Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the [Library Thesis Consent Form](http://researchspace.auckland.ac.nz/library-thesis-consent-form) and [Deposit Licence](http://researchspace.auckland.ac.nz/deposit-licence).

Note: Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.
Electrochemical Composite Membranes based on Intrinsically Conducting Polymers

Synthesis and Characterization

Asif Ali Qaiser

Abstract

Membranes based on intrinsically conducting polymers (ICPs) have been employed in various membrane processes such as gas separation, pervaporation, nanofiltration and electrodialysis. The change in the membrane morphology, hydrophilicity, and ion exchange behaviour based on the oxidation state and doping levels of ICP have been used to enhance permeability and selectivity. In this thesis, a highly permeable membrane with high selectivity was developed by depositing polyaniline (PANI) on the pore walls of a microporous base membrane without blocking the pores. The layering of positively charged polyaniline originates electrolyte polarisation in the pores and permselectivity is achieved by the electrostatic screening of permeating ions through the membrane.

Polyaniline (PANI) was deposited on mixed-cellulose ester (ME) microporous membranes by using various in situ chemical oxidative polymerization techniques. These include solution-phase polymerization, vapour-phase polymerization and diaphragmatic polymerization in a two-compartment cell. The composite membranes were characterized by scanning electron microscopy (SEM), gravimetric PANI content measurement, Fourier-transform infrared (FTIR-ATR) spectroscopy and x-ray photoelectron spectroscopy (XPS). The solution-phase and vapour-phase polymerizations yielded PANI layering on the surface of the base membrane whereas PANI was deposited on the pore walls of the membrane by using the two-compartment cell technique. FTIR and XPS results showed PANI deposition in its emeraldine salt state and Cl⁺ doping was polymerization time dependent. XPS quantified the extent of PANI layering at the surface that was polymerization time dependent. The solution-phase polymerization yielded an incomplete surface layering as compared to the vapour-phase polymerization. Surface and trans-membrane electrical conductivities were measured by using four-point micro probe and two-point probe techniques, respectively. These conductivities showed dependence on PANI deposition site and extent in the membranes.

Electrochemical characterization of the composite membranes was conducted by using electrochemical impedance spectroscopy (EIS) and transport numbers measurements. EIS data were analysed by using equivalent circuit modelling technique. The results showed the dependence of charge transport resistance of the membranes on PANI deposition site, extent and doping levels. In-pore PANI deposition in the membranes showed several orders of magnitude lower levels of resistance and higher capacitance due to the polarisation of pore electrolyte. In addition, the low values of diffusional resistance and high capacitance indicate
anion-coupled charge transport in the membrane through PANI polaron/bipolaron transitions. The composite membranes with PANI layering only at the surface or undoped PANI showed higher diffusional resistance and low capacitance due to slow electronic/ionic diffusion inside the bulk membrane.

Transport numbers of counter-ions in the composite membranes showed high anion selectivity at low pH (in HCl) as compared to the membranes at high pH (~12). The transport numbers showed the weak dependence on PANI deposition site and levels.
Acknowledgements

I would like to express my special gratitude to Associate Professor Margaret Hyland, my main supervisor, for her guidance, support and encouragement during my PhD studies at the University. In fact, she always has been accommodative to me in spite of her busy schedules and facilitated my work and living here in every aspect. I am also thankful to Dr. Darrell Patterson, my co-supervisor for his time-to-time discussions and evaluation of my work. His appreciation always remained a source of encouragement to me. I am also thankful to Associate Professor Allen Easteal and Neil Edmonds for providing me the electrochemical testing facilities at the Tamaki campus. The discussions with Allen Easteal also contributed towards my better understanding of the conducting polymers.

I want to thank Michael Wadsworth (Chemistry) and his team for the fabrication of the two-compartment permeation cells. Many thanks go to Catherine Hobbis for her help in SEM, Dr. Colin Doyle for XPS analysis and Michel Nieuwoudt (Chemistry) for FTIR spectroscopy. I would like to specially acknowledge the help of Stephen Cawley (CACM) in the electrochemical characterizations of the membranes.

I applaud the patience and cooperation of my wife and the kids (Abeeha, Abdullah and Saad) during my tough PhD schedules; indeed they have been a wonderful source of inspiration for me. At the last but not the least, my parents, whose sincere wishes and prayers always paved the way to success in my life.
Table of Contents

Abstract.. iii
Acknowledgements... v
List of Figures... viii
List of Tables... xii
List of Abbreviations and Symbols ... xiii

Chapter 1. Introduction ... 1
 1.1 Membrane Separation Processes and their Limitations ... 1
 1.2 Application of ICPs in Membrane Separation ... 2
 1.3 Research Objectives and Strategy ... 7
 1.4 Thesis Structure ... 8

Chapter 2. Intrinsically Conducting Polymers (ICPs) and ICP based Membranes.............................. 10
 2.1 Intrinsically Conducting Polymers (ICPs): Properties and Applications .. 10
 2.2 Polyaniline (PANI)-A Promising ICP ... 15
 2.3 An Overview of Membrane Separation Processes .. 19
 2.4 Polyaniline based Membranes ... 22
 2.5 Inferences from the Literature Review and Directions for the Present Research......................... 45

Chapter 3. Experimental Methods .. 49
 3.1 Synthesis of PANI Composite Membranes ... 49
 3.2 Characterization Techniques ... 52
 3.3 Nomenclature ... 61

Chapter 4. Control of Polyaniline Deposition Site and Extent in the Composite Membranes 62
 4.1 Introduction ... 62
 4.2 SEM Characterization of Composite Membranes .. 64
 4.3 PANI Intercalation Levels in the Composite Membranes .. 69
 4.4 FTIR-ATR Spectroscopy of Composite Membranes .. 70
 4.5 Electrical Conductivity Measurements ... 74
 4.6 Surface Characterization of PANI Composite Membranes ... 78
 4.7 Control of PANI Deposition under Various Techniques and Conditions 90
 4.8 Summary .. 96
Chapter 5. Electronic and Ionic Transport in the Composite Membranes: Effects of PANI Deposition Site, Extent and Doping

5.1 Electrochemical Characterization of PANI Composite Membranes
5.2 Electrochemical Impedance Spectroscopy of PANI Composite Membranes
5.3 Membrane Potential and Transport Numbers of PANI Composite Membranes

Chapter 6. Conclusions and Potential Applications of the Membranes

6.1 Conclusions
6.2 Potential Applications of the Present Research as a New Membrane as a New Membrane System

References

Appendix A: Degradation of Cellulose ester Membranes under X-ray Irradiation and Effects of HCl Treatment on the Structure

Appendix B: Electrochemical Impedance Spectroscopy Spectra of PANI Composite Membranes bathed with CaCl₂ in the Two-compartment Cell
List of Figures

Figure 1.1: Base microporous cellulose membrane for polyaminoacids immobilization.

Figure 2.1: Molecular structures of common ICPs.

Figure 2.2: Electrical conductivity levels of various ICPs.

Figure 2.3: Doping/undoping process of polypyrrole.

Figure 2.4: Transformation of PANI into various states by oxidation/reduction and doping/undoping processes.

Figure 2.5: Cyclic voltammogram of polyaniline film. The regions I, II and III represent leucoemeraldine, emeraldine and pernigraniline states of PANI film, respectively.

Figure 2.6: Bipolaron structure of polyaniline.

Figure 2.7: Resonance structure of delocalized polaron in PANI.

Figure 2.8: Classification of membrane based separation processes.

Figure 2.9: SEM images of PANI membranes (a) untreated PANI and (b) cross-linked PANI membranes.

Figure 2.10: AFM images of (a) undoped and (b) doped PANI membranes.

Figure 2.11: Mechanism of H⁺ transport coupled with the anion through undoped PANI membrane. φ₁ and φ₂ represent Donnan potentials at the interface.

Figure 2.12: Coupled counter transport of electron and anion, and co-transport of electron and proton through PANI membrane.

Figure 2.13: A simple reaction scheme representing conversion of polyamic acid into polyimide.
List of Figures

Figure 2.14: Mechanism of electrochemical polymerization of aniline on FEP-g-PAAc-SO$_3$H membrane.

Figure 2.15: Pictorial representation of the inferences of the literature review and its relation with the thesis.

Figure 3.1: Schematics of aniline polymerization in a two-compartment cell.

Figure 3.2: XPS core level spectrum of a PANI-ME membrane showing Shirley background subtraction.

Figure 3.3: Typical representation of EIS data (a) Nyquist and (b) Bode plot.

Figure 4.1: SEM micrographs of membranes surface and cross section, respectively, (a) & (b) bare ME membrane; (c) & (d) ME,Poly,APS,15m; (e) & (f) ME,Vap,APS,15m; (g) & (h) ME,P1,Fe,1h; (i) and (j) ME,P1,Fe,22h.

Figure 4.2: SEM micrographs of composite membranes, (a & b) NC (Nitrocellulose), P1, Fe,30min surface and cross section, respectively (c & d) NC,P1,APS,30min , surface and cross section, respectively.

Figure 4.3: FTIR-ATR spectrum of unmodified ME membrane.

Figure 4.4: FTIR-ATR spectra of PANI-ME composite membranes (a) bare ME membrane (b) ME,AN2.5,Vap (c) ME,P1,Fe, 6h(o) (d) ME,P1,Fe,6h (e) ME,P1,Fe,22h and (f) ME, Poly,Fe,22h.

Figure 4.5: FTIR-ATR spectra of PANI-cellulose acetate composite membranes (a) bare CA membrane (b) CA,AN,Vap (c) CA,poly,Fe,5d (d) CA,P1,Fe,22h (e) CA,P1,Fe,6h and (f) CA,P1,Fe,3h.

Figure 4.6: Electrical conductivities of PANI-ME membranes (a) Surface conductivities by four-point technique (b) Trans-membrane conductivities by two-point method.

Figure 4.7: (a) Cellulose acetate and (b) cellulose nitrate structures (C# 1-6 indicates carbons of different functionalities).

Figure 4.8: Survey level spectra of (a) uncoated ME and (b) PANI-ME composite membranes.
List of Figures

Figure 4.9: C 1s (a) and N 1s (b) spectra of unmodified ME membrane. 81

Figure 4.10: C 1s spectra (a) ME,Poly,Fe,48h (b) ME,P1,30min (c) ME,P1,6h and (d) ME,Vap,APS,10min. 83

Figure 4.11: N 1s spectra (a) ME,Poly,Fe,48h (b) ME,P1,30min (c) ME,P1,6h and (d) ME,Vap,APS,10min. 84

Figure 4.12: Cl 2p core level spectra of (a) ME,P1,6h, (b) ME,Poly,Fe,48h and (c) ME,Vap,APS,10min. 87

Figure 4.13: O 1s core level spectra of (a) ME, bare (b) ME,Poly,Fe,48h, (c) ME,P1,Fe,6h and (d) ME,Vap,APS,10min. 89

Figure 4.14: Schematic representation of in-pore PANI deposition. 95

Figure 4.15: FTIR-ATR spectra of PANI composite membranes from two-compartment cell at various polymerization times (a) 30 min (b) 1 h (c) 6h and (d) 22 h. 96

Figure 5.1: I-V curve of ion exchange membrane (anion-exchange membrane in 0.01 M KCl). 99

Figure 5.2: Nyquist plot of a parallel R-C circuit. 104

Figure 5.3: Bode plots for a parallel RC circuit (a) magnitude and (b) phase angle versus frequency. 105

Figure 5.4: Randles equivalent circuit. 106

Figure 5.5: Nyquist plot for Randles circuit shown in Figure 5.4. 106

Figure 5.6: Charge transport and interfacial transfer processes in an ICP coated electrode. 109

Figure 5.7: Transmission line model for modified electrode, R_1 and R_2 represent two resistive paths whereas C is the capacitance. 111

Figure 5.8: Transmission line for ICP film modified electrode. 112

Figure 5.9: The Nyquist plots of PANI composite membranes impregnated with 1M HCl (a) ME,Poly,Fe,22h (b) ME,P1,22h and (c) ME,Vap,APS. 120
List of Figures

Figure 5.10: Schematics of the electrochemical transport processes of PANI composite membrane synthesized by the solution-phase polymerization (22h). 122

Figure 5.11: The equivalent circuit representing the EIS behaviour of PANI composite membrane synthesized by the solution-phase polymerization (22h). 123

Figure 5.12: Modified Randles circuit. 125

Figure 5.13: EIS spectra of PANI-ME composite membranes soaked in water (a) bare ME (b) ME,P1,6h (c) ME,P1,22h (d) ME,Poly,22h and (e) ME,Vap,APS. 128

Figure 5.14: The equivalent circuit representing the EIS behaviour of PANI water soaked composite membrane synthesized by the solution phase polymerization (22h). 130

Figure 5.15: EIS spectra of PANI-ME composite membranes bathed with 1M HCl (a) bare ME (b) ME,P1,2h (c) ME,P1,6h (d) ME,P1,22h (e) ME,Poly,6h (f) ME,Poly,22h and (g) ME,Vap,APS. 133

Figure 5.16: The equivalent circuit representing the EIS behaviour of HCl bathed PANI composite membrane synthesized by the vapour phase polymerization. 138

Figure 5.17: Membrane potential versus ln(c₁/c₂) (legend shown in the figure). 146
List of Tables

Table 2.1: Property change and potential applications of ICPs 12
Table 3.1: Summary of EIS experimental conditions 60
Table 4.1: PANI intercalation levels in the membranes 69
Table 4.2: Infrared peaks for ME membranes 71
Table 4.3: C 1s and N 1s deconvolution results of relative atomic % of the components in uncoated ME membrane 85
Table 4.4: C 1s and N 1s deconvolution results of relative atomic % of the components in PANI-ME composite membranes 85
Table 4.5: Doping levels of PANI composite membranes 87
Table 4.6: O 1s deconvolution results (relative atomic %) of ME and PANI-ME membranes 90
Table 4.7: Results of the experiments for PANI deposition site control 94
Table 5.1: The parameters of equivalent circuits fitted on EIS data of HCl soaked membranes 130
Table 5.2: The parameters of equivalent circuits fitted on EIS data of water soaked membranes 131
Table 5.3: The parameters of equivalent circuits fitted on EIS data of HCl bathed membranes in a two-compartment cell 136
Table 5.4: Equivalent circuit parameters for PANI composite membranes bathed with 1M CaCl₂ in the two-compartment cell 138
Table 5.5: Transport numbers and permselectivity of PANI composite membranes in 1M HCl 148
List of Abbreviations and Symbols

\(\hat{V}, \hat{I} \) phasor representation of voltage and current, respectively.
A\(^-\) doping anion
a activity coefficient
A area
A\(^\circ\) angstrom
ac alternating current
APS ammonium persulphate
asym. asymmetric
At. Atomic
BE binding energy
c concentration
C capacitance
CA cellulose acetate
C\(_d\) double layer capacitance
cm centimetre
CPE constant phase element
CPS counts per second
CSA camphursulphonic acid
D diffusion coefficient
d distance
DBSA dodecylbenzesulphonic acid
dc direct current
DMF dimethylformamide
DMFC direct methanol fuel cell
e\(^-\) electron
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDS</td>
<td>electron-dispersive-spectroscopy</td>
</tr>
<tr>
<td>EIS</td>
<td>electrochemical impedance spectroscopy</td>
</tr>
<tr>
<td>EMI</td>
<td>electromagnetic interference</td>
</tr>
<tr>
<td>E^0</td>
<td>standard electrode potential</td>
</tr>
<tr>
<td>eV</td>
<td>electron volts</td>
</tr>
<tr>
<td>f</td>
<td>linear frequency</td>
</tr>
<tr>
<td>F</td>
<td>Faraday</td>
</tr>
<tr>
<td>FTIT-ATR</td>
<td>fourier-transform infrared-attenuated total reflectance</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>g_{ct}</td>
<td>frequency-dependent charge transfer resistance</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HIPS</td>
<td>high-impact polystyrene</td>
</tr>
<tr>
<td>I</td>
<td>current</td>
</tr>
<tr>
<td>i</td>
<td>current</td>
</tr>
<tr>
<td>ICP</td>
<td>intrinsically conducting polymer</td>
</tr>
<tr>
<td>Im</td>
<td>imaginary</td>
</tr>
<tr>
<td>I_0</td>
<td>current amplitude</td>
</tr>
<tr>
<td>j</td>
<td>$\sqrt{-1}$</td>
</tr>
<tr>
<td>k</td>
<td>conductivity</td>
</tr>
<tr>
<td>m-</td>
<td>meta</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>m</td>
<td>milli (10^{-3})</td>
</tr>
<tr>
<td>M</td>
<td>mole</td>
</tr>
<tr>
<td>ME</td>
<td>mixed-ester membrane</td>
</tr>
<tr>
<td>MF</td>
<td>microfiltration</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>MWCO</td>
<td>molecular weight cut off</td>
</tr>
<tr>
<td>NC</td>
<td>nitrocellulose</td>
</tr>
</tbody>
</table>
List of Abbreviations and Symbols

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>nanofiltration</td>
</tr>
<tr>
<td>NHE</td>
<td>neutral hydrogen electrode</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>NMP</td>
<td>N-methylpyrrolidone</td>
</tr>
<tr>
<td>o-</td>
<td>ortho</td>
</tr>
<tr>
<td>OSN</td>
<td>organic solvent nanofiltration</td>
</tr>
<tr>
<td>p-</td>
<td>para</td>
</tr>
<tr>
<td>P</td>
<td>permeability</td>
</tr>
<tr>
<td>P(%)</td>
<td>percentage permselectivity</td>
</tr>
<tr>
<td>PAAC</td>
<td>polyacrylic acid</td>
</tr>
<tr>
<td>PAc</td>
<td>polyacetelene</td>
</tr>
<tr>
<td>PANI</td>
<td>polyaniline</td>
</tr>
<tr>
<td>PCB</td>
<td>printed circuit board</td>
</tr>
<tr>
<td>PE</td>
<td>polyethylene</td>
</tr>
<tr>
<td>PEEK</td>
<td>polyether-ether ketone</td>
</tr>
<tr>
<td>PEMFC</td>
<td>polymer-electrolyte-membrane-fuel cell</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>PPY</td>
<td>polypyrrole</td>
</tr>
<tr>
<td>PTFE</td>
<td>polytetraflouroethene</td>
</tr>
<tr>
<td>pTSA</td>
<td>p-toluenesulphonic acid</td>
</tr>
<tr>
<td>PV</td>
<td>pervaporation</td>
</tr>
<tr>
<td>PVA</td>
<td>polyvinyl acetate</td>
</tr>
<tr>
<td>PVDF</td>
<td>polyvinylidifluoride</td>
</tr>
<tr>
<td>PVTMS</td>
<td>polyvinyl trimethylsilane</td>
</tr>
<tr>
<td>q</td>
<td>charge</td>
</tr>
<tr>
<td>R</td>
<td>resistance</td>
</tr>
<tr>
<td>R_{ct}</td>
<td>charge transfer resistance</td>
</tr>
<tr>
<td>Re</td>
<td>real</td>
</tr>
<tr>
<td>Redox</td>
<td>reduction-oxidation</td>
</tr>
</tbody>
</table>
List of Abbreviations and Symbols

r.m.s root-mean-squared
RO reverse osmosis
s seconds
S siemen
S solubility
SDS sodium dodecylsulphate
SEM scanning electron microscopy
SPEEK sulphonated polyether-ether ketone
SPEEKK sulphonated polyether-ether ketone ketone
sym. symmetric
t thickness
T transmittance
t_{co, t_{co}} transport number of counter- and co-ion, respectively.
TCPB three-component polymer blend
THF tetra-hydrofurane
UF ultrafiltration
V volts
V_0 voltage amplitude (volts)
vs. versus
W Warburg impedance
wt weight
X_c reactance
XPS x-ray photoelectron spectroscopy
Z impedance
Z', Z'' real and imaginary component of impedance, respectively.
α dispersion index
λ wave length
Ω resistance
ρ resistivity
List of Abbreviations and Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>υ</td>
<td>wave number</td>
</tr>
<tr>
<td>φ</td>
<td>phase angle</td>
</tr>
<tr>
<td>φ</td>
<td>potential</td>
</tr>
<tr>
<td>ω</td>
<td>angular frequency</td>
</tr>
<tr>
<td>χ^2</td>
<td>“chi-square value” for EIS model fitting</td>
</tr>
</tbody>
</table>