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Abstract

Via form methods we investigate the Dirichlet-to-Neumann operator A associated with
a uniformly elliptic pure second-order operator on an exterior domain €2 with Lipschitz
boundary I'. We consider two versions of the Dirichlet-to-Neumann operator and a varia-
tional problem on ) associated with each case. We prove that for bounded data, solutions
of the variational problem are continuous on Q and decay at infinity. We then characterise
the Dirichlet-to-Neumann operator N in terms of a j-elliptic sesquilinear form and estab-
lish that —N generates an asymptotically stable submarkovian holomorphic Cy-semigroup
on Ly(T") that leaves C(I') invariant. Finally we prove that the associated heat kernel is
jointly continuous on Yy x I' x I'; satisfies uniform bounds in complex time and converges
uniformly on I' X I" to an equilibrium, where Xy C C is an open sector of angle 6 € (0, ).
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1 Introduction

Consider a smooth function ¢ on the boundary I' of a bounded smooth domain. Then
the Dirichlet problem admits a solution u and the Dirichlet-to-Neumann operator A/ maps
¢ to the normal derivative of u. Using form methods we recast the problem weakly and
investigate A in a generalised setting. Our departure from the classical situation is twofold.
First, we assume an exterior domain 2 C R with Lipschitz boundary I'. Next, we replace
the Laplacian with a uniformly elliptic operator A = — " 0;(ay0x) with real measurable
coefficients. In order to study the resolvent of the Dirichlet-to-Neumann operator, we
consider the Robin-type problem

Au=0 on

(1)
ANTru+0d,u=1 onl

with boundary data ¢ € Ly(T") and A > 0. Then it remains to specify a boundary condition
at infinity in order to ensure that (1) is well-posed. We consider two possibilities, namely
Dirichlet and Neumann boundary conditions at infinity. Hence we obtain two versions
of the boundary value problem (1) and consequently, two realisations of the Dirichlet-
to-Neumann operator. Throughout this thesis we simultaneously examine the two cases,
investigating such matters as elliptic regularity, resolvent convergence, semigroup asymp-
totics and heat kernel bounds.

The classical Dirichlet-to-Neumann operator resides within the pseudo-differential frame-
work, where it is equal to the difference between the square root of the Laplace-Beltrami
operator and a pseudo-differential operator of order zero, defined on the boundary of a com-
pact Riemannian manifold [Tay96] Section 12C. Recent decades have seen the development
of numerous generalisations, with the Dirichlet-to-Neumann operator emerging as an ob-
ject of both theoretical and practical interest (see [SU90], [Hug95], [SU98|, [LUO1], [GKO04],
[Fok05], [MS10], [CT10], [Warl8], [SY22] for a selection of examples). One widely-known
situation in which the Dirichlet-to-Neumann operator appears is that of the Calderén prob-
lem [Cal80], an inverse problem wherein one seeks to determine the coefficients of an elliptic
operator on the interior of a region using knowledge of the Dirichlet-to-Neumann opera-
tor at the boundary [SU87], [Nac88], [AP06], [Uhl09], [BR12]. Another significant line of
enquiry is the relationship between the Dirichlet-to-Neumann operator and the spectral
properties of the associated elliptic operator. For a singular Sturm—Liouville operator L, it
is known that the spectral data of self-adjoint realisations of L in Ly([0,00)) are captured
by the limiting behaviour of the associated Titchmarsh-Weyl m-function [Tit62]. This
theory has been extended to the case of self-adjoint elliptic operators in Ly(R?), where the
Dirichlet-to-Neumann map happens to fulfil the role of the m-function [AP04], [AMO07],
[AM12], [BR16], [BR15], [BGH"16]. In recent times connections have also been drawn be-
tween the Dirichlet-to-Neumann operator N and the theory of stochastic processes, where
the Cyp-semigroup generated by —A turns out to coincide with the transition function for
a Markov process whose state space is the boundary I' of the bounded Lipschitz domain
on which the Neumann or Robin problem is considered [BV17].

In [DL90] the Dirichlet-to-Neumann operator N was studied on C(T') for a bounded
Cl-domain. Positivity and analyticity of the semigroup generated by —A on C(T") were
subsequently investigated for the case where I' is smooth [Esc94], [Eng03]. In [AE12] the
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classical form methods of Kato [Kat80] and Lions [Lio57] were extended so as to enable
the association of an m-sectorial operator in a Hilbert space H with a sectorial form whose
domain need not be contained in H. In particular, the form method presented in [AE12]
yields a convenient framework for the study of N as an m-sectorial operator in Lo(T"), which
has facilitated the treatment of the Dirichlet-to-Neumann operator in a variety of contexts
(see [AE11], [EO14], [BE17], [AE17], [ARP19], [AE20], [EW20], [BE21], [EO22] and the
references therein). In [AE15] the Dirichlet-to-Neumann operator was considered on an ex-
terior Lipschitz domain for A = —A. Several results extend to the case A = —>" 0)(ay0)
with minimal modification of the arguments, demonstrating the robustness of the form
method. Nevertheless, arguments relying on symmetry or smoothness of the coefficients
break down in the general case, necessitating a different approach.

In our setting, the regularity theorem of Nash [Nas58] and De Giorgi [De 57] provides
immediately that solutions of (1) are locally Holder continuous on 2. Regularity at the
boundary I is less apparent. While the utility of Morrey and Campanato estimates in the
study of elliptic operators with non-smooth coefficients is well evidenced [Cam63], [Gia83],
[Aus96], [Lie03], [GMO5], the application of this theory in the case of an unbounded domain
() becomes problematic because the Morrey and Campanato spaces cease to be subspaces
of Ly(2). Alternatively, if the boundary is too rough to satisfy the so-called inner volume
condition, then the classical Morrey—Campanato theory is again rendered inapplicable. In
[ER15] pointwise Morrey and Campanato seminorms were introduced in order to derive
global Hélder estimates for solutions on domains with outward cusps (which fail to satisfy
the inner volume condition). This technique enabled the separate treatment of boundary
and interior regularity and was subsequently applied in [EW20] in order to obtain Holder
Gaussian heat kernel bounds for elliptic operators on bounded Lipschitz domains. Using
a similar approach, we apply elliptic regularity and bootstrap along a scale of pointwise
Morrey—Campanato seminorms in order to prove that solutions of (1) extend continuously
to I'.

Given data ¢ and A\, we denote by BP1 and By the unique solutions of (1) satisfying
Dirichlet and Neumann boundary conditions at infinity, respectively.

Theorem 1.1. (a) Let ) € Loo(T') and A\ > 0. Then BPy € C(Q).
(b)  Let € Loo(T) and A > 0. Then By € C(9).

A typical consideration in the study of boundary value problems on unbounded domains
is the behaviour of solutions at infinity [Mes92], [HK14], [Elt20]. If A = —A, the unique
solvability of the Dirichlet problem yields that solutions of (1) decay radially on © [AE15].
For non-symmetric variable coefficients, this property becomes delicate. Using the elliptic
regularity of very weak solutions [AEG20] we prove that if the coefficients (ay;) are Lipschitz
continuous, then solutions of (1) decay in the following manner.

Fix d > 3. We denote by Br C R? the open ball of radius R > 0 centred at the origin.

Theorem 1.2. Suppose that the coefficients (ay,) are Lipschitz continuous and fix R > 0
sufficiently large. Then there exists a ¢ > 0 such that the following are valid.

(a) Let € Loo(I') and A > 0. Then

ol 1
b |x|d—2

(BYY) ()] <




for all z € Q\ Bg.
(b)  Lett € Loo(I') and A > 0. Then

1
o=

(Ba)a) - (Bui)| < o (1= 4 (5, 0))

for all x € Q\ Bgr, where (B\i) is the average of By over Q.

In Section 5 we use the form method from [AE12] to characterise the Dirichlet-to-
Neumann operator N associated with the elliptic operator A = —>" 9;(ay0y) on the
exterior domain §2. Each version of (1) gives rise to a distinct realisation of A and in
each case —N generates an ultracontractive holomorphic Cy-semigroup on Lo(T"). For
second-order elliptic operators, Gaussian heat kernel bounds serve as a valuable tool in
the investigation of spectral and regularity properties. Existence of such bounds carries
a variety of consequences, including L,-analyticity of the semigroup, p-independence of
the spectrum and existence of H°-functional calculi, and the associated corpus is com-
mensurately extensive (see [Aro67], [Dav89], [SC92|, [VSCC92], [AE9T7], [ER97|, [ER9S],
[ATO01], [Ouh05], [AMPO06], [EO19b] and the references therein). If I' is smooth, then
the Laplace—Beltrami heat kernel satisfies Gaussian bounds and the kernel of the semi-
group generated by —N on C*°(I") satisfies Poisson bounds [EO14]. In [EO14] Poisson
bounds were also obtained in the Lo-setting and these results were extended in [EO19a]
and [EO19b] to bounded C'**-domains and operators with symmetric Holder continuous
coefficients. More recently in [AE20], bounded Lipschitz domains and symmetric Lipschitz
continuous coefficients were considered. In that paper it was proved that the Cy-semigroup
generated by —A on Ly (T") leaves C'(T") invariant and that its kernel is continuous on I' x T
In the case of non-symmetric measurable coefficients and an exterior Lipschitz domain, we
establish joint continuity of the heat kernel on ¥y x I' X I', a result that seems yet to ap-
pear in the literature, even for the case A = —A. Moreover, we prove that the semigroup
generated by —N again leaves C'(I") invariant and that its kernel satisfies uniform bounds
on a sector in C.

Let SP and S denote the holomorphic Cy-semigroups on Ly(T") generated by —N/,
corresponding to Dirichlet and Neumann boundary conditions at infinity respectively. We
denote by 07,0~ € (0, ] their respective angles of analyticity and by Xgp,Xgn C C the
corresponding open sectors.

Theorem 1.3. (a)  There exists a continuous function KP: Yoo x I' x I' — C such that

(Si)@)(wl) = /FKE(W1,W2)<P(7U2)dw2

for allwy €T, p € Li(T") and z € Lyp.
(b)  The map z — KP(wy,ws) is analytic on Sgp for all wi,w, € T.
(c)  For all 0" € (0,07) there exist c,§ > 0 such that

HKEHLOO(MF) <c(Re z)*(dfl)e"mez

for all z € Xy



Theorem 1.4. (a)  There exists a continuous function K: Ygn X I' x I' = C such that

(Su)(wr) = / K. (1, we)p(wz) duws

forallwy €T, ¢ € Li(T') and z € 3gn .
(b)  The map z — K, (wy,ws) is analytic on Xgn for all wy,wy € .
(c)  Forall 0" € (0,0N) there exists a ¢ > 0 such that

HKz”Loo(FXF) S C(]_ A\ Re Z)_(d_l)
for all z € Xy

This thesis is organised as follows. In Section 2 we introduce the form domain and
other preliminary constructions, collecting various properties for later use. In Section 3
we formulate (1) in terms of an abstract variational problem. One readily obtains well-
posedness from the Lax—Milgram theorem and consequently, the existence of a continuous
solution operator. We show that the solution operator is compact and submarkovian,
before concluding Section 3 with the proof Theorem 1.1. In Section 4 we consider (1) on
the truncated domain 2N Bk and establish convergence of the associated solution operator
in the limit R — oo. We then prove Theorem 1.2 and obtain a variant of Theorem 1.1 that
permits less regular data 1, at the cost of requiring Lipschitz continuity of the coefficients
(ax;). In Section 5 we introduce two versions of the Dirichlet-to-Neumann operator and
in each case we obtain resolvent convergence with respect to the truncated problem under
minimal regularity. We then show that if the boundary and coefficients are sufficiently
smooth, our two realisations of the Dirichlet-to-Neumann operator differ only by a rank-
one operator. In Section 6 we prove that the holomorphic Cy-semigroup generated by each
version of the Dirichlet-to-Neumann operator is submarkovian and uniformly mean ergodic.
In [AE15] irreducibility of the semigroups was obtained using the self-adjointness of the
Laplacian and Dirichlet-to-Neumann operator. Since we do not assume symmetry of the
matrix (ay), the operator A is no longer self-adjoint in general. Hence we instead proceed
via ergodicity in order to obtain that the semigroup generated by —A is irreducible when
Neumann boundary conditions are imposed at infinity. We then establish irreducibility in
the Dirichlet case, assuming that (ay;) is symmetric. Finally in Section 7 we consider the
heat kernel associated with the Dirichlet-to-Neumann operator. Existence follows from
ultracontractivity of the semigroup and the elliptic regularity afforded by Theorem 1.1
provides that the kernel is jointly continuous on >y X I'xI". We prove Theorems 1.3 and 1.4
and subsequently deduce that the semigroup leaves C'(I') invariant and that the heat kernel
converges uniformly on I' x I' to an equilibrium.



2 The form domain

In this section we introduce the function spaces that underlie our study. We use the

localised Sobolev spaces presented in [LO05], which are suited to the investigation of ex-

terior variational problems. These spaces were used in [AE15] and [ARP19] to study the

Dirichlet-to-Neumann operator, and in [KL20] to study the Robin Laplacian.
Throughout this thesis we fix d > 3. Define

W(RY) = {u e H, (R : /Rd |Vul* < oo}

We denote by p > 2 the Sobolev conjugate of 2, that is, % = % — é. Then [Bréll] Theo-

rem 9.9 provides that H*(RY) C L,(R?) and there exists a ¢; > 0 such that

ull L, ey < esllVull L, ma

for all u € H'(RY).
For all R > 0 we write Bg = {x € R?: |z| < R}. If u € L,(Bg), we denote by

1

~ |Bg| /5,

<U>R

u

the average of u over the ball Br. We write (u), = (u|p,)p for all u € W(R?).

Lemma 2.1. There exists a ¢ > 0 such that

o ()l iy < [ (7P
Rd

for all uw € W(R?) and R > 0.

Proof. Let v € H'(B;). Since B; has the extension property, there exists a ¢g > 0
(independent of v) and a ¥ € H'(R?) such that 0|, = v and [|0]|grrey < col|v|lar(ay)-
Then

0]l ) < 0]l 2y ey < esllOllmr ey < escollvllen sy

Hence by Proposition A.1 there exists a ¢ > 0 such that

o= @m0 < ([ 190P+ [ o= nP) e [ vop
B1 B1 B

for all v € H'(By).
Let u € W(RY) and R > 0. Then u|p, € H'(Bg). Define ug: B; — C by ug(z) =
u(Rz). Then ug € H'(B;) and a change of variable yields that

(), = — / w(Re)de — Rdlwd / u(w) de = (u),

Similarly,



and
|Vug|® = RQd/ |Vul?.
Bl BR

Therefore

2d
lu = (W) gll7, 50 = BY lur — (urhll7,5,)

< R2vdc/ Vaug|? = CRQPdRQ_d/ IVul? = c/ Vul? < c/ |Vul?
B1 Br Br R4

as required. O

Proposition 2.2. Let u € W(R?). Then the limit

(u) = lim (u) (2)

R—o0

exists and u — (u) € L,(R?). Moreover, there exists a ¢ > 0 such that

ot = ()2 gy < / VP
Rd

for all w € W(RY).

Proof. Let ¢ > 0 be as in Lemma 2.1 and let n € IN. Then

1 1
(s = (0l = I [ = | S 7 [ = (e
on o1

2d

"~ | Bont1] Bynir

1

|BQ"+1 | B2n+1

1/p
= (i < 2°( = (u)ynii]?)

Qd(lfLﬂ 2d(1*L+1)

) 1/p 1/2
p P
S5 ([ et P) s e ([ war)”
wy Bynt1 wy R

So Y [{u)gnir — (u)yn| < 0o and it follows that the limit lim (u),, exists.
Write o = lim (u),,. Then by Fatou’s lemma

p/2
/ lu—alf = / liminf |u — (u) g, [P1p,, < liminf/ lu— (u)yn|? < cp/2</ |Vu|2> :
R4 R4 n—o0 n—oo Bgn RY

so u —a € Ly(R?). Since

1 1/p -
=)l < (g [ lu=al)" < (Rt P = ol
R

for all R > 0, one deduces that lim (u — o) , = 0. Hence the limit lim (u) , = o exists and
the claim follows. O

For all u € W(R?) we define the average (u) of u over R? by (2). We define the norm

1/2
fulhwae = ([ 176P +1)F)
R4

on W (R?).



Proposition 2.3. The space W (RY) is a Hilbert space.

Proof. It is easy to verify that W (RR?) is a pre-Hilbert space with respect to the inner
product associated with the norm || - ||y (g4). Hence it remains only to show that the space
(W®R?), || - [lwe) is complete.

Let (u,)nenw be a Cauchy sequence in W(RY) and let ¢ > 0 be as in Proposition 2.2.
For each n € N write v, = u, — (u,) € W(R%). Let n,m € IN. Then

v — Um”ip(ﬁ{d) = [[(un — um) — (up — um>||ip(IRd) < C/]Rd |V (= ) |?

L= = [ 19 =)

So (Un)new is a Cauchy sequence in L,(R?) and (Vv,),en is a Cauchy sequence in Lg(Rd)d.
Then by completeness there exist v € Ly(R?) and w € L2(Rd>d such that limv, = v in
Ly,(R%) and lim Vv, = w in LQ(]Rd)d. Let x € C®(R%) and let R > 0 be such that
supp X C Bg. Since limvy,|g,, = v|p, in La(Bg), it follows that

and

/ v = lim | v, =— lim | (Gw)¥ = _/ WX
Rd n—oo BR Rd

n—oo BR

for all k € {1,...,d}. So Vv =w and v € W(R?), since L,(RY) C Laoc(R?).
Note that

1 1/p B
Wl < (e [ F) T < (R Pllolls, e

|Br| Jgy,
for all R > 0. Then (v) = lim (v), = 0. Moreover, since (u,)nen is a Cauchy sequence
in W(RY) it follows that ({(u,))nen is a Cauchy sequence in C, so lim (u,) exists. Write
u = v + lim (u,). Then v € W(R?) and

. N 2 RRT B 2 . . B 2 _
i o=l = i [ (V0= Vol i | i (o) o) <0

as required. N

We call a connected open set U C R? a domain. We equip the boundary OU with the
(d — 1)-dimensional Hausdorff measure o.

Lemma 2.4. Let U C RY be a bounded Lipschitz domain.

(a) Let A C U be a measurable set with |A| > 0. Then the norm

w e (/U|Vu|2+/A|u|2>/

is equivalent to the norm || - || g1y on H'(U).

(b)  Let Z C U be a measurable set with 0 < o(Z) < co. Suppose that the restriction
u s uly from HY(U) N C(U) into Ly(Z) admits a compact extension T: H'(U) —

Lo(Z). Then the norm
u /’VU’Q /]Tu]

is equivalent to the norm || - || g1y on H'(U)
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Proof. We first prove (a). Clearly

/WW+/mﬁgwmm
U A

for all u € H*(U), since A C U. It remains to show that there exists a ¢ > 0 such that

Julfyry < e [ 19uP+ [ 1uf)
U A

for all w € H'(U). Note that it suffices to prove that

[ <e( [ wup+ [ 1)

for all w € H'(U). Suppose to the contrary that for each n € IN there exists a u,, € H*(U)

such that )
Ay N T
U A n Ju

Without loss of generality we may assume that [ |u,|* = 1 for all n € N. Then

||un||%I1(U) = /U |Vun|2 +1<2

for all n € IN, so the sequence (uy,)n,en is bounded in H*(U). Passing to a subsequence
if necessary, we may assume that there exists a u € H'(U) such that limu, = u weakly
in H'(U). By [EE87] Theorem V.4.17 the embedding H'(U) < Ly(U) is compact, so
limu, = w in Ly(U). Then |lu||r,w) =1 and

[ I9uR +1 = ) < i

= liminf/ [Vu,|> +1 < liminf > +1 = 1.
Hence [, |[Vul*> = 0 and it follows that u is constant, as U is connected. Moreover, since
the embedding H'(U) < Lo(U) is compact and the restriction u +— u|4 from Ly(U) into
Ly(A) is continuous, the map u + u|s from H'(U) into Lo(A) is compact. Therefore
limwu,|4 = ula in Ly(A) and

1
/ lu|? = hm |un|2 < lim — =0.

n—oo N,

Then u|4 = 0 and it follows that « = 0. So 0 = ||u|/z,@) = 1, a contradiction.
We now prove (b). By hypothesis the map T: H'(U) — Ly(Z) is continuous, so there
exists a ¢; > 0 such that ||Tu||,z) < c1||lul| gy for all w € H'(U). Hence

AHMF+LWWP§@+¢NW%M

for all u € H'(U). The converse estimate follows from a contradictory argument similar
to the above, together with the assumed compactness of the map T O
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We require the following equivalent norm on W (R%).

Lemma 2.5. Let A C R? be a bounded measurable set with |A| > 0. Then the norm

u (/Rd ]Vu]Q—l—/A]u\Q)l/Q

is equivalent to the norm || - |lygay on W(R?).

Proof. Define || -||: W(R?) — [0, c0) by

1/2
hell = ( [ 1vu+ [ 1u)
R4 A

We prove the claim using the closed graph theorem. Hence we first verify that the space
(W(®R?), ] -|ll) is complete.

Let (u,)nen be a Cauchy sequence in (W (R?), || - [|) and let R > 0 be such that A C Bg.
Then by Lemma 2.4(a) there exists a ¢ > 0 such that

lalonlfsong < [ 190+ [ 1) < el

for all n € IN, so the sequence (u,|p,)nen is Cauchy in H'(Bg). Since H'(Bg) is complete,
the sequence (uy|py)nen is convergent. By a diagonal argument one deduces that there
exists a function u: R? — C such that limu,|s, = u|g, in H'(Bg) for all R > 0 with
A C Bg. Hence u € HL_(RY). Let n € N. Then

loc

/ IV (u — u,)|* = lim IV (U, — 1) |? < lim inf [t — ]|

m—ro0 BR

for all R > 0 with A C Bg. So

/ V= Vuu [ = lim [ [V(u—w,)]* < lminf lug, —u[|* < o0
m—r0o0

R— BR

by the monotone convergence theorem. Hence Vu — Vu,, € LQ(]Rd)d for all n € NN, so
u € W(RY) and

lim |V — Vu, > < lim lIminf |[|u,, — u.[|> = 0.
n—00 fpd n—o00 M—00
Moreover, limu,|4 = u|a in Ly(A) since Ly(A) is complete. Therefore lim ||u — u,|| = 0

and (W(R?), || - |I) is complete.

Next we show that there exists a ¢ > 0 such that [[u| < c||ully(ga) for all u € W(R?).
Suppose to the contrary that for each n € IN there exists a w, € W(R?) such that
[lwn|ll > nl|wa|lwmaey. Without loss of generality we may assume that |wy||wge = 1
for all n € N. Write u,, = n~"?w, € W(R?). Then [[uy|lwge) = n=? and ||u,|[| > n'/?
for all n € N. So lim ||ty ||w(gray = 0 and lim [|u, || = oo. Write v, = u, — (un) € W(RY).
Then Proposition 2.2 provides that v, € Ly(R?) for all n € N and lim||v,|,ge =

0. So lim||vy|allz,a) = 0, since |A] < oo and p > 2. Moreover, lim(u,) = 0, so
lim |[{tn) 14| £,(a) = 0 and it follows that lim ||, |4/ z,(4) = 0. Then since lim || Vuy, || 1, gra) =
0 it follows that lim [||u,|| = 0, a contradiction.

Since the inclusion (W (R?), || - [lwga)) < (W(RY), |- [I) is continuous, it follows from

Proposition 2.3 together with the closed graph theorem that the norms are equivalent. [
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In Proposition 2.7 we show that the test functions are dense in W (R?) N L,(R?). We
need a lemma.

Lemma 2.6. Let u € W(R?) N L,(RY) and let € > 0. Then there exists a x € C=°(RY)
such that the estimate

v = xllz, ey + IV (u = X) | ymey < €
1s valid.

Proof. Fix 7 € C>®(RY) such that 7|p, = 1, suppT C B, |7] < 1 and |V7| < 2. For
each R > 0 define 7 € C°(R?) by 7g(z) = 7(%). Since |u]* € L,;»(R?), it follows from
Holder’s inequality that

4 4 Q/F' 1—2
wImP < [P ([ ul) B Bal'
/]Rd R? Byr\Br R? Bar\Br

4 2/p 2/p
< 7@d1*%(23>d<1*%>( / |u|'°) - 16wd2/d( / Iulp)
R BQR\BR BQR\BR

for all R > 0, since % =1- % Hence

IV (u = utg)||7,mey < 20(1 — 78)Vull7, ga) + 2]lu VTrZ,ga
2/p
< 2/ |Vu|? +32wd2/d</ |u\") :
R4\ Bp Bar\Br

A (ju = urg|p, @) + [V~ urg)| L@ = 0.

Choose R > 0 such that

for all R > 0, so

9
lu = wrrlle,@e) + 1V (e = urr) || oy < 5

Since supp u7g is bounded, by mollification we may assume that there exists a y € C>°(R%)
such that

9
lurr = Xllz, e + [V (k= X) 2 me) < 5

The claim then follows from the triangle inequality. m

We define

- d
WP(RY) = Co(RT)

and equip WP (R?) with the norm || - |lyypga) induced by the norm on W(R?). Then
WP(R?) is a Hilbert space and

1/2
HUHWD(Rd) = </ \VU\2>
]Rd

by the following assertion.
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Proposition 2.7. The space W (R?) admits the orthogonal decomposition
W(RY = WP(RY) @ C1.
Moreover, WP(R?) = {u € W(R?) : (u) = 0} = W(R?) N Ly(RY).

Proof. Let u € WP(R?). Then there exists a sequence (Y)new in C®(RY) such that
limy, = u in W(R?). Since (x,) = 0 for all n € N, it follows that (u) = 0. So
WP(RY) C {u € W(RY) : (u) = 0}. Moreover, {u € W(R?) : (u) =0} € W(R?) N L,(R?)
by Proposition 2.2.

Now let u € W(R4)NL,(RY). By Lemma 2.6 there exists a sequence (X, )nen in C2°(R?)
such that lim x,, = u in L,(R?) and lim Vy,, = Vu in Lg(]Rd)d. Moreover,

1 1 o /P d  \—1/p
“BR‘ 5 U—Xn‘ < <|BR‘ 5 ‘u—Xn’ > < (R wd) Hu_XnHLp(IRd)
R R

for all R > 0 and n € IN. So (u — x,) =0 for all n € IN and
im o=y = Jim [ 19— )+ = ) =0

Hence u € WP (R?) and WP(R?) = {u € W(R?) : (u) = 0} = W(R?) N L,(RY).
The above implies that u — (u) € WP(R?) for all u € W(R?). Therefore W(R?) C
WP(RY) + C1. Since 1 L WP(RY), the claim follows. O

Corollary 2.8. H'(R?) c WP(R?).

Proof. Since H'(R?) C Ly(R?) by the Sobolev embedding theorem and H*(R?) ¢ W (R%),
the corollary follows. O

Corollary 2.9. Let u € W(RY). Then (Jul) = |(u)].
Proof. Write u = v + A1, where v € WP(R?) and A € C. Then |v| € W(RY) N L,(RY) =
WP(R?), so (Jv]) = 0. Moreover, for all R > 0
)
u)p — M| < — v+ AL — |AlT
b= 1M < oy [, T2 = A

1
< [l L= AL = (o
B2l /s,

Hence (Jul) = lim (|ul) p = |A| = [(v + A1)| = [(w)]. O
We now introduce the exterior domain 2. Throughout this thesis we fix a bounded
open set Qy C R? with Lipschitz boundary and consider the exterior domain
Q =R\ Q.

We assume that 2 is connected. We write I' = 02 = 0€ and equip I' with the (d — 1)-
dimensional Hausdorff measure o. Moreover, for all R > 0 we write Q0 = Q N Bi.
Define

W(Q) = {ue H.(Q): /Q |Vul* < oo}
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We fix Ry > 3 such that Q, C Bp,—3. Since g has Lipschitz boundary, it follows from
[Maz85] Lemma 1.1.11 that u|q, € H*(Qg) for all u € W(Q) and R > Ry. Hence

W(Q) = {u € C” : u is measurable, u|q, € H'(Qg) for all R > R, and/ [Vul? < oo}
0

We regularly invoke this characterisation of W (€2).
Since Qg, has Lipschitz boundary, there exists a bounded operator Ey: H'(Qg,) —
H'(Bg,) such that (Eyu)|a,, = u. Define E: W(2) — W(R?) by
u(x) if v € R?\ Bg,,
(Eo(ulag,))(x) if 2 € Bg,.

Then (Eu)|q = u. For all u € W(2) we define (u) = (Eu). Then it follows that

(Eu)(z) = {

(u) = lim u

since [Qg| < co. We equip W (Q2) with the norm

HUHW(Q) = (/Q |Vu‘2 + ’<u>|2>

In Proposition 2.11 we shall prove that W () is a Hilbert space. First we establish that
the following Sobolev—Poincaré-type inequality is valid on W (€2).

1/2

Proposition 2.10. There exists a ¢ > 0 such that

e = ()12, < c / VP
for allu e W(Q).

Proof. Let u € W(Q2) and let ¢ > 0 be as in Proposition 2.2. Write

1

a=—"
|QRO|

.
Qg

Then by the Proposition A.1 there exists a ¢; > 0 such that

lule, = ol < [ [Vl

Qg

Moreover, by Proposition A.2 we may assume that Eolg, = 1p, . Then

= (I, 0 < 180 — B < [ 198 =c [ [9(Bu-a)
§c</ |V(Eu—a)|2+/ |V(Eu—a)|2>
Br, Q

_ (/BR IV Eo(ulag, —a)|2+/QW“|2>

13



< (1 Ea(ula, = )y + [ 90F)

< (1EalPlula, = ol + [ [90F)

gc(uEOH?cl/ |vu\2+/ Vuf?) §02/ Vuf?
Qn, Q Q

where ¢, = ¢(||Epl|%c1 + 1). O

Next we define the trace map on W (2). Let R > Ry. Then Qp is a bounded Lipschitz
domain. Denote by Trq,: H'(Qr) — Lo(0Qg) the trace map on H'(Qg) and define
Trr: H'(Qgr) — Lo(T') by Trru = (Trg,u)|r. We then define Tr : W(Q) — Ly(T') by

Tru = Trr(ulo,).

Note that the map Tr does not depend on R and is therefore well-defined.
Throughout this thesis, we make frequent use of the following facts.

Proposition 2.11. (a)  The space W(Q) is a Hilbert space.

(b)  The trace map Tr : W(Q) — Lo(T") is compact.

(c)  The extension operator E: W(2) — W(R?) is bounded.

(d) Let A C Q2 be a bounded measurable set with |A| > 0. Then the norm

- (/Q\Vu\2+/A|u|2)

is equivalent to the norm || - ||w ) on W(£2).
(e)  The norm
" / IVl + / [Truf?) (3)
is equivalent to the norm || - ||w @) on W (2

Proof. Let A C Q2 be a bounded measurable set with |A] > 0. Write

ol = ([ 190+ [ 1u)”

for all u € W (). Arguing as in the second paragraph of the proof of Lemma 2.5 with Qg
in place of Bg, one obtains that the space (W (Q),]] -l ;) is complete.

We now show that the norm || - ||| , is equivalent on W (2) to the norm defined by (3).
Let R > Rq be such that A C Bg. By Lemma 2.4(a) there exists a ¢; > 0 such that

2
lulo sy < ca [ 1Vl + [ 1) < el
Qr A

for all u € W (). On the other hand, since 2 has Lipschitz boundary it follows that the
map Trp: H'(Qr) — Ly(T') is compact, so by Lemma 2.4(b) there exists a ¢y > 0 such

that
/ IVl + / Trul® < eallulaglr o
Qg r

14



for all u € W(2). Then

/|Vu|2—|—/|Tru|2§ (cre2 + Dlully
0 r

for all u € W(£2). One similarly deduces from Lemma 2.4 that there exists a c¢3 > 0 such

that
helly < s [ (VuP+ [ frea
Q r

for all u € W(Q). Therefore the norm |- ||, is equivalent on W () to the norm defined
by (3). Moreover, it follows that || - || ; does not depend, up to equivalence, on the set A.
Next we show that the extension operator E is continuous from (W (Q), |- [ ) into

0

W (R?), where || - |||QRO = || - || , with the choice A = Qp,. Let u € W(§2). Then

/ \VEu\z—i—/ |Eu|2:/ |VEu\2+/ |VEu|2+/ |Buf?
R4 Qn, R\ B, Br, Qny

<[ TP Bl P
RI\Bg,

= [ 1Vl + | Eululng, i
R4\ B,

2
< /Q Vul* + | Eoll* ulag, i 0q,) < 1+ [Eol*) g, -

Hence by Lemma 2.5 the operator E maps (W (Q), || e ) continuously into W (R?).
0
Moreover,

2
||uHI2/V(Q) = /Q |V Eul? + |(Bu)|* < ||Eu||12/V(1Rd) < ||EH?W(Q),\”-|||QR )HW(]Rd)|||u|HQRO
0

for all uw € W(Q), so the inclusion (W (), ]| - |||QR0) — W(2) is continuous.

We now prove (a). Let (un)new be a Cauchy sequence in W(€2) and write v,, = u,, —
(un). By Proposition 2.10 the sequence (v,)nen is Cauchy in L,(£2). Since p > 2 and
[QR,| < 00, one deduces that the sequence (vn|a, Jnen is Cauchy in Ly(Qg,). Moreover, by
assumption the sequence ((un))new is Cauchy in C, so (un|ap, Jnew is a Cauchy sequence in
Ly(Qg,). Hence (u,)nen is a Cauchy sequence in (W (€2), || - |||QR0) Since (W(Q), || - |||QR0)
is complete, there exists a v € W(Q2) such that lim ||u — U"WQRO = 0. In particular,
lim ||V (v — )| £,0) = 0. Moreover, the map u — (u) is continuous from (W (£2), || - \HQRO)
into C, since the inclusion (W (Q), || - |HQR0) — W(Q) is continuous. So lim (u — u,) =0
and it follows that limu,, = u in W(Q).

Since (W(Q), |- |||QR0) is complete, it follows from the closed graph theorem that the
norms || - |||QR,0 and || - [[wq) are equivalent on W (£2). Hence Statement (c) is valid. More-
over, since the equivalence of || ||, with the norm (3) does not depend on the set A,
Statements (d) and (e) follow from the conclusion of the second paragraph.

Lastly we prove (b). Since Qg, has Lipschitz boundary, the map Trg,: H*(Qr,) —

Ly(T") is compact. Moreover, the restriction u — ulq, is continuous from (W), |- ., )
0

into H'(Qpg,). Hence the equivalence of the norms || - |||QRO and || - [wq) vields that the

composition Tr is compact on W (£2). O
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We define

W) = [xa: x € C=(RD}

and equip WP () with the norm || - ||yyp(q) induced by the norm on W(£2). Then WP (1)

is a Hilbert space and
1/2
lullwow = ( [ 194)

by the following assertion.

Proposition 2.12. The space W(QQ) admits the orthogonal decomposition
W(Q) =WwP(Q) e Clg,.
Moreover, WP(Q) = {u € W(Q) : (u) =0} = W(Q) N Ly(Q).

Proof. By an argument similar to the proof of Proposition 2.7, with Proposition 2.10 in
place Proposition 2.2, one deduces that W () C {u € W(Q) : (u) =0} C W(Q) N Ly(Q).
Let u € W(Q) N Ly(2). Then Eu € W(R?). Since

1 _
'W/Q ul < Q[P0
R

for all R > 0, it follows that (u) = 0. So (Fu) = (u) = 0 and by Proposition 2.7 one
has that Fu € WP(R?). Then there exists a sequence (xn)nenw in C°(R?) such that
limy, = Fu in W(RY). Hence lim x,|o = (Fu)|lq = u in W(Q). Therefore u € WP(Q)
and W (Q) N Ly, () € WP(Q).

Since u — (u) € WP(Q) for all u € W (), one deduces that W(Q2) ¢ WP(Q) + Clg.
The claim then follows from the fact that 1o 1 WP (Q). O

Corollary 2.13. H'(Q2) c WP(Q).

Proof. The claim follows from an argument similar to the proof of Corollary 2.8. O
Corollary 2.14. Let u € W(Q2). Then (|u]) = |[(u)].

Proof. The claim follows from an argument similar to the proof of Corollary 2.9. [

Our final consideration for this section is the lattice structure of the subspace
W(Q,R) ={ueW(Q): uis real-valued }
of W (). The space WP (€, R) is defined similarly. We note the following basic properties.

Proposition 2.15. (a) Let u € W(Q,R). Then u*,u™,|u| € W(Q) and || |u| |w@) =
[ullwie)-

(b)  Letu € WP(Q,R). Then u™,u~,ul € WP(Q).

(¢)  The maps u — ut, ur— u~ and u > |u| are continuous from W(Q,R) into W ().

(d)  Letue W(Q,R). Then Tr (ut) = (Tru)t, Tr(u™) = (Tru)™ and Tr|u| = |Trul.
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Proof. Note that by the identities u™ =

each statement for the case |ul.
We first prove (a). Let k € {1,...,d}. Then by [GT83] Lemmas 7.6 and 7.7

s(Ju|4+u) and v~ = S(|u| —u), it suffices to prove

8k|u| = 8k(u+) —+ 8k(u_) = ]l[u>0]8ku + ]l[u<0]8ku = 8ku — ]l[u:()}aku = @ku.

So ut,u”,|ul € W(Q) and it follows from Corollary 2.14 that | |u|[ww) = [lullw@)-
Statement (b) then follows from the fact that W2 () = W (Q) N L,(Q), together with the
lattice structure of L,(€2).

We now prove (c). Let u,uy,ug,... € W(Q,R) and suppose that limu, = u in W().
Then lim |[Vu,| = |Vu| in Ly(€2). Moreover, Proposition 2.11(d) provides that lim |u,| = |u|
in Lajoc(§2). Since || |un| [lwi) = |[tnllwe) for all n € IN, by passing to a subsequence if
necessary we may assume that there exists a w € W(Q) such that lim |u,| = w weakly
in W(Q). Then |u| = lim|u,| = w weakly in Lg,.(£2), so lim |u,| = |u| weakly in W (Q).
Moreover,

T | fun| lwo) = HmfJunlwie) = lullw) = [ Tul lw):

Hence lim |u,| = |u| in W(£2) and Statement (c) follows.

Finally we prove (d). By density there exists a sequence (uy, )new in H(Qg,) N C(Qg,)
such that limu, = ulg, in H'(Qg,). Then lim u,| = |ulq, | in H'(Qg,). Moreover, since
Trop, is continuous it follows that lim Trgyu, = Tru in Ly(I") and

[Tru| = lim |Trgyu,| = lim |u|r[ = lim Trg,|u,| = Trg,|ula, | = Tr|ul
n—00 n—00 n—r00

as required. N
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3 A Robin problem on an exterior domain

In this section we formulate the Robin-type problem (1) in a variational sense, using the
spaces W (Q) and WP(Q) to distinguish boundary conditions at infinity. In each case
well-posedness follows from the Lax—Milgram theorem and we subsequently obtain that
the associated solution operator is compact and submarkovian. We conclude this section
with the proof of Theorem 1.1, which states that solutions of (1) are continuous on €.
While basic properties of the solution operator follow from minimal modifications of the
arguments used in [AE15] for the Laplacian, Theorem 1.1 requires a new approach.

Throughout this thesis we assume bounded measurable real-valued coefficients ay; €
Loo(Q,R) forall k,1 € {1,...,d}. Where additional regularity of the coefficients is required,
we state this explicitly. We further assume that there exists a © > 0 such that

d
Re Z ar(2)&k& > pléf? (4)
fd=1

for a.e. z € Q and all £ € C%.
Define the sesquilinear form a: W (2) x W(Q2) — C by

d
a(u,v) = Z /Qakl(f)ku)%.

k=1

Then a is continuous and elliptic in the sense of [AE12] (2.1) and (2.2) respectively, where
V =H=W(Q) and j = idy ). Moreover, a induces an equivalent norm on W (£2).

Lemma 3.1. The norm

1/2
u (Re a(u) + / |Tru|2> (5)
r
is equivalent to the norm || - ||wq) on W ().

Proof. By the continuity and ellipticity of the form a, the norm defined by (5) is equivalent
to the norm w — ([, |Vu|* + [ |Tr u|2)1/2 on W (). Then the assertion follows from
Proposition 2.11(e). O

We realise the elliptic operator — > 0;(ay0k) on € in a distributional sense as follows.
Define the map A: H._(Q) — D(Q)" by

(Au,v) =Y /Q an(Opu)op, v e D).

k=1

Forallu € W(Q) and f € Ly(€2), we write Au = fif a(u,v) = (f,v) 1,0 for allv € C(€).
We write Au € Lo(Q) if there exists an f € Lo(Q2) such that Au = f. Similarly, for
all R > Ry we write (Au)|cecn) € L2(Q2g) if there exists an f € Ly(Q2g) such that
a(u,v) = (f,v)1,(q) for all v e CF(Q2) with suppv C Q.

Note that {x|r : x € C=®(R%)} C Tr W(Q). Since by the Stone-Weierstrafy theorem the
set {x|r : x € C®(R%)} is dense in (C(T), || - ||o) and by [EG92] Theorem 2.1 the measure
o is Borel regular, one deduces that Tr W (€2) is dense in Ly(T").
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On a Lipschitz domain the potential presence of corner points means that the conormal
derivative may not exist in the classical sense. Hence we adopt the following variational
definition, formulated in terms of the Gau3—Green formula.

We say that u € W(Q2) has a conormal derivative on I if there exist R > R, and
Y € Ly(I") such that (Au)|ce(a,) € L2(Qg) and

a(u,v) —/QR(AU)E:/F@DTU (6)

for all v € C°(Bg). Then v is unique since Tr W (Q) = Ly(I") and we write d,u = 1.

Let S > Ry and suppose that v € W(Q) with (Au)|ceg) € L2(f2s). Then u has a
conormal derivative on I' if and only if (6) is valid for all R € [Ry, S], since C°(Bgr) C
C(Bgs). Moreover, if (6) is valid for all v € C2°(Bg), then by density (6) is also valid for
all v € H'(Bg) with 1o, Trq,v = 0. These properties extend to €2 in the following sense.

Proposition 3.2. Let u € W(2). Suppose that Au € Ly(Q2) and that u has a conormal
derivative ¢ € Lo(I"). Then

a(u,v) —/Q(Au)iz /me (7)

for allv e WP(Q).

Proof. Since d,u = v there exists an R > Ry such that (6) is valid for all v € C°(Bg).
Let x € C®(RY). Then there exist x1, x2 € C°(R?) such that supp x; C Bg, supp x2 C
R\ Br,_1 and ¥ = x1 + X2 S0 X1 € C%(Bg) and 2 € C>(Q). Therefore

a(u, xJa) — / (W)Y = alu, x1la) / (Au)YE + o, x2) — / (Au)%

R

= /Fle“ (X1|Q) + a(Ua X2) - a<u7 XQ)

:/F¢m.

So (7) is valid for all v € {x|q : x € C®(R?%)} and then by density for all v € WP(Q). O
We use the following assertion to formulate (1) precisely.

Proposition 3.3. (a) Lett € Ly(T) and A\ > 0. Then there exists a unique u € WP (Q)
such that

a(u,v)—}—)\/FTrum:/Fzﬁm (8)

for allv e WP(Q).
(b)  Let 1 € Lo(T') and X\ > 0. Then there exists a unique u € W(Q) such that

a(u,v)—i—)\/Trum:/wm 9)
r r
for all v € W(Q).
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Proof. We prove (b). Define the sesquilinear form ay: W () x W(§2) — C by
ax(u,v) = a(u,v) + A(Tru, Trv)r,m.

Since the form a and trace map Tr are continuous on W (£2) it follows that a, is continuous.
Moreover, by Lemma 3.1 the form a, is coercive on W (Q2). Consider the linear functional
frvo— fr ¢ Trv on W (). Then f is continuous since Tr is continuous. The claim then
follows from the Lax—Milgram theorem applied to the pair (ay, f).

The proof of (a) is similar. O

Given 1) € Ly(I') and A > 0, we call u € WP(Q2) a solution of (1) with Dirichlet
boundary conditions at infinity if u satisfies (8) for all v € WP(Q). Moreover, we
define the solution operator B : Ly(T') — WP (Q) by BLvy = u. It follows from Lemma 3.1
together with the continuity of Tr that the operator BY is bounded.

Given ¢ € Lo(I") and A > 0, we call u € W(Q) a solution of (1) with Neumann
boundary conditions at infinity if u satisfies (9) for all v € W (2). Moreover, we define
the bounded solution operator By: Ly(I') — W (Q) by By = u.

Observe that if A = 0 then u € W (Q) satisfies (9) for all v € W(Q) only when [, =0,
since 1o € W(). It is for this reason that we exclude the case A = 0 when considering
Neumann boundary conditions at infinity.

As a consequence of the characterisation WP (Q) = {u € W(Q) : (u) = 0}, we obtain
the following relationship between solutions of the two versions of (1).

Proposition 3.4. Let ¢ € Ly(I'). Then
By = B + (By) (Lo — ABY 1r)
for all X > 0.

Proof. Let A > 0 and write u = By¢). Then u — (u)1q € WP(Q2) by Proposition 2.12.
Moreover, for all v € WP(Q)

a(u — (u)lg,v) + )\/FTr (u— (u)lg) Trv

— a(u,v) +>\/FTrum— )\/F<u>]lpm
~ [oTo- [ Mt T
- [@=Awin T,

Then BP(6 — A(u)lr) = u — {u)1g and

u= By — Mu)BY1r + (u)lg = B¢ + (u) (1o — ABY 1r)

as required. N
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We denote by
Ly(T)" ={p € Ly(T') : p > 0}
the positive cone in Lo(T").
The operators By and BY are positivity preserving, in that positive data correspond
to positive solutions.

Proposition 3.5. (a) Let ) € Ly(T')" and A > 0. Then BPy > 0.
(b)  Let ¢ € Lo(T)* and A > 0. Then Byt > 0.

Proof. We first prove (b). Write ¢ = —¢ and u = By{. Then u € W(Q,R), so ut € W ()
by Proposition 2.15(a). Moreover, a(u,u") = a(u™) by [GT83] Lemma 7.6. Then the choice
v=u" in (9) yields that

u+)+/\/F|Tr (uh)? :/Fg(Trw <0,

since Tr (u™) = (Tru)™ by Proposition 2.15(d). Hence ||u™ ||y ) = 0 by Lemma 3.1 and it
follows that —By\© = B¢ = u < 0.

We now prove (a). Again write £ = —1¢ and u = BP¢. Then u™ € WP(Q). Using the
ellipticity condition (4), one deduces in a manner similar to the above that

e oy = 1 [ 196 < o)+ A [ [T = [ ¢(Truy* <o

Hence u™ = 0 as claimed. O

Solutions satisfying Dirichlet boundary conditions at infinity are dominated by their
Neumann counterpart.

Proposition 3.6. Let ¢ € Ly(I)* and A > 0. Then BPy < Byy.
Proof. Write u = BPvy and w = Byt. Then by definition

a(u,v)—i—)\/Trum:/wm
r r
for all v € WP(Q) and
a(w,v)+)\/Trwm:/¢m
r r
for all v € W (). So

a(u—w,v)Jr)\/Tr(u—w)m:O (10)

for all v € WP(Q).

It follows from Proposition 3.5 that u > 0 and w > 0. Since WP (Q) = W(Q) N L,(Q)
by Proposition 2.12, one obtains that (u —w)* < wu € L,(Q2). Moreover, (u —w)* € W(Q)
by Proposition 2.15(a), so (u—w)* € WP(Q). The choice v = (u—w)* in (10) then yields
that

a((u —i—)\/]Tr u—w)|? = 0.
Hence ||(u —w)"|lw(@) = 0 by Lemma 3.1, so (u —w)" =0 and v < w. O

The operators By and BY are decreasing in the parameter .
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Proposition 3.7. (a) Let ¥ € Ly(T)" and 0 < \; < Xp. Then B¢ < BY
(b) Let w € LQ(F)+ and 0 < A\; < A\y. Then B/\2¢ < BA1¢.

Proof. We prove (b). Write u; = B),¢ and uy = B),%. Then
a(ul,v)+)\1/Tru1m: /wm
r r

and

a(u2,v)+)\2/Tru2m:/1/zm
r r

for all v € W(2). Note that uy > 0 by Proposition 3.5. Let v € W(2) be such that v > 0.
Then Trus > 0 and Trv > 0 by Proposition 2.15(d), so

a(ug — ug,v) + )\1/Tr (ug —up) Tro
r

< a(ug —U17U)+)\1/

Tr (ug — up) Tro + (Ay — Al)/TrUQTrU
r

r

:a(u2,v)—I—)\Q/TrugTrv—a(ul,v)—Al/TrulTrv:O.
r r

Then the choice v = (uy — uq)™ yields that
o((u2 = ) ) + v [T (u = ) PP <.
r

Hence (uz — u1)™ = 0 by Lemma 3.1 and the result follows.
The proof of (a) is similar. O

Let X denote a o-finite measure space and let p € [1,00]. An operator B € £(L,(X))
satisfying |Bu| < 1 for all v € L,(X) with |u] < 1 is often called submarkovian. The
operators ABy and ABY are submarkovian and extrapolate consistently to L,(T) in the
following sense.

Corollary 3.8. (a) Let A > 0. Then ABY1r < 1q.

(b) Let A > 0. Then A\B1 = 1q.

(c) Let R> Ry and A > 0. Then the map ¢ — 1q, B2 is continuous from L,(T') into
L,(Q) for allp € [2,00].

(d) Let R> Ry and A > 0. Then the map ¢ — 1q, B\ is continuous from L,(I") into
L,(Q2) for all p € [2,00].

Proof. We first prove (b). Since

a(g,v) + A /

Tr(%]lg)m:/]lpm
r

r

for all v € W((), it follows that By1r = ;1o. Then Statement (a) follows from Proposi-
tion 3.6.
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We now prove (c). Let 1 € Ly(T') and write v = BP¢. Recall that Qp C Q is a
bounded Lipschitz domain. Then by Proposition 2.11(d) together with Lemma 3.1, there
exists a ¢ > 0 such that

MonBY Ve = [ P < [ Val+ [ P
Qp Q Qr
C(Rea(u)—l—)\/|Tru|2) :cRe/@/)Tru
r r

< T || cow@),Lan IBY L ecoamyw@p 1917w

Hence the map 1 +— 1q, BY1 is continuous from Ly(T') into Ly(2).
Now let ¢ € Loo(I'). Then || < [|9|rr)lr and it follows from Proposition 3.5(a)
that B |¢| < ||¢|| .. B Lr. Moreover,

[BYY| = sup Re(e“Byv) = sup BY(Ree™y) < sup Byley| = By

a€0,27] a€0,27] a€l0,27]

and therefore |BYv| < BP|Y| < |¢]|oy BE1r < [|¢]| 1oy 310 by (a). Then

110, BL Y| 1o@ < —||¢HLOO(F)

so the map v +— 1q, B2 is continuous from Ly, (T) into L (£2). Now (c) follows from an
interpolation argument.
The proof of (d) is similar. O

Next we show that the operators By and BY are compact. We use this fact in the
proof of Proposition 4.5 to obtain convergence of the solution operator associated with a
truncated version of the boundary value problem (1), and in the proof of Proposition 5.5
to establish that the Dirichlet-to-Neumann operator has compact resolvent.

Proposition 3.9. (a) Let A > 0. Then the operator BY is compact.
(b)  Let A > 0. Then the operator By is compact.

Proof. We prove (b). Define the norm ||| - ||| on W(£2) by
llull = (Rea(u)+)\/F]Tru]2)l/2.

Let 1, 11,1s,... € Ly(I") and suppose that lim,, = ¢ weakly in Lo(I"). Write u = By
and u, = Byt{,. Then limu,, = u weakly in W (), since B, is bounded. Hence limu,, = u
weakly in (W (), -]|]) by Lemma 3.1. Moreover, by Proposition 2.11(b) the trace map
Tr is compact, so lim Tru,, = Tru in Ly(I') and Hm(vy,, Truy, ) r,m) = (¢, Tra) ). Since

a(un)—l—)\/|T1"un|2 :/wnTrun

r r

for all n € IN, it follows that
lim Rea(u, +)\/]Trun\2 Re/wTru—Rea —I—)\/\Tru\z
n—oo

Hence lim ||u,|| = ||u|| and one therefore deduces that limw,, = w in (W(Q),||-|l). Ap-
plying Lemma 3.1 once again then yields that lim u,, = u in W ().
The proof of (a) is similar. O
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Finally we consider the proof of the following.

Theorem 1.1. (a) Let ) € Loo(T') and A > 0. Then BPy € C(Q).
(b)  Let € Loo(T) and A > 0. Then By € C(9Q).

Note that by Nash [Nas58] the solutions Byi) and B each admit a continuous rep-
resentative on (2, so it suffices to verify continuity at the boundary I'. In the proof of
the above we use the following pointwise Morrey and Campanato seminorms introduced

in [ER15], defined for a reference space £~ C R
We denote by

E={z= (2,25 € R"' xR:|Z]|ge-2 <1 and 4 € (-1,1)}

the open cylinder in R? and write E~ = {z € F : x4 < 0}. For all z € R? and r > 0 we
define
E - (z) = E N B.(x).

If |E- (x)| > 0 then we write (u)p-(,) = m fE,(m) u.
For all v € [0,d] and x € E~ we define || - ||az, o0 Lo(E£7) — [0, 00] by

B S\ 1/2
fullr, = sup (7 [ jup) "
] E; (z)

rE(O,%

Moreover, for all v € [0,d 4 2] and x € E~ we define || - ||y, 21 L2(£7) — [0, 00] by

B L\ /2
fullste = s (7 [ = ) )
E: (x)

re(0,3]

Then the seminorms || - ||az,» and || - ||, on Le(£7) correspond to those introduced in
[ER15] Section 3, with Q@ = E~ and R, = 3.
The proof of Theorem 1.1 relies on the following extension of [EW20] Proposition 3.1.

Lemma 3.10. There exists a k € (0,1) such that for all v € [0,d) and § € (0,2] with
v+0 <d—2+ 2k, there exists a ¢ > 0 such that the following is valid.

Let U C RY be an open set and let ® be a bi-Lipschitz map from an open neighbourhood
of U onto an open subset of R? such that ®(U) = E and ®(QNU) = E~. Let ¢ € Lyo(T)
and uw € W () and suppose that

a(u,v) —I—/Trum: /1/1%
r r
for allv e W(Q). Then
IV(wo @ )asyse < € (IVullraw) + 19llwm) + 1V (wo @7 llar, o + [luwo @7 s g0)
for all x € %E‘.
Proof. The proof is similar to the proof of [EW20] Proposition 3.1. O

We are now able to prove Theorem 1.1.
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Proof of Theorem 1.1. We first prove (b). Without loss of generality we may assume
that A = 1. Let x € (0,1) be such that Lemma 3.10 is valid. Let U C R? be an open set
and let ® be a bi-Lipschitz map from an open neighbourhood of U onto an open subset of
R? such that ®(U) = E and ®(QNU) = E~.

Write u = Byip € W(Q). Since E is bounded and @' is uniformly continuous, it
follows that U = ®~!(E) is bounded. Then u|ony € H*(Q2NU), so uo®t € HY(E~) and
V(uo® 1) € Ly(E™), where we write uo ®~! = uo (7! 5-). Hence there exists a ¢; > 0
such that

IV (o 0™ asa < 1 (11)

for all z € 1E~. By [ER15] Lemma 6.2 there exists a ¢ > 0 such that
luo @ ptpe < €

for all z € $E~. Then [ER15] Lemma 3.1(a) provides that there exists a ¢, > 0 such that
luo @ Hana < e (12)

for all z € $E~, since uo @' € Ly(E™).
Suppose first that d = 3. By Lemma 3.10 there exists a ¢ > 0 such that

IV (wo @ e < c(IVUllraw + ¥ llzwm + IV (@o @ Hllane + lluo @ an, o)
< c(IVull o) + [0l Loy + 1 + 2)
for all z € $E~. Then by [ER15] Lemma 6.2 there exists a ¢ > 0 such that
Hu © ¢71||M3+r€:$ <c

for all z € $E~. Since by [Nas58] the function u is continuous on €, it follows from
[ER15] Lemma 3.1(c) that there exists a ¢ > 0 such that

(w0 @) (z) = (o @ ) (y)| < clw —yl?

for all z,y € 1E~ with |z — y| < Hence u o 7! is uniformly continuous on £~

1
Z.
and extends to a continuous function on %E—. Consequently one deduces that u’q>—1(

extends to a continuous function on ¢! (%E*) = ¢! (%?)

Next suppose that d > 3 is odd. Then there exists a k > 2 such that d = 2k + 1. Note
that 2j +2 <d—2+ 2k for all j € {0,...,k—2}. Then it follows from the estimates (11)
and (12), together with an iterative argument using Lemma 3.10 with v = 25 and § = 2,

that there exists a ¢z > 0 such that

1)

IV(wo @)y < €3
for all x € %E*. So by [ER15] Lemmas 6.2 and 3.1(a) there exists a ¢4 > 0 such that
o @ |0 < c4
for all € $E~ and therefore
luo @ Hlary 1y < €4
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for all z € E~. Note that
2k —14+Kk=d—2+K<d—2+2K.
Hence by Lemma 3.10 with v = 2k — 2 and § = 1 + &, there exists a ¢ > 0 such that

HV(U © q)il)HMQkflerl“
< c(IIVullza@ + 1 ey + IV (w0 @) gy o + 1w 0 @7 lagyyyy0)
< c(IVullLa@ + 1l + s + ca)
for all # € 1E~. Therefore [ER15] Lemma 6.2 provides that there exists a ¢ > 0 such that
luo @ fMyine <€

for all z € %E‘. As in the case d = 3, one then concludes that u[g-1(15-) extends to a

1
2
continuous function on ®-1(31E-).

Finally suppose that d is even. Then there exists a k > 2 such that d = 2k. Since again
2j+2<d—2+2kforall j€{0,...,k— 2}, the estimates (11) and (12) together with
Lemma 3.10 and an iterative argument yield that there exists a c5 > 0 such that

IV(uo @™ty o < 5
for all x € %E*. Then by [ER15] Lemmas 6.2 and 3.1(a) there exists a ¢g > 0 such that
lwo @7 a0 < co

for all x € %E*, SO
Hu © CI>_1HM21@72+~7€0 < ¢¢

for all z € $E~. Note that 2k —2+4 x < d — 2+ 2k. Hence by Lemma 3.10 with v = 2k — 2
and 0 = k, there exists a ¢ > 0 such that

||v(uoq)_l)”M2k72+m$
< c(IVull Ly + 19 Loy + IV (w0 @ Namypw + uo @ Ham, e, a)
< eIVl Lo + 1] Loy + 5+ c5)

for all z € $E~. So [ER15] Lemma 6.2 provides that there exists a ¢ > 0 such that

w0 @7 laypa <

for all z € %E‘. As in the case d = 3, one then concludes that u[g-1(15-) extends to a

1
e 3
continuous function on ®~1(1E-).
In each of the above three cases, one deduces by a compactness argument that u € C(€2).
Since Lemma 3.10 remains valid with the space WP () in place of W (), Statement (a)

follows from an argument similar to the proof of (b).
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4 Convergence of the truncated problem

In this section we consider a version of the Robin-type problem (1) for the truncated domain
Qg and study convergence in the limit R — oo. First we establish that the associated
solution operator BY(R) converges to BY in L(Ly(I'), WP (Q2)). We then show that if
the coefficients (ay;) are Lipschitz continuous, solutions of the truncated problem converge
locally uniformly on € to solutions of (1) that satisfy Dirichlet boundary conditions at
infinity. Using this result we prove the following.

Theorem 1.2. Suppose that ay, € WH°(,R) for all k,1 € {1,...,d}. Then there exists
a ¢ > 0 such that the following are valid.

(a) Lett € Loo(I') and A > 0. Then

clllem 1
N e

(BYY) ()] <

for all x € Q\ Qg,.
(b)  Let € Loo(I') and A > 0. Then

1

|$|d72

(Ba)a) - (Bui)] < e (1= 4 j(5,0))

for all z € Q\ Qp,.

We conclude this section with a variant of Theorem 1.1 that permits less regular bound-
ary data 1, at the cost of requiring Lipschitz continuity of the coefficients. Subsequently
we obtain that BY(R) converges to BY in £(Lu(T'), Lso(€2)) under the same hypotheses.

Let R > Ry. Then Qg is a Lipschitz domain. We define

WE(Q) = {ueWP(Q): ulpa, =0}
Then WE2(Q) is a closed subspace of WP () with the induced norm.

Lemma 4.1. Let R > Ry. Then WE(Q) is a Hilbert space. Moreover, the map u — u|q,,
defines a homeomorphism from WE(Q) onto {v € H (Qg) : 1y, Tro,v = 0}.

Proof. Clearly the closed subspace W (2) of the Hilbert space WP () is a Hilbert space.
By identifying the sets {v|p, : v € H'(R?) and v|ga\p, = 0} and {v € H'(Bg) : Trp,v =
0} in the natural way, one deduces that the map u + ulg, places WP (Q) and {v €
H'(QRr) : 195, Trq,v = 0} in bijective correspondence. Moreover, by Proposition 2.11(d)
there exists a ¢ > 0 such that

ltdan 2 < / IVl + / [l < ellulda = cllul o
Q Qg
for all u € W£(€). On the other hand,
/ Vul? <l
Qr
for all u € H*(Qp). O
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The alluded-to truncated version of (1) is as follows. Let R > Ry. Given ¢ € Lo(T")
and A > 0, we consider the problem

Au=0 on Qp

(13)
ANru+d,u=1 onl

with Dirichlet boundary conditions at 0Bg.

Proposition 4.2. Let R > Ry. Let ¢ € Ly(T") and X\ > 0. Then there exists a unique
u € WE(Q) such that

a(u,v)—i—)\/TruTrv:/wTrv (14)
r r
for allv e WE(Q).

Proof. The claim follows from an argument similar to the proof of Proposition 3.3, using
Lemma 4.1 together with the Lax—Milgram theorem. O

Let R > Ry. Given ¢ € Lo(T') and A > 0, we call u € W2(Q) a solution of (13) with
Dirichlet boundary conditions at 9By if u satisfies (14) for all v € W (2). Moreover,
we define the bounded solution operator BY(R): Ly(T') — WE(Q2) by BY(R)Y = w.

We first verify that solutions of the truncated problem are continuous on (2.

Proposition 4.3. Let R > Ry. Let 1 € Ly(T) and A > 0. Then BY(R)y € C(Q).

Proof. Without loss of generality we may assume that i is real-valued. Write u =
BPY(R)y. We may assume that u|pp, = 0. Clearly u|g\q, is continuous and Nash [Nas58]
provides that u|q, is continuous. Then it remains to show that w is continuous in a neigh-
bourhood of Bg. Consider the annulus

Z={xecR": Ry—1<|z| < R}.

We shall prove that u|; is continuous.

Fix 7 € C*(R% R) such that 7 = 0 on Bp, o U R?\ m and 7 = 1 in a neigh-
bourhood of Bg,_;. Define n: Z — R by n(z) = (7u)(z). Then n|; € H'(Z) and
Trz(n|z) = Trz(u|z), where Try: H(Z) — L9(0Z) is the trace map on Z. Moreover, by
the Lax-Milgram theorem there exists a unique v € Hj(Z) such that

d d

> / () Ox = ) / ary (9km) X

ki=1"Z ki=1"Z
for all x € HY(Z). Write w = 1|z — v € H'(Z). Then w is harmonic on Z. Since n € C(Z)
and n|z € H'(Z), it follows from [AE19] Proposition 2.14 that v extends to a continuous
function on Z. Hence w extends to a continuous function on Z and w(z) = n(x) for all
r € 0Z, where we continue to denote by w the extension to Z.

Since Trz(w|z) = Trz(n|z) = Trz(ulz), it follows that Trz((w — u)|z) = 0. Therefore

(w—u)|z € H}(Z). Moreover, since u = BY(R)1 one has that

d
> [ au@dix = aun) = [ 0T - [ BTy =0
Z r r

k=1
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for all x € C°(Z). So
d

> / a (O (w — u))Ox = 0

El=1"Z

first for all y € C2°(Z), and then for all x € H}(Z) by density. The choice y = (w — u)|z
then yields that

n [ 9= < S [ oo = w)ate = o

k=1

so (w — u)|z is constant and it follows that (w — u)|z = 0. Hence w(z) = wu(z) for all
x € Z. Now let © € OBg and let (x,)n,en be a sequence in Z such that lim x, = x. Then

Tim w(,) = lim w(e,) = w(z) = 5(z) = 0 = u(z)

and the claim follows. O
Corollary 4.4. Let R > Ry. Let 1 € Loo(T') and A > 0. Then BP(R)y € C(Q).

Proof. Since Lemma 3.10 remains valid with the space W2 () in place of W (), the
claim follows from an argument similar to the proof of Theorem 1.1. O]

Next we prove that the solution operator BL(R) converges to BY in a uniform manner.
We apply this result in the proof of Proposition 4.9 to obtain locally uniform convergence
of solutions of (13), and in the proof of Proposition 5.7 to deduce resolvent convergence
for the Dirichlet-to-Neumann operator.

Proposition 4.5. Let A > 0. Then
lim BY(R) = BY
R—o0

in L(Ly(T), WP(Q)).

Proof. We argue as in the proof of [AE15] Theorem 4.3. Let (R,),en be a sequence in
[Ro, 00) such that lim R,, = oo. We shall prove that lim BY (R,) = B{ in L(Ly('), WP(Q)).
Let 10, 11,19, ... € Ly(I") and suppose that lim ), = 1) weakly in Lo(I"). Since by Propo-
sition 3.9(a) the operator BY is compact, by Proposition A.7 we need only show that
lim BP (R, )i, = BPw in WP(Q).

Write u = BP+ and for each n € N write u,, = BY(R,){,. Let n € N. Then

a(un,v)—i—)\/Trunm:/z/znm (15)
r r
for all v € Wﬁn(ﬂ). The choice v = u,, together with the ellipticity of a then yields that
By < Reatun) + 3 [ [Tru, = Re [ 6, T,
Since Tr: W () — Lo(I") is continuous, it follows that
pllunllfyo ) < Re/rwnm < Tl @), z20)) 190l oy [[tnllwo o)
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for all n € IN. Then the sequence (uy,)new is bounded in WP (), since (¥, )nen is bounded
in Ly(I"). Passing to a subsequence if necessary, we may assume that there exists a w €
WP(Q) such that limu, = w weakly in WP(Q2). Then lim Tru, = Trw in Ly(T), since
by Proposition 2.11(b) the map Tr is compact. Let R > Ry and let v € WL (). Then
v e WE () for all n € N sufficiently large. Hence (15) yields that

a(w,v)—l—)\/Terrv: lim a(un,v)—l—A/TrunTrv
r r

n—oo

= lim wnTrv—/wm.
r

n—oo

Note that since WP (Q) = {x|a : x € CgO(IRd)}W(Q), it follows that (- 5, WZ () is dense
in WP(Q). So

Mmm+A/ﬂwﬁ@:/¢ﬁ?
Iy Iy

for all v € WP(Q). Therefore w = BP9 = v and lim Tru,, = Tru in Ly(T"). Then
lim Rea(u, —i-/\/ |Tr u,|* = lim Re/l/}nTI‘Un
n—0o0 n—o0 T

= Re/@/)Tru = Rea(u) + )\/ | Tr ul?.
r r
Moreover, lim u,, = u weakly in WP (). Hence by using Lemma 3.1 and arguing as in the

proof of Proposition 3.9, one deduces that limu,, = u in WP (Q). ]

The operator BY (R) is positivity preserving and is dominated by BY. Moreover, BY(R)
is increasing in the parameter R.

Proposition 4.6. Let 1) € Ly(T')" and A > 0.

(a) Let R> Ry. Then BP(R)y > 0.
(b)  Let R > Ry. Then BY(R)y < BP4.
(c) Let Ry > Ry > Ry. Then BY(Ry)v < BP(Ry)v.

Proof. The proofs of Statements (a) and (b) are similar to the proofs of the Proposi-
tions 3.5 and 3.6, respectively. We prove (c).
Write u; = BY(Ry)¢ and uy = BP(Ry)1. Then

a(ul,v)—i—)\/Trulm:/Qbm
r r
for all v € WZ (Q) and
q%m+A/ﬁmﬁE=/wﬁZ
r r
for all v € W (Q). So
a(u; — ug,v) + )\/Tr (1 — ug) Trv =0 (16)

r
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for all v € W (€). Moreover, u; > 0 and uy > 0 by Statement (a). Since ui|a\a,, = 0,
it follows that (u; — ua2)*|o\ee, = 0. Then by Proposition 2.15(b) one deduces that
(uy — ug)™ € WE () and the choice v = (u; — uz)™ in (16) yields that

il — w)* oy < a(un — ua)*) + A / Tr (uy — us) P = 0.
I

So (u; — ug)t =0 and uy < us. O

Corollary 4.7. Let R > Ry and A\ > 0. Then the map ¢ — BY(R)Y is continuous from
L,(T) into L,(Q2) for all p € [2,00].

Proof. The proof is similar to that of Corollary 3.8(c). Note that since supp BY (R)y C Qg
for all ¢ € Ly(T"), the cut-off function 1, is no longer required. O

For the proof of the next lemma we introduce the following definitions. Let X denote
a o-finite measure space and let p,q € [1,00]. Two operators B, € £(LP(X)) and B, €
L(Ly(X)) are called consistent if B,|; 1, = Bylr,nr,- Two semigroups T%) = (Tt(p))t>0
on L,(X) and T = (T}?),54 on L,(X) are called consistent if the operators 7" and
Tt(Q) are consistent for all t > 0. A semigroup 7™ on L,(X) is said to extend consistently
to a semigroup on L,(X) if there exists a semigroup 7@ on L,(X) such that T® and
T are consistent. We revisit these notions in Section 6 when considering the semigroup
generated by the Dirichlet-to-Neumann operator.

For the remainder of this section we assume that the coefficients (ay;) are Lipschitz
continuous on 2. Note that by [Ste70] Theorem VI.5 we may assume that the coefficients
extend to R such that ay € WH°(R% R) for all k,l € {1,...,d} and

d

Re Z ()6 > g 145
k=1
for a.e. ¥ € R? and all £ € C¢, where p is as in (4) and we continue to denote by ay the
extension to RY. We define the continuous elliptic form a: H*(R?) x H}(R?) — C by

d

a(u,v) = Z/ an (Opu)Opv
k=17 R?
and denote by A the associated m-sectorial operator in Ly(R?). Then —A generates a
Co-semigroup (e=4);~o on Ly(R?). Moreover, for all p € [1,00) the semigroup (=)~
extends consistently to a Cyp-semigroup (e~ '7),~o on L,(R?) with generator —A,,.
The following proof uses the resolvent consistency and optimal regularity associated

with the elliptic operator A in Ly(R?).

Lemma 4.8. Suppose that ay; € WH°(Q R) for all k,1 € {1,...,d}. Let u € W(Q) and
suppose that Au = 0. Then u € W24 (Q).

loc

Proof. We first show that u € W22(Q). Let x € C2(Q). Then [, |V(yu)|* < co and it
follows that yu € WH2(R?), where we continue to denote by yu the zero extension to R
Then for all 7 € C>(RY),

a(xu, ) = Z /]Rd ar (O (xu)) O

k=1
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d
= (u0kx)0 (x0, 8
Z/}RdaklukX lT+Z/aleku T

k=1 k=1
d d
= (Z/ Al 8kx 81 UT Z/ CLkl 8kx)(81u) >
k=17 R k=17 R
d
+ ( Z / ag(Opu) (91 (XT) Z/ i (Opw) (Orx)T >
k=1 ki=1 " RY
= _ Z/ 8l aklﬁkx T — Z / i (Okx) (Ou)T
k=1 k=1
+ (Au, XT) Z/ ap (Opu) (O x)T
k=1 7/ RY
d d
= (UAX’T)LQ(Rd) — Z (akl(ﬁkx)é?lu T La(R9) Z akl aku alXa ) Ly(R4)"
k=1 k=1

So xu € D(A) and

A(xu) = uAy — Z ag(Opx)Ou — Z ag(Opu) 0y (17)

k=1 k=1

with A(xu) € Ly(R?). Hence by [GT83] Theorem 8.8 together with the fact that supp x C
), one obtains that yu € W22(Q).

For each n € {1,...,d} define p, € [2,00] by p—ln = 55. Then p; = 2d, ps = 2 and
an — pnl_l = 55 foralln € {1,...,d}. By downwards induction we shall prove that for each
n € {1,...,d}, one has that yu € WP~ (Q) for all x € C=°(Q). Since the conclusion of the
preceding paragraph implies that yu € W22(Q) = W2P4(Q) for all x € C(Q), it follows
that the base case n = d is valid.

Let j € {1,...,d} and suppose that yu € W??i(Q) for all x € C>*(Q2). Then u €
W2Pi(Q). Let x € C°(2). By a zero extension yu € W25 (R%) and the Sobolev embedding
theorem provides that yu € L,, ,(R%). Note that since aydpx € W2>(Q) for all k,1 €
{1,...,d}, it follows that Ax € L (). By Nash [Nas58| the function u is continuous on
the compact set supp x C , 8o uAy € La(2) N Ly (). Then uAy € Ly(R?) N Lo (RY) by
a zero extension and consequently uAy € L,,_, (R*). Moreover, since u € T/Vlifj (Q) by the
inductive hypothesis and supp xy C €2 is compact, it follows that (9x)u € WPi(Q) for
all k,1 € {1,...,d}. Then by a zero extension and the Sobolev embedding theorem, one

obtains that

d
Z 8kx 8lu < Lp 1(Rd)
since ay; is bounded for all k,1 € {1,...,d}. One similarly deduces that Y ax(Opu)0x €

Ly, (R?) and it then follows from (17) that A(yu) € L,,_, (R?). Write f = (I + A)(xu) €
Ly(R%) N Ly, ,(R%). Since the semigroup (e *)5o on Ly(R?) extends consistently to
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(e7*-1);50 on Ly, ,(RY), the resolvents (I + A)~' and (I + A,, ,)~" of the respective
generators are consistent. So

xu=(I+A)7f=(I+A4,_,)7"f €D(A,,) =W (R

by [ER97] Theorem 1.5.I1. Therefore yu € W2Pi=1(Q) for all xy € C>°(©2). Then by induc-
tion it follows that for all n € {1,...,d}, one has yu € W??»(Q) for all y € C>°(Q). The
claim then follows from the case n = 1. O

Proposition 4.9. Suppose that a; € WH2(Q,R) for all k,l € {1,...,d}. Let K C Q be
a compact set and let A > 0. Then

lim  sup [[(BY9)|x — (BY(R)Y)|kllew) = 0.

B=00 ||, ry<1
In particular, ]%im BP(R)y = B2 locally uniformly on Q for all ¢ € Ly(T).
—00

Proof. For each n € {0,...,d} define p, € [2,00] by an = 55. Then py = oo, p1 = 2d,
1

pa = 2 and pin —oi = 5 foralln € {1,...,d}. Moreover, there exists a collection {U, }4_,

of Lipschitz bounded open subsets of  such that K ¢ U,y C U,y Cc U, Cc U, C Q
for all n € {1,...,d}. Since |Uy] < oo and p, < p; for all n € {1,...,d}, it follows
from Holder’s inequality that there exists a ¢ > 0 such that for all n € {1,...,d} one has
lullr,, @, < cllull,,q,, forall uw € Ly (Ua).

Let n € {1,...,d}. By the Sobolev embedding theorem there exists a ¢, > 0 such that

[z, @was) < enllullwion @, 1)

for all u € WP (U,_;). Moreover, by [GT83] Theorem 9.11 there exists a ¢, > 0 such
that

lullwein @,y < Ca(([A(ande)|l, )+ Iz, @)

for all w € W?Pn(U,). Let u € W?*P1(Uy). Then for all n € {1,...,d}, one has that
u € WP (U,) N WP (U, ;) and

lullz,, W) < enlltllwsn @, ) < enla ([ Zo(andeu)]|, o)+ Iz, @.))-
So
Nullz,, (@, < ann(HZ%maku)HLMW +llullz,, @)
< el (]| Zoulandru)l| ,, ) + lullz,, wn)
< /C\n(Hzal(aklaku)HLPI(Ud) +llullr,, @)
for all n € {1,...,d}, where ¢, = ¢,¢,(c + 1). Hence there exists a ¢ > 0 such that
llle) < lullwws < @[ Za(audsw)l|, ) + allull,, @)

<t Hzal(aklaku) HLpl wy T c1Cy Hzal(aklaku) HLpl(Ud) + Cic|lullL,, )
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n

(zd: HE’“) 1220 (i) HL,,1 wy T < H 5n> lullz,, W)

n=1 k=1 n=1

IN

IN

e(IIalandll,, w, + Il ws)
(

c([Xa(anonu)ll,, @ + Mullzows)

for all u € W2(U,).
Let 1 € Lo(T') and write u = BPv. Then

<Au7><>=a<u,x>=/wm—A/Twa=o
T T

for all x € C>(Q). So Au = 0 and Lemma 4.8 provides that u|y, € W?2(U,). Let
R > Ry be such that U; C Qr and write ug = BP(R)y. Then (Aug,x) = 0, first for
all x € C*(Qp) and then for all x € CX(), since ur|ao, = 0. Hence Augr = 0 and
ugly, € W»?{(U;). Then by the conclusion of the preceding paragraph together with
Proposition 2.11(d), there exists a ¢ > 0 such that

o= wrlfey < 22—l < 2l = unll iy + [ V(0= un)P

< Cllu—urlfyq) = ¢llu — urliyo@
<C|BY = BY (R 7)o @ 19170y
The claim then follows from Proposition 4.5. O]

We are now able to prove Theorem 1.2.

Proof of Theorem 1.2. We first prove (a). By [ER97] Theorem 1.1, the Cy-semigroup
(€750 on Ly(R?) generated by —A has a kernel K: (0,00) x R¢ x R? — (0,00) and
there exist a,b > 0 such that

_plz=ul®
t

0 < Ky(z,y) < at™¥% (18)

for all t > 0 and z,y € R? Moreover, K, is Holder continuous on R? x R for all ¢ > 0.
Define G: {(z,y) € R? x R?: 2 # y} — (0,00) by

G(z,y) = /000 Ky(z,y)dt.

Then G is continuous. By (18) together with a change of variable, one deduces that

C1

0<Gry) < (19)

|z — y]d-2

for all z,y € R? with o # y, where ¢; = [;° at=42e7 dt < oo.
Without loss of generality we may assume that B; C R?\ Q. Fix 7 € C®(R?) such
that supp7 C B; and 7 > 0. Define w: Q — (0, 00) by

wie) = [ Glepr)ay

34



Then w is continuous. Since w(z) > 0 for all z € Q, we may assume that w(z) > 1 for all
x in the compact set 0Bg,. Moreover, by Tonelli

w(z) = /Ooo(e_tAT)(x) dt

for all z € Q.
Let R > Ry and let x € C®(RR?) be such that supp x C Qp1. Then supp yNsupp 7 = &
and it follows from the Gaussian bound (18) that

lim |(e™"7,x) La(R4) | < lim Ki(z,y) 7(y)|x(x)| dy dz

t—o00 t—o0 R4 JRY

< 7l ey X2y (mey tlgélo at=%?* = 0.

Write A%y = — Zi,lzl Ok(ar1 O1X) € Looc(Q2r41). Then

L[ @ e = [ atgwi( [ e tnmads
<[4 [ weoe

Hence by Fubini

/ﬂR+1 (@) (AFY)(@) dx_/ /szR+1 i1 ) (A )

= /0 (—tAT, Aty >L2(QR+1)dt_ /0 (e—tAT, A*X)LQ(W) dt

o B o d B
= /0 (Ae tAT, X) La(RA) dt = —/0 E(e tAT, X) L) dt

= lgfgl (e_tAT, X) La(RY) tlgcr}o (G_tAT, X) Lo(Rd) = 0.

Since our choice of x was arbitrary, it follows that

(w|QR+17 A#X)Lz( =0

QRry1)

for all y € C*(R?) with supp x C Qg41. Then wlq,,, € HY (Qr41) by [AEG20] Proposi-
tion A.1. Consider the annulus

Zr={r € R*: Ry < |z| < R}.

Then w|z, € H'(Zg) and for all y € C>°(Zg) one has that

d

Z/ ayy (Opw) X = Z/ (Okw) ar I = — Z/ w O (ar rx)
ZR Qpr41 Q

k=1 k=1 k=1 R+1
= ('UJ|QR+1,A#X)L2( = 0,

Qr41)

so w is harmonic on Zp.
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It follows as in the proof of Corollary 3.8(c) that |B{vw| < BP|v| < ||¢||p.q)BX 1r.
Hence we may assume that ¢ = 1p. Write u = BLv% and ug = BY(R). Then

0<up<u<slg

by Proposition 4.6(a), Proposition 4.6(b) and Corollary 3.8(a). So urlon,, < %]laBRO.

Recall that ug|op, = 0 by definition. Then ugr < %w on 0Zr and since ug is harmonic

1

on Zg, the maximum principle [GT83] Theorem 8.1 provides that ug < yw on Zg. Hence

)
(19) provides that for all z € Zg
1 1
0 <up(z) < sw(x) =+ [ Glz,y)r(y)dy

>\ )\ R4
<[ 0 gy allan
S R e e W (T I
_a 71|, ety . 1 1 |7l Ly mey o1

Rl (s P

Write ¢ = 1|7, (re)(1 — Rio)*(d”). Then

for all x € Q\ Qg,, since ug = 0 on Q\ Qg. This is for all R > R,. By Proposition 4.9
limur = w locally uniformly on €2, so

1

, c
u(z) = lim ug(x) < T

R—o0

for all z € 2\ Qp, as claimed.
We now prove (b). Since by Proposition 3.4

By — (Bx)la = BY (¥ — MBx)Ir),
it follows from (a) that there exists a ¢ > 0 such that

clly = XBxp) Il oy 1

[(Bx)(x) = (Ba)| <

A . | |42
[l 2oy 1
<o (=M | g >_
< (R B)
for all x € Q\ Qg,. O

Harmonic elements of W (£2) converge radially uniformly to their average at infinity.

Corollary 4.10. Suppose that ay € WH(Q,R) for all k,1 € {1,...,d}. Let u € W(Q)
and suppose that Au = 0. Then

lim sup |u(z) — (u)| = 0.

R—o0 |m|2R

36



Proof. Note that by Nash the function u is continuous on 2. Moreover, it follows from
Lemma 4.8 that u € W22(Q), so dyu € WE(Q) for all k € {1,...,d}. Write Z =

loc
Bryi1 \ Bro—1 C Q. Then dyu € WH(Z) for all k € {1,...,d} and it follows from
[Bré1l] Corollary 9.14 that Oyu € Loo(Z).

Let ¢ > 0 be as in Theorem 1.2. Write ' = R?\ Bp, and define ¢: Q' — R by

d

¥(z) = u(z) + Y nl=)an(z)(0u)(2),

k=1

where v denotes the unit outer normal on 0§Y. Then ¢ € Lo (0€). Fix A = 1 and
let B denote the solution operator corresponding to the boundary value problem (1) for
the exterior domain €2 with Neumann boundary conditions at infinity. With the trace
and conormal derivative now defined for 0, one has that Tru = u|so and (O,u)(z) =
Zil:l vi(2)ag(2)(Oku)(z) for all z € 0. Then Bty = u|q. Moreover, (u) = (ulg/) since
|2\ Q| = |Qg,| < co. Hence

lim sup |u(z) — (w)| = lim sup |(u|o)(x) — (ulo)]

R—o0 |z|>R R—oo |z|>R
< lim c(|[¢]|poory + [{ule)]) : =0
S (I Rd—2
by Theorem 1.2(b). .

Corollary 4.11. Suppose that a € WL°(Q, R) for all k,l € {1,...,d}. Letu € WP(Q).
Suppose that Au=0 and Tru=0. Then u = 0.

Proof. Without loss of generality we may assume that u is real-valued. Let ¢ > 0. By
Proposition 2.12 one has that (u) = 0, so K = supp (u— )" is compact by Corollary 4.10.
Then u|x € W?4(K) by Lemma 4.8, 50 u|x € Lo (K) and it follows that (u—e)™ € H(Q).
Moreover, Tr ((u — €)*) = 0 by Proposition 2.15(c), so (u — &)™ € H}(Q2). Since Au = 0,
by density one deduces that

Z / CLkl 8ku 8[1} =0

k=1

for all v € H}(Q). Then the choice v = (u — &) yields that
/\V u—e) \2<Z/akl 8k (u—e¢) ))& u—e)t Z/&kl (D)0 ((u—e)")=
kl=1 l=1

by [GT83] Lemma 7.6. Hence (u — &)™ is constant. Since Tr ((u —)*) = 0 it follows that
(u—e)" =0, s0 u <e. By asimilar argument one deduces that —u < ¢ and the result
then follows. 0

Our final endeavour for this section is to prove the following variant of Theorem 1.1.
Theorem 4.12. Suppose that ay; € WH(Q, R) for all k,l € {1,...,d}. Letp € (d—1, o0].

(a) Let € L,(T) and A > 0. Then BPy € C(Q).
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(b)  Let € L,(T) and A > 0. Then By € C(Q).

We require the following extension of the Nash-De Giorgi result, which can be found
at [Nit11] Proposition 3.14 (iv).

Lemma 4.13. Let U C R? be a bounded Lipschitz domain and let p € (d — 1,00]. Then
there exists a ¢ > 0 such that for every 1 € L,(0U) and uw € H'(U) satisfying

d
Z/akl(aku)%%—/ TrUuTrUv:/ Y Tryov
U U

k=1 ouU
for all v e HY(U), it follows that u is Holder continuous on U and

u(x)] < e ll9llL,ov)
for allz € U. Here Try: HY(U) — Lo(0U) is the trace map on U.

Lemma 4.14. Suppose that ay, € W (Q, R) for all k,1 € {1,...,d}. Let S > Ry—2 and
p € (d—1,00]. Let A > 0. Then there exists a cy > 0 such that for every ¢ € L,(I') and
u € H' (Qgy2) satisfying

d
Z/ ar(Orpu) O + )\/TrSHuTrSHv = /wTI‘S+2?) (20)
Qg2 r r

k=1

for all v e W& ,(Q), it follows that ulay extends to a continuous function on Qg and

lu(z)] < en ()2, + lullLooms) + ||u||H1(Qs+1))
for all x € Qg.

Proof. Without loss of generality we may assume that A = 1. Let ¢; > 0 be such that
V]| 2208 < cillv]|mip,) for all v € HY(By) N C(B;). Let ¢ > 0 be as in Lemma 4.13
with U = Qg. Let ¢ € L,(T") and v € H'(Qg42), and suppose that (20) is valid for all
v € WE,(Q). Note that u admits a continuous representative on H*(Qg2), which we
continue to denote by wu.

We first bound d,u on dBg. Let 29 € 0Bs and denote by ~v: HY?(0By(xy)) —
H'(Bi(z0)) the harmonic lifting associated with the operator — > 8;(ax0x) on Bi(zo).
By [EO19b] Proposition 5.5 the map ~ has a continuous kernel K, : By(x¢) X 0B;(z9) — C
given by

Ky(w,2) = =Y wl2) an(2) (9,VG) (2, @),

k=1

where G: {(z,y) € Bi(xg) X Bi(xg) : © # y} — C is the Green function corresponding
to the operator — ) 0;(ax Ox) on Bj(z) with Dirichlet boundary conditions, and 8](")G
denotes the j™-partial derivative of GG in the n'' variable for all j € {1,...,d} and n €
{1,2}. Note that by [EO19b] Theorem 4.1, the functions a{”G and 8,(62)81(1)6‘ are continuous
on By(xg) x Byi(xz) for all k,1 € {1,...,d}. Moreover, there exists a co > 0 (independent
of zg) such that

C2

0P0Va) (2, )| < — 2
|(k l )( y)’_|x—y|d

(21)
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for all x,y € By(xy) with x # y and all k,l € {1,...,d}. Since by (20)

d

d
akl(é)ku 8_ = / akl(ﬁku)ﬂ =0
Z /Bl(wo) Z Qg2

k=1

for all y € C2°(Bi(x0)), it follows that

u(z) :/ K. (z,z)u(z)dz
dB1 (wo)
first for a.e. © € By(x), and then for all x € B;(z() by the continuity of K., and u. So

(Ouu)(z) = /8 o ()2 ()

d

= — v (2) ag (2 ,22) l(l) z,x)u(z)dz
==Y [, nEae@Pa6) e

ki=1
for all x € By(zo) and k € {1,...,d}. Then (21) provides that

d

[(On)(@)] < M Y / o) (@A) e )] 4z < Mt / L)l g,

Py 9B (o) |7 — |

for all x € By(zo) and k € {1,...,d}, where M = sup {Hakl”Lm(Q)}Zle. Hence
|(Oru)(zo)| < MCde/ [u(2)| dz < Mead®(dwa)'?||u a8, o0y
8Bl(xo)

S M62d2(dwd)1/201||uHH1(B1(x0)) S M02d2<dwd)1/2clHuHHl(Qs.H)

for all k € {1,...,d} and it follows that

10,ull Lo @Bs) < esllullm@s,y)s

where c3 = M?cyd*(dwy)'/?c,. Therefore d,u € L,(0Bs).
Define £ € L,(00g) by

x ifxel,
g(x):{¢( ) €

u(z) + (O,u)(x) if x € OBs.

Then by the divergence theorem [Alt16] Theorem A8.8, one deduces that

Z/ ar (Opu) 0w +/ Tro,uTro v = £ Trqqv
Qs o

k=1 Qs Qg

for all v € H'(Qg). Hence by Lemma 4.13 the restriction u|g is uniformly continuous and

therefore extends to a continuous function on Qg. Moreover,
[u(@)] < clléllr, @0 < (Il llL,m) + 0 (0Bs) P llullLoops) + 0(0Bs)?[0,ul Lo8s))
< ([0l L,y + 0 (0Bs) P[]l pacoms) + 0 (0Bs) Pes|lull mog, 1))

for all x € Qg.
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Proof of Theorem 4.12. We first prove (a). Write u = BPv. Then ulo,, € H'Y(Qg,)
and for all v € W} (Q) one has that

d

Z/ ar (D)o + )\/TrRO(u|QRO)TrROU
QR r

k=1

d
_ Z/akl(aku)%+/\/Trum
Q r

k=1

:/qumzfrwm.

Hence by Lemma 4.14 with S = Ry — 2, it follows that ulq, _, extends to a continuous
function on Qp,_o. Since by [Nas58| the function u is continuous on 2, Statement (a)
follows. Then (b) follows from Proposition 3.4. O

Corollary 4.15. Suppose that ay, € WH>(Q, R) for all k,1 € {1,...,d}. Let R > Ry and
p€(d—1,00]. Let th € L,(T) and A\ > 0. Then BP(R)y € C(9Q).

Proof. Write u = B?(R)1. By an argument similar to the proof of Theorem 4.12(a), one

deduces that UlQR07 extends to a continuous function on g,_5. The claim then follows

2

from Proposition 4.3. O

In the sequel we use the following result to extrapolate resolvent convergence for the
Dirichlet-to-Neumann operator from £(Ly(I")) to £(L,(T)) for all p € [1, oc].

Proposition 4.16. Suppose that ay, € WH(Q R) for all k,1 € {1,...,d} and let A > 0.
Then
lim BY(R) = BY

R—o00

in £(Loo(I), Lo ().

Proof. Let ¢ > 0 be as in Theorem 1.2. Let ¢ > 0 and fix S > Ry such that /\52% < e.

Let ¢y > 0 be as in Lemma 4.14 and let R > S + 2. Let ¢ € Loo(T'). Write u = BY1 and
ur = BY(R)Y. Then (u — ug) € H'(Qg42) and

|QS+2

d
Z / i (O (u — uR))% + A / Trsio((u — ug)|as,,) Trssov =0
Qs+2 I

k=1
for all v € WE,,(Q). So
|u — url|Lys) < enlllu = urllLy@Bs) + U — urllH1(Qs11))-

By Proposition 2.11(d), the restriction map from WP(Q) into H'(Qg,;) is continuous.
Hence there exists an M > 0 such that

lu — upllL@s) < en(llu—urllo s + Ml — ug|lwo @)

< en(lu = urllpo@ms) + MIIBY — BY (R) |l 2oy wo oy 1] o)
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< en([lw — url Loons) + M (D)2 BY — BY (B) || c(zamywon 1Y Lam)) -
Moreover, by Proposition 4.6(b) and Theorem 1.2(a) one obtains that

(BE R @) < (BP0 < TA=0.

for all z € 2\ Qg,. Consequently

2¢||Y]| oo e
lu = urllLw0s < sup [(BPw)(@)] + [(BL(R)Y) (x)] < T
AS
ZEEQ\QS

< el|Y|| oo (ry-
Therefore

|u — ugrllL.@
< en(|Ju—urlro@ns + M a(@)V?|BY — BL(R)|| £eoomywo @)1Vl nam) Vell¥] wm-

Since 0Bg C () is compact, the claim follows from Proposition 4.9 together with Proposi-
tion 4.5. O
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5 The Dirichlet-to-Neumann operator on Lo(I')

In this section we introduce the Dirichlet-to-Neumann operator on I' associated with the
elliptic operator — > 0;(ay0k) on 2. We characterise the Dirichlet-to-Neumann operator
via the form a and trace map Tr, before establishing resolvent convergence with respect
to the truncated problem. We then prove in Theorem 5.14 that if the boundary I' and
coefficients (ay;) are sufficiently smooth, our two realisations of the Dirichlet-to-Neumann
operator differ only by a rank-one operator.

We define the Dirichlet-to-Neumann operator with Dirichlet boundary condi-
tions at infinity NP in Ly(T") as follows. Let ¢,% € Lo(T). We write ¢ € D(NP) and
NPy =1 if there exists a u € WP(Q) such that Au = 0, Tru = ¢ and d,u = 9. It is a
consequence of Proposition 5.1(a) below that the operator N7 is single-valued and hence
well-defined.

Recall that in the case A = 0, a solution of (1) satisfying Neumann boundary conditions
at infinity can only exist if frw = 0. We define the Dirichlet-to-Neumann operator
with Neumann boundary conditions at infinity A in Ly(T') as follows. Let o, €
Ly(T). We write ¢ € D(N) and Ny = ¢ if there exists a u € W(Q) such that Au = 0,
Tru = ¢, d,u =1 and fr 1 = 0. It is a consequence of Proposition 5.1(b) below that the
operator N is single-valued and hence well-defined.

As in Section 3, several results in this section follow from relatively minor modifications
of the corresponding arguments used in [AE15] for the Laplacian, demonstrating again the
versatility of the form method. In the case of Dirichlet boundary conditions at infinity
however, to obtain that 1 is in the domain of the Dirichlet-to-Neumann operator requires
a different argument to that used for the Laplacian, which is the reason for the additional
regularity hypotheses appearing in Theorem 5.14. We begin with a helpful characterisation.

By Lemma 3.1 the continuous sesquilinear form a is Tr-elliptic on W (). Moreover,
by the Stone-Weierstral theorem Tr W () and Tr WP (Q) are dense in Ly(T"). Define the
form aP: WP(Q) x WP(Q) — C by

a” = alwp (@) xwp (@)

Then a” is continuous and Tr |y p(o-elliptic. Hence by [AE12] Theorem 2.1 there exist
m-sectorial operators in Ly(T") associated with (a, Tr) and (a?, Tr |yyp(q))-

Proposition 5.1. (a)  The operator NP is equal to the operator in Lo(T') associated with
(a?, Tt [wo(q))-

(b)  The operator N is equal to the operator in Ly(T) associated with (a, Tr).

Proof. We first prove (a). Let AP denote the operator associated with (a?,Tr |yyp(q)) and
let i, 1 € Ly(T"). Suppose that ¢ € D(AP) and APp = ). Then there exists a u € WP (Q)
such that Tru = ¢ and a”(u,v) = (¢, Trv) ) for all v € WP(Q). Hence

<AU,U> = aD(uv U) = (waTrU>L2(F) =0

for all v € C°(Q2) and Au =0 € Ly(£2). Then
a(u,v) —/ (Au)v = aP(u,v) = (¢, Tr V) Ly(1)
Qg
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for all v € C%(Bg,), so d,u = 1. Therefore ¢ € D(NP) and NPy = 1.

Conversely, suppose that ¢,1 € Ly(T') are such that ¢ € D(NP) and NPy = .
Then there exists a v € WP(Q) such that Au = 0, Tru = ¢ and d,u = 9. Hence
aP(u,v) = (¢, Trv)p,m for all v € WP(Q) by Proposition 3.2. So ¢ € D(A”) and
AP = 1). Therefore NP = AP is the operator associated with (a?, Tr lwo ()

We now prove (b). Let A denote the operator associated with (a, Tr). Then the inclu-
sion A C V follows as above, with the additional observation that if a(u, v) = (1, Trv) )
for all v € W(R), then the choice v = 1 implies that [ = 0.

Now suppose that o, € Ly(T") are such that ¢ € D(N) and N = 1. As above, there
exists a u € W(Q) such that a(u,v) = (¢, Trv),r) for all v € WP(Q). Since [L1 =0 it
follows that

a(u, Lg) = 0= (¢, Ir) 1wy = (¥, Tr o) o).

Then by linearity together with the orthogonal decomposition in Proposition 2.12, one
deduces that ¢ € D(A) and Ap = 1. This proves the claim. m

For all 6 € (0, 7] we denote by

Yo ={z€C\{0}:|argz| <0}

the (open) sector of angle § in C. We say that a holomorphic Cy-semigroup 7" = (1}):>0

on Ly(I') is contractive on a sector if there exists a 6 € (0, 7] such that 7" admits a
holomorphic extension 17" = (77).ex, to the sector Xy and ||T%| £z, < 1 for all z € Ey.

We make the identification T = T..

Corollary 5.2. (a)  The operator —NP generates a holomorphic Cy-semigroup SP =
(SP)is0 on Ly(T). Moreover, SP is contractive on a sector.

(b)  The operator —N  generates a holomorphic Co-semigroup S = (Si)i>0 on Lo(T).
Moreover, S is contractive on a sector.

Proof. By [AE12] Theorem 2.1(ii), the operators N' and NP are m-sectorial with vertex
0. Then the claim follows from [Kat80] Theorem IX.1.24. O

Note that it is not possible to replace the form domain W () with H*(€2), because
the form b = a|y10)xm1 (o) fails to be Tr-elliptic on H'(£2). We present this fact via the
following example, which can be found at [AE15] Remark 5.2.

Example 5.3. We shall show that for each u,w > 0 there exists a u € H*(2) such that
pllully, ) > Reb(u) +w||Trull7, ). The invalidity of the Tr-ellipticity of b on H'(2) then
follows.

Let p,w > 0. Without loss of generality we may assume that B; ¢ R?\ Q. Fix
7 € C®(RY) such that 7|p, = 1 and ||7|lc = 1. For all R > Ry define uz: @ — C by
up(z) = |z|~@ /27 (L), Then ugp € H'(Q) N C>®(Q). Since the coefficients (ay) are
bounded, there exists an M > 0 such that

d—1 x x 1 1 T 2
2 _
Reblur) < M/Q Vurl” = M/Q = || (@+3)/2 T(E) T E(V7)<E>| dz

d—1\2, 1 1 Z\ 2
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d—1 > | s
:2M<—) —d ons [ YT
2 wd/ * /Rlyld1 Y
2
y

for all R > Ry. Note that the integral in the final term of the above estimate is finite
because 0 ¢ supp V7. Moreover, [ |Trug|? = [.|z[7“ Y dz < oo for all R > Ry.
Write

2
a=2Md*wqy +2M/udy

"dl

and b = [, 2|7 D dz. Choose S > m(a + wb) + Ry. Then ug € H(Q) and

1 T\ 2
2 _ J J—
/Q|“S| = /Q | 2| @D/2 T(g)‘ dz
1 1 S
> T dr > T dr = wqy dr = wy(S — Ryp).
o |2l Bs\Bhr, || Ro

u||us||L2 > nwe(S — Ry) > a+ wb > Reb(ug) —i—wHTruSHL2

Hence

as required.

Clearly N # NP, since ker N # ker N'P.
Proposition 5.4. (a) ker NP = {0}.
(b)  ker N = Clr.

Proof. We first prove (b). Let ¢ € ker N. Then by Proposition 5.1(b) there exists a u €
W () such that Tru = ¢ and a(u,v) = 0 for all v € W(£2). The choice v = u then yields
that u [, |[Vul* < Rea(u) = 0. So u is constant and it follows that ¢ = Tru is constant.
Conversely, note that 1o € W(£2). Then Tr1q = 1y and a(lg,v) = 0 = (0, Trv)p,r) for
all v € W(Q). Hence 1y € D(N) and N1 = 0.

We now prove (a). Let ¢ € ker NP, By an argument similar to the above, one deduces
that there exists a constant function u € WP(Q) with Tru = ¢. Since (u) = 0 by
Proposition 2.12, it follows that ©u = 0 and ¢ = Tru = 0. O

From the compactness of the solution operators By and B, we obtain that A/ and
NP have compact resolvent. The following proof also demonstrates that the resolvent
of the Dirichlet-to-Neumann operator maps the Robin data in (1) to the trace of the
corresponding solution.

Proposition 5.5. (a)  Let A > 0. Then the operator (\I + NP)~! is compact.
(b)  Let A > 0. Then the operator (A + N')~! is compact.
Proof. We prove (a). Let ¢ € DNP) and write v = (M + NP)p € Lo(T'). Then

NP =1 — \p. Hence by Proposition 5.1(a) there exists a u € WP (Q) such that Tru = ¢
and

a(u,v) = aP(u,v) = /F(w — ATru) Tro
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for all v € WP(Q). So u = BP% and (M + NP)" 1 = p = Tr BPy. Therefore (A +
NP)™l = Tr o BY. Then the claim follows from the continuity of Tr together with the
compactness of BY from Proposition 3.9(a).

The proof of (b) is similar. O

By elliptic regularity, the resolvent leaves C(I') invariant. In Corollary 7.5 we show
that the same is true of the corresponding semigroup.
Proposition 5.6. (a) Let A > 0. Then (\[ + NP)~1C(T") c C(I).
(b)  Let A > 0. Then (\[ +N)~'C(T) c C(I).
Proof. We prove (b). Let v € C(T') and write o = (M + N) ' € Ly(T'). Then

Ny =1 — A\p. Hence by Proposition 5.1(b) there exists a u € W(2) such that Tru = ¢
and

a(u,v) H/Tmm: /¢m
T Iy

for all v € W(Q). Then u = Byy. Since I' is compact, it follows that ¢» € L.(I') and

Theorem 1.1(b) therefore provides that u € C(£2). Hence ¢ = Tru € C(I).
The proof of (a) is similar. O

We now investigate resolvent convergence with respect to the truncated problem (13).
Let R > Ry. We define the Dirichlet-to-Neumann operator with Dirichlet bound-
ary conditions at 9Bg, denoted by N2, in Ly(T) as follows. Let p,1 € Ly(T'). We write
¢ € DINE) and NP = 1 if there exists a u € WL (Q) such that Au = 0, Tru = ¢ and
o,u = 1.

For all R > Ry we define the sesquilinear form af: W2 (Q) x WE(Q) — C by

D _
arp = a|Wg(Q)xW,lg(Q)-

Then a7, is continuous and Tr |y p q)-elliptic with Tr Wz (€2) dense in Ly(I"). It follows from
an argument similar to the proof of Proposition 5.1(a) that N is equal to the operator in
Ly(T) associated with (af, Tv |W}§>(Q)).

Proposition 5.7. Let A > 0. Then

Jim (AT +NG) ™ = (AL +NP)
in L(Ly(T)).
Proof. By an argument similar to the proof of Proposition 5.5(a), one deduces that
(M +NE)Y™ =Tr o BP(R) (22)
for all R > Ry. Since Tr € L(W(Q), Lo(I)), the claim follows from Proposition 4.5. [

In Theorem 5.9 we show that if the coefficients (ag;) are Lipschitz continuous, the
preceding result extrapolates to £(L,(T")) for all p € [1,00]. In the proof we use the fact
that Tr is continuous from (W2 () N Loo(Q), || - ||1()) into Leo(T).

Lemma 5.8. Let u € WP(Q)N Lo (). Then Tru € Loo(T) and || Trullr.. ) < 2||ull 1. 0)-
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Proof. Let (X,)nen be a sequence in C®(R¢) such that lim y,|lo = u in W(Q). Then
limRe x,|r = ReTru in Ly(I"), since Tr is continuous. Write M = ||u||. (). For each
n € N define u,, = (—M) V Re xnlo A M. Then u, € W(Q) by Proposition 2.15(a) and
the identities w Vv =w + (v — w)" and w Av = —((—w) V (—v)). Since limu,, = Rew in
W (), it follows from the continuity of Tr once again that lim Tru, = ReTru in Lo(T).
Therefore

ReTru = lim Tru, = (—=M)V lim Rex,lr AM =(—=M)V ReTru A M.
n—oo

n—oo

So ||ReTrul/z ) < ||ullL.(@)- By a similar argument one obtains that || Im Tru|z_ ) <
|u|| L. (@) and the result follows. O

Theorem 5.9. Suppose that ay € W (U, R) for allk,l € {1,...,d} and let X > 0. Then
lim (AT +NZ)™' = (M +NP)!

R—oo
in E(LP(F)) for all p € [1,00].

Proof. By (22) together with Lemma 5.8 and Proposition 4.16, one deduces that the claim
is valid for the case p = co. Hence by Proposition 5.7 and an interpolation argument, the
claim holds for all p € [2,00]. Since the matrix ((akl)g,zﬂ)* = (aw)f,—, satisfies the
same Lipschitz and ellipticity conditions as (akl)z,z:p by duality one deduces that the case
p € [1,2] is also valid. O

Next we examine resolvent convergence in the case of Neumann boundary conditions at
infinity. In this situation it happens not to be possible to define the Dirichlet-to-Neumann
operator as acting on traces of harmonic functions. We therefore we proceed via the form
method directly.

For all R > Ry define the sesquilinear form az: H'(Qr) x H'(Qr) — C by

d

ag(u,v) = Z /QR akl(aku)%.

k=1

Then ag is continuous and Trg-elliptic, with Trg H'(2z) dense in Ly(T'). We define the
Dirichlet-to-Neumann operator with Neumann boundary conditions at 0Bk,
denoted by N, to be the operator in Ly(T") associated with (aR, TrR).

Theorem 5.10. Let A > 0. Then
lim (M 4+ Ng)™' = (M +N)7!
R—o0

in L(Ly(T)).

Proof. Let (R,).en be a sequence in [Ry, 00) with lim R,, = co. Let ¢, 11,1, ... € Ly(T)
and suppose that lim,, = ¢ weakly in Ly(I"). By Propositions 5.5(b) and A.7 it suffices
to prove that lim (Al + Ng,) "¢, = (AL + N) "1 in Ly(T).

Let n € N and write ¢, = (Al + Ng, ) '%,. Then Nr, o, = ¥, — Aoy, so there exists
au, € H'(Qg,) such that Trg, u, = ¢, and

ag, (un,v) + )\/

Trr, u, Trg, v = /wn Trg,v (23)
r r
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for all v € H'(Qp,). The choice v = u,, then yields that

Reag, (un) +>\/ I Trg, un|* = Re/% Trr,un < [[¥nllLom)llonll Lo
I I

Hence
AlgallZry = A / T wnl? < [nllace lonllacey

for all n € IN and since the sequence (¢,)nen is bounded in Ly(T'), it follows that (¢y,)nen
is also bounded in Ly(I"). Then sup ||¢|| £,m)||@nll£.r) < 00 and it follows that

M = sup Reag, (u,) /|Tarun| < 0. (24)

nelN

Note that since the ellipticity condition (4) is valid a.e. on €2, it follows that

u/ |Vu|? < Reag(v)
Qr

for all R > Ry and v € H'(QR). Let R € [Ry,00) NIN. Then for all n € N with R, > R,

| 19+ [ 1Tnulo? < [ 9w+ [ Tea?
Qr r Qn, r

1 1
< —Reag, (u,) + / I Trg, u,|* < M(l + —).
M r 2

Since Qg has Lipschitz boundary, the map Trg is compact and Lemma 2.4(b) consequently
provides that the sequence (u,|op )nen, r,>r 1S bounded in H'(Q2g). By a diagonal argument
and passing to a subsequence if necessary, we may assume that for all R > R, the sequence
(tn|ay )nen is weakly convergent in H'(Qg). Hence there exists a u € HL () such that for
all R > Ry, one has that ulg, € H'(Qgr) and limu,|q, = u|q, weakly in H'(Qg). Then
lim V(uy|a,) = V(ulq,) weakly in Ly(Q2g), so

1
/ |Vul? < liminf/ |Vu,|? < M(l + —)
QR n—oo QR /,L

for all R > Ry. Therefore [, |Vul* < oo and u € W(Q).
Recall that Trgr(v|q,) = Tro for all R > Ry and v € W(Q2). So

lim ¢, = nhm TrRO(un]QR ) = TrRO(u]QRO) =Tru

n—o0

in Ly(T), since Trg, is compact. Let v € C®(R?). Then there exists an m € IN such that
suppv C Bg,,, so for all n > m one has that ag, (un,v|a, ) = ar,, (Unlag, V|, ). Hence

lim ag, (Un, Vlag, ) = lim ag, (unlog,,, Vlag,,) = ar,. (Ulag,,  vleg,, ) = a(u, vle)

since limuy |, = ulo, weakly in H'(Qpg,, ). Then it follows from (23) that

a(u,v|9)+/\/TruTr( lo) = lim ag, (un, v]a,, )—}—)\/(pnTar(van)
r

n—oQ
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nh—glo wnTar |QR /wTr V).

a(u,v)—l—)\/Trum:/wm (25)
r r

for all v € WP(Q) by density. Moreover, the choice v = 1o, in (23) provides that
A Jpen = [py forall n € IN, so

)\/Tru:lim )\/ hm Q/Jn /w
T n—oo T

and (25) is therefore valid for v = 1g. Then by linearity together with the orthogonal
decomposition W(Q2) = WP(Q) & Clg from Proposition 2.12, it follows that (25) is valid
for all v € W(£2). Hence Byy) = u, so lim ¢, = Tr Byt = (A + N) 71 in Ly(T). O

The next result concerns the Cy-semigroups S and S on Ly(T"), generated by —N and
—N7P respectively. We establish positivity of the semigroups using [AE12] Proposition 2.9,
which extends Ouhabaz’ generalisation of the Beurling—Deny criteria to the setting of
the form method in [AE12]. From the domination of BY by B, we obtain an analogous
relationship between the semigroups generated by the corresponding Dirichlet-to-Neumann
operators. In Proposition 7.6 we show that this relationship propagates forward to the
associated heat kernels.

A semigroup T = (T});=0 on Lo(T") is called positive if T, Lo(T')T C Lo(T') T for all ¢ > 0.

Proposition 5.11. The semigroups S and SP are positive. Moreover,
0<5°¢ < S
for all ¢ € Ly(T)T and t > 0.

Proof. We first verify that S? is positive. Define P: Ly(T') — Lo(T')" by Py = (Reg)™.
Let u € WP(Q). Then Reu € WP(Q) and Proposition 2.15(b) provides that (Rew)™
WP(Q). Moreover, Tr ((Reu)*) = (Re Tru)* by Proposition 2.15(d). Then by [GT83]
Lemma 7.6 one deduces that

Rea”((Reu)™,u — (Reu)’) =Rea”((Rew)™, —(Reu)” +ilmu)
= —a”((Reu)", (Rew)”) = 0.

Hence by [AE12] Proposition 2.9 ‘(ii)=-(i)’, the semigroup S* is positive.
Let ¢ € Ly(T')". Then by Proposition 3.6

A +NP)Y o =TrBYp <TrByp =M +N)!
for all A > 0. Therefore
0<SPp=lim (I + ND) "o < lim (I + N) "o = Sip
n—00 n—oo

for all t > 0 and it follows that S is positive. n
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An obvious consequence of Proposition 5.4 is that 1p € D(N) and N1 = 0. The
following assertion establishes that if the coefficients (ay;) and boundary I' are sufficiently
smooth, then 1 € D(NP) also. The need for additional regularity stems from the fact
that 1o ¢ WP(Q), as this means that we must construct a harmonic element of W2 (Q)
with trace equal to 1r and normal derivative in Ly(I"). It is clear that if 1r € D(NP),
then NP1 # 0 since ker NP is trivial. Indeed, Corollary 5.13 shows that NP1y > 0.

Proposition 5.12. Suppose that Q is a C*-domain and ap, € WH(Q,R)NCY(Qpgyt1) for
all k,l € {1,...,d}. Then 1r € D(NP).

Proof. Let 7 € C(R% R) be such that 7|, = 1. It follows from the Lax-Milgram
theorem that for each n € IN with n > Ry, there exists a u,, € HJ(,) such that

Z / i (Opun)Opv = a?(7,0)

k=1

for all v € H}(,). By a zero extension we may assume that u, € W?(Q). Since a?
continuous, there exists a ¢ > 0 such that

d
pllun ) = “/ﬂ V|2 < ReaP(u,) = Re Z/Q st (Ot ) Tt

fl=1
=Rea”(7,u,) < c||7lwo@) llunllwo g

for all n € IN with n > Ry. Then |Ju,||wpq) < cu™t|T|lwo o for all n € N with n > Ry,
so the sequence (uy,)nen is bounded in WP (). Passing to a subsequence if necessary we
may assume that there exists a u € WP (Q) such that limu,, = u weakly in W (£2). Then
Tru = lim Tru, = 0 in Ly(T"), since by Proposition 2.11(b) the map Tr is compact.

Let v € C°(Q). Then v € H}(,) for all n sufficiently large, so

(Au,v) = a®(u,v) = lim a®(up,0) = a®(r,0) = (= S o) )0),

n—o00 Q'
k=1 L2()

Hence (Au,v) = (Ar,v) for all v € C(Q2) and Au = — Zil:l Oy(ar OxT) € Lo(§2). Note
that ula, ,, € H'(Qry11). Let x € CZ(RY) be such that x|p, =1 and supp x C Bry1-
Then supp xu C Qg,+1, S0 xu € H}(Qpy+1). Moreover,

d d
.A(XU) = 'LL.AX + X.Au — Z agl akX 8lu Z akl aku 81)( & L2(QRO+1>

k=1 k=1

Then xyu € H?(Qp,+1) by [Sim72] Theorem 9.12 and it follows that a0 (xu) € H'(Qr,11)
for all k,1 € {1,...,d}. So 0,(xu) € La(0Qp,+1) and

d
]lpa Xu Z VlTrROH(aM@k(Xu)) c LQ(F)

k=1

Note that d,x = &,(X|QRO+1) = 0. Hence

Oyu = Irxo,u =110, (xu) — Ir(9,x)Tru = 110, (xu) € Lo(T).
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Write w = 7|q — u. Then w € WP(Q) and
(Aw,v) = (A1, v) — (Au,v) =0

for all v € C(Q2), so Aw = 0. Moreover, Trw = Trr,log,, = Ir and o,w = 0,7 — O,u =
—d,u € Lo(T'). Therefore Ip € D(NP) and NP1 = 0, w. O

Corollary 5.13. Suppose that Q is a C*-domain and ay, € WH°(Q,R) N C*(Qgyr1) for
all k,l € {1,...,d}. Then NP1 > 0.

Proof. Since Nl = 0, it follows from Proposition 5.11 that
1 1
NZ1p ltlﬁ)l t([ So)p > lﬁgl t(I S)lr =0

To see that NP1y is non-zero on a set of positive measure, suppose to the contrary that
JoNPLp = 0. Let uw € WP(Q) be such that Tru = 1Ip and a”(u,v) = (NP1Lp, Tr o),
for all v € WP(Q). Then the choice v = u yields that

2 D) — D =
M/Q Vul* < Rea”(u) = Re (M1, 1r) 1y = 0.

So Vu = 0 and u is constant. Hence u = 0, since (u) = 0 by Proposition 2.12. Then
0 = Tru = 1, a contradiction. O

If the coefficients and boundary are smooth enough to allow that 1r € D(NP), then
NP is merely a rank-one perturbation of N.

Theorem 5.14. Suppose that Q is a C*-domain and ay, € WH(Q,R) N C*(Qr,11) for
all k,l € {1,...,d}. Then DINP) = D(N) and

1 x
NDapzNgojLE(go,ND ]lp)LQ(F)/\/’D]lp

for all p € D(N), where § = [LNP1p.

Proof. We first show that D(N) € D(NP). Let ¢ € D(N) and write ©» = Ny. Then
Jr% = 0. By Proposition 5.1(b) there exists a u € W () such that Tru = ¢ and a(u,v) =
(¥, Trv) p,r) for all v € W(Q). Moreover, u — (u)1g € WP(Q) by Proposition 2.12 and it
follows that

aP(u— (u)lg,v) = a(u — (u)lg,v) = a(u,v) = /1&%

r
for all v € WP(Q). Hence Proposition 5.1(a) provides that ¢ — (u)1r = Tr (u — (u)1g) €
D(NP) and NP(p — (u)ly) = 9. Since Ir € D(NP), it follows that ¢ € D(NP).
Therefore D(N) C D(NP).
Let ¢ € D(N) and write ©» = Np. It follows from that above that
N =NPp— (u)NP1r.
Since ((ar)f 1) = (aw)f =y and a € WH(Q,R) N C*(Qpy11) for all k,1 € {1,...,d},
it follows from Proposition 5.12 that 1p € D(NP”). Hence
(SDV/\/’D*]IF)[Q(F) - 5<u> = (NDSO, ]IF)LQ(F) - ﬁ<u>
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:/FN%—<u>/FNan:/FN<p:0

So (u) = %(@,ND*]IF)LQ(F). Therefore

NPp = N+ %(@,ND*]IF)L2(F)ND]IF
for all ¢ € D(N).

Define B: Ly(T') = Lo(T) by By = 5(p, V" 1r) NP lr. Then B is bounded and it
follows from the above that N' C NP — B. Moreover, since —N generates a Cj-semigroup
and by [BKR17] Theorem 11.5 the perturbed operator —(N? — B) also generates a Cp-
semigroup, it follows from Proposition A.15 that D(NP) = D(NP — B) = D(N). O

Corollary 5.15. Suppose that Q is a C*-domain and ay € WH°(Q,R) N CH(Qpr,t1) for
all k,1 € {1,...,d}. Then N — NP is a rank-one operator and RIN — NP) = CNP1r.
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6 The semigroup on Ly(I')

In this section we investigate the Cy-semigroups S and S on Ly(I") generated by our
two versions of the Dirichlet-to-Neumann operator. We prove that both S and S? are
submarkovian, uniformly mean ergodic and converge in norm to an equilibrium at an
exponential rate. Moreover, we establish that the semigroups are irreducible and strictly
positive, assuming symmetry of the coefficients (ay) in the case of SP. In the sequel we
use these results to study the Dirichlet-to-Neumann heat kernel.

A semigroup T' = (T})>0 on Ly(I') is called Lo-contractive if [|Tio||z. ) < ||l 2o m)
for all € Lo(I") N Loo(I") and ¢ > 0. If T is positive and L.-contractive, we say that T is
submarkovian.

Proposition 6.1. (a)  The semigroup SP is submarkovian.

(b)  The semigroup S is submarkovian.

Proof. We prove (b). Since by Proposition 5.11 the semigroup S is positive, it remains
only to establish L.-contractivity. We prove the claim using the criteria in [AE12] Propo-
sition 2.9.

Define P: Ly(T,R) — {¢ € Lo(I)T : ¢ < 1r} by P = (Ir A )T, Let u € W(, R).
Then (Ig Au)t = (u— (u—1g)")T € W(Q) by Proposition 2.15(a). Moreover,

Tr(IogAw)")=Tr((u—(u—10)")") = (Tru— (Tru —1p)")" = (Ip A Tru)*
by Proposition 2.15(d). Since by [GT83] Lemma 7.6 one has that
(Lo Au)") = Lpus0 Ok (Lo A ) = Lus) Ok — Lus1Ohu) = LpcucnOru

for all k € {1,...,d}, it follows that

d

a((Lg Au)™,u— (Lo Au)* Z/akl (Oe(lg Auw) D)oy (u — (Tg Au)h)

k=1

d

= Z/akl O<u<1](aku)(alu ]l[0<u<1]alu)

k=1

d
= Z / gy (Oru) (L u<o) + Lps1y)Ou = 0.

Hence by [AE12] Proposition 2.9 ‘(ii)=-(i)’ one deduces that |S;p| < 1r for all p € Ly(T", R)
with |p| < 1 and all ¢t > 0.

Now let ¢ € Lo(I', C) be such that || < 1r and let ¢ > 0. Then for all « € [0, 27| one
has that Ree®p € Ly(I',R) and |Ree™@p| < 1r, so |Re(e“Sip)| = |Si(Reep)| < 1y .
Hence

|Sio| = sup Re(eS;p) < sup |Re(e”Sp)| < 1r.

a€(0,27) a€0,27]
This proves that S is L..-contractive.
The proof of (a) is similar. O
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A well-studied property of submarkovian Cy-semigroups on Lg-spaces (over o-finite
measure spaces) is their facility for extrapolation to L, for p € [2,00] (and then for p €
[1,2] by duality). Various properties of the semigroup on Ly such as strong continuity,
holomorphy and positivity are inherited by the extrapolation semigroup on L, possibly
excluding the cases p = 1 and p = co. A summary of such properties can be found at
[Are04] Subsection 7.2.2.

Let p,q € [1,00]. Given a bounded operator B € E(LQ(F)) we denote by

1Bllp—g = sup {[|BellLyry : ¢ € Lao(T') N Ly(T) and [Jo]|z, @y < 1} € [0, oc]
the L,-L, norm of B.

Proposition 6.2. (a)  The semigroup SP extends consistently to a contractive Cy-semi-
group SP®) on L,(T) for all p € [1,00).

(b)  The semigroup S extends consistently to a contractive Co-semigroup S® on L,(T)
for all p € [1,00).

Proof. We prove (a). Note that ||SP (o2 < 1 for all ¢ > 0 by Corollary 5.2(a).
Let p € [2,00) and ¢ > 0. Since SP is L., -contractive, it follows from Proposition A.10
that L
) _2
157 lpp < ISP 122 157 oo o0 < 1.
Moreover, Lo(I') N L,(I') is dense in L,(I'), so by Proposition A.3 there exists a unique
D,(p) D,(p) _ aD D,(p) D
S, € L(L,(I") such that S, |1,nn, = SP|ronr, and [|S;, ||, < 1. Hence S
extends consistently to a contractive semigroup S2® = (S Py, o on L,(T).

Let ¢ € Ly(I") N Loo(I"). Then by Proposition A.9

_2
p
Lo ()

1—7 2
<2 |wmﬂpwz Pyl

1T = SP )l < 11T = SP)el 20 1T = SP)el

for all t > 0. Hence limy ||(1 — StD’(p))wHLp(p) = 0 and by density it follows that SP:® is
a Cp-semigroup on L, (T").

By Proposition A.12 the dual semigroup SP* = (SP");s0 extends consistently to a
contractive semigroup (SP*)M = ((SP*)M),g on Li(T). Let » € L;(T') N Ly(T). Since
o(I") < oo, it follows that

I = (87 ) ellamy < oI =S¢l oy

for all t > 0. Hence by density (S”")®) is a Cy-semigroup on L (T"). Then by interpolation
SP* extends consistently to a contractive Cy-semigroup on L,(T') for all p € [1,2]. Since
the matrix ((@kl)z,zﬂ)* = (auk )}, satisfies the same ellipticity condition as (ax){ ;. the
semigroup SP = (SD *)* extends consistently to a contractive Cp-semigroup on L, (I") for
all p e [1,2].

The proof of (b) is similar. O

Note that by duality, the adjoint semigroups S* and SP* are submarkovian. Since by
Corollary 5.2 the holomorphic semigroups S and S? are each contractive on a sector, it
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follows from [Ouh05] Proposition 3.12 together with duality that for all p € (1,00), the
extrapolation semigroups S® and SP-®) on L,(T") are also holomorphic and contractive
on a sector.

Because the form a” is coercive, more than mere contractivity is valid for S?. Our
next result shows that in the limit |z| — oo, the operators ST converge uniformly to zero
at an exponential rate. Recall that 0 & (0, 5] denotes the angle of analyticity for .S b

Proposition 6.3. For all 0’ € (0,07) there exists a § > 0 such that
152 |22 < €701

for all z € ¥y

Proof. Since Tr is continuous, there exists a ¢ > 0 such that || Trv||z,m) < cl|v|lwp(q) for
all v € WP(Q). Let ¢ € D(NP). By Proposition 5.1(a) there exists a u € WP (Q) such
that Tru = ¢ and a”(u,v) = (NPp, Trv)p,m for all v € WP(Q). Since a” is coercive,
the choice v = u yields that

I
Re (NP0, 0), iy = Rea” () > pllullfypq) > —2H¢||L2
Hence i
Re (ND% SD)LQ(F) > C_2||(l0||%2(r)

for all ¢ € D(N'P).
Let o € DINP) and t > 0. Then SPp € D(NP) and the map r — SP¢ is continuously
differentiable on (0, 00). So Proposition A.8 together with the above provides that

CNSPeI ey = ~2Re (VPSP 5P9), 1) < 2 ISPl ey
Write § = 2uc™2. Then
d seiap, 2 D D
(7187 elium) = e (OIS eIl + —||5 #llZ,r) <0.
So the map r — 65T||S7P<p||%2(r) is decreasing on (0, 00) and
ISPl Lary < Hm e 15707 = ez

Hence one deduces that
1S [l22 < €70

for all t > 0, where 6, = %5.
Let 6 € (0,0P). Then there exist 0y € (6',0P) and k € (0,1) such that xt + is € X,
for all t +1is € X¢. Let z € ¥y and write z =t + 2s. Then

152 |22 < (1SE_yellzss 1554 isllasa < e 01091

since S is contractive on Xyp. This proves the claim. O]
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By Proposition 6.2(a) together with an interpolation argument, one readily deduces
from the above that for all p € (1,00), in the limit ¢ — oo the operators sPw) ¢ L(L,T))
converge uniformly to zero in a similar manner. On the other hand, it is easy to see that
S, does not converge to 0 as t — oo, since 1r € ker N and therefore S;1p = 1 for all
t > 0. In Proposition 7.7 we prove that S, instead converges to a rank-one projection on
Ly(T) in the limit |z| — oo, both uniformly and at an exponential rate.

Next we consider ergodicity. A Cp-semigroup 7' = (T})i~o on Lo(I') is called mean
ergodic if the limit .

P = lim l T, ds

t—o00 0

exists in the strong operator topology. We call P the ergodic projection of 7'
Every bounded Cy-semigroup on a reflexive Banach space X is mean ergodic (see
[ABHNO1] Corollary 4.3.5). We provide a proof for the case X = Lo(I).

Proposition 6.4. Let T = (1)~ be a bounded Cy-semigroup on Lo(I'). Then T is mean
ergodic.

Proof. There exists an M > 0 such that ||T}|a2 < M for all ¢ > 0. Hence for all
@ € Ly(T") and t,r > 0, it follows that

T‘th t
ds = Mllglumy - (26)

r+t
T

1 1 r+t 1
H; Ts‘#’dSHLQ(r) < - : | Ts|| Loy ds < MHSO“LQ(F);

r

For each n € IN define

Cp = l/ T,ds € L(Ly(T)).
- Jo
We write
fix 7= (\ker(I = Ty),  fix T = [\ ker(I — Ty)
>0 t>0
and
R(I-T)=|JRUI-T).
>0
We first show that fix 7" separates fix T*. Let ¢» € fix T* \ {0}. Then there exists a
@ € Ly(I') \ {0} such that (¢,%)r,m) # 0. Since T is bounded, the sequence (Cp,¢)nen is
bounded in Ly(T"). Passing to a subsequence if necessary, we may assume that there exists
am € Lo(I') such that lim C,,¢ = 7 weakly in Ly(I'). Then by (26) one deduces that
n n+t

1 1
Tim = lim — Teipds = lim — Tspds

n—oo N Jq n—oo N J,

1 n n—+t t
= lim —(/ ngpds+/ ngods—/ ngods>: lim Ch,p=m
n—oo 1 0 n 0 n—00
weakly for all £ > 0. Hence 7 € fix T'. Moreover,

. .1 .
(7T7¢>L2(F) = nhjf}o (Cn%d’)Lz(r) = lim — (o, T ¢)L2(r) ds

n—oo 1 Jg

.1
= lim — (go,w)LQ(F) ds = (@a¢)L2(r) # 0.

n—o00 1, Jg
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So fix T separates fix T* and it follows that fix 7* N (fix T')* = {0}.
Write
X =fix T +span R(I = T)

and let v € X*. Clearly v € (fix T)*. Moreover, for all t > 0 and ¢ € Ly(T") one has that
(va <] - ﬂ*)¢)L2(F) - ((I - CTt)S07 ¢)L2(F) = 07

so ¥ € fix T*. Hence X+ = {0} and X = Ly(").
Clearly limr~! fOT Tywds = m for all 7 € fix T. Moreover, for all ¢ > 0 and ¢ € Lo(T)

1 /" 1 [ 1 /"
—/ TS(I—Tt)gods:—/ ngpds——/ Tsippds
T Jo T Jo T Jo

1 r 1 T r+t t
——/ ngods——</ng0d8+/ ngods—/ngods)
rJo rNJo r 0
1 t 1 r+t
:—/ngods——/ Tspds
T Jo T Jy

for all » > 0. Let ¢p € spanR(I — T'). Then there exist & € N, a3, as,...,ar € C,
t1,ta, ..., tg > 0 and @1,p9,...,0r € Lo(T") such that ¢ = Z§:1 a;(I —T,,)p; and it
follows from the above together with (26) that

k
1" 1"
Tli)rgo; i Typds = g ozj<rlggo;/0 T(I —1Ty,)e; ds) =0.

Consequently one deduces that for all ¢ € X there exist 7 € fix T and ¥ € span R({ —T)

such that
t t

1 1
lim — [ Typds=lim— [ Ty(r+¢)ds=m
t—oo ¢

t—o00 0 0

n LQ(F)
Note that

1 t
sup ”;/0 TSdSHZ—)2 < M.

t>0

Let ¢ € Ly(I') and € > 0. By density there exists a ¢ € X such that [[¢ — |[,1r) < 137-
Let (rn)nen be a sequence in (0, 00) with limr, = co. Then lim C,. 1 exists and it follows
that

1Cr 0 — Cr 0l Loy < (G, — Cr ) (@ = V) ||y + 1(Cry = Cr )W Loy
< QMHQD - wHLz(F) + HCrnw - CrmeLg(F) <¢€

for all n,m € IN sufficiently large. Hence by completeness the limit lim C,. ¢ exists in
Ly(T). Then it follows from a zip argument that the limit lim ¢! fg T,pds exists. ]

In a Hilbert space, the ergodic projection associated with a contractive Cp-semigroup
coincides with the orthogonal projection onto the kernel of its generator.
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Proposition 6.5. Let T' = (1;);~0 be a contractive Cy-semigroup on Lo(T') with generator
—A. Then

Ly(T) =ker A® R(A)
and the ergodic projection P of T is equal to the orthogonal projection onto ker A.

Proof. By Proposition 6.4 the semigroup 7' is mean ergodic. We first show that the map
1 t
P:p— lim - [ Typds
t—oo t 0

is a projection from Ly(I") into ker A. Let ¢ € Lo(I"). Then it follows from (26) that

1 r 1 T r—+t t
T,Pp = lim — Tsiipds = lim —(/ Tspds —|—/ Tspds —/ ngods)
0 r 0

r—oo T 0 r—oo T

= lim ! Tspds = Py (27)
r—oo T 0
for all t > 0. So P%p = lim;_,o t* f(f T.Ppds = Py and lim; ot~ (I — T;)Pp = 0. Then
Py € D(A) and APy = 0. Hence P is a projection into ker A.
It follows from the above that R(P) C ker A. Conversely, let ¢ € ker A. Then Propo-
sition A.14 provides that ¢ — Ty = fot TsApds =0 for all t > 0. So

T T

1 1
p=1lim - [ ¢ds=lim - [ T,pds= Py € R(P)
0

r—oo 1 r—=oo T Jq

and one therefore deduces that R(P) = ker A.
Next we show that ker P = R(A). It follows from (27) together with the definition of
P that PT, =T,P = P for all t > 0. So PAp = limy ot ' P(I — T})p = 0 for all p € D(A)

and one consequently deduces that R(A) C ker P. Since

1 t
supl|5 [ Tas], <1

t>0

it follows that P € L£(Ls(T')). So ker P is closed and R(A) C ker P. Conversely, let 1 €
ker PN R(A)* and ¢ € Ly(T'). By Proposition A.13 one has that p — Typ = A fot Tspds €
R(A) for all t > 0. Then (T3, v¢) L,y = (¥, %) Loy for all £ > 0. Hence one deduces that

1" 1"
(P, ) ryr) = lim —/ (Tsp, V) 1oy ds = lim —/ (0, V) 1oy ds = (0, V) o)
T—>00 T 0 T—>00 T O

for all ¢ € Ly(T"). The choice ¢ = 9 then yields that ||7,D||%2(F) = (P,%)rymr) = 0. Hence
1 =0 and ker P = R(A).
Finally we prove that (A)L = ker A. Let ¢ € R(A)L and t > 0. Then (¢,¢ —

Tep)ary = 0. So (0, Tep) o) = 117, 1) and therefore

lo — Teolli,m = el 2w — 2Re(e, Teo) Lywy + 1Teoll T, ) = 1Tl — llell,m <0

since T is contractive. Hence ¢ = Ty for all ¢ > 0 and it follows that ¢ € ker A. This
completes the proof. O
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We are now able to prove that the semigroup S is uniformly mean ergodic. We argue
as in [ENOO] Corollary V.4.8 in order to obtain norm convergence of the Cesaro means.

Theorem 6.6. The semigroup S is mean ergodic. Moreover,
Ly(T) = Clr & R(N) (28)

and the limit .

P = lim ! S, dr

t—oo t 0

exists in L(Ls(T)).

Proof. We first show that A has closed range. Let A > 0. By Proposition 5.5(b) the
operator (Al +N)~! is compact, so by Proposition A.4 the operator I — A(AI +A)~! has
closed range. Since

NAMA+AN) =M +N =AM +N) =T - MM +N)!

and R((A] +N)™) = D(N), it follows that R(N) = R(N' (A +N)7!) is closed.

By Corollary 5.2(b) the semigroup S is contractive, so S is mean ergodic by Proposi-
tion 6.4. Moreover, the orthogonal decomposition (28) follows from Proposition 6.5, since
ker N' = C1r by Proposition 5.4(b).

We now show that P = lim¢~! f(f S, dr exists in the uniform operator topology. Using
Proposition A.13 we define V: Ly(I') — (D(N), || - |lx) by

1
vz/ S, dr,
0

where || - |5 is the graph norm on D(N). Then for all ¢ € Ly(T")
1 1 1
Vol =1 | Suparl+ I [ Srarle =1 [ Sioarl i + e = Sl

1
< / 1S, oty dr + [l + 1Sl acey < 3l acy
0

since S is contractive. So V € L(Ly(T), (D(N), || - [[w)). Since N has compact resolvent,
it follows from Proposition A.5 that the canonical injection ¢: (D(N), || - ||v) = Lo(T) is
compact. Hence the operator V=10VE¢e L(L2(F)) is compact.
It follows from (27) together with the definition of P that PS; = S;P = P for all t > 0.
So
PV(I — S, = P(I —S)Vip =0=P(I — S,

for all ¢p € Ly(I") and ¢ > 0. Let ¢ € Ly(I'). Then by (28) and the definition of the
infinitesimal generator —A/, there exist 7 € ker A/ and ¢ € D(N) such that ¢ = 7 +
limy o t~Y(I — Sy)y. Clearly Sy = for all t > 0, so

~ _ 1~ 1
PVip = PVr +lim S PV(I = S)v = P+ lim S P(I = S))¢ = Py
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and it follows that PV = P. For each ¢t > 0 write
1 t
C — ;/ S, dr € L(L(I)).
0

Then

Since lim C; = P strongly and Vis compact, it follows from Proposition A.6 that
lim [|C,V — Pl|a—s = 0. (29)
t—o0

On the other hand,

OV - C, = //ss dudr——/Sdr

S ([ [ s
s [Tsa s [ s

:%/0 (/t Srdr—/OSdr)d

for all ¢ > 0. Hence

. 1 1 t+u u
|CV = Cllase < ;/ H/ STdr—/ Sydrl],_, du
0 t 0
1 1 t+u u
< Z/ (/ \|s,n||2ﬁ2dr+/ [S:ll2me dr)du
0 t 0

%/;(/:Jrudr—i-/oudr)du:%

lim ||Ct‘7 - Ct||2_>2 =0.
t—00

IN

for all t > 0 and it follows that

Then by (29) and the triangle inequality, one deduces that lim Cy; = P uniformly. ]
Corollary 6.7. The ergodic projection P of S is given by
_ 1
Py = m(% ]1F>L2(F)]lr
for all p € Ly(T).

Proof. By Proposition 6.5 and Proposition 5.4(b), the ergodic projection P associated
with S is equal to the orthogonal projection onto Clr. O
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Next we prove that SP is uniformly mean ergodic. Since AP has compact resolvent,
it follows as in the first paragraph of the proof of Theorem 6.6 that R(NP) is closed.
Nevertheless, in the following proof we use Proposition 6.3 and argue as in [Lin74] in order
to obtain that AP has closed range without using that (A + NP)~! is compact.

Theorem 6.8. The semigroup S is mean ergodic. Moreover, RINP) = Ly(T') and

1 t
lim - [ SPdr=0

t—o00 0

in L(Ly(T)).

Proof. By Corollary 5.2(a) the semigroup S is contractive, so Proposition 6.4 provides
that S” is mean ergodic. Since ker NP = {0} by Proposition 5.4(a), it follows from
Proposition 6.5 that the ergodic projection of S is equal to the zero operator on Lo(T") and

R(NP) = Ly(T"). Moreover, by Proposition 6.3 there exists a § > 0 such that ||SP |52 <
e for all t > 0, so lim¢~* fg SP dr = 0 uniformly.

Since NP is injective, there exists a mapping (ND)_I: R(NP) — Ly(T) such that
(ND)_IND = I|ppy and NP (ND)_l = I|gp)- Moreover, since

1 b 1 5 1_675
H/osf dt||Hg/oe ar=1"Cm <,

one deduces that the operator fol I —SPdt € L(Ly(I)) is invertible. Let ¢» € R(NP) and
write NPy = ). Then Proposition A.14 provides that

1 -1 1 1 -1 1 t
@:(/ I—Sf’dt) /(I—Sf)godtz(/ [—Stht) //Sf?wdrdt.
0 0 0 0 0

Hence there exists a ¢ > 0 such that

NPy < rosrar) sy drar <<
1)l < (| 1=8Pdt) ool [ [ SPOdrdt], ) < Sl

for all ¢ € R(NP), since S is contractive. Then (A7) ! is bounded and densely defined.

Moreover, since the operator N'? is closed it follows that (M) ! is closed, so D((NP)™)
is closed in Ly(I") and therefore

RINP) = D((WP)™!) = D((NP)71) = RIN)

as required. O

Our final consideration for this section is irreducibility. Via holomorphy we subse-
quently obtain strict positivity of the Cy-semigroups S and SP, a fact proved first for the
L,-setting in [KR81] and then in [MR83] for an arbitrary Banach lattice.

A positive Cy-semigroup T' = (1;);=0 on Lo(I') is called irreducible if for every mea-
surable set I'j C I' such that

T,Lo(I'y) C Lo(T'y)

for all ¢ > 0, it follows that either o(I'y) = 0 or o(I' \ I';) = 0. Here we define Ly(I';) =
{p € Ly(T) : 9o =00-ae. on '\ T}
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Theorem 6.9. The semigroup S is irreducible. Moreover, for all p,v € Lo(T)* \ {0},

(St(107 ¢) Lo(T) >0
for allt > 0.

Proof. Let I'y C T" be a measurable set with o(I';) > 0 and o(I'\ I'y) > 0. Let ¢ €
Ly(T) T\ {0} and ¢ € Lo(T'\ I';)* \ {0}. Then by Corollary 6.7

1t 1
lim ; (STQDa w)[@(r) dr = (P907 w)LQ(F) - m(@, ]lF)LQ(F) . (]lr’l/})Lg(F) > 0.

t—o00 0

Hence there exists a ¢t > 0 such that (Syp, )z, > 0. Then
o({z €T \TI:(Sp)(z) >0}) >0,

so Syp & Lo(T'y) and S is therefore irreducible.

Next we prove that S is strictly positive. Let ¢ 1 € Lo(T)* \ {0}. With a view to
contradiction suppose that there exists a ¢ > 0 such that (Syp, ) r,r) = 0. Let (t;)nen C
(0,t) be such that limt¢, = 0 and ||(I — S;,)¢llz,m) < 27" for all n € IN. Without
loss of generality we may assume that t, # ¢, for all n # m. Write ¢, = S, ¢ and
En=9—> e, (@0—@r)". Then &, < ¢ for all n € N. Moreover,

Jin e = &allzar = B [ 36 = o0) ey =0

k=n

so im & = o™ = ¢ in Ly(T"). For all n,m € IN with m > n, one obtains that

Let n € IN and define f,,: (0,00) = C by f.(r) = (S:&!,¢) o). Then it follows from
Corollary 5.2(b) that f, is analytic. Since by Proposition 5.11 the semigroup S is positive,
one deduces that

0 < (St—tn &t V) o) < (St—ty,Prms V) Lo(0) = (St—tn St P2 ) La(r) = (St, ) Loy = 0

for all m > n. Then f,(t —t,) = 0 for all m > n, so (t — t)menm>n 1S & sequence of
distinct zeros of f,, with limit lim¢ —¢,, =t € (0,00). Hence f,, = 0. This is for all n € IN.
Therefore

(Sr, V) Loy = JLIEO(Srf:, V) o) = nlgf)lo fu(r) =0
for all » > 0, which contradicts the first paragraph. O

We conclude with the irreducibility of S” in the case where the coefficients (ay) are
symmetric. Since the form a” is then symmetric, the Dirichlet-to-Neumann operator AP
is self-adjoint and the semigroup S therefore consists of self-adjoint operators on Ly(T).
We follow the approach used in [AE15] in order to deduce that SP is irreducible. By the
positivity of SP and the following domination estimate, the task is reduced to having to
prove that the semigroup (e~*V: 3 )i>0 is irreducible.
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Proposition 6.10. Let R > Ry. Then
0< e’“vl?gp <SPy
for all ¢ € Ly(T)T and t > 0.

Proof. Let ¢ € Ly(T")*. Since by Proposition 2.15(d) the operator Tr is positive, it follows
from (22) together with Propositions 4.6(a) and (b) that

0< M +N o< AT+ NP)!
for all A > 0. Hence

0<eMip=lim (I + ND) "o < lim (I + ND) 0=2SPyp

- n—00 n—00

for all ¢t > 0. O

In order to obtain irreducibility of the semigroup (e V& );~o on Ly(T'), we consider the
semigroup generated by particular realisation in Lo (§2g) of the elliptic operator —> 0, (axOk).
The appropriate form domain is the following characterisation of W (Q) appearing in
Lemma 4.1.

Let R > Ry and define
Vi = {U S Hl(QR) : ]laBRTI'QRU = O}

Then H}(Qr) C Vg C HY(Q) and Vg is dense in Ly(Qg). We assume that a = ay, for all
k,le{l,...,d}. Let B € Loo(I',R). Define the sesquilinear form a%: Vr x Vg — C by

(u,v) Z/ a (Opu) 0w — /BTrRuTer.
Qr r

k=1

Then ag is continuous, elliptic, symmetric and densely defined in Ly(€Qg), so there exists
a lower-bounded self-adjoint operator Aﬁ in Ly(Q2g) associated with ag. It follows from
[Ouh05] Lemma 1.25 that

HY(QR)
D(AY) = Vi

and since Qg has Lipschitz boundary, by [EE87] Theorem V.4.17 one deduces that the
embedding Vg < Lo(2g) is compact. Therefore by Proposition A.5 the operator A’% has
compact resolvent.

Lemma 6.11. Let R > Ry. Then the following are valid.

(a) Let B € Loo(I',R). Then the semigroup (e_tAf%)bo on Ly(S2g) is positive and irre-
ducible.

(b) Let 51, 62 € LOO<F, R) with 61 < ﬁg. Then
0<e Ailu<e tA%u
for all u € Ly(Qg) with u >0 and all t > 0.
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Proof. We first prove (a). Since (Reu)t € Vj for all u € Vi and the coefficients (ay;) are
real-valued, [Ouh05] Theorem 4.2 provides that (e‘tA%)bo is positive.

Let E C Qg be a measurable set and suppose that 15Vz C V. Since C°(Qg) C Vi C
H'(QpR), it follows from [Are06] Proposition 11.1.2 that either |E| = 0 or |Qr \ E| = 0.
Let u,v € Vi and suppose that suppu Nsuppv = &. Then supp Trru N supp Trrv = I,
50 a%(u,v) = 0 and by [Ouh05] Corollary 2.11 the semigroup (e‘tA%)bo is irreducible.

We now prove (b). Since ; < [y, it follows that a%l (u,v) > a%’ (u,v) for all u,v € Vg
with u,v > 0. Moreover, by (a) the semigroups (e‘“‘f%l)bo and (e_tA%)bo are positive, so
[Ouh96] Theorem 3.7 provides that (e_tAf%Q)bo dominates (e_tAlﬁ%l)bo. O

In the following lemma we use the Krein-Rutman theorem together with the preceding
result in order to infer the existence of an eigenfunction of A% whose trace is strictly
positive a.e. on I'.

Lemma 6.12. Let R > Ry and f € Lo(I',R). Denote by A\ the smallest eigenvalue of
Ag. Suppose that u € D(A%) with u > 0 is an eigenfunction of A% corresponding to Aj.
Then (Trgu)(z) > 0 for a.e. z € T.

Proof. Note that since (e*tAg)bo is positive and A% has compact resolvent, the existence
of an element u € D(A%) such that v > 0 and A%u = A\u follows from the Krein-
Rutman theorem [BKR17] Theorem 12.15. By Lemma 6.11(a) the semigroup (e_tAg)bo is
irreducible, so Proposition A.16 provides that u(z) > 0 for a.e. x € Q. Then Trru > 0.
Define
A={zeTl:(Trgu)(z) =0}

and write §; = B+ 1. Then 8; € Lo(I',R) and

a/;g (u,v) = ulﬁ%(uv ’U) = (Alﬁ%u7 U)LQ(QR) = (Aluv U)LQ(QR)

for all v € V. Hence u € D(A%) and A%y = A\ju. Since u > 0 and A% is self-adjoint with
compact resolvent, it follows from Proposition 6.11(a) together with Proposition A.18 that
A1 is the smallest eigenvalue of A%. Moreover, by Proposition 6.11(b) one obtains that

AP _ AP
0<e™rw < e ™rw

for all w € Ly(Qg) with w > 0 and all ¢ > 0. Then A% = A% by Proposition A.17. Hence

/(Bl — B) Trpw Trgo = ab(w,v) — a (w,v) = 0
r
for all w,v € Vg. So B = B o-a.e., since TrgVg is dense in Ly(I"). Therefore o(A) =

J 81 — B =0 and the claim follows. ]

Theorem 6.13. Suppose that ay = ay, for all k,1 € {1,...,d}. Then the semigroup SP
15 1rreducible.

Proof. Let R > R,. We shall prove that the semigroup (e *V# ). on Ly(T) is irre-
ducible. Since by Proposition 5.11 the semigroup S? is positive, the claim then follows
from Proposition 6.10 together with [Ouh05] Theorem 2.9.
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Let I'y C I be a measurable set such that o(I';) > 0 and suppose that e_tNng(Fl) C

Ly(Ty) for all ¢ > 0. Then T' = (e_tN£|L2(1"1))t>0 is a Cp-semigroup on the closed subspace
Ly(Ty) of Le(T'), by [ENOO] Paragraph 1.5.12. Let —N; denote the generator of T'. Then

D(Nl) = {90 € D(NII%D) N Ly(I'y) 3N}?SO € L2(F1)}

and V] = N}?|D(N1)' Moreover, N; is a self-adjoint operator in Ly(I';) with compact
resolvent. Let u; denote the smallest eigenvalue of AV;. By the Krein—Rutman theorem
there exists a ¢ € D(N;) such that ¢ > 0 and Njp = p1p. Then by Lemma 4.1 one
deduces that there exists a u € Vi such that Trru = ¢ and

ap (u,v) = (NETrgpu, Trp) ) = (M Trgu, Trgv) ey = (i Trgu, Trgv) ey (30)

for all v € V. Since (Trg,(u7))|r = Trr(u™) = ¢~ = 0 and (Tro,u)|os, = 0, it follows
that Trg, (u™) = 0 and u~ € H}(Qr) C Vz. Then the choice v = u™ in (30) yields that
,quR IV(u)]? < aB(u™) = 0, so u~ is constant and it follows that u= = 0. Therefore
u > 0 and since ¢ # 0, one obtains that u > 0.

Now consider the form af on Vi with 8 = py1p. Then it follows from (30) that
a2 (u,v) = 0 for all v € Vg. So u € D(A?%) and A%u = 0. By Proposition 6.11(a) together
with Proposition A.18, one obtains that u corresponds to the smallest eigenvalue of A%.
Then ¢(z) = (Trru)(2) > 0 for a.e. z € I, by Lemma 6.12. Since ¢ € Ly(I'1), by definition
¢ =0a.e. on '\ Iy and therefore o(I'\ I';) = 0. O

Corollary 6.14. Suppose that ay = ay, for all k,l € {1,...,d}. Let p,9 € Ly(T')* \ {0}.
Then

(StD(P’w)LQ(F) >0
for allt > 0.

Proof. Since Corollary 5.2(a) provides that the semigroup S is holomorphic, by an ar-
gument similar to the second paragraph of the proof of Theorem 6.9, it suffices to verify
that there exists a ¢ > 0 such that (SPy,¥)r,r) > 0.

Suppose to the contrary that (SP, V) oy = 0 for all t > 0. Write I'y = IT"\ supp 4.
Then o(I'\ I';) > 0. Moreover,

T D _
(0, V) Loy = 1;551 (St 90>¢)L2(F) =0

So ¢ € Lo(I'y) and since o(supp ¢) > 0, it follows that o(I';) > 0. Hence there exists an r >
0 such that SPp ¢ Ly(T'y), since SP is irreducible. Then o({z € suppv : (SPp)(z)>0})>0
and it follows that (SP¢,v)r,r > 0, a contradiction. O
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7 The heat kernel on >y x I' x I

Our final endeavour is to examine the heat kernel associated with the Dirichlet-to-Neumann
operator. We prove joint continuity of the kernel on ¥y x I' x I', a result that seems yet to
appear in the literature, even for the case ay = dx;. It is well known that for second-order
elliptic operators, the asymptotic behaviour of the heat kernel depends on the nature
of the specified boundary conditions. This observation remains valid in the case of the
Dirichlet-to-Neumann operator.

In this section we prove the following. Recall that 67,6 € (0, 7] denote the angles of
analyticity for the holomorphic semigroups S? and S, respectively.

Theorem 1.3. (a)  There exists a continuous function KP: Yoo x I' x I' = C such that

(SPo)(wy) = /FKf(w1;w2)S0(w2)dw2

for allwy €T, p € Li(T') and z € ¥yp.
(b)  The map z — KP(wy,ws) is analytic on Ygo for all wi,wy € T.
(c)  Forall 0" € (0,07) there exist ¢,6 > 0 such that

K2 prxr) < c(Re z)~(d-D I Rex
for all z € g

Theorem 1.4. (a)  There exists a continuous function K: Ygn X I' x I' = C such that

(S.9)(wn) = / K (w, w) o (ws) duws

for allwy € T, ¢ € Ly(T") and z € Eyn .
(b)  The map z — K,(wy,ws) is analytic on Ly~ for all wy,wy € T.
(c)  Forall 0" € (0,0N) there exists a ¢ > 0 such that

| K| oorxr) < ¢ (1 ARe z)*(dfl)
for all z € Xy

Existence of the heat kernel follows from ultracontractivity of the semigroup, which we
verify first. We then prove the above and subsequently obtain that the semigroups S and
SP leave C(I') invariant, before deducing that S decays uniformly and at an exponential
rate to its associated ergodic projection P. Using this result we prove that for all § €
(0,6Y), the family (K).es,, converges uniformly to ﬁlpxr in the limit |z| — oo.

2(d—1)

@) > 9,

Throughout this section we fix s =

Lemma 7.1. There exists a ¢ > 0 such that

|| T w|

L) < cfjul|lw

for allu e W(Q).

65



Proof. Since Qg, is a Lipschitz domain, it follows from [Ne¢12] Theorem 2.4.2 that the
map Tro, : H'(Qg,) — Ls(0Qg,) is bounded. Hence by Proposition 2.11(d) there exists
a ¢ > 0 such that

[Trullr ) = [|Trr, (ulag zor) < Trag, (ulog )L @0m,)
< N Trap, e @ay) Lo@9m,)) [tlor, 1 @p,)
, )\ 172
< o @y aomagn ([ 190P+ [ 1P)" < clulway
0 Qn,
for all u € W(Q). O
Lemma 7.2. (a) SPLy(T') € D(NP) for allt > 0. Moreover, there exists a ¢ > 0 such
that
INPSPlgme < et
for allt > 0.

(b)  SiLs(T') € D(N) for all t > 0. Moreover, there exists a ¢ > 0 such that
INSillame < et
for allt > 0.

Proof. We prove (a). Let t > 0 and ¢ € Ly(T"). By Corollary 5.2(a) the semigroup S? is
holomorphic, so the map r +— SP¢ is differentiable on (0,00). Then the limit

. 1 D D . 1 D D

lim (1 = 5) ¢ = lim - (57¢ = Siup)
exists and therefore SPp € D(NP).

Note that by Corollary 5.2(a) there exists a 6 € (0, 3] such that S” is contractive and

holomorphic on the sector ¥y C C. Let ¢ > 0 and write r = %t sin@. Define v: [0,27] — %
by v(s) =t + re®*. Then

d 1 SP
— DSD:—SD:—/—Zd
NS et 2mi ) (2 —t)? -

by Cauchy’s formula and it follows that

252 1 2
r  tsinf

1 27 SD ie
INPSPlama < —/ —H e ds <
0

~ 27 |rets|

as required.
The proof of (b) is similar. O

The semigroups S and S are ultracontractive.

Proposition 7.3. (a)  There exists a ¢ > 0 such that
ISP l2s < ct™12

for all t > 0.
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(b)  There exists a ¢ > 0 such that
I1Selloss < ct™'/2
for all t € (0,1].

Proof. We first prove (a). Let ¢ > 0 be as in Lemma 7.1. Note that by Lemma 7.2(a)
there exists a ¢; > 0 such that |[NPSP||s_s < it forallt > 0. Let t > 0 and p € Ly(T).
Then Lemma 7.2(a) provides that SP¢ € D(NP), so by Proposition 5.1(a) there exists a
u € WP(Q) such that Tru = SP¢ and aP(u,v) = (NPSPp, Trv) ) for all v € WP(Q).
Since the form a® is coercive, the choice v = u yields that

[\

2

c c
ISPl ) < Clulfynie) < 5 Rea® () = & Re (WPSP0, 570) .
Therefore
D |2 ¢ D oD D c? 1 2
1S ry < E”N Sy el Loy 157 el Lary < ;Clt eIz,

since S is contractive.

We now prove (b). By Lemma 7.2(b) there exists a ¢, > 0 such that [|N'S;||ae < cot™!
for all t > 0. Let t € (0,1] and ¢ € Ly(I"). By an argument similar to the above together
with Lemma 3.1, one deduces that there exists a ¢ > 0 such that

1Sl L) < c(Re (NSep, Se) 1, 1y + 12 Lry)
< cleat™ + DIz, < elez + Dt lpllz,m
as required. O
Lemma 7.4. (a)  There exists a ¢ > 0 such that
1S l2s00 < ct ™0/

for allt > 0.
(b)  There exists a ¢ > 0 such that

1Stllo-s00 < (L A )71/
for allt > 0.

Proof. We first prove (a). Let ¢ > 0 be as in Proposition 7.3(a) and let p € [2,00). Since
by Proposition 6.1(a) the semigroup S is L.,-contractive, by Proposition A.10 one has

ISP llpze < 1SP1152, [P lleton < 2ot (31)
for all t > 0.
ForeachnG]Nowrltet =5 >0 and p, = 2(3)" € [2,00). Then ) t, =1
and ano o= 2(55_ 5 = d21 Moreover, limp, = oo and since p,41 = %*, it follows from
(31) that

HStD Hpn"pn-kl S 02/p’ﬂt71/pn
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for all ¢ > 0 and all n € INy. Note that

2\" 2\"

for all n € INy. Therefore >~ logt, Ypn — 50 and it follows that there exists a c1 >0
such that [[)",tn Upn _ c1. Hence by the semigroup property

oo o
157200 = 1521, 200 < TT 1152, lpuspsa < TT /P (tt)7V/Pm = et =@

n=0 n=0
for all t > 0, where ¢, = ¢ l¢y.
We now prove (b). Let ¢ > 0 be as in Proposition 7.3(b). Since S is contractive, it

follows that for all ¢ > 1 one has

1Stll2—s < |[S1]]2=ss [|St=1]l2—2 < c.

Therefore ||Sy||a—s < ct™1/2e for all t > 0. Write T; = e~%S,. Then ||T}||o—,s < ct~/2 for all
t > 0. Hence by an argument similar to the proof of (a), one deduces that there exists a
c1 > 0 such that ]S ||la00 = [|T3]l2500 < c1t7@ Y72 for all t > 0. Then for all ¢ € (0, 1]

1154|200 < cret™@1/2 = ¢y~ (d=1/2,
where ¢o = cje. By the contractivity of S once again, it follows that for all ¢ > 1

|Stll2=00 < ISt 200l St=1]|2—2 < co.

This proves the claim. ]
We are now able to prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. We first show that S” maps Ly(T) into C(I"). Let ¢t > 0 and
¢ € Ly(T). Then Sy € D(NP) by Lemma 7.2(a). Let A > 0 and write ¢ = NPSPp +
ASPo. By Proposition 5.1(a) there exists a u € WP () such that Tru = SLp and

aD(u,v)—l—)\/

T

Trum:/wm
I

for all v € WP(Q). Then u = BPvy. Moreover, ¢ = SPNPSPp + ASLp € L (T) since
SP € L(Ly(T), L(I')) by Lemma 7.4(a). Hence u € C(€) by Theorem 1.1(a) and it
follows that SI¢ = Tru € C(T'). Then SPLy(T') C C(T) for all t > 0. Now let z € Xgb.
Then there exists a t > 0 such that z —t € ¥yp, so

SPLy(T) = SPSP ,Ly(T) ¢ SPLy(T) ¢ C(I).

Therefore SPLy(I') € C(T) for all z € Ygo.
Let ¢t > 0. In order to prove Statements (a) and (b) we shall show that for all z € ¥yp,

the operator S, , has akernel K}, : I'xI" — C such that the map (z, wy, wa) — K, (w1, ws)
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is continuous on Yyp X I' X I', and for all wy, wy € T" the map z — K£+Z(w1, wy) is analytic
on Yyo. Then the claim follows from the fact that ¥yp is open in C.

By Lemma 7.4(a) the operator SP is bounded from Lo(T') into C(T), so the Riesz
representation theorem provides that for all w; € I' there exists a kfull) € Ly(T") such that

(StDW)(wl) = (¢, k'Eull))Lg(F)

for all ¢ € Ly(I"). Then

kD oy = sup [(SP)(wi)] < ISP nsrysem) < 00
llelly <1

for allw; € I, so sup,, er kal HL2 < 00. Moreover, since SP¢ € C(T) for all p € Lo(T), it
follows that the map w; — kb, is Weakly continuous from I' into Ly(I"). By Lemma 7.4(a)
together with duality one has that SP € L(Ly(T'), Lo(T)), so by the Dunford—Pettis
theorem [DP40] Theorem 2.2.5 the operator S has a kernel in Lo, (I'xT). Since o(T") < oo,
it follows that SP is Hilbert-Schmidt and therefore compact. Hence the map w; — SP sy
is continuous from I" into Ly(I"). By duality one similarly deduces that for all wy € T" there
exists a ki € Ly(T") such that

(S @)(wa) = (¢, kD) o)

for all ¢ € Lo(I'), and that the map wy StD*k%) is continuous from I' into Lo(T).
Moreover, for all T € £(L(I')) and ¢ € Ly(T') one has that

(SPTSP)(wi) = (TSP, kD) ey = (0, SP T kD) 1y

:/F o(ws) (SP T kD) (ws) dws

/ (Tk:q(ji), k:full)) )gp(wz) dw,
r

for all wy € T, since

D*rpx (1 (1) 1)
(St T k’t(ul))( ) (T kwl ) kﬂ)z)L (F (k1(U1 ) Tk ) Q(F)
for all wy €T'.
Now let z € Eyp and define K}, ,: T' x I' — C by
Ky (wi,ws) = (SDSDsz Sk )L2(r)'

Then || K2, .|l1.rxr) < 00, since sup,,, cr [k} ||,y < 00 and sup,,cr Ik | Lor) < oo.
Write T' = SPSPSP € £(Ly(T)). Then for all ¢ € Ly(I)

(S£+z¢)(w1) = (SETSPSO)(M)
/F ( ]{1022 Y k’wl )LQ(F)SO(wZ) de
/F (SPSPSPER) kD) Loy P (w2) duws
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/ dt+z wl,w2 Sﬁ(w2)dw2

for all wy € I'. Moreover, by Lemma 7.4(a) together with duality one obtains that S5, , €
L(Ly(T), Ly(T)), as S is contractive on Sgo. So Sf, . € C(T') for all ¢ € Ly(T') and by
density one deduces that

caﬁwwaz/Kﬂxmmmammm
T

for all wy € I and ¢ € Ly(I"). Finally since the maps wq — ka%) and w; — SP* k:l(,,ll) are

continuous from I" into Ly(T"), and by Corollary 5.2(a) the map z + S? is continuous from
Yo into E(LQ(F)), it follows that the map

(z,wy, ws) — (SDSDk SD* (1)) Lo(r) = Kty (w1, wo)

is continuous on Sgo x I' x I'. Moreover, since SPk) € Ly(T') and SP kL) € Ly(I') for all
w1, wy € T', by Corollary 5.2(a) once again one obtains that the map z — K, (wq, ws) is
analytic on ¥yp for all wy, wy € I'. This proves Statements (a) and (b).
We now prove (c). Note that by Lemma 7.4(a) together with duality, there exists a
¢ > 0 such that
ISP s se0 < ct~-1/2

and
152|152 < et~ @D/

for all t > 0. Let ¢ € (0,0P). Then there exist 6, € (¢/,0”) and x € (0,1) such that
Kkt 4+ 1is € Xy, for all t +is € Xy. Moreover, by Proposition 6.3 there exists a 6 > 0 such
that ||SP a2 < e 2Re= for all 2 € y,. Let 2z € Sy and write z = t + is. Then

HSzDHl—mO < ||S§(17,€)t”2—>oo ||S£€+is||2—>2 ||S%D(17,€)t||1—>2
< 62(%(1 . K)t)—(d—l)e—cmt
= ¢ (Re Z)—(d—1)6—61 Rez

where ¢; = ¢22%771(1 — k)@Y and §; = dx. Hence by Statement (a)

K2 || rxry = sup [|KP (w1, )|lem

w1 €l

= sup {’ / K2 (wy, we)p(ws) dws| : € Ly(T), [0l ry < 1 and wy € I‘}
r

= sup {|(S7¢)(w)| : ¢ € Li(D), [[¢l £,y <1 and wy € T}

= sup {[|S7¢]l ) : ¢ € Lo(T) and [Jollz, @y < 1}

- ||Sz ||1—>oo < C1(Rez)_(d_ )6—51Rcz

as required. O
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Proof of Theorem 1.4. Statements (a) and (b) follow from arguments analogous to the
proofs of the corresponding statements in Theorem 1.3. We prove (c). Let ¢ € (0,0V).
Then there exist 6y € (6/,60") and x € (0,1) such that kt +is € 3y, for all t +is € Jy.
Arguing as in the proof of Theorem 1.3(c), one deduces from Lemma 7.4(b) that there
exists a ¢ > 0 such that

”SZHl—mo < C(l A %(1 — /g) Re Z)f(dfl) < 01(1 A Re Z)i(dil)

for all z € g/, where ¢; = ¢2%71(1 — k)@Y, The estimate for | K|l oo (rxr) then follows
as in the proof of Theorem 1.3(c). O

The semigroups S and S” leave C(T') invariant.

Corollary 7.5. (a) Let z € Syn. Then SPC(I") C C(I).
(b)  Let z € ¥gn. Then S,C(I') C C(T).

Proof. In the above we have proved that S and S map Ly(T") into C(T'), so the corollary
follows from the fact that C'(I') C Lo(T). O

By the proof of Theorem 1.3, the semigroup S consists of compact operators on Lo(T).
Because SP is ultracontractive, this property is inherited by the extrapolation semigroup
SD:®) on L,(T) for all p € [1,00]. Indeed, as SP is contractive on both L (") and L. (T)
and is continuous from L;(T") into L (T'), an interpolation argument yields that SP maps
L,(T") continuously into L,(I") for all p,q € [1,00] with p < ¢. Since o(I') < oo, it then
follows from the factorisation

D,(p)
t/3

sb SD.
L, () Loo(I) = Ly(D) & Ly(T) 25" Loo(T) — L,(T)

that StD P) i compact for all ¢ > 0. One similarly deduces that the semigroup S® consists
of compact operators on L,(I') for all p € [1, 00].

We denote by K” and K the kernels as introduced in Theorems 1.3 and 1.4. The
domination of S? by S yields an analogous relationship between the kernels for real time.

Proposition 7.6. Lett > 0. Then
0< KtD(w1,lU2) < Kt(wl,UJz)

for a.e. wi,wy €T

Proof. Note first that K;, KP € Lo (I' x T') are positive by [AB94] Proposition 1.9(a),
since by Proposition 5.11 the semigroups S and S” are positive. Write S, =8, — SP.
Then S,Ly(I)* C Ly(I)* by the domination estimate in Proposition 5.11. Write K, =
Ki— KP € L o(I' x T). Then

(Sup) (wr) Z/FKt(wlawz)%D(wﬂdw?—/FKtD(whm)sO(wQ)dwz

= / fN(t(wth)sO(Uh) dws
r
for all w; € T and ¢ € Ly(T'). Hence K, is positive by [AB94] Proposition 1.9(a). O
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By Proposition 6.3 the semigroup S” converges in the norm topology to its ergodic
projection 0 € E(LQ(F)) at an exponential rate. The semigroup S and its associated
1

ergodic projection P: ¢ — m(cp, 1r)p,m I exhibit similar behaviour.

Proposition 7.7. For all §' € (0,0") there exist ¢,0 > 0 such that
1S, — Pllase < ce 2R

for all z € Xy

Proof. Note that by Proposition 5.11 and Theorem 6.9 the semigroup S is positive and ir-
reducible. Let t > 0. Since o(I') < oo and by Lemma 7.4(b) one has S; € L(L1(I'), Lo (I)),
it follows from the Dunford—Pettis theorem that S; is compact. Moreover, duality together
with Proposition 5.4(b) provides that ker N* = ker N' = C1r. Hence by [Are08] Theo-
rem 4.5 there exist ¢,d > 0 such that

ISt — Pllas2 < ce™%

for all t > 0.

It follows from (27) together with the definition of P that S;P = PS; = P for all
t > 0. Define f: Sgv — L(Ly(T')) by f(z) = S.P — PS.. Then f|() = 0. Moreover,
by Corollary 5.2(b) the function f is holomorphic on the connected open set Yyn C C,
so f = 0 on Xy~v. By a similar argument, one deduces that the map z — S,P — P is
identically zero on Yg~. Therefore S,P = PS, = P for all z € Yy~.

Let 6 € (0,60"). Then there exist 6y € (6',60") and x € (0,1) such that st + is € X,
for all t +is € Xg. Let z € Yy and write z =t +is. Then

SZ —P= Sfit-i—iSS(l*K/)t - S,‘it-‘r’iSP = Snt—i—is(s(lfn)t - P)
and
1S: = Pllass2 < ||Skttisllo—2 1Syt = Pllams2 < ce 0=t
since S is contractive on ¥y~. This proves the claim. O

It follows from Theorem 1.3(c) that for all ¢ € (0,6), the family (KP).ex,, converges

z

uniformly to zero in the limit |2] — oo. Our final result implies that for all & € (0,0V),

the family (K).ex, converges to ﬁ in a similar manner.

Theorem 7.8. For all 0’ € (0,0") there exist ¢,d > 0 such that
1K = i llraxr) < (LA Rez) (7 De0Re
for all z € Xy

Proof. Note that by Corollary 6.7, the ergodic projection P associated with S extends to

an operator on L (I") defined by Py = ﬁ(fr ©)1r, where we continue to denote by P

the extension to Ly (I"). Then Theorem 1.4(a) provides that for all z € ¥y,
(5. = Pe)uwn) = [ Kl usholuw) du — str(un) [ ol in(us) du
r r
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— [ Kt wa)eun) = eytelwnplwn) i ws) du

= / (KZ — ﬁ]ll‘xl“)(wwa%O(w?) dw,
r

for all w; € T" and ¢ € Ly(I"). Moreover, by Lemma 7.4(b) together with duality, there
exists a ¢g > 0 such that
ISe]l2—00 < co(1 A L)@

and
1Sll1m2 < co(L A L)~ W1/2

for all t > 0.
Let 0 € (0,60"). Then there exist 0y € (6/,0") and x € (0,1) such that kt + is € ¥,
for all t +is € ¥g. Moreover, by Proposition 7.7 there exist ¢, > 0 such that

IS. — Pllase < ce?Re?
for all z € ¥y,. Let z € ¥y and write z = ¢ + is. Then

S: = P = Si-nuSwrrisSya-ne = P

(1—H)tSHt+iSS%(1—H)t - S%(l—m)tPS%(l—n)t

%(1_,{)75(55754-2'5 - P)S%(l—fi)t

and it follows that

155 = Pllisee < HS%(l—n)t”2—>00 [Skt+is — Plla—s2 HS%(l—n)t”1—>2
< eI A L1 = k)t)~ @ Deont
< c1(1 ARez) (D o1 Rez

—(d-1)

where ¢; = c2c297 (1 — k) and 6, = . Hence

K, — ﬁHLw(FxF) = sup [|(K. — ﬁﬂrxr)(’wb e

wi €l

= sup {|((S: — P)p)(w1)| : ¢ € Li(T), @llz,ry < 1 and wy € T'}

= ||SZ - P||1—>oo < Cl(]- A Re Z)_(d_l)e_‘sl Rez

as claimed. O
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A Appendix

In this section we gather various auxiliary facts from functional analysis.

Sobolev spaces

The following result is known as the Neumann-type Poincaré inequality.

Proposition A.1. Let Q C R? be a bounded Lipschitz domain. Then there exists a ¢ > 0

such that
/|u—<u>|ZSc/ IVl
Q Q

for alluw € HY(Q), where (u) = ‘51' Jou.
Proof. See [GP05] Theorem 2.5.21 and Remark 2.5.15. O

Proposition A.2. Let Q C R? be a bounded Lipschitz domain and let B C R? be an open
set with Q@ C B and |B| < co. Then there exists a bounded operator E: H'(Q) — H'(B)
such that (Eu)|q = v and Elg = 15.

Proof. By [AF03] Theorem 5.24 (see also [Ste70] Chapter VI) there exists a bounded
operator Ey: HY(Q) — H'(R?) such that (Equ)|q = u. Define Ey: HY(Q) — H'(B) by
Eiu = (Egu)|g. Then E; € L(H' (), H'(B)) and (Eyu)|q = u. Define P: H'(Q) — Clqg

by
Pu = ﬁ(/{zu]kz)]lﬂ

Then P € L(H'(2)). Define E: H'(Q) — H*(B) by

1
Eu = El(U_PU)_'_‘ﬁl(/S;U]lQ)]lB.

Then E € L(H'(2), H'(B)) and

1
(Eu)lq :u—Pu—l——(/u]lQ>]lg = u.
Q[ \ Jo
Moreover,
1
Elo = Ei(lg —10) + —(/ 19)113 — 1y
9\ Jo

as required. 0

Banach spaces

Proposition A.3. Let X be a normed linear space and Y a Banach space. Let D denote
a dense subspace of X and let T € L(D,Y). Then there exists a unique T' € L(X,Y) such
that T|D = T cmd ||T||£(X7y) = ||T||£(D7y).
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Proof. The case T' = 0 is trivial. Write M = ||T|zp,y) > 0 and let € > 0. Let
x,x1, T2, ... € D and suppose that limz,, = z. Then (z,),en is a Cauchy sequence and
there exists an N € IN such that for all n,m > N one has that ||z, — 2,,|x < 7. Hence

Tz, — Tanly < M|z, —zn]x <e

for all n,m > N. Then (Tx,),en is a Cauchy sequence in Y and is therefore convergent,
since Y is complete

Define T: X — Y by Tz = limTz,. Let € X and (Zn)nen, (Wp)new € D be such
that limz,, = x and limw,, = x. Then the sequences (Tx,),en and (Twy,),en are Cauchy
in Y and it follows that there exist y, z € Y such that lim T'z,, = y and lim T'w,, = z. Then

ly — z|ly = lim ||Tx, — Tw,|| < M lim ||z, —w,|x =0,
n—oo n—oo

so y = z. Therefore T is well-defined. Note that for all # € X , by density there exists a
sequence (mn)nem in D such that limz, = x. Moreover, it is easy to see that T is linear
and T|p =

Next we prove that ||T||[;(Xy = ||T||z(p,y)- Clearly

Ty

> |7 zpy
cex\(o) 1Zllx (DY)

since D C X and TV|D =T. Let z € X and let (z,)n,enw be a sequence in D such that
limz,, = z. Then

[ Tally = tim [ Teally < 1T lcwy i ey = [Tl 2l x.

SO HTH£ x,v) < ||T|lzp,yy and equality follows.
Finally we prove that 7" is unique. Let 7 € £(X,Y) and suppose that T|p = T Let
r € X and let (z,)n,en be a sequence in D such that limz,, = . Then

Tr=lim Tz, = lim Tz, = lim Tz, =Tx
n—oo n—oo n—oo

and it follows that T = T O]

Proposition A.4. Let T be a compact operator on a Banach space X and let A € C\ {0}.
Then NI — T has closed range.

Proof. Since T is compact it follows that dimker(Al —7T') < oo and there exists a closed
subspace M of X such that X = ker(A — T) & M. Write S = (A — T')|p. Then
S € L(M,X) is injective and R(S) = R(AM —T).

Next we show that there exists an r > 0 such that

rllz|l < [|Sz] (32)

for all x € M. Suppose to the contrary that for each n € IN there exists an x,, € M such
that ||Sz,|| < Ll|lz,||. Without loss of generality we may assume that [|z,| = 1 for all
n € N. Then lim Sz,, = 0 and the sequence (z,),en is bounded. Since T is compact, by
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passing to a subsequence if necessary we may assume that there exists a y € X such that
lim Tz, = y. Hence
lim Az, = lim (S+T)z, = y.

n—oo n—oo
Then y € M, since (Ax,,)new € M. Therefore Sy = Alim Sz,, = 0, so y = 0 and it follows
that 0 = ||ly|| = lim |A|[|z,|| = |A| > 0, a contradiction.
Now let y € R(A —T') = R(S). Then there exists a sequence (z,)en in M such that
lim Sz, = y. So (Sxy,)nen is a Cauchy sequence in X and it follows from (32) that (2, )nen

is a Cauchy sequence in M. Since M is closed there exists an x € M such that limzx, = x

and because S is bounded it follows that y = lim Sz, = Sz € R(S) = R(A\ = T). O
Proposition A.5. Let A be a closed operator on a Banach space X with p(A) # &. Then
A has compact resolvent if and only if the canonical injection v: (D(A), || - ||a) — X is
compact, where || - ||4 is the graph norm on D(A).

Proof. Suppose first that A has compact resolvent. Let (z,)n.en be a bounded sequence
in (D(A),]| - |la) and let A € p(A). For each n € IN write y,, = (A — A)x,. Then there
exists an M > 0 such that

[ynllx < (A + Dllzalla < (1A +1)M

for all n € IN. Since the operator (A — A)™': X — X is compact, it follows that the
sequence (T )pneNn = (()\I — A)_lyn)nem is contained in a subset of X with compact closure,
and therefore admits a convergent subsequence in X.

Conversely, suppose that the injection ¢ is compact and let A € p(A). Since

—AMN —A) P =N - A+ M) — AL =T4+ AN - A
it follows that
I = A) 7 afla = [(M = A) " allx + [lo + MM — A) 7 a||x
< (T4 @+ ADIAT = A7 o)l x

for all z € X. Hence (Al — A)™' € L(X,(D(A), |- ]|4)) and it follows that (A — A)~ =
to (M —A)™': X — X is compact. O

Hilbert spaces

Proposition A.6. Let H be a Hilbert space and let T, Ty, Ts,... € L(H). Suppose that
Um T, =T strongly and let K € L(H) be compact. Then lim T, K = T K uniformly.

Proof. Suppose to the contrary that there exists a § > 0 such that for each N € IN, there
exist n > N and x € H with ||z|| < 1 such that ||(T'— T,,)Kz| > 0. Then there exist
ny < ng < ...and asequence (zy)gen in H such that ||zx|| < 1 and |[(T—T,, ) Kzy| > ¢ for
all £ € IN. Passing to a subsequence if necessary, we may assume that (zy)ren converges
weakly in H. Then since K is compact, there exists a y € H such that lim Kz, = y. So

(T = T ) K| < (T = T )yl + (T = T ) (K k= w)l|

ST = Tyl + T = Tl eom 1K 2 =yl
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By the uniform boundedness principle, the sequence (75, )ren is bounded in £(H). Hence
d <lim||(T — T,,)Kzk|]| = 0, a contradiction. O

Proposition A.7. Let Hy and Hy be Hilbert spaces. Let T,Ty,Ts,... € L(Hy, Hs) and
suppose that T is compact. Suppose that for all x,x1, 2o, ... € Hy with limx, = v weakly
in Hy, it follows that imT,x,, = Tx in Hy. Then UimT, =T in L(Hy, Hs).

Proof. Suppose to the contrary that there exists an 6 > 0 such that for each N € N,
there exist n > N and x € Hy with ||z||g, < 1 such that ||(T — T,)z||g, > 0. Then there
exist ny < ng < ... and a sequence (xy)rew in H; such that |[(T' — T, )zk|lm, > 0 for all
k € IN. Since (xx)ren is bounded in Hy, there exist a subsequence (zy, )iew of (2 )ren and a
y € H; such that limz;, = y weakly in H;. Then lim Ty, wx, = Ty in Hy. Moreover, since
T is compact it follows that im T'zy, = Ty in Hy. Then § < lim ||(T" — T,%l)xleH2 =0, a
contradiction. ]

The following product rule is well known.

Proposition A.8. Let H be a Hilbert space. Then

d 2 /
d_tHu(t)H = 2Re (u/(t),u(t))
for all uw € C((0,00), H).

Proof. Observe that

o1 2 2) —
tim L (Ju(t+ W — [u(OIF) = tim *((ute

as required. O

L,-spaces

Proposition A.9. Let X denote a measure space. Let p,q,r € [1,00] and 0 € [0,1] be
such that p <r < q and

10,1
r . p q
Letw € L,(X)N Ly(X). Then u € L.(X) and the estimate

lullz. ) < Mlullz, oollullz ()
18 valid.

Proof. Without loss of generality we may assume that § € (0,1). Since u € L,(X) it

follows that .
L r
(f1P=%) " =l < .

7



0 . ra-0)
So [ul’» € L» (X). One similarly deduces that [u|*"

r(1-6)

€ L_a(X). Then since % +

= 1, Holder’s inequality provides that

ol = [ s

as required. N

r(1—6
<l ol )

Proposition A.10 (Riesz—Thorin). Let X denote a o-finite measure space and let
P1,P2,q1, G2 € [1,00] and 6 € [0, 1] be such that

16 1-6 1 6 1-0

- =—+ and - =—+ .

Y2 % P2 9 @ a2
Let T Ly, (X) + Lp,(X) — Loy (X) + Lgy (X) be such that T'|p, (x) € L(Lp, (X), Ly, (X))
and T|p, (x) € L(Lpy(X), Lgy(X)). Then T|p,x) € L(Ly(X), Ly(X)) and the estimate

1T llp—q < Ty g0 I T 1

P1—q1 p2—>Q2

is valid.
Proof. See [LZ12] Theorem 3.16. O

Proposition A.11. Let U C R? be an open set. Let u € Ly(U) and suppose that there
exists a ¢ > 0 such that

[ vl < ellellwy
U
for allv € Ly(U) N Loo(U). Then u € Ly(U) and ||ul|r, @) < c.

Proof. Suppose to the contrary that [, |u| = co. Then

sup {/ lu| : K C U is compact} =
K

Write T = {x € C*(U) : x > 0 and || x||z..) < 1}. Then [HR79] Theorem 12.14 provides
that

sup/|u|x=oo.
X€T JU

Let x € T and write v = (sgnu)yx. Then v € Ly(U) N Loo(U) and ||v||z @) < 1, so

/|u|X:/ u(sgnu)y |/uv|<c
U

Therefore [, Julx < ¢ for all x € T, a contradiction. Hence u € Ly(U). Moreover,
[HR79] Theorem 12.13 provides that

Jullor = sup {] [ wxl s x € C2(0) and | < 1)
U

and it therefore follows from the hypothesis that |lu|/z,) < c. O

The following is a particular case of [EL17] Lemma 2.1.
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Proposition A.12. Let U C R? be an open set and let T € E(LQ(U)). Suppose that there
exists a ¢ > 0 such that ||Tulle < ¢||ulloe for all w € Lo(U) N Loo(U). Then there exist

unique operators T € L(L1(U)) and T € L(Lw(U)) such that Tlrinn, = T|nnn, and
T\rane = Tlronr., - Moreover, T = (T)* and ||T'|| z(r. ) < c.

Proof. Let u € Li(U) N Ly(U). Then
(T, 0)| = |(u, Tv)| < [lull [Tl < elfuflfv]lo

for all v € Lo(U) N Lo (U). Hence T*u € Ly(U) and ||T*ul|; < ¢||u||; by Proposition A.11.
Then T%|,nr, is bounded from (L, (U) N Lao(U), || - ||1) into L1 (U) and since L1 (U) N Ly (U)
is dense in L;(U), it follows from Proposition A.3 that there exists a unique Tecl (L1(U))
such that ﬂLng =T 1,nL,-

Define T: Loo(U) = Loo(U) by T = (T)". Let u € Ly(U) N Lo(U). Then

(Tu,v) = (u,Tv) = (u,T*v) = (Tu,v)

for all v € Ly(U) N Ly(U). So (Tu,v) = (Tu,v) first for all v € Ly(U) N Ly(U) and then
for all v € L (U) by density. Hence T|p,nr. = T|r.nL. -

We now show that the operator T is unique. Let T € £ (Lso(U)) and suppose that
T)ionte = Tlronre- Let u € Loo(U). Since Ly(U) N Loo(U) is w*-dense in Lo, (U), there
exists a net (uq)acr in Lo(U) N Loo(U) such that limu, = w in (Lo (U), w*). Then

(Tu,v)y = lalg} (Tug,v) = Eg} (Tug,v) = lalg} (Tug,v) = (Tu,v)

for all v € Ly(U), so Tu = Tu and T is consequently unique. Finally, let u € Lo (U).
Then
[(Tw, v)| = [(u, T*0)| < c|lull [[v]lx

for all v € Ly(U) N Ly(U). So [(Tu,v)| < ¢||ulls |1 first for all v € Ly(U) N Ly(U) and
then for all v € L, (U) by density. Therefore ||T||z(z.. ) < ¢ as required. O

Ch-semigroups

Proposition A.13. Let T' = (T})i~0 be a Cy-semigroup on a Banach space X with gener-
ator —A. Lett > 0. Then [; Toxds € D(A) and

t
A/ Tixds =2 —Tx
0

forallz € X.

Proof. Let x € X and h > 0. Then

</0t Toxds — /Ot Tsinx ds)
t Toxds — o T,xds
0 h
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t t t+h h
</ T,xds — </ Tsa:ds—i—/ Tsxds—/ Tsa:ds)>
0 0 t 0
h t+h
</ Tsxds—/ Tsxds>
0 t
h h
(/ Tsxds—Tt/ Tsxds)
0 0

1 [h
:(I—Tt)—/ Tsx ds.
h Jo

= ==

Since the map s — T,z is continuous, it follows that

1 ! 1t
l}gg E([ - Th)/o Tsxds = (I —1y) l}ggl h ), Tsxds = (I —Ty)x
as required. O

Proposition A.14. Let T = (T});>0 be a Cy-semigroup on a Banach space X with gener-
ator —A. Let v,y € X. Then x € D(A) and Az =y if and only if

t
/ Tyyds =x —Tx
0

forallt >0

Proof. Suppose first that z € D(A) and Ax = y. Let ¢ > 0. Then by the fundamental
theorem of calculus

t t t t
x—Tx = / —iTsx ds = / AT, xds = / T, Az ds = / T,yds
o ds 0 0 0

as required.
Conversely, one has that

o1 1t
lgg;([—ﬂ)x-lgg;/o Tyyds =y
and the claim follows. O

The domain of the generator of a Cjy-semigroup is maximal in the following sense.

Proposition A.15. Suppose that —A and — B each generate a Cy-semigroup on a Banach
space X. If A C B, then A= B.

Proof. There exists an w € R such that {A € C: Re A > w} C p(—A) N p(—B). Choose
A€ p(—A)Np(—=B). Then A\ + A C A\l + B. Let x € D(B). Since A\l + A is surjective,
there exists a y € D(A) such that (A + A)y = (M + B)z. By assumption D(A) C D(B),
soy € D(B) and

(M +B)y= M+ Ay = (A + B)z.

Hence (A 4+ B)(x —y) = 0. Since Al + B is injective, it follows that v =y € D(A). O
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Proposition A.16. Let U C R? be an open set and suppose that —A generates an irre-
ducible Cy-semigroup on Lo(U). Suppose that u € D(A) with uw > 0 is an eigenvector of
A. Then u(xz) > 0 for a.e. z € U.

Proof. See [BKR17] Proposition 14.12(a) and Example 10.16(b). O

The following particular case of [AB92] Theorem 1.3 was proved in [AE15] Proposi-
tion 5.13.

Proposition A.17. Let U C R? be an open set and let A and B be two lower-bounded
self-adjoint operators in Ly(U) with compact resolvent. Suppose that (e7'4),q is irreducible
and that

0< ety <etBy (33)

for all uw € Ly(U) with u > 0 and all t > 0. Suppose further that the smallest eigenvalues
of A and B are equal. Then A = B.

Proof. Without loss of generality we may assume that the smallest eigenvalues of A and
B are zero. Since by hypothesis (e7%4);50 and (e7B);s¢ are positive and A and B have
compact resolvent, it follows from the Krein-Rutman theorem [BKR17] Theorem 12.15
that there exist uy, ug € Lo(U) with uy, uy > 0 such that u; € ker A and usy € ker B. Hence
e uy = uy and e "Buy = uy for all t > 0, by Proposition A.14. Moreover, since (e=*4)~q
is irreducible, it follows from (33) together with [Ouh05] Theorem 2.9 that (e7*%);s¢ is
irreducible. So uy(z) > 0 and uy(z) > 0 for a.e. x € U, by Proposition A.16.

Let t > 0. Then e *Bu; — e *u; > 0 by (33). Moreover, it follows from the self-

adjointness of the generators that the semigroups consist of self-adjoint operators, so

(e—tBul — €_tAU1, U2)L2(U) = (uq, €_tBU2)L2(U) — (G_tAUh u2>L2(U) = 0.

Since uy(x) > 0 a.e. on U, it follows that e *Pu; — e *u; = 0. Let u € Ly(U) be such that
u > 0. Then e By — ety > 0 and

tB —tA

(e7Pu— e u,ur) ) = (u, e Puy — e uy) ) = 0.

u

Hence e~"Bu— e~y = 0 and one deduces that e~y = e="Buy for all u € Lo(U) with u > 0
and all t > 0. Then (e~*);20 = (e7'8);50 by linearity and it follows that A = B. O

Proposition A.18. Let U C R be an open set and let A be a self-adjoint operator in Ly(U)
with compact resolvent. Suppose that —A generates a positive irreducible Cy-semigroup on
Lo(U). Let X denote an eigenvalue of A corresponding to an eigenfunction u € D(A) of A
with w > 0. Then X is the smallest eigenvalue of A.

Proof. Let \; denote the smallest eigenvalue of A. Without loss of generality we may
assume that A\; = 0. So A > 0. Since (e7*4),5 is positive and A has compact resolvent,
it follows from the Krein—Rutman theorem that there exists a u; € ker A with u; > 0.
Moreover, since (e~*4);s is irreducible Proposition A.16 provides that u;(z) > 0 for a.e.
x € U. Then (u,u1)r,w) > 0 and

)\(U;U1)L2(U) = (AU, U1)L2(U) = (U, AU1)L2(U) =0,
so A = 0. O
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