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Addressing antibiotic resistance: computational answers 
to a biological problem?
Anna H Behling1, Brooke C Wilson1, Daniel Ho1, Marko Virta2,  
Justin M O’Sullivan1,3,4,5,6 and Tommi Vatanen1,2,7,8

The increasing prevalence of infections caused by antibiotic- 
resistant bacteria is a global healthcare crisis. Understanding the 
spread of resistance is predicated on the surveillance of 
antibiotic resistance genes within an environment. Bioinformatics 
and artificial intelligence (AI) methods applied to metagenomic 
sequencing data offer the capacity to detect known and infer yet- 
unknown resistance mechanisms, and predict future outbreaks 
of antibiotic-resistant infections. Machine learning methods, in 
particular, could revive the waning antibiotic discovery pipeline 
by helping to predict the molecular structure and function of 
antibiotic resistance compounds, and optimising their 
interactions with target proteins. Consequently, AI has the 
capacity to play a central role in guiding antibiotic stewardship 
and future clinical decision-making around antibiotic resistance.
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Introduction
Antibiotic resistance is a product of bacterial evolution, 
affording bacteria protection against compounds that are 
detrimental to their survival. It is a subset of anti
microbial resistance, an umbrella term that more broadly 
describes the evolution of resistance to naturally occur
ring compounds or targeted drugs in any microbe, in
cluding bacteria, fungi, viruses and parasites. Antibiotic 
resistance is associated with antibiotic use and is ex
acerbated by the mis- and overuse of antibiotics in 
medical and agricultural practices, and the ease of public 
access to antibiotics of varying quality [1]. Increasing 
resistance in pathogenic bacteria poses a number of 
serious public health risks, including severe and pro
longed illness, increased hospital admissions and com
plications and higher mortality rates [2], culminating in a 
substantial economic burden [3].

In some instances, antibiotic resistance can be attributed 
to intrinsic bacterial mechanisms (e.g. efflux — the 
transport of compounds out of cells) or acquired through 
spontaneous mutational events. However, antibiotic re
sistance is more commonly acquired through the in
heritance of mobile genetic elements carrying antibiotic 
resistance genes (ARGs), via a process known as hor
izontal gene transfer (HGT) [4]. Despite certain phylo
genetic and ecological barriers [5,6], HGT has the 
potential to generate substantial and rapid evolutionary 
innovation across greater phylogenetic distances than 
the parent–offspring constraints of its vertical transmis
sion counterpart [7]. Thus, the aggregate of mobile ge
netic elements within an environment also represents an 
adaptive and robust reservoir of ARGs that can be ac
cessed and added to by different bacterial lineages [8].

Efforts to address antibiotic resistance are complicated 
by its inherent association with antibiotic use. 
Consequently, antibiotic resistance research must focus 
on the development of strategies that do not simulta
neously exacerbate the current condition. Recently, in
creased attention has been given to the role of 
metagenomic profiling (i.e. the untargeted sequencing of 
bacterial communities), bioinformatics and artificial in
telligence (AI) in antibiotic resistance research. AI in 
particular has shown capacity to infer data patterns be
yond the scope of human interpretation, thereby con
tributing to antibiotic discovery and resistance research. 
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Here, we discuss the role of AI in antibiotic resistance 
research, and the ways that metagenomic data can sup
port, or even enhance, those analyses and the decision- 
making strategies they may inform.

Metagenomics enables culture-independent 
antibiotic resistance gene surveillance
Metagenomics enables the culture-independent sur
veillance of microbial communities and by association, 
the study of all bacteria potentially harbouring ARGs [9]. 
The identification (ID) of genes in metagenomic data 
and their subsequent clustering based on sequence si
milarity can be used to create gene catalogues [10], 
which can then be mapped against ARG databases to 
determine the presence and abundance of ARGs within 
the microbial community [9]. Metagenomics also en
ables the horizontal transfer of ARGs between bacterial 
genomes to be explored [11]. In short, these approaches 
exploit the genetic and phylogenetic disparities that 
typically exist between vertically and horizontally in
herited genomic sequences with distinct evolutionary 
histories [12]. Given the role of HGT in the spread of 
antibiotic resistance, the inference of such events can 
strengthen surveillance data by elucidating how parti
cular ARGs are being disseminated through bacterial 
communities [13]. Metagenomic approaches may be 
further strengthened through the incorporation of cul
ture-dependent techniques. For example, long-read 
metagenomic sequencing of hospital samples following 
culture-based enrichment has enabled the characterisa
tion of hospital-associated bacterial ARG profiles that 
included novel combinations of ARGs [14]. Culture- 
based approaches also enable the differentiation be
tween viable and nonviable sources of ARGs, which has 
implications for their mode and degree of spread [15].

Recently, metagenomic analyses have been used to pro
file the reservoir of ARGs (resistome) in the human gut 
[16] and compare the rates of HGT in different human 
gut microbiomes [17]. Environmental surveillance has 
also identified novel ARGs in grassland and forest soil 
[18], and in freshwater viral metagenomes [19], sug
gesting that antibiotic resistance is widespread in micro
bial populations across a range of environments. The 
influence of human activity on environmental resistomes 
is exemplified by the effect of wastewater discharge on 
antibiotic resistance in marine sediments [20]. While the 
wastewater resistance profile is source-dependent, a core 
resistome containing an abundance of clinically relevant 
ARGs can be found across various sources, including 
healthy populations [21]. Metagenomic analyses have also 
found that processing wastewater with higher tempera
tures can reduce the relative abundance of ARGs, limiting 
their spread within wastewater treatment plants 
(WWTPs) and to other environments [22]. Therefore, 
metagenomics can serve a dual role in surveillance, in 

surveying basal resistance and monitoring the efficacy of 
mitigation strategies on these profiles.

The interaction between environmental temperature 
and the prevalence of antibiotic resistance, more gen
erally, is currently unclear. Studies considering the 
connection between global climate change and antibiotic 
resistance have suggested that bacterial growth and 
HGT rates typically show a positive correlation with 
temperature [23]. However, a recent study that used 
metagenomics to profile estuary resistomes suggested 
that although these were influenced by human activities 
such as antibiotic use, higher temperatures were actually 
associated with a reduction in ARGs [24]. Such findings 
warrant further investigation into the possible link be
tween climate change and antibiotic resistance, given 
the impact both of these crises have on humanity.

Machine learning (ML), a subfield of AI, thrives at 
identifying complex patterns present in real-world data 
sets. ML applications to metagenomic data include the 
inference of ARGs and resistome profiles [25,26]. Such 
models can also estimate abundances of ARGs in poten
tial environmental reservoirs, such as the ocean [27] and 
WWTPs [28]. Studies suggest the source-tracking of en
vironmental ARG pollution, the logical next step fol
lowing the ID of an environmental reservoir, could also 
benefit from the application of ML models [29]. In agri
culture, ML has been used to understand the transfer of 
ARGs between livestock, their environments and human 
workers [30], demonstrating the potential of AI to support 
a One Health approach to antibiotic resistance (i.e. a 
holistic approach that encompasses the environment, 
human and animal health) [31]. AI-based surveillance of 
ARGs and their source is also applicable to infection 
outbreak monitoring and prediction across populations 
[32]. Specifically, the implementation of AI forecasting 
techniques to predict future outbreaks of methicillin-re
sistant Staphylococcus aureus was recently proposed [33]. 
ML models may enhance outbreak monitoring through 
the prediction of HGT networks of pathogens harbouring 
ARGs [34]. Furthermore, the use of real-time metage
nomic sequencing to identify outbreak transmission 
clusters [35] highlights the potential for such data to be 
used to train AI models for future monitoring of resistance 
outbreaks. Consequently, ML and AI have the potential 
to augment the metagenomic surveillance of ARGs, by 
predicting their presence and spread, within and across 
populations. However, this approach also presents a 
number of potential challenges associated with sensi
tivity, cost, short reads and host resolution [13].

Artificial intelligence predicts antibiotic 
resistance from gene sequences
The detection of ARGs from metagenomes is generally 
done through homology searches against ARG databases 
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such as The Comprehensive Antibiotic Resistance 
Database (CARD) [36] or ResFinder [37]. While these 
databases have good coverage of characterised resistance 
genes, finding genes with low similarity to those in the 
database is compromised. However, there are AI-based 
tools that are able to predict novel ARGs with limited 
sequence similarity to currently characterised ARGs. 
Fragmented Antibiotic Resistance Gene iENntifiEr 
(fARGene) [38] is based on hidden Markov models, and 
DeepARG [25] on a deep learning approach. Both tools 
have been shown to detect new resistance genes directly 
from short-read metagenomes with no assembly required.

AlphaFold is a complex ML model that has re
volutionised the prediction of three-dimensional protein 
structure from amino acid sequences, providing atomic- 
level precision even in instances where homologous 
protein structures are missing [39]. The prediction of 
protein structures by AlphaFold has been applied to 
different facets of antibiotic resistance research, in
cluding the successful engineering of antimicrobial 
peptides (validated by in vitro protein synthesis) [40] and 
the prediction of novel protein structures that are po
tentially implicated in bacterial antibiotic resistance [41]. 
Protein sequence and structural information are used by 
other ML methods such as Deep Functional Residue 
Identification (DeepFRI), which predicts novel gene 
functions, including antibiotic resistance, independently 
of homology-to-database comparisons [42]. Preliminary 
data suggest that DeepFRI is applicable to metagenomic 
data [43]. Notably, a recent benchmarking study based 
on structural data from AlphaFold has suggested that 
further advances are required before such structural data 
can be used to predict the interaction between anti
biotics and their target bacterial proteins [44]. Under
standing molecular interactions is particularly relevant 
for optimising antibiotic combination therapies, which 
are often used to treat multidrug-resistant infections 
[45]. ML models can also help in this regard and have 
already been used to evaluate the combination of mer
openem and polymyxin B for the treatment of Acineto
bacter baumannii in vitro [46]. Therefore, continual 
advancement of ML models to predict molecular inter
actions could have direct clinical relevance by further 
improving combination treatment regimes for this and 
other critical resistant bacteria.

Artificial intelligence facilitates discovery of 
new antibiotic compounds
An integral aspect of the human response to antibiotic 
resistance is the discovery and development of antibiotics 
that are capable of treating bacterial infections, particu
larly those with resistance to existing antibiotics. Novel 
drug discovery typically falls under one of two methods: 
target-based screening, which focuses on drug develop
ment against a known molecular target (e.g. gene or 

protein), or phenotypic-based methods that test chemical 
compounds for their ability to induce the desired phe
notypic change [47]. Antibiotic drug discovery during the 
resistance era has often relied on target-based screening 
methods to discover broad-spectrum antibiotics capable 
of treating a range of potential pathogens [48]. However, 
broad-spectrum antibiotics can also promote the spread of 
antibiotic resistance by affecting other, nonpathogenic, 
bacteria [49]. Moreover, the continued focus on ubiqui
tous targets is unlikely to counter the increasing pre
valence of multidrug-resistant bacteria possessing a 
combination of resistance mechanisms [50]. One rela
tively new approach to the discovery of novel antibiotics 
is drug repurposing screens, which are rapid and in
expensive compared with traditional approaches [51]. 
The recent discovery of the novel antibacterial compound 
Halicin demonstrates the capacity for ML models to 
guide the repurposing of existing drugs as antibiotics, 
even when the screened drugs are structurally divergent 
or originally served markedly different purposes [52]. The 
researchers used algorithms that were trained on a diverse 
molecular dataset to predict molecular properties, such as 
antibacterial activity, from the Drug Repurposing Hub. 
Notably, Halicin demonstrated in vitro and in vivo efficacy 
against the high-priority pathogen A. baumannii [53], 
among others [52]. Given the recent increase in ML 
models to the discovery and design of antibiotics [54,55]
and antimicrobial peptides [56–58], the Halicin discovery 
may not be an isolated event, but rather a sign of how AI 
methods may continue to assist antibiotic discovery by 
predicting antibacterial properties from molecular or me
tagenomic data in future.

Integrated metagenomics and artificial 
intelligence may support clinical processes
While the factors that contribute towards antibiotic re
sistance differ between developing and developed 
countries, one common thread is the increased use of 
antibiotics [1]. The bidirectional influence, where use 
drives resistance and resistance shapes use, has 
prompted the exploration and development of AI as a 
resource for antibiotic stewardship, giving rise to a new 
era in medicine and healthcare [59,60] (Figure 1). An 
important component of antibiotic stewardship is anti
biotic susceptibility testing (AST), which can inform 
treatment options based on the efficacy of different an
tibiotic dosages against a bacterial pathogen. A number 
of laboratory methods exist to test antibiotic suscept
ibility. The gold standard method, disk diffusion, in
volves exposing bacterial agar plates to differentially 
dosed antibiotic-infused paper discs. The minimum 
concentration of antibiotic effective against the infection 
can be determined by measuring the inhibition of bac
terial growth around each disk. Automated disk diffusion 
interpretation can improve its reliability by mitigating 
the potential for measurement variability between 
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human analysts [61]. In a recently developed mobile 
app, ML algorithms are used to process images of disk 
diffusion assays, through the measurement of inhibition 
zones and the ID of the antibiotic used [62]. Im
portantly, the app does not require an Internet connec
tion, and is therefore suitable for use in developing 
countries where clinical misuse is a primary contributing 
factor to antibiotic resistance [1].

ML models have also been applied to other methods of 
AST, including flow cytometer-assisted antimicrobial 
susceptibility testing (FAST), which utilises fluorescent 
dye uptake to measure the integrity of bacterial cells after 
antibiotic exposure [63]. This is similar to dynamic laser 
speckle imaging, where cell viability is determined by 
detecting changes in cellular motion following antibiotic 
treatment [64]. In these instances, the primary benefit 
conveyed by ML is speed, whilst also maintaining accu
racy. Diagnosis using AST can take several days [65], 
which is impractical when treating time-sensitive cases 
such as severe sepsis. In the aforementioned examples, 
the FAST method provided same-day predictions of in
hibitory antibiotic concentrations [63], while the rapid 
testing method developed by Zhou and colleagues could 
predict the minimum inhibitory concentration of two 
antibiotics for a model Escherichia coli strain in one hour 
[64]. The clinical implementation of such methods could 
guide, and potentially accelerate, appropriate antibiotic 
administration, limiting the exacerbation of antibiotic 

resistance in time-critical settings such as the intensive 
care unit [66]. Prior small-scale application of ML 
methods to hospital AST data supports their viability in 
larger clinical contexts as a tool to potentially improve 
empiric antibiotic prescription [67].

Another potential benefit of AI-guided antibiotic thera
pies is a reduction in the clinical reliance on broad- 
spectrum antibiotics in cases where they are unnecessary 
[68]. The treatment of urinary tract infections (UTIs), 
for example, is increasingly reliant on broad-spectrum 
antibiotics given the growing number of antibiotic-re
sistant pathogens [69,70]. For this purpose, Kanjilal et al 
recently developed a ML algorithm that can use elec
tronic health records to predict antibiotic susceptibility 
profiles and subsequently facilitate appropriate anti
biotic prescription for uncomplicated UTIs [70]. While 
the authors note that further development and testing 
are required before the algorithm is incorporated into the 
clinical workflow, it is plausible that a similar concept 
could also be applied to the treatment of other bacterial 
infections. Indeed, it has been proposed that the con
sultation of AI models for this purpose may become a 
routine aspect of antibiotic stewardship within the next 
decade [71] (Figure 2).

Metagenomics data and their analysis, too, can support 
antibiotic stewardship in the clinical setting. Clinical 
metagenomics concerns the application of sequencing 
technologies to clinical investigations, which is of parti
cular interest for its potential to bypass the requirement 
for laboratory culture in infection diagnosis. The emer
ging field is still largely spoken about in terms of its 
potential or promise, rather than its bona fide impact as 
yet on the clinical workflow, due to the challenges that 
must be overcome before its clinical implementation. 
These include the differentiation between typical mi
crobial colonisation and infection [72], as well as the high 
level of training needed for sample handling [73]. 
However, clinical metagenomics could markedly reduce 
the time taken to process patient samples and determine 
the putative pathogens causing infection, as well as any 
ARGs they may be harbouring [65]. For example, the 
Oxford Nanopore sequencing of plasmids, which are 
common carriers of ARGs, can generate shallow se
quencing reads that can be used to annotate ARGs 
within 20 minutes [74]. Recent studies have demon
strated the use of Oxford Nanopore-based clinical me
tagenomics to rapidly and accurately detect ARGs to 
diagnose lower respiratory tract infection [75,76] and 
sepsis [77]. As metagenomic analyses are not limited to 
those bacteria that can be cultured in laboratory settings, 
diagnosis using clinical metagenomics is not associated 
with the same level of bias as conventional laboratory 
culture-based approaches [78], therefore, its integration 
into AI models may further support their application to 
clinical decision-making.

Figure 1  
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Integrated metagenomics and AI methods support different clinical 
processes associated with antibiotic resistance control.  
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Barriers hindering integration of artificial 
intelligence into clinical practice
Various barriers currently prevent the routine in
corporation of AI into the clinical workflow. Patient 
trust, for example, is an important aspect of any treat
ment, and will not necessarily be given in equal mea
sure to a complex AI algorithm as to the more familiar 
clinician. Consequently, it will be pertinent to the 
perception and potential successful integration of AI 
that the public are informed of AI’s role in 'augmented 
intelligence', as conceptualised by the American 
Medical Association [79,80], where AI is not viewed as 
a replacement for human decision-making, but rather as 
a tool to improve data evaluation. Care must be taken in 
the application of AI and ML algorithms, given their 
potential for bias stemming from the limitations of their 
training dataset. In a clinical setting, these biases could 
prevent the prediction of novel antibiotic resistance 
mechanisms. Alternatively, they may limit the gen
eralisability of AI models where the training dataset did 
not capture appropriately diverse human demographics, 
compounding inequities in the response to and impact 
of antibiotic resistance [81]. Novel features of AI-based 
technologies, such as the ability to function without an 
Internet connection [62], are an important step towards 
an equitable antibiotic resistance response, and should 
be considered in the development of future resources. 
The cost-effectiveness of AI in clinical settings will 
depend on the accessibility of clinical data [67]. How
ever, we also suggest that additional barriers associated 
with cost and the requirement of specialist equipment 
may be limited to the short term, given the rapid nature 
of AI development.

For clinicians, appropriate training and technical ex
pertise will be necessary to analyse and interpret AI data. 
Moreover, the transparency and, by association, ex
plainability of AI algorithms will be important, as well as 
the extent to which they can be applied across a given 
population [82]. The clinical application of AI to sepsis 
management, specifically, has been debated [83,84] due 
to the leap between research advancements and their 
genuine capability to handle the complexity of clinical 
sepsis management. Legal and ethical barriers, including 
privacy issues [82], as well as accountability issues if a 
flawed AI model was to mislead a clinician [85], also 
need to be addressed and regulated. The exact nature of 
this regulation will be dependent on local jurisdiction. 
Example AI technologies such as the algorithm that can 
reduce unnecessary broad-spectrum antibiotic prescrip
tion for UTIs [70], the rapid AST methods that could 
expedite empiric antibiotic prescription [63,64], or the 
mobile application that can analyse and interpret AST 
data [62], highlight the promise of real-world AI appli
cation to the antibiotic resistance crisis. However, they 
also illustrate the need for further development and 
clinical testing before the benefit conferred by AI on 
both the patients and clinicians can be fully appreciated. 
Focusing future research efforts to overcome these bar
riers will determine the true impact that AI can make on 
antibiotic stewardship and the wider response to anti
biotic resistance, an avenue certainly worth pursuing 
given the potential it has already demonstrated.

Conclusion
It is undeniable that antibiotic resistance is an issue 
demanding global action to prevent further magnifica
tion of its already-present economic and public health 
burden. The human response to the antibiotic resistance 
crisis is based around a key question of how to detect 
and characterise evolution in bacterial systems of in
terest. The ability of ML, specifically, to improve its 
own accuracy over time, whilst also functioning in
dependently of continuous human input, may prove an 
indispensable tool against the rapid evolutionary capa
city of bacteria. The implementation of AI methods in 
real time to predict bacterial antibiotic resistance profiles 
could complement the decision-making process that 
underlies antibiotic prescription, reducing unnecessary 
or unsuitable usage. Moreover, the structural and func
tional prediction of proteins and other molecules by AI 
methods has the potential to revolutionise future anti
biotic drug discovery through relatively rapid and in
expensive means, by repurposing existing drugs or 
optimising antibiotic combinations for the treatment of 
multidrug-resistant bacteria. Future research efforts 
should focus on developing ML algorithms that can ac
curately predict molecular interactions to model the in
teraction of antibiotic treatment combinations, as well as 
those between antibiotics and their target bacterial 

Figure 2  
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Hypothetical infection treatment pipeline assisted by metagenomics and 
AI methods. Left panel: a patient presents with an infection and samples 
are collected. Centre panel: AST interpretation is automated with AI, 
while pathogen ID is supported through metagenomic analysis. Right 
panel: the proposed drug combination and dosage are optimised 
through pharmacodynamic modelling, and the interactions between 
drug and target bacterial protein are verified through three-dimensional 
modelling.  
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proteins. Further applications of ML to hospital AST 
data will eventually enable hospital-wide empiric anti
biotic prescription. Continued efforts to develop meta
genomic sequencing technologies with lower operation 
costs and that produce longer reads will facilitate its 
wider application to ARG surveillance. Additional re
search, employing both metagenomics and AI, is also 
required to address outstanding questions regarding the 
possible link between climate change and antibiotic re
sistance. It is important to conclude by emphasising that 
despite its increasing application to antibiotic resistance 
research and mitigation, AI should not be viewed as a 
replacement for human clinicians, or even for other 
computational resources such as metagenomics that can 
provide critical information on the evolution and spread 
of ARGs. Instead, the two technologies, metagenomics 
and AI, may function in a complementary, or even sy
nergistic, nature to support human decision-making and 
minimise the impact of the current antibiotic resistance 
crisis on humanity.
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