is the same as in the baseline architecture
(Fig. 5). Details of the load-delay-detect systolic array are given in Fig. 9

one of these kernels to be switched between normal and inverse operation via a ker-
nel argument, and hence to be used twice in the pipeline. The remaining replicas are
specialised to the inverse transformation at synthesis time. The mux_mult replaces
the mult kernel from the baseline architecture. Internally, it multiplexes each pack
of data read from the tiles buffer to £ complex multipliers, and forwards the
results to the inverse FFT kernels, which in turn are connected to a replica of
the power_discard kernel. As a consequence, E rows of the FOP are written
concurrently.

5.2 Optimisation of harmonic summing and detection

For the harmonic summing part of the pipeline, we propose a different optimisation
approach. Clearly, the amount of data read from global memory, and the non-linear
access pattern to it, resulting from implementing Equation 1 naively, is the main chal-
lenge for an FPGA’s memory controller, whereas the actual computation comprises
only simple arithmetic operations, e.g. additions and comparisons, and as such is triv-
ial to map spatially to reconfigurable hardware. Therefore, a simple replication of the
baseline architecture’s hsum_detect kernel will not suffice to meaningfully improve
the performance. Rather, there are two paths to optimise this memory-bound task:
i) reduce the total amount of data that is read, by increasing the data reuse within

@ Springer

Experimental Astronomy

template

T k=1

frequency bin

Fig.7 FOP elements that need to be loaded from global memory to compute a 7 x F-sized window of
the HP (¢, f), HP2(z, f), HP3(¢, f), ... values together. Increasing harmonic numbers mean more data
reuse, and hence fewer elements to load

the algorithm, and ii) improve the bandwidth efficiency, by presenting a more lin-
ear access pattern to the memory system. Fortunately, we are able to address both
aspects.

Reducing total amount of data Let us revisit Equation 1. In order to compute the Ny,
values HPy (¢, f) for a given coordinate, we need to access the FOP at indices (¢, f),
(Lt/21, Lf/2D), (1t/31, Lf/3]), and so forth. This means that neighbouring coordi-
nates can share some of the memory accesses. More generally, consider a window
covering T templates and F' frequency bins, as illustrated in Fig. 7. Then, Equa-
tion 2 gives a tight upper bound on the number of FOP locations we need to access
to perform harmonic summing and detection.

Nhp

k; (EJ +o(T, k)) : Q%J +o(F, k)) ®

Oifmmodn=0
with o(m,n) =4 1 if m mod n = ged(m, n)
2 otherwise

The intuition behind the formula is covering a T x F rectangle with k x k squares
(1 < k < Npp). The following discussion refers to the T dimension only, for brevity,
but holds analogously for the F dimension. In the interior, |7/k| squares always
fit. If k < T but k does not divide 7, additional squares, modelled by the function
o, are required to cover the remaining » = T mod k points. In general, two extra
squares, i.e. before and after the interior ones, are necessary to complete the cover.
Note that the first interior square always has a coordinate that is an integer multiple
of gcd(T, k). Therefore, if r = gcd(T, k), only one extra square (before or after) will
overlay the boundary. Figure 8 illustrates the situation for 7 = 8 and k = 4,5, 6. If
k > T, the bound decays to represent one of two possible situations: In case k is a
multiple of 7', then one access is sufficient per rectangle, otherwise two accesses are
required.

@ Springer

Experimental Astronomy

k=4 k=6 []
I T=8 || T=8 I I |
() o(T,k)=0 (b)o(T,k)=1
k=5 [] [] []
I T=8 I I I I |
©) o(T,k) =2

Fig. 8 A graphical interpretation of the ¢ function defined in Equation 2. The grey rectangles represent
k consecutive points; the brackets below are a moving window of size T'. (a) The “interior” |7/ k] points
suffice to cover the window. (b) One extra point (left or right of the interior) is required to cover the
window. (c) Up to two extra points (left and right of the interior) are required to cover the window

With the help of the bound, we can predict a significant reduction of the total
amount of data read from the global memory. For example, with 7 = 4 and F = 2,
we need at most 26 loads, compared to 8 - 4 - 2 = 64 without sharing data across
neighbouring coordinates.

Even so, the windowing approach has major drawbacks. Processing each window
still yields many narrow and non-consecutive global memory reads, and we have
a varying number of redundant loads at the window borders each time one of its
dimensions is not a multiple of the current harmonic. On top of that, we suspect
that orchestrating the actual sharing inside the window will result in complex control
flow, which might impair the accelerator’s operating frequency.

Improving bandwidth efficiency In order to make better use of the available global
memory bandwidth, we need to shift our viewpoint. While the memory locations
corresponding to a coordinate (or windows thereof) are not consecutive, the accesses
required per harmonic plane k certainly are, assuming we iterate in the direction of
increasing frequency bins, and the fop[Nipas + 11[Nfreq] buffer follows the usual
layout of C arrays.

We designed the systolic array shown in the lower part of Fig. 6 around this insight.
The array has Npp rows and three columns. The kernels inside the array, as well as the
OpenCL channels connecting them, are parameterised to handle windows of T x F
coordinates, as introduced in the previous section. Figure 9 gives a concrete example
for the k = 3 row in the array, parameterised to 7 = 4 and F = 2.

The load_k kernels implement the data reuse across different FOP rows, i.e. differ-
ent templates, which are passed as launch arguments by the host. The kernels contain
\T/k]-o(T, k) prefetching load units, each F floats wide, which are multiplexed to
T output channels. Note that each output channel is fed by at most two load units.
If k divides T, the mapping from templates to output channels is completely static.
Otherwise, the host provides the information required to set up the channel mapping
at launch time. In the example, we assume a window starting at a divisible-by-3 tem-
plate 7, hence the green PFLU drives the first three output channels. However, if

@ Springer

Experimental Astronomy

7 mod 3 were 2, then the blue PFLU would drive all except the first channel. Rows
may also be conditionally deactivated if the template number would exceed Nip,s, or
a particular row is not needed to feed the output channels, which periodically happens
ifo(T,k)=2.

The delay_k kernels stretch each incoming data bundle to k outgoing ones,
and thus represent the data reuse across different frequency bins. In the exam-
ple, the delay_3 kernel produces three bundles, containing six consecutive elements
¢,...,¢ + 5, from every input bundle it receives from the load_k kernel. The four
channels are processed in lockstep. As we continuously stream and delay each FOP
row, our approach eliminates the load redundancy across neighbouring windows in
the frequency bin direction.

The load_k and delay_k kernels build upon several of the aspects discussed in
Section 2. Their instances are customised based on the architectural parameters as
well as on the instance number k: The load kernels wrap a parameter-dependent num-
ber of load units, while the hardware-side of multiplexing logic is determined by a
Python function. The delay kernels encompass a template-generated state machine
to request new data from the corresponding load kernel at the right time. In com-
bination, these two kernel types demonstrate the variable-speed loading concept of
Section 2.2.

The detect_k kernels handle a window of 7 x F coordinates per cycle. They
receive the partial sum HPy_1 (¢ : t+T — 1, f : f+ F —1) from detect_k — 1, as well
as FOP(l¢/k] : [t +T —1/k], L f/k] : Lf + F — 1/k]) from delay_k. From these
inputs, the element-wise sum is computed, representing HPy (¢ : t+7—1, f : f+F—
1), which is then compared against the kth detection threshold (a kernel argument),
and forwarded to the next detect kernel. Pulsar candidates are stored stall-free to a
ring buffer.

After all FOP coordinates have been visited, we use the second chain of channels
(cf. Fig. 6) to transmit the detections serially through the array to the store_cands
kernels, which burst-writes the candidate lists to the respective global memory
buffers. We choose this design to reduce the number of global memory ports for this
non-performance-critical write-back phase.

This multi-kernel architecture lets us concisely express the concurrent streaming
of data from disjunct parts of the FOP. Besides serving as high-throughput links, the

templates from detect 2:

(in FOP) 4xfloat2 every 3 cycles 4xfloat2 every cycle 4xfloat2 every cycle
O P load_3 delay_3 detect_3
lv3)l...Jalb 3
—+PFLU - a[b}--Jalala[b]b[b @
| /3] d T+1 '\
jog B MuXhH-———>[albl---1alala[blblb O
'L: muxH-—-=—>la[bf---{alala[blb[b @
L9/3] ey R c o cccddd o> :
/ [$/3]+1 b P+2 d+4
frequency bins templates frequency bins d+1 O+3 d+5 to detect_4: ringbuffer
(in FOP) (in HP3) (in HP3) 4xfloat2 every cycle chain

Fig. 9 Third row of the systolic array (see Fig. 6) parameterised for 7 = 4 and F = 2. We illustrate
processing of three consecutive windows covering templates t, ..., T+ 3 and frequency bins ¢, ..., ¢+5.
We assume 7 is divisble by 3

@ Springer

Experimental Astronomy

OpenCL channels provide an elegant way to synchronise the load kernels advanc-
ing at different paces. In consequence, the control flow inside the individual kernels
remains simple enough to achieve high operating frequencies.

Our implementation is available as an open-source project on GitHub’.

6 Evaluation
6.1 Setup

Target device We evaluate the proposed accelerator architecture on a Bittware 385A
card, featuring an Arria 10 GX 1150 FPGA and two banks of 4GB DDR3 memory.
The memory controller operates at 266 MHz, and provides a maximum bandwidth
of 266 MHz x 64 byte =~ 17 GB/s per bank, if the user logic runs at least at that
frequency as well. The host communicates with the device via a PCle Gen3 x8
link. Recall that we opt to process only one half of the templates per accelera-
tor (cf. Section 4.1) as a concession to the problem size. Therefore, at least two
independently operating FPGA cards would be used per beam in the data centre.

We use the newest available OpenCL BSP from Bittware (“R001.005.0004)
together with the latest supported compiler version (“Intel FPGA SDK for OpenCL
19.17). This combination then mandates Quartus 17.1.1 for synthesis. We set the HLS
target frequency to 300 MHz, to increase the likelihood that the synthesised accelera-
tors match the memory controller’s frequency. Additionally, we disable the automatic
interleaving across the DDR3 banks.

Execution modes and buffer allocations The FOP buffer naturally decouples the ker-
nels in the proposed architecture into two pipeline stages: Stage I encompasses the
transfer of the input spectrum from the host to the device and the OLS-FT convo-
lution. Stage 2 includes the harmonic summing and detection phase, as well as the
transfer of the candidate lists back to the host.

Seeking to design an FDAS accelerator that is capable of sustaining an initiation
interval (II) of 90 ms, we investigated both the serial and the pipelined execution
of the stages. In the former, the II corresponds to the sum of the stages’ individual
latencies, but each stage has undisturbed access to the available memory bandwidth.
In the latter, two DM trials overlap in the accelerator in the steady state, necessi-
tating a second set of global memory buffers, which the DDR3 memory can easily
accommodate, but reducing the II to the maximum of the stage latencies.

We also conducted experiments with different allocation schemes of buffers to
the available memory banks to test out which one suits the memory controller best.
Specifically, we associate the input and tiles buffers with Stage 1, and the fop, loc
and pwr buffers with Stage 2. Overall, this results in the five unique combinations of

https://github.com/UOA-PARC-SKA/FDAS

@ Springer

https://github.com/UOA-PARC-SKA/FDAS

Experimental Astronomy

N N
Bank1 [1.1[1.2[2.1]2.2]

time time
(a) serial-single (b) serial-dual
Bank 2 2.1> 4.1
________________ N . - 1.2) 7713.2
Bank 1 |1.I|\i.2|3.1|\§.2| [1.2]2.12]3.1]4.1] (2.1 (g;
time time time
(c) pipelined-single (d) pipelined-dual (e) pipelined-crossed

Fig. 10 Unique combinations of execution modes and buffer allocations. The boxes represent the execu-
tion of a stage, with buffers allocated to a certain bank, and are labeled as (DM trial).(stage). In “-single”
configurations, both stages’ buffers reside in the same bank for an individual DM trial, whereas in the
“-dual” and “-crossed” configurations, the buffers of stage 1 and stage 2 are allocated in different banks

execution modes and buffer allocations shown in Fig. 10. An initial analysis of the
experimental data yielded the following insights:

— For the the serial execution, allocating the stages’ buffers to different banks
(serial-dual, Fig. 10b) always improves performance compared to the same-bank
allocation. This is unsurprising, as Stage 1 continuously reads data from the tiles
buffer and writes its results to the fop buffer. Hence, allocating the buffers to
different banks effectively doubles the available bandwidth.

— For the pipelined execution, the allocation of both stages’ buffers to the same
bank (pipelined-single, Fig. 10c) dominates the other schemes. We attribute this
to the interference of the memory accesses® caused by the overlapping execution
of the stages, which appears to cancel out the gains we have seen in the serial
execution.

In the remainder of this section, we therefore focus on the comparison between
the two execution modes, while always using the respective best-performing buffer
allocation schemes.

Design space In order to stake off the design space for our accelerator, we define
lower bounds for the number of cycles required to complete the convolution and
harmonic summing phases. Table 2 recaps the relevant architectural parameters that
were introduced in Sections 4 and 5.

The decisive factor for the FT convolution (Equation 3) is the duration of passing
all tiles through one of the FFT engines, which takes Ny - S/ P cycles. We always

8 pipelined-dual: Stage 1 has its bank’s full bandwidth available for reading, but writes to the same bank
that the previous trial’s stage 2 is reading from. pipelined-crossed: Stages 1 and 2 share one bank’s read
bandwidth, but Stage 1 can freely write to the other bank.

@ Springer

Experimental Astronomy

Table2 Summary of parameters of the proposed architecture

Parameter Description Value(s) Remark
E Number of FFT engines 3,4,5
T Number of templates (FOP rows) 1,2,3,4,6,8,12
handled per pass
F Number of frequency bins (FOP 1,2,4,8
columns) handled per cycle
S Tile size = FFT size 2048 [17]
Number of FFT inputs per cycle 4 [17]

need one such pass for the forward transformation, but can parallelise the inverse
transformations, leading to a total number of 1 + [Nypas + 1/E7 passes.

Nipas + 1 S
cyclespre(E) = (1 T {“’%D Nite 3)

The harmonic summing architecture is designed to process windows of 7' x F
coordinates in a single cycle. Therefore, in Equation 4, we determine the number of
such windows required to cover the entire half-FOP.

N 1 N
CyCleSHSUM(T, F) = ’7 tpa;+ —‘ . ’7 ;eq—‘ (4)

Plugging the current SKA parameters (cf. Table 1) into the bounds, and assuming an
operating frequency of 266 MHz, to match the memory controller, it follows that we
necessarily need to instantiate at least £ = 3 FFT engines, and process T - F = 8
coordinates per cycle, to be able to achieve the desired II.

6.2 Results

Table 3 presents the results for our experimental evaluation. Our selection of archi-
tectures comprises the four harmonic summing architectures with 8 coordinates per
cycle, and three with 12 coordinates per cycle. We exclude non-power of two set-
tings for F, as these result in inefficient loads, and combine each harmonic summing
configuration with either 3, 4 or 5 FFT engines.

First, we list several runtime characteristics for the serial and pipelined execu-
tion, measured and averaged from 20 DM trials being processed in the steady state
of the accelerator’s operation. Under “Latency”, the execution time is broken down
per stage. Next, the “II” column shows the initiation interval, our main performance
indicator. These values are computed from the timestamps of the input data transfers,
to be as realistic as possible, and thus may be slightly greater than the sum (serial
execution) respectively the maximum (pipelined execution) of the stages’ individual
latencies, due to kernel launch overheads.

The two “Bandwidth” columns display the mean utilisation of the global mem-
ory bandwidth, computed as the amount of data read and written in both stages and
divided by the II. Note that these amounts vary between architectures, as smaller

@ Springer

Experimental Astronomy

Table 3 Runtime and synthesis results

Architecture Serial, dual (Figure 10b) Pipelined, single (Figure 10c) Synthesis
Latency II Bandwidth En. | Latency II Bandwidth En.| Resources fimax
St S2 S1 S22 ALM DSP RAM
EXTxF ms ms ms MB/s % Jlms ms ms MB/s % J| % % % MHz
3x1x8 92 129 221 15740 48 13.6|143 130 145 24780 75 9.1| 33 38 35 258
3x2x4 89 126 215 13593 40 12.7(135 126 136 21959 64 8.6| 34 38 37 274
3x4x2 88 109 197 13914 41 11.2|136 110 136 20534 60 8.8| 36 38 39 283
3x8x1 92 116 209 13032 39 12.0|140 117 141 19675 59 9.2| 38 38 44 259
3x3x4 95 121 217 13193 43 12.4|139 122 140 20866 69 9.1| 41 40 44 237
3x6x%x2 95 113 208 13105 43 11.9|140 113 141 19696 64 9.2| 42 40 46 240
3x12x1 100 111 212 12734 44 124|145 114 146 18650 64 89| 47 40 54 229
4x1x8 82 129 212 15642 46 13.7|142 129 144 23660 69 9.6| 36 49 40 293
4x2x4 85 126 211 13063 44 12.7(126 126 130 21218 71 8.5| 37 49 42 233
4x4x2 82 109 192 13468 40 114|116 109 117 22654 67 8.0| 38 49 44 299
4x8x1 85 116 201 12684 39 11.9(120 117 121 21077 64 8.1| 41 49 49 256
4x3x4 84 121 206 13082 43 12.3(123 122 125 21368 71 84| 44 51 48 236
4x6x2 84 111 195 13077 40 11.5(120 113 121 21710 67 83| 45 51 51 253
4x12x1 87 111 198 12749 44 11.7(124 114 125 20553 72 85| 49 51 58 224
S5x1x8 78 129 208 15528 46 13.4|141 129 144 23049 68 9.5| 39 60 45 281
Sx2x4 79 126 205 13041 38 13.0|121 127 131 20443 60 9.0| 40 60 46 281
Sx4x2 82 109 191 13041 42 11.3(112 109 113 22062 72 7.7| 41 60 48 240
Sx8x1 83 117 200 12339 40 11.9(115 117 117 20338 66 8.1| 44 60 53 239
S5x3x4 82 121 204 12798 44 12.5(120 123 125 20658 71 8.6| 46 62 53 227
Sx6x2 82 111 193 12782 41 11.7|116 114 117 20965 67 8.1| 48 62 55 244
Sx12x1 85 111 196 12421 45 11.8|117 115 118 20504 75 82| 52 62 63 214

1 MB = 10° B. Bandwidth utilisation is relative to 2 - 64 - min(266, Jfmax) MB/s. Resource utilisation is
relative to 427.2k ALMs, 1518 DSPs and 2713 RAM blocks. Best outcomes per column are marked in
bold. Grey background indicates HSUM configurations that process 12 coordinates per cycle

values for the parameters E and T lead to more redundant memory accesses. Over-
all, this metric, which we present here in in absolute numbers as well as relative to
the operating frequency-dependent available bandwidth, is an indicator how well the
memory controller copes with the accelerator’s access patterns.

The last runtime metric is the energy consumption, for which we measured the
workstation’s peak power usage in the steady state with a smart meter, subtracted the
systems idle power without the Bittware card installed, and multiplied with the mean
II. The remaining columns cover the results of the logic synthesis, extracted from the
Quartus report. We present the utilisation of the logic resources (“ALM” in Intel’s
terminology), “DSP” blocks, and on-chip “RAM?” blocks. The last column, * finax”,
lists the operating frequency.

The best-performing architecture overall is 5 x 4 x 2 with an II of 113 ms in
pipelined mode. This represents a 10x speed-up over the best result reported by
Wang et al. [17], and still a 6.8x speedup over our improved baseline architecture (cf.
Section 4), and is close to satisfy the SKA requirements.

The pipelined execution outperforms the serial execution for all considered archi-
tectures. When Stage 1 can run undisturbed, four FFT engines are generally sufficient
to complete the stage in less than 90 ms (some configurations with £ = 3 and high

@ Springer

Experimental Astronomy

Jfmax also cross this threshold). Unfortunately, the accelerator cannot sustain this per-
formance level when overlapping the processing of two DM trials, as apparent in the
reported Stage 1 latencies for the pipelined execution. However, as Stage 2’s latency,
which ranges between 110-130 ms, seems to be unaffected by the execution mode,
the pipelined execution is still faster than the serial execution of the stages.

The results suggest that we have already reached a stagnation point with the hard-
ware at hand. Adding the fifth fast Fourier transformation engine does not improve
Stage 1’s latency any further. Architectures processing at least four templates in the
FOP together yield the best performance for Stage 2. By construction, all architec-
tures read the same amount of points in the frequency bin direction, however, the
greater T is chosen, the more data is reused, and the fewer passes over the FOP are
required. Increasing the parallelism from 8 to 12 coordinates per cycle in itself does
not improve the stage’s latency.

The resource utilisation ranges between 1/3 and 2/3 and is mostly dependent on
the number of FFT engines. A single engine uses &~ 10% of the available DSP blocks,
and has negligible demands regarding the other FPGA resources. The overhead for a
generic instance, i.e. with the capability to perform the transformation in both direc-
tions, is small compared to a specialised engine (< 1000 ALMs). We conclude that
its double use in the pipeline makes sense from a resource austerity standpoint, but
given that the available DSP blocks did not prove to be the limiting factor in our eval-
uation, we leave it to future work to investigate whether two specialised instances
yield a better system performance overall.

The operating frequency is consistently well above 200 MHz, and reaches as
high as 299 MHz, demonstrating the toolchain’s ability to synthesise high-quality
hardware from our template-generated OpenCL code. The bandwidth utilisation fluc-
tuates between 40-50 % for the serial execution, and between 60-75 % for the
pipelined execution, an affirming result, considering the memory access pattern
underlying the FDAS algorithm. Nevertheless, this data points to the card’s memory
controller and the small number of independent DDR3 banks as the root causes of
the observed performance bottlenecks.

Curiously, the best performance is reached neither by the architecture operating at
the highest frequency (4 x 4 x 2), nor the one having the highest bandwidth utilisation
(3x 1 x8and 5 x 12 x 1), but at a non-obvious trade-off point, demonstrating the
need to enable a systematic exploration even for niche applications such as ours.

Installing the FPGA card and running the FDAS accelerator adds 56—-65 W (serial
execution) respectively 61-70 W (pipelined execution) to the host’s power con-
sumption. We observe that the static power draw blurs the differences among the
investigated architectures. In consequence, there is a strong correlation between the
mean energy consumed per DM trial and the achieved IIs, attesting the architectures
with the shortest IIs the best energy-efficiency.

7 Conclusion

We presented a novel accelerator architecture for a demanding computation task in
radio astronomy, namely the FDAS module of the Pulsar Search Pipeline of the SKA.

@ Springer

Experimental Astronomy

This novel accelerator enables a 10x throughput improvement over the current state-
of-the-art design, and at the same time pushes against the limits of our target FPGA
card, close to achieving the desired performance envelope.

Our architecture plays to the strengths of FPGAs and is built around the idea
of a spatial, pipelined form of computation, which was difficult to express in plain
OpenCL without manual code duplication or the danger of obscuring important
optimisation potential.

To achieve this faster architecture, we proposed OpenCL constructs for the opti-
misation of data reordering and data loading from DRAM memory, which can be of
interest to other computation problems. Putting the prefetching load units into sepa-
rate kernels connected by channels helped to address the problem of gathering data
from multiple locations and at different paces.

Augmenting the kernel code with snippets of Python code, which is executed by
a template engine to produce standard-conforming OpenCL code, proved to be a
lightweight and effective solution, which we believe could be helpful in developing
OpenCL-based accelerators for other scientific big data applications.

This made our implementation easy to parameterise for design-space exploration.
The obvious next step is to repeat the design-space exploration on a platform offering
more memory bandwidth. We are especially interested in investigating the distribu-
tion of buffers to the many memory channels provided by FPGAs equipped with
high-bandwidth memory.

Acknowledgements This work benefitted from discussions with the SSquare Kilometre Array Time
Domain Team (TDT), a collaboration between Manchester and Oxford Universities, and MPIfR Bonn.

Author Contributions Julian Oppermann: Conceptualization, Methodology, Validation, Formal analy-
sis, Software, Investigation, Data Curation, Writing - Original Draft, Visualization.
Mitchell B. Mickaliger: Conceptualization, Validation, Writing - Review & Editing, Resources.
Oliver Sinnen: Conceptualization, Methodology, Validation, Formal analysis, Resources, Writing -
Review & Editing, Supervision.

Funding Open Access funding enabled and organized by Projekt DEAL. The authors did not receive
funding from third parties.

Availability of data and material The implementation (see below) contains scripts to prepare suitable
test data for the performance measurements.

Code Availability The implementation is available as an open-source project on GitHub (https://github.
com/UOA-PARC-SKA/FDAS).

Declarations

Conflicts of interest/Competing interests The authors have no relevant financial or non-financial inter-
ests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this
article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not

@ Springer

https://github.com/UOA-PARC-SKA/FDAS
https://github.com/UOA-PARC-SKA/FDAS

Experimental Astronomy

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.

0/.

References

10.

11.

12.

13.

14.

. Dewdney, P., Hall, P, Schilizzi, R., Lazio, T.: The square kilometre array. Proc. IEEE 97(8), 1482—

1496 (2009). https://doi.org/10.1109/JPROC.2009.2021005

. Garrido, M., Grajal, J., Sanchez, M.A., Gustafsson, O.: Pipelined Radix-$2"{k}$ Feedforward fast

Fourier transformation Architectures. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 21(1),
23-32 (2013). https://doi.org/10.1109/TVLSI.2011.2178275

. Gautier, Q., Althoff, A., Meng, P., Kastner, R.: Spector: an OpenCL FPGA benchmark suite. In: 2016

International conference on field-programmable technology, FPT 2016, Xi’an, China, 7-9 Dec 2016,
IEEE, pp. 141-148. https://doi.org/10.1109/FPT.2016.7929519 (2016)

. Gorlani, P, Kenter, T., Plessl, C.: OpenCL implementation of cannon’s matrix multiplication algo-

rithm on intel stratix 10 FPGAs. In: International conference on field-programmable technology,
FPT 2019, Tianjin, China, 9-13 Dec 2019, IEEE, pp. 99-107. https://doi.org/10.1109/ICFPT47387.
2019.00020 (2019)

. Intel: Fast fourier transformation (1D) design example. https://www.intel.com/content/www/us/

en/programmable/support/support-resources/design-examples/design-software/opencl/fft- 1d.html
(2018)

. Intel: Intel FPGA SDK for OpenCL pro edition: best practices guide. https://www.intel.com/content/

www/us/en/programmable/documentation/mwh1391807516407.html (2021)

. Jiang, J., Wang, Z., Liu, X., Gémez-Luna, J., Guan, N., Deng, Q., Zhang, W., Mutlu, O.: Boyi: a

systematic framework for automatically deciding the right execution model of OpenCL applications
on FPGAs. In: FPGA ’20: the 2020 ACM/SIGDA international symposium on field-programmable
gate arrays, Seaside, CA, USA, 23-25 Feb 2020, ACM, pp. 299-3009. https://doi.org/10.1145/3373087.
3375313 (2020)

. Karastergiou, A., Stappers, B., Baffa, C., Williams, C., Roy, J., Levin-Preston, L., Pearson, M.,

Mickaliger, M., Thiagaraj, P, Lyon, R., Armour, W., Barr, E., Giani, E., Sinnen, O., Dimoudi, S.,
Adamek, K., Wiesner, K.: SSquare kilometre array central signal processor pulsar search sub-element
detailed design document (ED-4a). Internal document SSquare Kilometre Array-TEL-central signal
processor-0000082 (2018)

. Kenter, T., Mahale, G., Alhaddad, S., Grynko, Y., Schmitt, C., Afzal, A., Hannig, F., Forstner, J.,

Plessl, C.: OpenCL-Based FPGA design to accelerate the nodal discontinuous Galerkin method for
unstructured meshes. In: 26th IEEE annual international symposium on field-programmable custom
computing machines, FCCM 2018, Boulder, CO, USA, 29 - April 1 May 2018, IEEE computer
society, pp. 189-196. https://doi.org/10.1109/FCCM.2018.00037 (2018)

Levin, L., Armour, W., Baffa, C., Barr, E., Cooper, S., Eatough, R., Ensor, A., Giani, E., Karaster-
giou, A., Karuppusamy, R., Keith, M., Kramer, M., Lyon, R., Mackintosh, M., Mickaliger, M., Van
Nieuwpoort, R., Pearson, M., Prabu, T., Roy, J., Sinnen, O., Spitler, L., Spreeuw, H., Stappers, BW.,
Van Straten, W., Williams, C., Wang, H., Wiesner, K., The SKA TDT team: Pulsar Searches with the
SSquare Kilometre Array. Proc. Int. Astronomical Union 13(S337), 171-174 (2017). https://doi.org/
10.1017/S1743921317009528

Mickaliger, M., Armour, W., Keith, M., Stappers, B.: SKA1 CSP pulsar search sub-element signal
processing MATLAB model (ED-7). Internal document SSquare Kilometre Array-TEL-central signal
processor-0000085 (2017)

Mu, J., Zhang, W., Liang, H., Sinha, S.: Optimizing OpenCL-based CNN design on FPGA with
comprehensive design space exploration and collaborative performance modeling. ACM Trans.
Reconfigurable Technol. Syst. 13(3), 1-28 (2020). https://doi.org/10.1145/3397514

Pavel, K., Davi, S.: Algorithms for efficient computation of convolution. In: Design and architectures
for digital signal processing, InTech. https://doi.org/10.5772/51942 (2013)

Ransom, S.M., Eikenberry, S.S., Middleditch, J.: Fourier techniques for very long astrophysical time-
series analysis. Astronomical J. 124(3), 1788-1809 (2002). https://doi.org/10.1086/342285

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/JPROC.2009.2021005
https://doi.org/10.1109/TVLSI.2011.2178275
https://doi.org/10.1109/FPT.2016.7929519
https://doi.org/10.1109/ICFPT47387.2019.00020
https://doi.org/10.1109/ICFPT47387.2019.00020
https://www.intel.com/content/www/us/en/programmable/support/support-re sources/design-examples/design-software/opencl/fft-1d.html
https://www.intel.com/content/www/us/en/programmable/support/support-re sources/design-examples/design-software/opencl/fft-1d.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1 391807516407.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1 391807516407.html
https://doi.org/10.1145/3373087.3375313
https://doi.org/10.1145/3373087.3375313
https://doi.org/10.1109/FCCM.2018.00037
https://doi.org/10.1017/S1743921317009528
https://doi.org/10.1017/S1743921317009528
https://doi.org/10.1145/3397514
https://doi.org/10.5772/51942
https://doi.org/10.1086/342285

Experimental Astronomy

16.

20.

21.

. Sanaullah, A., Herbordt, M.C.: Unlocking performance-programmability by penetrating the intel

FPGA OpenCL Toolflow. In: 2018 IEEE high performance extreme computing conference, HPEC
2018, Waltham, MA, USA, 25-27 Sept 2018, IEEE, pp. 1-8. https://doi.org/10.1109/HPEC.2018.
8547646 (2018)

Sanaullah, A., Patel, R., Herbordt, M.C.: An empirically guided optimization framework for FPGA
OpenCL. In: International conference on field-programmable technology, FPT 2018, Naha, Okinawa,
Japan, 10-14 Dec 2018, IEEE, pp. 46-53. https://doi.org/10.1109/FPT.2018.00018 (2018)

. Wang, H., Thiagaraj, P., Sinnen, O.: Combining multiple optimised FPGA-based pulsar search

modules using OpenCL. J. Astronomical Instrument. https://doi.org/10.1142/S2251171719500089
(2019a)

. Wang, H., Thiagaraj, P., Sinnen, O.: FPGA-based acceleration of FT convolution for pulsar search

using OpenCL. TRETS 11(4), 24:1-24:25 (2019b). https://doi.org/10.1145/3268933

. Wang, H., Thiagaraj, P., Sinnen, O.: Harmonic-summing module of SKA on FPGA - optimizing

the irregular memory accesses. IEEE Trans. Very Large Scale Integr. Syst. 27(3), 624-636 (2019c).
https://doi.org/10.1109/TVLSI1.2018.2882238

Young-Schultz, T., Lilge, L., Brown, S., Betz, V.: Using OpenCL to enable software-like devel-
opment of an FPGA-accelerated biophotonic cancer treatment simulator. In: FPGA ’20: the 2020
ACMY/SIGDA international symposium on field-programmable gate arrays, Seaside, CA, USA, 23-25
Feb 2020, ACM, pp. 86-96. https://doi.org/10.1145/3373087.3375300 (2020)

Zohouri, H.R., Podobas, A., Matsuoka, S.: Combined spatial and temporal blocking for high-
performance stencil computation on FPGAs using OpenCL. In: Proceedings of the 2018 ACM/SIGDA
international symposium on field-programmable gate arrays, FPGA 2018, Monterey, CA, USA, 25-27
Feb 2018, ACM, pp. 153-162. https://doi.org/10.1145/3174243.3174248 (2018)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Julian Oppermann’ © . Mitchell B. Mickaliger? - Oliver Sinnen3

Mitchell B. Mickaliger
mitchell.mickaliger @manchester.ac.uk

Oliver Sinnen

o.sinnen@auckland.ac.nz

Technical University of Darmstadt, Darmstadt, Germany
University of Manchester, Manchester, UK

University of Auckland, Auckland, New Zealand

@ Springer

https://doi.org/10.1109/HPEC.2018.8547646
https://doi.org/10.1109/HPEC.2018.8547646
https://doi.org/10.1109/FPT.2018.00018
https://doi.org/10.1142/S2251171719500089
https://doi.org/10.1145/3268933
https://doi.org/10.1109/TVLSI.2018.2882238
https://doi.org/10.1145/3373087.3375300
https://doi.org/10.1145/3174243.3174248
http://orcid.org/0000-0002-8073-720X
mailto: mitchell.mickaliger@manchester.ac.uk
mailto: o.sinnen@auckland.ac.nz

	Pulsar search acceleration using FPGAs and OpenCL templates
	Abstract
	Introduction and related work
	Advanced OpenCL aspects of multi-kernel architectures
	Kernel replication
	Using compiler-specific attributes
	Using preprocessor directives
	Using code transformations
	Using a template engine

	Variable-speed burst loading
	In-stream reordering

	Pulsar Search with the SKA
	Improved baseline architecture
	Algorithmic tweaks
	FT convolution and choice of FFT parameters
	Early computation of spectral power
	On-the-fly harmonic summing and detection
	Parallel trials for positive and negative accelerations

	Baseline architecture
	Convolution
	Harmonic summing and detection

	Comparison to prior work

	Proposed architecture
	Parallelisation of FT convolution
	Optimisation of harmonic summing and detection
	Reducing total amount of data
	Improving bandwidth efficiency

	Evaluation
	Setup
	Target device
	Execution modes and buffer allocations
	Design space

	Results

	Conclusion
	Declarations
	References
	Affiliations

