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Abstract

Via form methods we investigate the Dirichlet-to-Neumann operator N associated with

a uniformly elliptic pure second-order operator on an exterior domain Ω with Lipschitz

boundary Γ. We consider two versions of the Dirichlet-to-Neumann operator and a varia-

tional problem on Ω associated with each case. We prove that for bounded data, solutions

of the variational problem are continuous on Ω and decay at infinity. We then characterise

the Dirichlet-to-Neumann operator N in terms of a j-elliptic sesquilinear form and estab-

lish that −N generates an asymptotically stable submarkovian holomorphic C0-semigroup

on L2(Γ) that leaves C(Γ) invariant. Finally we prove that the associated heat kernel is

jointly continuous on Σθ × Γ× Γ, satisfies uniform bounds in complex time and converges

uniformly on Γ× Γ to an equilibrium, where Σθ ⊂ C is an open sector of angle θ ∈ (0, π
2
).
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1 Introduction

Consider a smooth function ϕ on the boundary Γ of a bounded smooth domain. Then

the Dirichlet problem admits a solution u and the Dirichlet-to-Neumann operator N maps

ϕ to the normal derivative of u. Using form methods we recast the problem weakly and

investigateN in a generalised setting. Our departure from the classical situation is twofold.

First, we assume an exterior domain Ω ⊂ Rd with Lipschitz boundary Γ. Next, we replace

the Laplacian with a uniformly elliptic operator A = −
∑
∂l(akl∂k) with real measurable

coefficients. In order to study the resolvent of the Dirichlet-to-Neumann operator, we

consider the Robin-type problem

Au = 0 on Ω

λTru+ ∂νu = ψ on Γ
(1)

with boundary data ψ ∈ L2(Γ) and λ > 0. Then it remains to specify a boundary condition

at infinity in order to ensure that (1) is well-posed. We consider two possibilities, namely

Dirichlet and Neumann boundary conditions at infinity. Hence we obtain two versions

of the boundary value problem (1) and consequently, two realisations of the Dirichlet-

to-Neumann operator. Throughout this thesis we simultaneously examine the two cases,

investigating such matters as elliptic regularity, resolvent convergence, semigroup asymp-

totics and heat kernel bounds.

The classical Dirichlet-to-Neumann operator resides within the pseudo-differential frame-

work, where it is equal to the difference between the square root of the Laplace–Beltrami

operator and a pseudo-differential operator of order zero, defined on the boundary of a com-

pact Riemannian manifold [Tay96] Section 12C. Recent decades have seen the development

of numerous generalisations, with the Dirichlet-to-Neumann operator emerging as an ob-

ject of both theoretical and practical interest (see [SU90], [Hug95], [SU98], [LU01], [GK04],

[Fok05], [MS10], [CT10], [War18], [SY22] for a selection of examples). One widely-known

situation in which the Dirichlet-to-Neumann operator appears is that of the Calderón prob-

lem [Cal80], an inverse problem wherein one seeks to determine the coefficients of an elliptic

operator on the interior of a region using knowledge of the Dirichlet-to-Neumann opera-

tor at the boundary [SU87], [Nac88], [AP06], [Uhl09], [BR12]. Another significant line of

enquiry is the relationship between the Dirichlet-to-Neumann operator and the spectral

properties of the associated elliptic operator. For a singular Sturm–Liouville operator L, it

is known that the spectral data of self-adjoint realisations of L in L2([0,∞)) are captured

by the limiting behaviour of the associated Titchmarsh–Weyl m-function [Tit62]. This

theory has been extended to the case of self-adjoint elliptic operators in L2(Rd), where the

Dirichlet-to-Neumann map happens to fulfil the role of the m-function [AP04], [AM07],

[AM12], [BR16], [BR15], [BGH+16]. In recent times connections have also been drawn be-

tween the Dirichlet-to-Neumann operator N and the theory of stochastic processes, where

the C0-semigroup generated by −N turns out to coincide with the transition function for

a Markov process whose state space is the boundary Γ of the bounded Lipschitz domain

on which the Neumann or Robin problem is considered [BV17].

In [DL90] the Dirichlet-to-Neumann operator N was studied on C(Γ) for a bounded

C1-domain. Positivity and analyticity of the semigroup generated by −N on C(Γ) were

subsequently investigated for the case where Γ is smooth [Esc94], [Eng03]. In [AE12] the
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classical form methods of Kato [Kat80] and Lions [Lio57] were extended so as to enable

the association of an m-sectorial operator in a Hilbert space H with a sectorial form whose

domain need not be contained in H. In particular, the form method presented in [AE12]

yields a convenient framework for the study ofN as an m-sectorial operator in L2(Γ), which

has facilitated the treatment of the Dirichlet-to-Neumann operator in a variety of contexts

(see [AE11], [EO14], [BE17], [AE17], [ARP19], [AE20], [EW20], [BE21], [EO22] and the

references therein). In [AE15] the Dirichlet-to-Neumann operator was considered on an ex-

terior Lipschitz domain for A = −∆. Several results extend to the case A = −
∑
∂l(akl∂k)

with minimal modification of the arguments, demonstrating the robustness of the form

method. Nevertheless, arguments relying on symmetry or smoothness of the coefficients

break down in the general case, necessitating a different approach.

In our setting, the regularity theorem of Nash [Nas58] and De Giorgi [De 57] provides

immediately that solutions of (1) are locally Hölder continuous on Ω. Regularity at the

boundary Γ is less apparent. While the utility of Morrey and Campanato estimates in the

study of elliptic operators with non-smooth coefficients is well evidenced [Cam63], [Gia83],

[Aus96], [Lie03], [GM05], the application of this theory in the case of an unbounded domain

Ω becomes problematic because the Morrey and Campanato spaces cease to be subspaces

of L2(Ω). Alternatively, if the boundary is too rough to satisfy the so-called inner volume

condition, then the classical Morrey–Campanato theory is again rendered inapplicable. In

[ER15] pointwise Morrey and Campanato seminorms were introduced in order to derive

global Hölder estimates for solutions on domains with outward cusps (which fail to satisfy

the inner volume condition). This technique enabled the separate treatment of boundary

and interior regularity and was subsequently applied in [EW20] in order to obtain Hölder

Gaussian heat kernel bounds for elliptic operators on bounded Lipschitz domains. Using

a similar approach, we apply elliptic regularity and bootstrap along a scale of pointwise

Morrey–Campanato seminorms in order to prove that solutions of (1) extend continuously

to Γ.

Given data ψ and λ, we denote by BD
λ ψ and Bλψ the unique solutions of (1) satisfying

Dirichlet and Neumann boundary conditions at infinity, respectively.

Theorem 1.1. (a) Let ψ ∈ L∞(Γ) and λ ≥ 0. Then BD
λ ψ ∈ C(Ω).

(b) Let ψ ∈ L∞(Γ) and λ > 0. Then Bλψ ∈ C(Ω).

A typical consideration in the study of boundary value problems on unbounded domains

is the behaviour of solutions at infinity [Mes92], [HK14], [Elt20]. If A = −∆, the unique

solvability of the Dirichlet problem yields that solutions of (1) decay radially on Ω [AE15].

For non-symmetric variable coefficients, this property becomes delicate. Using the elliptic

regularity of very weak solutions [AEG20] we prove that if the coefficients (akl) are Lipschitz

continuous, then solutions of (1) decay in the following manner.

Fix d ≥ 3. We denote by BR ⊂ Rd the open ball of radius R > 0 centred at the origin.

Theorem 1.2. Suppose that the coefficients (akl) are Lipschitz continuous and fix R > 0

sufficiently large. Then there exists a c > 0 such that the following are valid.

(a) Let ψ ∈ L∞(Γ) and λ > 0. Then

|(BD
λ ψ)(x)| ≤

c ‖ψ‖L∞(Γ)

λ
· 1

|x|d−2
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for all x ∈ Ω \BR.

(b) Let ψ ∈ L∞(Γ) and λ > 0. Then

|(Bλψ)(x)− 〈Bλψ〉| ≤ c
(‖ψ‖L∞(Γ)

λ
+ |〈Bλψ〉|

) 1

|x|d−2

for all x ∈ Ω \BR, where 〈Bλψ〉 is the average of Bλψ over Ω.

In Section 5 we use the form method from [AE12] to characterise the Dirichlet-to-

Neumann operator N associated with the elliptic operator A = −
∑
∂l(akl∂k) on the

exterior domain Ω. Each version of (1) gives rise to a distinct realisation of N and in

each case −N generates an ultracontractive holomorphic C0-semigroup on L2(Γ). For

second-order elliptic operators, Gaussian heat kernel bounds serve as a valuable tool in

the investigation of spectral and regularity properties. Existence of such bounds carries

a variety of consequences, including Lp-analyticity of the semigroup, p-independence of

the spectrum and existence of H∞-functional calculi, and the associated corpus is com-

mensurately extensive (see [Aro67], [Dav89], [SC92], [VSCC92], [AE97], [ER97], [ER98],

[AT01], [Ouh05], [AMP06], [EO19b] and the references therein). If Γ is smooth, then

the Laplace–Beltrami heat kernel satisfies Gaussian bounds and the kernel of the semi-

group generated by −N on C∞(Γ) satisfies Poisson bounds [EO14]. In [EO14] Poisson

bounds were also obtained in the L2-setting and these results were extended in [EO19a]

and [EO19b] to bounded C1+κ-domains and operators with symmetric Hölder continuous

coefficients. More recently in [AE20], bounded Lipschitz domains and symmetric Lipschitz

continuous coefficients were considered. In that paper it was proved that the C0-semigroup

generated by −N on L2(Γ) leaves C(Γ) invariant and that its kernel is continuous on Γ×Γ.

In the case of non-symmetric measurable coefficients and an exterior Lipschitz domain, we

establish joint continuity of the heat kernel on Σθ × Γ× Γ, a result that seems yet to ap-

pear in the literature, even for the case A = −∆. Moreover, we prove that the semigroup

generated by −N again leaves C(Γ) invariant and that its kernel satisfies uniform bounds

on a sector in C.

Let SD and S denote the holomorphic C0-semigroups on L2(Γ) generated by −N ,

corresponding to Dirichlet and Neumann boundary conditions at infinity respectively. We

denote by θD, θN ∈ (0, π
2
] their respective angles of analyticity and by ΣθD ,ΣθN ⊂ C the

corresponding open sectors.

Theorem 1.3. (a) There exists a continuous function KD : ΣθD ×Γ×Γ→ C such that

(SDz ϕ)(w1) =

∫
Γ

KD
z (w1, w2)ϕ(w2) dw2

for all w1 ∈ Γ, ϕ ∈ L1(Γ) and z ∈ ΣθD .

(b) The map z 7→ KD
z (w1, w2) is analytic on ΣθD for all w1, w2 ∈ Γ.

(c) For all θ′ ∈ (0, θD) there exist c, δ > 0 such that

‖KD
z ‖L∞(Γ×Γ) ≤ c (Re z)−(d−1)e−δRe z

for all z ∈ Σθ′.
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Theorem 1.4. (a) There exists a continuous function K : ΣθN × Γ× Γ→ C such that

(Szϕ)(w1) =

∫
Γ

Kz(w1, w2)ϕ(w2) dw2

for all w1 ∈ Γ, ϕ ∈ L1(Γ) and z ∈ ΣθN .

(b) The map z 7→ Kz(w1, w2) is analytic on ΣθN for all w1, w2 ∈ Γ.

(c) For all θ′ ∈ (0, θN) there exists a c > 0 such that

‖Kz‖L∞(Γ×Γ) ≤ c (1 ∧ Re z)−(d−1)

for all z ∈ Σθ′.

This thesis is organised as follows. In Section 2 we introduce the form domain and

other preliminary constructions, collecting various properties for later use. In Section 3

we formulate (1) in terms of an abstract variational problem. One readily obtains well-

posedness from the Lax–Milgram theorem and consequently, the existence of a continuous

solution operator. We show that the solution operator is compact and submarkovian,

before concluding Section 3 with the proof Theorem 1.1. In Section 4 we consider (1) on

the truncated domain Ω∩BR and establish convergence of the associated solution operator

in the limit R→∞. We then prove Theorem 1.2 and obtain a variant of Theorem 1.1 that

permits less regular data ψ, at the cost of requiring Lipschitz continuity of the coefficients

(akl). In Section 5 we introduce two versions of the Dirichlet-to-Neumann operator and

in each case we obtain resolvent convergence with respect to the truncated problem under

minimal regularity. We then show that if the boundary and coefficients are sufficiently

smooth, our two realisations of the Dirichlet-to-Neumann operator differ only by a rank-

one operator. In Section 6 we prove that the holomorphic C0-semigroup generated by each

version of the Dirichlet-to-Neumann operator is submarkovian and uniformly mean ergodic.

In [AE15] irreducibility of the semigroups was obtained using the self-adjointness of the

Laplacian and Dirichlet-to-Neumann operator. Since we do not assume symmetry of the

matrix (akl), the operator N is no longer self-adjoint in general. Hence we instead proceed

via ergodicity in order to obtain that the semigroup generated by −N is irreducible when

Neumann boundary conditions are imposed at infinity. We then establish irreducibility in

the Dirichlet case, assuming that (akl) is symmetric. Finally in Section 7 we consider the

heat kernel associated with the Dirichlet-to-Neumann operator. Existence follows from

ultracontractivity of the semigroup and the elliptic regularity afforded by Theorem 1.1

provides that the kernel is jointly continuous on Σθ×Γ×Γ. We prove Theorems 1.3 and 1.4

and subsequently deduce that the semigroup leaves C(Γ) invariant and that the heat kernel

converges uniformly on Γ× Γ to an equilibrium.
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2 The form domain

In this section we introduce the function spaces that underlie our study. We use the

localised Sobolev spaces presented in [LO05], which are suited to the investigation of ex-

terior variational problems. These spaces were used in [AE15] and [ARP19] to study the

Dirichlet-to-Neumann operator, and in [KL20] to study the Robin Laplacian.

Throughout this thesis we fix d ≥ 3. Define

W (Rd) =
{
u ∈ H1

loc(R
d) :

∫
Rd
|∇u|2 <∞

}
.

We denote by p > 2 the Sobolev conjugate of 2, that is, 1
p

= 1
2
− 1

d
. Then [Bré11] Theo-

rem 9.9 provides that H1(Rd) ⊂ Lp(R
d) and there exists a cs > 0 such that

‖u‖Lp(Rd) ≤ cs‖∇u‖L2(Rd)

for all u ∈ H1(Rd).

For all R > 0 we write BR = {x ∈ Rd : |x| < R}. If u ∈ L1(BR), we denote by

〈u〉R =
1

|BR|

∫
BR

u

the average of u over the ball BR. We write 〈u〉R = 〈u|BR〉R for all u ∈ W (Rd).

Lemma 2.1. There exists a c > 0 such that

‖u− 〈u〉R‖
2
Lp(BR) ≤ c

∫
Rd
|∇u|2

for all u ∈ W (Rd) and R > 0.

Proof. Let v ∈ H1(B1). Since B1 has the extension property, there exists a c0 > 0

(independent of v) and a ṽ ∈ H1(Rd) such that ṽ|B1 = v and ‖ṽ‖H1(Rd) ≤ c0‖v‖H1(B1).

Then

‖v‖Lp(B1) ≤ ‖ṽ‖Lp(Rd) ≤ cs‖ṽ‖H1(Rd) ≤ csc0‖v‖H1(B1).

Hence by Proposition A.1 there exists a c > 0 such that

‖v − 〈v〉1‖
2
Lp(B1) ≤ (csc0)2

(∫
B1

|∇v|2 +

∫
B1

|v − 〈v〉1|
2
)
≤ c

∫
B1

|∇v|2

for all v ∈ H1(B1).

Let u ∈ W (Rd) and R > 0. Then u|BR ∈ H1(BR). Define uR : B1 → C by uR(x) =

u(Rx). Then uR ∈ H1(B1) and a change of variable yields that

〈uR〉1 =
1

ωd

∫
B1

u(Rx) dx =
1

Rdωd

∫
BR

u(x) dx = 〈u〉R.

Similarly, ∫
B1

|uR|p = R−d
∫
BR

|u|p
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and ∫
B1

|∇uR|2 = R2−d
∫
BR

|∇u|2.

Therefore

‖u− 〈u〉R‖
2
Lp(BR) = R

2d
p ‖uR − 〈uR〉1‖

2
Lp(B1)

≤ R
2d
p c

∫
B1

|∇uR|2 = cR
2d
p R2−d

∫
BR

|∇u|2 = c

∫
BR

|∇u|2 ≤ c

∫
Rd
|∇u|2

as required.

Proposition 2.2. Let u ∈ W (Rd). Then the limit

〈u〉 = lim
R→∞

〈u〉R (2)

exists and u− 〈u〉 ∈ Lp(R
d). Moreover, there exists a c > 0 such that

‖u− 〈u〉‖2
Lp(Rd) ≤ c

∫
Rd
|∇u|2

for all u ∈ W (Rd).

Proof. Let c > 0 be as in Lemma 2.1 and let n ∈ N. Then

|〈u〉2n+1 − 〈u〉2n | =
∣∣ 1

|B2n|

∫
B2n

u− 〈u〉2n+1

∣∣ ≤ 1

|B2n|

∫
B2n+1

|u− 〈u〉2n+1|

=
2d

|B2n+1|

∫
B2n+1

|u− 〈u〉2n+1| ≤ 2d
( 1

|B2n+1|

∫
B2n+1

|u− 〈u〉2n+1|p
)1/p

=
2d(1−n+1

p
)

ω
1/p
d

(∫
B2n+1

|u− 〈u〉2n+1 |p
)1/p

≤ 2d(1−n+1
p

)

ω
1/p
d

c1/2
(∫

Rd
|∇u|2

)1/2

.

So
∑
|〈u〉2n+1 − 〈u〉2n| <∞ and it follows that the limit lim 〈u〉2n exists.

Write α = lim 〈u〉2n . Then by Fatou’s lemma∫
Rd
|u− α|p =

∫
Rd

lim inf
n→∞

|u− 〈u〉2n|
p1B2n

≤ lim inf
n→∞

∫
B2n

|u− 〈u〉2n|
p ≤ cp/2

(∫
Rd
|∇u|2

)p/2
,

so u− α ∈ Lp(R
d). Since

|〈u− α〉R| ≤
( 1

|BR|

∫
BR

|u− α|p
)1/p

≤ (Rdωd)
−1/p‖u− α‖Lp(Rd)

for all R > 0, one deduces that lim 〈u− α〉R = 0. Hence the limit lim 〈u〉R = α exists and

the claim follows.

For all u ∈ W (Rd) we define the average 〈u〉 of u over Rd by (2). We define the norm

‖u‖W (Rd) =
(∫

Rd
|∇u|2 + |〈u〉|2

)1/2

on W (Rd).

7



Proposition 2.3. The space W (Rd) is a Hilbert space.

Proof. It is easy to verify that W (Rd) is a pre-Hilbert space with respect to the inner

product associated with the norm ‖ · ‖W (Rd). Hence it remains only to show that the space(
W (Rd), ‖ · ‖W (Rd)

)
is complete.

Let (un)n∈N be a Cauchy sequence in W (Rd) and let c > 0 be as in Proposition 2.2.

For each n ∈ N write vn = un − 〈un〉 ∈ W (Rd). Let n,m ∈ N. Then

‖vn − vm‖2
Lp(Rd) = ‖(un − um)− 〈un − um〉‖2

Lp(Rd) ≤ c

∫
Rd
|∇(un − um)|2

and ∫
Rd
|∇(vn − vm)|2 =

∫
Rd
|∇(un − um)|2.

So (vn)n∈N is a Cauchy sequence in Lp(R
d) and (∇vn)n∈N is a Cauchy sequence in L2(Rd)

d
.

Then by completeness there exist v ∈ Lp(R
d) and w ∈ L2(Rd)

d
such that lim vn = v in

Lp(R
d) and lim∇vn = w in L2(Rd)

d
. Let χ ∈ C∞c (Rd) and let R > 0 be such that

suppχ ⊂ BR. Since lim vn|BR = v|BR in L2(BR), it follows that∫
Rd
v ∂kχ = lim

n→∞

∫
BR

vn ∂kχ = − lim
n→∞

∫
BR

(∂kvn)χ = −
∫
Rd
wk χ

for all k ∈ {1, . . . , d}. So ∇v = w and v ∈ W (Rd), since Lp(R
d) ⊂ L2,loc(R

d).

Note that

|〈v〉R| ≤
( 1

|BR|

∫
BR

|v|p
)1/p

≤ (Rdωd)
−1/p‖v‖Lp(Rd)

for all R > 0. Then 〈v〉 = lim 〈v〉R = 0. Moreover, since (un)n∈N is a Cauchy sequence

in W (Rd) it follows that (〈un〉)n∈N is a Cauchy sequence in C, so lim 〈un〉 exists. Write

u = v + lim 〈un〉. Then u ∈ W (Rd) and

lim
n→∞

‖u− un‖2
W (Rd) = lim

n→∞

∫
Rd
|∇v −∇vn|2 + lim

n→∞

∣∣ lim
k→∞
〈uk〉 − 〈un〉

∣∣2 = 0

as required.

We call a connected open set U ⊂ Rd a domain. We equip the boundary ∂U with the

(d− 1)-dimensional Hausdorff measure σ.

Lemma 2.4. Let U ⊂ Rd be a bounded Lipschitz domain.

(a) Let A ⊂ U be a measurable set with |A| > 0. Then the norm

u 7→
(∫

U

|∇u|2 +

∫
A

|u|2
)1/2

is equivalent to the norm ‖ · ‖H1(U) on H1(U).

(b) Let Z ⊂ U be a measurable set with 0 < σ(Z) < ∞. Suppose that the restriction

u 7→ u|Z from H1(U) ∩ C(U) into L2(Z) admits a compact extension T : H1(U) →
L2(Z). Then the norm

u 7→
(∫

U

|∇u|2 +

∫
Z

|Tu|2
)1/2

is equivalent to the norm ‖ · ‖H1(U) on H1(U).
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Proof. We first prove (a). Clearly∫
U

|∇u|2 +

∫
A

|u|2 ≤ ‖u‖2
H1(U)

for all u ∈ H1(U), since A ⊂ U . It remains to show that there exists a c > 0 such that

‖u‖2
H1(U) ≤ c

(∫
U

|∇u|2 +

∫
A

|u|2
)

for all u ∈ H1(U). Note that it suffices to prove that∫
U

|u|2 ≤ c
(∫

U

|∇u|2 +

∫
A

|u|2
)

for all u ∈ H1(U). Suppose to the contrary that for each n ∈ N there exists a un ∈ H1(U)

such that ∫
U

|∇un|2 +

∫
A

|un|2 <
1

n

∫
U

|un|2.

Without loss of generality we may assume that
∫
U
|un|2 = 1 for all n ∈ N. Then

‖un‖2
H1(U) =

∫
U

|∇un|2 + 1 < 2

for all n ∈ N, so the sequence (un)n∈N is bounded in H1(U). Passing to a subsequence

if necessary, we may assume that there exists a u ∈ H1(U) such that limun = u weakly

in H1(U). By [EE87] Theorem V.4.17 the embedding H1(U) ↪→ L2(U) is compact, so

limun = u in L2(U). Then ‖u‖L2(U) = 1 and∫
U

|∇u|2 + 1 = ‖u‖2
H1(U) ≤ lim inf

n→∞
‖un‖2

H1(U)

= lim inf
n→∞

∫
U

|∇un|2 + 1 ≤ lim inf
n→∞

1

n
+ 1 = 1.

Hence
∫
U
|∇u|2 = 0 and it follows that u is constant, as U is connected. Moreover, since

the embedding H1(U) ↪→ L2(U) is compact and the restriction u 7→ u|A from L2(U) into

L2(A) is continuous, the map u 7→ u|A from H1(U) into L2(A) is compact. Therefore

limun|A = u|A in L2(A) and∫
A

|u|2 = lim
n→∞

∫
A

|un|2 ≤ lim
n→∞

1

n
= 0.

Then u|A = 0 and it follows that u = 0. So 0 = ‖u‖L2(U) = 1, a contradiction.

We now prove (b). By hypothesis the map T : H1(U)→ L2(Z) is continuous, so there

exists a c1 > 0 such that ‖Tu‖L2(Z) ≤ c1‖u‖H1(U) for all u ∈ H1(U). Hence∫
U

|∇u|2 +

∫
Z

|Tu|2 ≤ (c2
1 + 1) ‖u‖2

H1(U)

for all u ∈ H1(U). The converse estimate follows from a contradictory argument similar

to the above, together with the assumed compactness of the map T .
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We require the following equivalent norm on W (Rd).

Lemma 2.5. Let A ⊂ Rd be a bounded measurable set with |A| > 0. Then the norm

u 7→
(∫

Rd
|∇u|2 +

∫
A

|u|2
)1/2

is equivalent to the norm ‖ · ‖W (Rd) on W (Rd).

Proof. Define ||| · ||| : W (Rd)→ [0,∞) by

|||u||| =
(∫

Rd
|∇u|2 +

∫
A

|u|2
)1/2

.

We prove the claim using the closed graph theorem. Hence we first verify that the space(
W (Rd), ||| · |||

)
is complete.

Let (un)n∈N be a Cauchy sequence in
(
W (Rd), ||| · |||

)
and let R > 0 be such that A ⊂ BR.

Then by Lemma 2.4(a) there exists a c > 0 such that

‖un|BR‖2
H1(BR) ≤ c

(∫
BR

|∇un|2 +

∫
A

|un|2
)
≤ c|||un|||2

for all n ∈ N, so the sequence (un|BR)n∈N is Cauchy in H1(BR). Since H1(BR) is complete,

the sequence (un|BR)n∈N is convergent. By a diagonal argument one deduces that there

exists a function u : Rd → C such that limun|BR = u|BR in H1(BR) for all R > 0 with

A ⊂ BR. Hence u ∈ H1
loc(R

d). Let n ∈ N. Then∫
BR

|∇(u− un)|2 = lim
m→∞

∫
BR

|∇(um − un)|2 ≤ lim inf
m→∞

|||um − un|||2

for all R > 0 with A ⊂ BR. So∫
Rd
|∇u−∇un|2 = lim

R→∞

∫
BR

|∇(u− un)|2 ≤ lim inf
m→∞

|||um − un|||2 <∞

by the monotone convergence theorem. Hence ∇u − ∇un ∈ L2(Rd)
d

for all n ∈ N, so

u ∈ W (Rd) and

lim
n→∞

∫
Rd
|∇u−∇un|2 ≤ lim

n→∞
lim inf
m→∞

|||um − un|||2 = 0.

Moreover, limun|A = u|A in L2(A) since L2(A) is complete. Therefore lim |||u− un||| = 0

and
(
W (Rd), ||| · |||

)
is complete.

Next we show that there exists a c > 0 such that |||u||| ≤ c‖u‖W (Rd) for all u ∈ W (Rd).

Suppose to the contrary that for each n ∈ N there exists a wn ∈ W (Rd) such that

|||wn||| > n‖wn‖W (Rd). Without loss of generality we may assume that ‖wn‖W (Rd) = 1

for all n ∈ N. Write un = n−1/2wn ∈ W (Rd). Then ‖un‖W (Rd) = n−1/2 and |||un||| > n1/2

for all n ∈ N. So lim ‖un‖W (Rd) = 0 and lim |||un||| = ∞. Write vn = un − 〈un〉 ∈ W (Rd).

Then Proposition 2.2 provides that vn ∈ Lp(R
d) for all n ∈ N and lim ‖vn‖Lp(Rd) =

0. So lim ‖vn|A‖L2(A) = 0, since |A| < ∞ and p > 2. Moreover, lim 〈un〉 = 0, so

lim ‖〈un〉1A‖L2(A) = 0 and it follows that lim ‖un|A‖L2(A) = 0. Then since lim ‖∇un‖L2(Rd) =

0 it follows that lim |||un||| = 0, a contradiction.

Since the inclusion
(
W (Rd), ‖ · ‖W (Rd)

)
↪→
(
W (Rd), ||| · |||

)
is continuous, it follows from

Proposition 2.3 together with the closed graph theorem that the norms are equivalent.
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In Proposition 2.7 we show that the test functions are dense in W (Rd) ∩ Lp(R
d). We

need a lemma.

Lemma 2.6. Let u ∈ W (Rd) ∩ Lp(R
d) and let ε > 0. Then there exists a χ ∈ C∞c (Rd)

such that the estimate

‖u− χ‖Lp(Rd) + ‖∇(u− χ)‖L2(Rd) < ε

is valid.

Proof. Fix τ ∈ C∞c (Rd) such that τ |B1 = 1, supp τ ⊂ B2, |τ | ≤ 1 and |∇τ | ≤ 2. For

each R > 0 define τR ∈ C∞c (Rd) by τR(x) = τ
(
x
R

)
. Since |u|2 ∈ Lp/2(Rd), it follows from

Hölder’s inequality that∫
Rd
|u∇τR|2 ≤

4

R2

∫
B2R\BR

|u|2 ≤ 4

R2

(∫
B2R\BR

|u|p
)2/p

|B2R \BR|1−
2
p

≤ 4

R2
ωd

1− 2
p (2R)d(1− 2

p
)
(∫

B2R\BR
|u|p
)2/p

= 16ωd
2/d
(∫

B2R\BR
|u|p
)2/p

for all R > 0, since 2
d

= 1− 2
p
. Hence

‖∇(u− uτR)‖2
L2(Rd) ≤ 2‖(1− τR)∇u‖2

L2(Rd) + 2‖u∇τR‖2
L2(Rd)

≤ 2

∫
Rd\BR

|∇u|2 + 32ωd
2/d
(∫

B2R\BR
|u|p
)2/p

.

for all R > 0, so

lim
R→∞

‖u− uτR‖Lp(Rd) + ‖∇(u− uτR)‖L2(Rd) = 0.

Choose R > 0 such that

‖u− uτR‖Lp(Rd) + ‖∇(u− uτR)‖L2(Rd) <
ε

2
.

Since suppuτR is bounded, by mollification we may assume that there exists a χ ∈ C∞c (Rd)

such that

‖uτR − χ‖Lp(Rd) + ‖∇(uτR − χ)‖L2(Rd) <
ε

2
.

The claim then follows from the triangle inequality.

We define

WD(Rd) = C∞c (Rd)
W (Rd)

and equip WD(Rd) with the norm ‖ · ‖WD(Rd) induced by the norm on W (Rd). Then

WD(Rd) is a Hilbert space and

‖u‖WD(Rd) =
(∫

Rd
|∇u|2

)1/2

by the following assertion.
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Proposition 2.7. The space W (Rd) admits the orthogonal decomposition

W (Rd) = WD(Rd)⊕ C1.

Moreover, WD(Rd) = {u ∈ W (Rd) : 〈u〉 = 0} = W (Rd) ∩ Lp(R
d).

Proof. Let u ∈ WD(Rd). Then there exists a sequence (χn)n∈N in C∞c (Rd) such that

limχn = u in W (Rd). Since
〈
χn
〉

= 0 for all n ∈ N, it follows that 〈u〉 = 0. So

WD(Rd) ⊂ {u ∈ W (Rd) : 〈u〉 = 0}. Moreover, {u ∈ W (Rd) : 〈u〉 = 0} ⊂ W (Rd) ∩ Lp(R
d)

by Proposition 2.2.

Now let u ∈ W (Rd)∩Lp(R
d). By Lemma 2.6 there exists a sequence (χn)n∈N in C∞c (Rd)

such that limχn = u in Lp(R
d) and lim∇χn = ∇u in L2(Rd)

d
. Moreover,∣∣ 1

|BR|

∫
BR

u− χn
∣∣ ≤ ( 1

|BR|

∫
BR

|u− χn|p
)1/p

≤ (Rdωd)
−1/p‖u− χn‖Lp(Rd)

for all R > 0 and n ∈ N. So 〈u− χn〉 = 0 for all n ∈ N and

lim
n→∞

‖u− χn‖2
W (Rd) = lim

n→∞

∫
Rd
|∇(u− χn)|2 + |〈u− χn〉|2 = 0.

Hence u ∈ WD(Rd) and WD(Rd) = {u ∈ W (Rd) : 〈u〉 = 0} = W (Rd) ∩ Lp(R
d).

The above implies that u − 〈u〉 ∈ WD(Rd) for all u ∈ W (Rd). Therefore W (Rd) ⊂
WD(Rd) + C1. Since 1 ⊥ WD(Rd), the claim follows.

Corollary 2.8. H1(Rd) ⊂ WD(Rd).

Proof. Since H1(Rd) ⊂ Lp(R
d) by the Sobolev embedding theorem and H1(Rd) ⊂ W (Rd),

the corollary follows.

Corollary 2.9. Let u ∈ W (Rd). Then 〈|u|〉 = |〈u〉|.

Proof. Write u = v + λ1, where v ∈ WD(Rd) and λ ∈ C. Then |v| ∈ W (Rd) ∩ Lp(R
d) =

WD(Rd), so 〈|v|〉 = 0. Moreover, for all R > 0∣∣〈|u|〉R − |λ|∣∣ ≤ 1

|BR|

∫
BR

∣∣|v + λ1| − |λ|1
∣∣

≤ 1

|BR|

∫
BR

∣∣|v|+ |λ|1− |λ|1∣∣ = 〈|v|〉R.

Hence 〈|u|〉 = lim 〈|u|〉R = |λ| = |〈v + λ1〉| = |〈u〉|.

We now introduce the exterior domain Ω. Throughout this thesis we fix a bounded

open set Ω0 ⊂ Rd with Lipschitz boundary and consider the exterior domain

Ω = Rd \ Ω0.

We assume that Ω is connected. We write Γ = ∂Ω = ∂Ω0 and equip Γ with the (d − 1)-

dimensional Hausdorff measure σ. Moreover, for all R > 0 we write ΩR = Ω ∩BR.

Define

W (Ω) =
{
u ∈ H1

loc(Ω) :

∫
Ω

|∇u|2 <∞
}
.

12



We fix R0 > 3 such that Ω0 ⊂ BR0−3. Since ΩR has Lipschitz boundary, it follows from

[Maz85] Lemma 1.1.11 that u|ΩR ∈ H1(ΩR) for all u ∈ W (Ω) and R ≥ R0. Hence

W (Ω) =
{
u ∈ CΩ : u is measurable, u|ΩR ∈ H1(ΩR) for all R ≥ R0 and

∫
Ω

|∇u|2 <∞
}
.

We regularly invoke this characterisation of W (Ω).

Since ΩR0 has Lipschitz boundary, there exists a bounded operator E0 : H1(ΩR0) →
H1(BR0) such that (E0u)|ΩR0

= u. Define E : W (Ω)→ W (Rd) by

(Eu)(x) =

{
u(x) if x ∈ Rd \BR0 ,(
E0(u|ΩR0

)
)
(x) if x ∈ BR0 .

Then (Eu)|Ω = u. For all u ∈ W (Ω) we define 〈u〉 = 〈Eu〉. Then it follows that

〈u〉 = lim
R→∞

1

|ΩR|

∫
ΩR

u

since |Ω0| <∞. We equip W (Ω) with the norm

‖u‖W (Ω) =
(∫

Ω

|∇u|2 + |〈u〉|2
)1/2

.

In Proposition 2.11 we shall prove that W (Ω) is a Hilbert space. First we establish that

the following Sobolev–Poincaré-type inequality is valid on W (Ω).

Proposition 2.10. There exists a c > 0 such that

‖u− 〈u〉‖2
Lp(Ω) ≤ c

∫
Ω

|∇u|2

for all u ∈ W (Ω).

Proof. Let u ∈ W (Ω) and let c > 0 be as in Proposition 2.2. Write

α =
1

|ΩR0|

∫
ΩR0

u.

Then by the Proposition A.1 there exists a c1 > 0 such that

‖u|ΩR0
− α‖2

H1(ΩR0
) ≤ c1

∫
ΩR0

|∇u|2.

Moreover, by Proposition A.2 we may assume that E01ΩR0
= 1BR0

. Then

‖u− 〈u〉‖2
Lp(Ω) ≤ ‖Eu− 〈Eu〉‖2

Lp(Rd) ≤ c

∫
Rd
|∇Eu|2 = c

∫
Rd
|∇(Eu− α)|2

≤ c
(∫

BR0

|∇(Eu− α)|2 +

∫
Ω

|∇(Eu− α)|2
)

= c
(∫

BR0

|∇E0(u|ΩR0
− α)|2 +

∫
Ω

|∇u|2
)
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≤ c
(
‖E0(u|ΩR0

− α)‖2
H1(BR0

) +

∫
Ω

|∇u|2
)

≤ c
(
‖E0‖2‖u|ΩR0

− α‖2
H1(ΩR0

) +

∫
Ω

|∇u|2
)

≤ c
(
‖E0‖2c1

∫
ΩR0

|∇u|2 +

∫
Ω

|∇u|2
)
≤ c2

∫
Ω

|∇u|2

where c2 = c(‖E0‖2c1 + 1).

Next we define the trace map on W (Ω). Let R ≥ R0. Then ΩR is a bounded Lipschitz

domain. Denote by TrΩR : H1(ΩR) → L2(∂ΩR) the trace map on H1(ΩR) and define

TrR : H1(ΩR)→ L2(Γ) by TrRu = (TrΩRu)|Γ. We then define Tr : W (Ω)→ L2(Γ) by

Tru = TrR(u|ΩR).

Note that the map Tr does not depend on R and is therefore well-defined.

Throughout this thesis, we make frequent use of the following facts.

Proposition 2.11. (a) The space W (Ω) is a Hilbert space.

(b) The trace map Tr : W (Ω)→ L2(Γ) is compact.

(c) The extension operator E : W (Ω)→ W (Rd) is bounded.

(d) Let A ⊂ Ω be a bounded measurable set with |A| > 0. Then the norm

u 7→
(∫

Ω

|∇u|2 +

∫
A

|u|2
)1/2

is equivalent to the norm ‖ · ‖W (Ω) on W (Ω).

(e) The norm

u 7→
(∫

Ω

|∇u|2 +

∫
Γ

|Tru|2
)1/2

(3)

is equivalent to the norm ‖ · ‖W (Ω) on W (Ω).

Proof. Let A ⊂ Ω be a bounded measurable set with |A| > 0. Write

|||u|||A =
(∫

Ω

|∇u|2 +

∫
A

|u|2
)1/2

for all u ∈ W (Ω). Arguing as in the second paragraph of the proof of Lemma 2.5 with ΩR

in place of BR, one obtains that the space
(
W (Ω), ||| · |||A

)
is complete.

We now show that the norm ||| · |||A is equivalent on W (Ω) to the norm defined by (3).

Let R ≥ R0 be such that A ⊂ BR. By Lemma 2.4(a) there exists a c1 > 0 such that

‖u|ΩR‖2
H1(ΩR) ≤ c1

(∫
ΩR

|∇u|2 +

∫
A

|u|2
)
≤ c1|||u|||2A

for all u ∈ W (Ω). On the other hand, since ΩR has Lipschitz boundary it follows that the

map TrR : H1(ΩR) → L2(Γ) is compact, so by Lemma 2.4(b) there exists a c2 > 0 such

that ∫
ΩR

|∇u|2 +

∫
Γ

|Tru|2 ≤ c2‖u|ΩR‖2
H1(ΩR)
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for all u ∈ W (Ω). Then ∫
Ω

|∇u|2 +

∫
Γ

|Tru|2 ≤ (c1c2 + 1)|||u|||2A

for all u ∈ W (Ω). One similarly deduces from Lemma 2.4 that there exists a c3 > 0 such

that

|||u|||2A ≤ c3

∫
Ω

|∇u|2 +

∫
Γ

|Tru|2

for all u ∈ W (Ω). Therefore the norm ||| · |||A is equivalent on W (Ω) to the norm defined

by (3). Moreover, it follows that ||| · |||A does not depend, up to equivalence, on the set A.

Next we show that the extension operator E is continuous from
(
W (Ω), ||| · |||ΩR0

)
into

W (Rd), where ||| · |||ΩR0
= ||| · |||A with the choice A = ΩR0 . Let u ∈ W (Ω). Then∫

Rd
|∇Eu|2 +

∫
ΩR0

|Eu|2 =

∫
Rd\BR0

|∇Eu|2 +

∫
BR0

|∇Eu|2 +

∫
ΩR0

|Eu|2

≤
∫
Rd\BR0

|∇u|2 + ‖(Eu)|BR0
‖2
H1(BR0

)

=

∫
Rd\BR0

|∇u|2 + ‖E0(u|ΩR0
)‖2
H1(BR0

)

≤
∫

Ω

|∇u|2 + ‖E0‖2 ‖u|ΩR0
‖2
H1(ΩR0

) ≤ (1 + ‖E0‖2)|||u|||2ΩR0
.

Hence by Lemma 2.5 the operator E maps
(
W (Ω), ||| · |||ΩR0

)
continuously into W (Rd).

Moreover,

‖u‖2
W (Ω) =

∫
Ω

|∇Eu|2 + |〈Eu〉|2 ≤ ‖Eu‖2
W (Rd) ≤ ‖E‖

2
(W (Ω),||| · |||ΩR0

)→W (Rd)|||u|||
2
ΩR0

for all u ∈ W (Ω), so the inclusion
(
W (Ω), ||| · |||ΩR0

)
↪→ W (Ω) is continuous.

We now prove (a). Let (un)n∈N be a Cauchy sequence in W (Ω) and write vn = un −
〈un〉. By Proposition 2.10 the sequence (vn)n∈N is Cauchy in Lp(Ω). Since p > 2 and

|ΩR0| <∞, one deduces that the sequence (vn|ΩR0
)n∈N is Cauchy in L2(ΩR0). Moreover, by

assumption the sequence (〈un〉)n∈N is Cauchy in C, so (un|ΩR0
)n∈N is a Cauchy sequence in

L2(ΩR0). Hence (un)n∈N is a Cauchy sequence in
(
W (Ω), ||| · |||ΩR0

)
. Since

(
W (Ω), ||| · |||ΩR0

)
is complete, there exists a u ∈ W (Ω) such that lim |||u− un|||ΩR0

= 0. In particular,

lim ‖∇(u−un)‖L2(Ω) = 0. Moreover, the map u 7→ 〈u〉 is continuous from
(
W (Ω), ||| · |||ΩR0

)
into C, since the inclusion

(
W (Ω), ||| · |||ΩR0

)
↪→ W (Ω) is continuous. So lim 〈u − un〉 = 0

and it follows that limun = u in W (Ω).

Since
(
W (Ω), ||| · |||ΩR0

)
is complete, it follows from the closed graph theorem that the

norms ||| · |||ΩR0
and ‖ · ‖W (Ω) are equivalent on W (Ω). Hence Statement (c) is valid. More-

over, since the equivalence of ||| · |||A with the norm (3) does not depend on the set A,

Statements (d) and (e) follow from the conclusion of the second paragraph.

Lastly we prove (b). Since ΩR0 has Lipschitz boundary, the map TrR0 : H1(ΩR0) →
L2(Γ) is compact. Moreover, the restriction u 7→ u|ΩR0

is continuous from
(
W (Ω), ||| · |||ΩR0

)
into H1(ΩR0). Hence the equivalence of the norms ||| · |||ΩR0

and ‖ · ‖W (Ω) yields that the

composition Tr is compact on W (Ω).
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We define

WD(Ω) =
{
χ|Ω : χ ∈ C∞c (Rd)

}W (Ω)

and equip WD(Ω) with the norm ‖ · ‖WD(Ω) induced by the norm on W (Ω). Then WD(Ω)

is a Hilbert space and

‖u‖WD(Ω) =
(∫

Ω

|∇u|2
)1/2

by the following assertion.

Proposition 2.12. The space W (Ω) admits the orthogonal decomposition

W (Ω) = WD(Ω)⊕ C1Ω.

Moreover, WD(Ω) = {u ∈ W (Ω) : 〈u〉 = 0} = W (Ω) ∩ Lp(Ω).

Proof. By an argument similar to the proof of Proposition 2.7, with Proposition 2.10 in

place Proposition 2.2, one deduces that WD(Ω) ⊂ {u ∈ W (Ω) : 〈u〉 = 0} ⊂ W (Ω)∩Lp(Ω).

Let u ∈ W (Ω) ∩ Lp(Ω). Then Eu ∈ W (Rd). Since

∣∣ 1

|ΩR|

∫
ΩR

u
∣∣ ≤ |ΩR|−1/p‖u‖Lp(Ω)

for all R > 0, it follows that 〈u〉 = 0. So 〈Eu〉 = 〈u〉 = 0 and by Proposition 2.7 one

has that Eu ∈ WD(Rd). Then there exists a sequence (χn)n∈N in C∞c (Rd) such that

limχn = Eu in W (Rd). Hence limχn|Ω = (Eu)|Ω = u in W (Ω). Therefore u ∈ WD(Ω)

and W (Ω) ∩ Lp(Ω) ⊂ WD(Ω).

Since u − 〈u〉 ∈ WD(Ω) for all u ∈ W (Ω), one deduces that W (Ω) ⊂ WD(Ω) + C1Ω.

The claim then follows from the fact that 1Ω ⊥ WD(Ω).

Corollary 2.13. H1(Ω) ⊂ WD(Ω).

Proof. The claim follows from an argument similar to the proof of Corollary 2.8.

Corollary 2.14. Let u ∈ W (Ω). Then 〈|u|〉 = |〈u〉|.

Proof. The claim follows from an argument similar to the proof of Corollary 2.9.

Our final consideration for this section is the lattice structure of the subspace

W (Ω,R) = {u ∈ W (Ω) : u is real-valued}

of W (Ω). The space WD(Ω,R) is defined similarly. We note the following basic properties.

Proposition 2.15. (a) Let u ∈ W (Ω,R). Then u+, u−, |u| ∈ W (Ω) and ‖ |u| ‖W (Ω) =

‖u‖W (Ω).

(b) Let u ∈ WD(Ω,R). Then u+, u−, |u| ∈ WD(Ω).

(c) The maps u 7→ u+, u 7→ u− and u 7→ |u| are continuous from W (Ω,R) into W (Ω).

(d) Let u ∈ W (Ω,R). Then Tr (u+) = (Tru)+, Tr (u−) = (Tru)− and Tr |u| = |Tru|.
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Proof. Note that by the identities u+ = 1
2
(|u|+u) and u− = 1

2
(|u|−u), it suffices to prove

each statement for the case |u|.
We first prove (a). Let k ∈ {1, . . . , d}. Then by [GT83] Lemmas 7.6 and 7.7

∂k|u| = ∂k(u
+) + ∂k(u

−) = 1[u>0]∂ku+ 1[u<0]∂ku = ∂ku− 1[u=0]∂ku = ∂ku.

So u+, u−, |u| ∈ W (Ω) and it follows from Corollary 2.14 that ‖ |u| ‖W (Ω) = ‖u‖W (Ω).

Statement (b) then follows from the fact that WD(Ω) = W (Ω) ∩ Lp(Ω), together with the

lattice structure of Lp(Ω).

We now prove (c). Let u, u1, u2, . . . ∈ W (Ω,R) and suppose that limun = u in W (Ω).

Then lim |∇un| = |∇u| in L2(Ω). Moreover, Proposition 2.11(d) provides that lim |un| = |u|
in L2,loc(Ω). Since ‖ |un| ‖W (Ω) = ‖un‖W (Ω) for all n ∈ N, by passing to a subsequence if

necessary we may assume that there exists a w ∈ W (Ω) such that lim |un| = w weakly

in W (Ω). Then |u| = lim |un| = w weakly in L2,loc(Ω), so lim |un| = |u| weakly in W (Ω).

Moreover,

lim
n→∞

‖ |un| ‖W (Ω) = lim
n→∞

‖un‖W (Ω) = ‖u‖W (Ω) = ‖ |u| ‖W (Ω).

Hence lim |un| = |u| in W (Ω) and Statement (c) follows.

Finally we prove (d). By density there exists a sequence (un)n∈N in H1(ΩR0)∩C(ΩR0)

such that limun = u|ΩR0
in H1(ΩR0). Then lim |un| = |u|ΩR0

| in H1(ΩR0). Moreover, since

TrΩR0
is continuous it follows that lim TrR0un = Tru in L2(Γ) and

|Tru| = lim
n→∞

|TrR0un| = lim
n→∞

|un|Γ| = lim
n→∞

TrR0|un| = TrR0|u|ΩR0
| = Tr |u|

as required.
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3 A Robin problem on an exterior domain

In this section we formulate the Robin-type problem (1) in a variational sense, using the

spaces W (Ω) and WD(Ω) to distinguish boundary conditions at infinity. In each case

well-posedness follows from the Lax–Milgram theorem and we subsequently obtain that

the associated solution operator is compact and submarkovian. We conclude this section

with the proof of Theorem 1.1, which states that solutions of (1) are continuous on Ω.

While basic properties of the solution operator follow from minimal modifications of the

arguments used in [AE15] for the Laplacian, Theorem 1.1 requires a new approach.

Throughout this thesis we assume bounded measurable real-valued coefficients akl ∈
L∞(Ω,R) for all k, l ∈ {1, . . . , d}. Where additional regularity of the coefficients is required,

we state this explicitly. We further assume that there exists a µ > 0 such that

Re
d∑

k,l=1

akl(x)ξkξl ≥ µ|ξ|2 (4)

for a.e. x ∈ Ω and all ξ ∈ Cd.
Define the sesquilinear form a : W (Ω)×W (Ω)→ C by

a(u, v) =
d∑

k,l=1

∫
Ω

akl(∂ku)∂lv.

Then a is continuous and elliptic in the sense of [AE12] (2.1) and (2.2) respectively, where

V = H = W (Ω) and j = idW (Ω). Moreover, a induces an equivalent norm on W (Ω).

Lemma 3.1. The norm

u 7→
(

Re a(u) +

∫
Γ

|Tru|2
)1/2

(5)

is equivalent to the norm ‖ · ‖W (Ω) on W (Ω).

Proof. By the continuity and ellipticity of the form a, the norm defined by (5) is equivalent

to the norm u 7→
( ∫

Ω
|∇u|2 +

∫
Γ
|Tru|2

)1/2
on W (Ω). Then the assertion follows from

Proposition 2.11(e).

We realise the elliptic operator −
∑
∂l(akl∂k) on Ω in a distributional sense as follows.

Define the map A : H1
loc(Ω)→ D(Ω)′ by

〈Au, v〉 =
d∑

k,l=1

∫
Ω

akl(∂ku)∂lv, v ∈ D(Ω).

For all u ∈ W (Ω) and f ∈ L2(Ω), we writeAu = f if a(u, v) = (f, v)L2(Ω) for all v ∈ C∞c (Ω).

We write Au ∈ L2(Ω) if there exists an f ∈ L2(Ω) such that Au = f . Similarly, for

all R ≥ R0 we write (Au)|C∞c (ΩR) ∈ L2(ΩR) if there exists an f ∈ L2(ΩR) such that

a(u, v) = (f, v)L2(Ω) for all v ∈ C∞c (Ω) with supp v ⊂ ΩR.

Note that {χ|Γ : χ ∈ C∞c (Rd)} ⊂ TrW (Ω). Since by the Stone–Weierstraß theorem the

set {χ|Γ : χ ∈ C∞c (Rd)} is dense in (C(Γ), ‖ · ‖∞) and by [EG92] Theorem 2.1 the measure

σ is Borel regular, one deduces that TrW (Ω) is dense in L2(Γ).
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On a Lipschitz domain the potential presence of corner points means that the conormal

derivative may not exist in the classical sense. Hence we adopt the following variational

definition, formulated in terms of the Gauß–Green formula.

We say that u ∈ W (Ω) has a conormal derivative on Γ if there exist R ≥ R0 and

ψ ∈ L2(Γ) such that (Au)|C∞c (ΩR) ∈ L2(ΩR) and

a(u, v)−
∫

ΩR

(Au)v =

∫
Γ

ψTr v (6)

for all v ∈ C∞c (BR). Then ψ is unique since TrW (Ω) = L2(Γ) and we write ∂νu = ψ.

Let S ≥ R0 and suppose that u ∈ W (Ω) with (Au)|C∞c (ΩS) ∈ L2(ΩS). Then u has a

conormal derivative on Γ if and only if (6) is valid for all R ∈ [R0, S], since C∞c (BR) ⊂
C∞c (BS). Moreover, if (6) is valid for all v ∈ C∞c (BR), then by density (6) is also valid for

all v ∈ H1(BR) with 1∂BRTrΩRv = 0. These properties extend to Ω in the following sense.

Proposition 3.2. Let u ∈ W (Ω). Suppose that Au ∈ L2(Ω) and that u has a conormal

derivative ψ ∈ L2(Γ). Then

a(u, v)−
∫

Ω

(Au)v =

∫
Γ

ψTr v (7)

for all v ∈ WD(Ω).

Proof. Since ∂νu = ψ there exists an R ≥ R0 such that (6) is valid for all v ∈ C∞c (BR).

Let χ ∈ C∞c (Rd). Then there exist χ1, χ2 ∈ C∞c (Rd) such that suppχ1 ⊂ BR, suppχ2 ⊂
Rd \BR0−1 and χ = χ1 + χ2. So χ1 ∈ C∞c (BR) and χ2 ∈ C∞c (Ω). Therefore

a(u, χ|Ω)−
∫

Ω

(Au)χ = a(u, χ1|Ω)−
∫

ΩR

(Au)χ1 + a(u, χ2)−
∫

Ω

(Au)χ2

=

∫
Γ

ψTr (χ1|Ω) + a(u, χ2)− a(u, χ2)

=

∫
Γ

ψTr (χ|Ω).

So (7) is valid for all v ∈ {χ|Ω : χ ∈ C∞c (Rd)} and then by density for all v ∈ WD(Ω).

We use the following assertion to formulate (1) precisely.

Proposition 3.3. (a) Let ψ ∈ L2(Γ) and λ ≥ 0. Then there exists a unique u ∈ WD(Ω)

such that

a(u, v) + λ

∫
Γ

TruTr v =

∫
Γ

ψTr v (8)

for all v ∈ WD(Ω).

(b) Let ψ ∈ L2(Γ) and λ > 0. Then there exists a unique u ∈ W (Ω) such that

a(u, v) + λ

∫
Γ

TruTr v =

∫
Γ

ψTr v (9)

for all v ∈ W (Ω).
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Proof. We prove (b). Define the sesquilinear form aλ : W (Ω)×W (Ω)→ C by

aλ(u, v) = a(u, v) + λ(Tru,Tr v)L2(Γ).

Since the form a and trace map Tr are continuous on W (Ω) it follows that aλ is continuous.

Moreover, by Lemma 3.1 the form aλ is coercive on W (Ω). Consider the linear functional

f : v 7→
∫

Γ
ψTr v on W (Ω). Then f is continuous since Tr is continuous. The claim then

follows from the Lax–Milgram theorem applied to the pair (aλ, f).

The proof of (a) is similar.

Given ψ ∈ L2(Γ) and λ ≥ 0, we call u ∈ WD(Ω) a solution of (1) with Dirichlet

boundary conditions at infinity if u satisfies (8) for all v ∈ WD(Ω). Moreover, we

define the solution operator BD
λ : L2(Γ)→ WD(Ω) by BD

λ ψ = u. It follows from Lemma 3.1

together with the continuity of Tr that the operator BD
λ is bounded.

Given ψ ∈ L2(Γ) and λ > 0, we call u ∈ W (Ω) a solution of (1) with Neumann

boundary conditions at infinity if u satisfies (9) for all v ∈ W (Ω). Moreover, we define

the bounded solution operator Bλ : L2(Γ)→ W (Ω) by Bλψ = u.

Observe that if λ = 0 then u ∈ W (Ω) satisfies (9) for all v ∈ W (Ω) only when
∫

Γ
ψ = 0,

since 1Ω ∈ W (Ω). It is for this reason that we exclude the case λ = 0 when considering

Neumann boundary conditions at infinity.

As a consequence of the characterisation WD(Ω) = {u ∈ W (Ω) : 〈u〉 = 0}, we obtain

the following relationship between solutions of the two versions of (1).

Proposition 3.4. Let ψ ∈ L2(Γ). Then

Bλψ = BD
λ ψ + 〈Bλψ〉

(
1Ω − λBD

λ 1Γ

)
for all λ > 0.

Proof. Let λ > 0 and write u = Bλψ. Then u − 〈u〉1Ω ∈ WD(Ω) by Proposition 2.12.

Moreover, for all v ∈ WD(Ω)

a(u− 〈u〉1Ω, v) + λ

∫
Γ

Tr (u− 〈u〉1Ω) Tr v

= a(u, v) + λ

∫
Γ

TruTr v − λ
∫

Γ

〈u〉1ΓTr v

=

∫
Γ

ψTr v −
∫

Γ

λ〈u〉1Γ Tr v

=

∫
Γ

(ψ − λ〈u〉1Γ) Tr v.

Then BD
λ (ψ − λ〈u〉1Γ) = u− 〈u〉1Ω and

u = BD
λ ψ − λ〈u〉BD

λ 1Γ + 〈u〉1Ω = BD
λ ψ + 〈u〉

(
1Ω − λBD

λ 1Γ

)
as required.

20



We denote by

L2(Γ)+ = {ϕ ∈ L2(Γ) : ϕ ≥ 0}

the positive cone in L2(Γ).

The operators Bλ and BD
λ are positivity preserving, in that positive data correspond

to positive solutions.

Proposition 3.5. (a) Let ψ ∈ L2(Γ)+ and λ ≥ 0. Then BD
λ ψ ≥ 0.

(b) Let ψ ∈ L2(Γ)+ and λ > 0. Then Bλψ ≥ 0.

Proof. We first prove (b). Write ξ = −ψ and u = Bλξ. Then u ∈ W (Ω,R), so u+ ∈ W (Ω)

by Proposition 2.15(a). Moreover, a(u, u+) = a(u+) by [GT83] Lemma 7.6. Then the choice

v = u+ in (9) yields that

a(u+) + λ

∫
Γ

|Tr (u+)|2 =

∫
Γ

ξ (Tru)+ ≤ 0,

since Tr (u+) = (Tru)+ by Proposition 2.15(d). Hence ‖u+‖W (Ω) = 0 by Lemma 3.1 and it

follows that −Bλψ = Bλξ = u ≤ 0.

We now prove (a). Again write ξ = −ψ and u = BD
λ ξ. Then u+ ∈ WD(Ω). Using the

ellipticity condition (4), one deduces in a manner similar to the above that

µ‖u+‖2
WD(Ω) = µ

∫
Ω

|∇(u+)|2 ≤ a(u+) + λ

∫
Γ

|Tr (u+)|2 =

∫
Γ

ξ (Tru)+ ≤ 0.

Hence u+ = 0 as claimed.

Solutions satisfying Dirichlet boundary conditions at infinity are dominated by their

Neumann counterpart.

Proposition 3.6. Let ψ ∈ L2(Γ)+ and λ > 0. Then BD
λ ψ ≤ Bλψ.

Proof. Write u = BD
λ ψ and w = Bλψ. Then by definition

a(u, v) + λ

∫
Γ

TruTr v =

∫
Γ

ψTr v

for all v ∈ WD(Ω) and

a(w, v) + λ

∫
Γ

TrwTr v =

∫
Γ

ψTr v

for all v ∈ W (Ω). So

a(u− w, v) + λ

∫
Γ

Tr (u− w) Tr v = 0 (10)

for all v ∈ WD(Ω).

It follows from Proposition 3.5 that u ≥ 0 and w ≥ 0. Since WD(Ω) = W (Ω) ∩ Lp(Ω)

by Proposition 2.12, one obtains that (u−w)+ ≤ u ∈ Lp(Ω). Moreover, (u−w)+ ∈ W (Ω)

by Proposition 2.15(a), so (u−w)+ ∈ WD(Ω). The choice v = (u−w)+ in (10) then yields

that

a((u− w)+) + λ

∫
Γ

|Tr (u− w)+|2 = 0.

Hence ‖(u− w)+‖W (Ω) = 0 by Lemma 3.1, so (u− w)+ = 0 and u ≤ w.

The operators Bλ and BD
λ are decreasing in the parameter λ.
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Proposition 3.7. (a) Let ψ ∈ L2(Γ)+ and 0 ≤ λ1 < λ2. Then BD
λ2
ψ ≤ BD

λ1
ψ.

(b) Let ψ ∈ L2(Γ)+ and 0 < λ1 < λ2. Then Bλ2ψ ≤ Bλ1ψ.

Proof. We prove (b). Write u1 = Bλ1ψ and u2 = Bλ2ψ. Then

a(u1, v) + λ1

∫
Γ

Tru1 Tr v =

∫
Γ

ψTr v

and

a(u2, v) + λ2

∫
Γ

Tru2 Tr v =

∫
Γ

ψTr v

for all v ∈ W (Ω). Note that u2 ≥ 0 by Proposition 3.5. Let v ∈ W (Ω) be such that v ≥ 0.

Then Tru2 ≥ 0 and Tr v ≥ 0 by Proposition 2.15(d), so

a(u2 − u1, v) + λ1

∫
Γ

Tr (u2 − u1) Tr v

≤ a(u2 − u1, v) + λ1

∫
Γ

Tr (u2 − u1) Tr v + (λ2 − λ1)

∫
Γ

Tru2 Tr v

= a(u2, v) + λ2

∫
Γ

Tru2 Tr v − a(u1, v)− λ1

∫
Γ

Tru1 Tr v = 0.

Then the choice v = (u2 − u1)+ yields that

a((u2 − u1)+) + λ1

∫
Γ

|Tr (u2 − u1)+|2 ≤ 0.

Hence (u2 − u1)+ = 0 by Lemma 3.1 and the result follows.

The proof of (a) is similar.

Let X denote a σ-finite measure space and let p ∈ [1,∞]. An operator B ∈ L
(
Lp(X)

)
satisfying |Bu| ≤ 1 for all u ∈ Lp(X) with |u| ≤ 1 is often called submarkovian. The

operators λBλ and λBD
λ are submarkovian and extrapolate consistently to Lp(Γ) in the

following sense.

Corollary 3.8. (a) Let λ ≥ 0. Then λBD
λ 1Γ ≤ 1Ω.

(b) Let λ > 0. Then λBλ1Γ = 1Ω.

(c) Let R ≥ R0 and λ ≥ 0. Then the map ψ 7→ 1ΩRB
D
λ ψ is continuous from Lp(Γ) into

Lp(Ω) for all p ∈ [2,∞].

(d) Let R ≥ R0 and λ > 0. Then the map ψ 7→ 1ΩRBλψ is continuous from Lp(Γ) into

Lp(Ω) for all p ∈ [2,∞].

Proof. We first prove (b). Since

a
(

1
λ
1Ω, v

)
+ λ

∫
Γ

Tr
(

1
λ
1Ω

)
Tr v =

∫
Γ

1Γ Tr v

for all v ∈ W (Ω), it follows that Bλ1Γ = 1
λ
1Ω. Then Statement (a) follows from Proposi-

tion 3.6.
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We now prove (c). Let ψ ∈ L2(Γ) and write u = BD
λ ψ. Recall that ΩR ⊂ Ω is a

bounded Lipschitz domain. Then by Proposition 2.11(d) together with Lemma 3.1, there

exists a c > 0 such that

‖1ΩRB
D
λ ψ‖2

L2(Ω) =

∫
ΩR

|u|2 ≤
∫

Ω

|∇u|2 +

∫
ΩR

|u|2

≤ c
(

Re a(u) + λ

∫
Γ

|Tru|2
)

= cRe

∫
Γ

ψTru

≤ c‖Tr ‖L(W (Ω),L2(Γ))‖BD
λ ‖L(L2(Γ),W (Ω))‖ψ‖2

L2(Γ).

Hence the map ψ 7→ 1ΩRB
D
λ ψ is continuous from L2(Γ) into L2(Ω).

Now let ψ ∈ L∞(Γ). Then |ψ| ≤ ‖ψ‖L∞(Γ)1Γ and it follows from Proposition 3.5(a)

that BD
λ |ψ| ≤ ‖ψ‖L∞(Γ)B

D
λ 1Γ. Moreover,

|BD
λ ψ| = sup

α∈[0,2π]

Re(eiαBD
λ ψ) = sup

α∈[0,2π]

BD
λ (Re eiαψ) ≤ sup

α∈[0,2π]

BD
λ |eiαψ| = BD

λ |ψ|

and therefore |BD
λ ψ| ≤ BD

λ |ψ| ≤ ‖ψ‖L∞(Γ)B
D
λ 1Γ ≤ ‖ψ‖L∞(Γ)

1
λ
1Ω by (a). Then

‖1ΩRB
D
λ ψ‖L∞(Ω) ≤

1

λ
‖ψ‖L∞(Γ),

so the map ψ 7→ 1ΩRB
D
λ ψ is continuous from L∞(Γ) into L∞(Ω). Now (c) follows from an

interpolation argument.

The proof of (d) is similar.

Next we show that the operators Bλ and BD
λ are compact. We use this fact in the

proof of Proposition 4.5 to obtain convergence of the solution operator associated with a

truncated version of the boundary value problem (1), and in the proof of Proposition 5.5

to establish that the Dirichlet-to-Neumann operator has compact resolvent.

Proposition 3.9. (a) Let λ ≥ 0. Then the operator BD
λ is compact.

(b) Let λ > 0. Then the operator Bλ is compact.

Proof. We prove (b). Define the norm ||| · ||| on W (Ω) by

|||u||| =
(

Re a(u) + λ

∫
Γ

|Tru|2
)1/2

.

Let ψ, ψ1, ψ2, . . . ∈ L2(Γ) and suppose that limψn = ψ weakly in L2(Γ). Write u = Bλψ

and un = Bλψn. Then limun = u weakly in W (Ω), since Bλ is bounded. Hence limun = u

weakly in (W (Ω), ||| · |||) by Lemma 3.1. Moreover, by Proposition 2.11(b) the trace map

Tr is compact, so lim Trun = Tru in L2(Γ) and lim(ψn,Trun)L2(Γ) = (ψ,Tru)L2(Γ). Since

a(un) + λ

∫
Γ

|Trun|2 =

∫
Γ

ψn Trun

for all n ∈ N, it follows that

lim
n→∞

Re a(un) + λ

∫
Γ

|Trun|2 = Re

∫
Γ

ψTru = Re a(u) + λ

∫
Γ

|Tru|2.

Hence lim |||un||| = |||u||| and one therefore deduces that limun = u in (W (Ω), ||| · |||). Ap-

plying Lemma 3.1 once again then yields that limun = u in W (Ω).

The proof of (a) is similar.
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Finally we consider the proof of the following.

Theorem 1.1. (a) Let ψ ∈ L∞(Γ) and λ ≥ 0. Then BD
λ ψ ∈ C(Ω).

(b) Let ψ ∈ L∞(Γ) and λ > 0. Then Bλψ ∈ C(Ω).

Note that by Nash [Nas58] the solutions Bλψ and BD
λ ψ each admit a continuous rep-

resentative on Ω, so it suffices to verify continuity at the boundary Γ. In the proof of

the above we use the following pointwise Morrey and Campanato seminorms introduced

in [ER15], defined for a reference space E− ⊂ Rd.

We denote by

E =
{
x = (x̃, xd) ∈ Rd−1 ×R : ‖x̃‖Rd−1 < 1 and xd ∈ (−1, 1)

}
the open cylinder in Rd and write E− = {x ∈ E : xd < 0}. For all x ∈ Rd and r > 0 we

define

E−r (x) = E− ∩Br(x).

If |E−r (x)| > 0 then we write 〈u〉E−r (x) = 1
|E−r (x)|

∫
E−r (x)

u.

For all γ ∈ [0, d] and x ∈ E− we define ‖ · ‖Mγ ,x : L2(E−)→ [0,∞] by

‖u‖Mγ ,x = sup
r∈(0, 1

2
]

(
r−γ

∫
E−r (x)

|u|2
)1/2

.

Moreover, for all γ ∈ [0, d+ 2] and x ∈ E− we define ‖ · ‖Mγ ,x : L2(E−)→ [0,∞] by

‖u‖Mγ ,x = sup
r∈(0, 1

2
]

(
r−γ

∫
E−r (x)

|u− 〈u〉E−r (x)|
2
)1/2

.

Then the seminorms ‖ · ‖Mγ ,x and ‖ · ‖Mγ ,x on L2(E−) correspond to those introduced in

[ER15] Section 3, with Ω = E− and Re = 1
2
.

The proof of Theorem 1.1 relies on the following extension of [EW20] Proposition 3.1.

Lemma 3.10. There exists a κ ∈ (0, 1) such that for all γ ∈ [0, d) and δ ∈ (0, 2] with

γ + δ < d− 2 + 2κ, there exists a c > 0 such that the following is valid.

Let U ⊂ Rd be an open set and let Φ be a bi-Lipschitz map from an open neighbourhood

of U onto an open subset of Rd such that Φ(U) = E and Φ(Ω ∩ U) = E−. Let ψ ∈ L∞(Γ)

and u ∈ W (Ω) and suppose that

a(u, v) +

∫
Γ

TruTr v =

∫
Γ

ψTr v

for all v ∈ W (Ω). Then

‖∇(u ◦ Φ−1)‖Mγ+δ,x ≤ c
(
‖∇u‖L2(Ω) + ‖ψ‖L∞(Γ) + ‖∇(u ◦ Φ−1)‖Mγ ,x + ‖u ◦ Φ−1‖Mγ+δ,x

)
for all x ∈ 1

2
E−.

Proof. The proof is similar to the proof of [EW20] Proposition 3.1.

We are now able to prove Theorem 1.1.
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Proof of Theorem 1.1. We first prove (b). Without loss of generality we may assume

that λ = 1. Let κ ∈ (0, 1) be such that Lemma 3.10 is valid. Let U ⊂ Rd be an open set

and let Φ be a bi-Lipschitz map from an open neighbourhood of U onto an open subset of

Rd such that Φ(U) = E and Φ(Ω ∩ U) = E−.

Write u = Bλψ ∈ W (Ω). Since E is bounded and Φ−1 is uniformly continuous, it

follows that U = Φ−1(E) is bounded. Then u|Ω∩U ∈ H1(Ω∩U), so u ◦Φ−1 ∈ H1(E−) and

∇(u ◦Φ−1) ∈ L2(E−), where we write u ◦Φ−1 = u ◦ (Φ−1|E−). Hence there exists a c1 > 0

such that

‖∇(u ◦ Φ−1)‖M0,x ≤ c1 (11)

for all x ∈ 1
2
E−. By [ER15] Lemma 6.2 there exists a c > 0 such that

‖u ◦ Φ−1‖M2,x ≤ c

for all x ∈ 1
2
E−. Then [ER15] Lemma 3.1(a) provides that there exists a c2 > 0 such that

‖u ◦ Φ−1‖M2,x ≤ c2 (12)

for all x ∈ 1
2
E−, since u ◦ Φ−1 ∈ L2(E−).

Suppose first that d = 3. By Lemma 3.10 there exists a c > 0 such that

‖∇(u ◦ Φ−1)‖M1+κ,x ≤ c
(
‖∇u‖L2(Ω) + ‖ψ‖L∞(Γ) + ‖∇(u ◦ Φ−1)‖M0,x + ‖u ◦ Φ−1‖M1+κ,x

)
≤ c
(
‖∇u‖L2(Ω) + ‖ψ‖L∞(Γ) + c1 + c2

)
for all x ∈ 1

2
E−. Then by [ER15] Lemma 6.2 there exists a c > 0 such that

‖u ◦ Φ−1‖M3+κ,x ≤ c

for all x ∈ 1
2
E−. Since by [Nas58] the function u is continuous on Ω, it follows from

[ER15] Lemma 3.1(c) that there exists a c > 0 such that

|(u ◦ Φ−1)(x)− (u ◦ Φ−1)(y)| ≤ c|x− y|
κ
2

for all x, y ∈ 1
2
E− with |x − y| ≤ 1

4
. Hence u ◦ Φ−1 is uniformly continuous on 1

2
E−

and extends to a continuous function on 1
2
E−. Consequently one deduces that u|Φ−1( 1

2
E−)

extends to a continuous function on Φ−1
(

1
2
E−
)

= Φ−1
(

1
2
E−
)
.

Next suppose that d > 3 is odd. Then there exists a k ≥ 2 such that d = 2k + 1. Note

that 2j + 2 < d− 2 + 2κ for all j ∈ {0, . . . , k− 2}. Then it follows from the estimates (11)

and (12), together with an iterative argument using Lemma 3.10 with γ = 2j and δ = 2,

that there exists a c3 > 0 such that

‖∇(u ◦ Φ−1)‖M2k−2,x ≤ c3

for all x ∈ 1
2
E−. So by [ER15] Lemmas 6.2 and 3.1(a) there exists a c4 > 0 such that

‖u ◦ Φ−1‖M2k,x ≤ c4

for all x ∈ 1
2
E− and therefore

‖u ◦ Φ−1‖M2k−1+κ,x ≤ c4
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for all x ∈ 1
2
E−. Note that

2k − 1 + κ = d− 2 + κ < d− 2 + 2κ.

Hence by Lemma 3.10 with γ = 2k − 2 and δ = 1 + κ, there exists a c > 0 such that

‖∇(u ◦ Φ−1)‖M2k−1+κ,x

≤ c
(
‖∇u‖L2(Ω) + ‖ψ‖L∞(Γ) + ‖∇(u ◦ Φ−1)‖M2k−2,x + ‖u ◦ Φ−1‖M2k−1+κ,x

)
≤ c
(
‖∇u‖L2(Ω) + ‖ψ‖L∞(Γ) + c3 + c4

)
for all x ∈ 1

2
E−. Therefore [ER15] Lemma 6.2 provides that there exists a c > 0 such that

‖u ◦ Φ−1‖Md+κ,x ≤ c

for all x ∈ 1
2
E−. As in the case d = 3, one then concludes that u|Φ−1( 1

2
E−) extends to a

continuous function on Φ−1
(

1
2
E−
)
.

Finally suppose that d is even. Then there exists a k ≥ 2 such that d = 2k. Since again

2j + 2 < d − 2 + 2κ for all j ∈ {0, . . . , k − 2}, the estimates (11) and (12) together with

Lemma 3.10 and an iterative argument yield that there exists a c5 > 0 such that

‖∇(u ◦ Φ−1)‖M2k−2,x ≤ c5

for all x ∈ 1
2
E−. Then by [ER15] Lemmas 6.2 and 3.1(a) there exists a c6 > 0 such that

‖u ◦ Φ−1‖M2k,x ≤ c6

for all x ∈ 1
2
E−, so

‖u ◦ Φ−1‖M2k−2+κ,x ≤ c6

for all x ∈ 1
2
E−. Note that 2k− 2 +κ < d− 2 + 2κ. Hence by Lemma 3.10 with γ = 2k− 2

and δ = κ, there exists a c > 0 such that

‖∇(u ◦ Φ−1)‖M2k−2+κ,x

≤ c
(
‖∇u‖L2(Ω) + ‖ψ‖L∞(Γ) + ‖∇(u ◦ Φ−1)‖M2k−2,x + ‖u ◦ Φ−1‖M2k−2+κ,x

)
≤ c
(
‖∇u‖L2(Ω) + ‖ψ‖L∞(Γ) + c5 + c6

)
for all x ∈ 1

2
E−. So [ER15] Lemma 6.2 provides that there exists a c > 0 such that

‖u ◦ Φ−1‖Md+κ,x ≤ c

for all x ∈ 1
2
E−. As in the case d = 3, one then concludes that u|Φ−1( 1

2
E−) extends to a

continuous function on Φ−1
(

1
2
E−
)
.

In each of the above three cases, one deduces by a compactness argument that u ∈ C(Ω).

Since Lemma 3.10 remains valid with the space WD(Ω) in place of W (Ω), Statement (a)

follows from an argument similar to the proof of (b).

26



4 Convergence of the truncated problem

In this section we consider a version of the Robin-type problem (1) for the truncated domain

ΩR and study convergence in the limit R → ∞. First we establish that the associated

solution operator BD
λ (R) converges to BD

λ in L
(
L2(Γ),WD(Ω)

)
. We then show that if

the coefficients (akl) are Lipschitz continuous, solutions of the truncated problem converge

locally uniformly on Ω to solutions of (1) that satisfy Dirichlet boundary conditions at

infinity. Using this result we prove the following.

Theorem 1.2. Suppose that akl ∈ W 1,∞(Ω,R) for all k, l ∈ {1, . . . , d}. Then there exists

a c > 0 such that the following are valid.

(a) Let ψ ∈ L∞(Γ) and λ > 0. Then

|(BD
λ ψ)(x)| ≤

c ‖ψ‖L∞(Γ)

λ
· 1

|x|d−2

for all x ∈ Ω \ ΩR0.

(b) Let ψ ∈ L∞(Γ) and λ > 0. Then

|(Bλψ)(x)− 〈Bλψ〉| ≤ c
(‖ψ‖L∞(Γ)

λ
+ |〈Bλψ〉|

) 1

|x|d−2

for all x ∈ Ω \ ΩR0.

We conclude this section with a variant of Theorem 1.1 that permits less regular bound-

ary data ψ, at the cost of requiring Lipschitz continuity of the coefficients. Subsequently

we obtain that BD
λ (R) converges to BD

λ in L
(
L∞(Γ), L∞(Ω)

)
under the same hypotheses.

Let R ≥ R0. Then ΩR is a Lipschitz domain. We define

WD
R (Ω) =

{
u ∈ WD(Ω) : u|Ω\ΩR = 0

}
.

Then WD
R (Ω) is a closed subspace of WD(Ω) with the induced norm.

Lemma 4.1. Let R ≥ R0. Then WD
R (Ω) is a Hilbert space. Moreover, the map u 7→ u|ΩR

defines a homeomorphism from WD
R (Ω) onto {v ∈ H1(ΩR) : 1∂BRTrΩRv = 0}.

Proof. Clearly the closed subspace WD
R (Ω) of the Hilbert space WD(Ω) is a Hilbert space.

By identifying the sets {v|BR : v ∈ H1(Rd) and v|Rd\BR = 0} and {v ∈ H1(BR) : TrBRv =

0} in the natural way, one deduces that the map u 7→ u|ΩR places WD
R (Ω) and {v ∈

H1(ΩR) : 1∂BRTrΩRv = 0} in bijective correspondence. Moreover, by Proposition 2.11(d)

there exists a c > 0 such that

‖u|ΩR‖2
H1(ΩR) ≤

∫
Ω

|∇u|2 +

∫
ΩR

|u|2 ≤ c‖u‖2
W (Ω) = c‖u‖2

WD(Ω)

for all u ∈ WD
R (Ω). On the other hand,∫

ΩR

|∇u|2 ≤ ‖u‖2
H1(ΩR)

for all u ∈ H1(ΩR).
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The alluded-to truncated version of (1) is as follows. Let R ≥ R0. Given ψ ∈ L2(Γ)

and λ ≥ 0, we consider the problem

Au = 0 on ΩR

λTru+ ∂νu = ψ on Γ
(13)

with Dirichlet boundary conditions at ∂BR.

Proposition 4.2. Let R ≥ R0. Let ψ ∈ L2(Γ) and λ ≥ 0. Then there exists a unique

u ∈ WD
R (Ω) such that

a(u, v) + λ

∫
Γ

TruTr v =

∫
Γ

ψTr v (14)

for all v ∈ WD
R (Ω).

Proof. The claim follows from an argument similar to the proof of Proposition 3.3, using

Lemma 4.1 together with the Lax–Milgram theorem.

Let R ≥ R0. Given ψ ∈ L2(Γ) and λ ≥ 0, we call u ∈ WD
R (Ω) a solution of (13) with

Dirichlet boundary conditions at ∂BR if u satisfies (14) for all v ∈ WD
R (Ω). Moreover,

we define the bounded solution operator BD
λ (R) : L2(Γ)→ WD

R (Ω) by BD
λ (R)ψ = u.

We first verify that solutions of the truncated problem are continuous on Ω.

Proposition 4.3. Let R ≥ R0. Let ψ ∈ L2(Γ) and λ ≥ 0. Then BD
λ (R)ψ ∈ C(Ω).

Proof. Without loss of generality we may assume that ψ is real-valued. Write u =

BD
λ (R)ψ. We may assume that u|∂BR = 0. Clearly u|Ω\ΩR is continuous and Nash [Nas58]

provides that u|ΩR is continuous. Then it remains to show that u is continuous in a neigh-

bourhood of ∂BR. Consider the annulus

Z = {x ∈ Rd : R0 − 1 < |x| < R}.

We shall prove that u|Z is continuous.

Fix τ ∈ C∞c (Rd,R) such that τ = 0 on BR0−2 ∪ Rd \ BR0− 1
2

and τ = 1 in a neigh-

bourhood of ∂BR0−1. Define η : Z → R by η(x) = (τu)(x). Then η|Z ∈ H1(Z) and

TrZ(η|Z) = TrZ(u|Z), where TrZ : H1(Z) → L2(∂Z) is the trace map on Z. Moreover, by

the Lax–Milgram theorem there exists a unique v ∈ H1
0 (Z) such that

d∑
k,l=1

∫
Z

akl(∂kv)∂lχ =
d∑

k,l=1

∫
Z

akl(∂kη)∂lχ

for all χ ∈ H1
0 (Z). Write w = η|Z − v ∈ H1(Z). Then w is harmonic on Z. Since η ∈ C(Z)

and η|Z ∈ H1(Z), it follows from [AE19] Proposition 2.14 that v extends to a continuous

function on Z. Hence w extends to a continuous function on Z and w(x) = η(x) for all

x ∈ ∂Z, where we continue to denote by w the extension to Z.

Since TrZ(w|Z) = TrZ(η|Z) = TrZ(u|Z), it follows that TrZ((w − u)|Z) = 0. Therefore

(w − u)|Z ∈ H1
0 (Z). Moreover, since u = BD

λ (R)ψ one has that

d∑
k,l=1

∫
Z

akl(∂ku)∂lχ = a(u, χ) =

∫
Γ

ψTrχ− λ
∫

Γ

TruTrχ = 0
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for all χ ∈ C∞c (Z). So
d∑

k,l=1

∫
Z

akl(∂k(w − u))∂lχ = 0

first for all χ ∈ C∞c (Z), and then for all χ ∈ H1
0 (Z) by density. The choice χ = (w − u)|Z

then yields that

µ

∫
Z

|∇(w − u)|2 ≤
d∑

k,l=1

∫
Z

akl(∂k(w − u))∂l(w − u) = 0,

so (w − u)|Z is constant and it follows that (w − u)|Z = 0. Hence w(x) = u(x) for all

x ∈ Z. Now let x ∈ ∂BR and let (xn)n∈N be a sequence in Z such that lim xn = x. Then

lim
n→∞

u(xn) = lim
n→∞

w(xn) = w(x) = η(x) = 0 = u(x)

and the claim follows.

Corollary 4.4. Let R ≥ R0. Let ψ ∈ L∞(Γ) and λ ≥ 0. Then BD
λ (R)ψ ∈ C(Ω).

Proof. Since Lemma 3.10 remains valid with the space WD
R (Ω) in place of W (Ω), the

claim follows from an argument similar to the proof of Theorem 1.1.

Next we prove that the solution operator BD
λ (R) converges to BD

λ in a uniform manner.

We apply this result in the proof of Proposition 4.9 to obtain locally uniform convergence

of solutions of (13), and in the proof of Proposition 5.7 to deduce resolvent convergence

for the Dirichlet-to-Neumann operator.

Proposition 4.5. Let λ ≥ 0. Then

lim
R→∞

BD
λ (R) = BD

λ

in L
(
L2(Γ),WD(Ω)

)
.

Proof. We argue as in the proof of [AE15] Theorem 4.3. Let (Rn)n∈N be a sequence in

[R0,∞) such that limRn =∞. We shall prove that limBD
λ (Rn) = BD

λ in L
(
L2(Γ),WD(Ω)

)
.

Let ψ, ψ1, ψ2, . . . ∈ L2(Γ) and suppose that limψn = ψ weakly in L2(Γ). Since by Propo-

sition 3.9(a) the operator BD
λ is compact, by Proposition A.7 we need only show that

limBD
λ (Rn)ψn = BD

λ ψ in WD(Ω).

Write u = BD
λ ψ and for each n ∈ N write un = BD

λ (Rn)ψn. Let n ∈ N. Then

a(un, v) + λ

∫
Γ

Trun Tr v =

∫
Γ

ψn Tr v (15)

for all v ∈ WD
Rn

(Ω). The choice v = un together with the ellipticity of a then yields that

µ‖un‖2
WD(Ω) ≤ Re a(un) + λ

∫
Γ

|Trun|2 = Re

∫
Γ

ψn Trun.

Since Tr : W (Ω)→ L2(Γ) is continuous, it follows that

µ‖un‖2
WD(Ω) ≤ Re

∫
Γ

ψn Trun ≤ ‖Tr ‖L(W (Ω),L2(Γ)) ‖ψn‖L2(Γ) ‖un‖WD(Ω)
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for all n ∈ N. Then the sequence (un)n∈N is bounded in WD(Ω), since (ψn)n∈N is bounded

in L2(Γ). Passing to a subsequence if necessary, we may assume that there exists a w ∈
WD(Ω) such that limun = w weakly in WD(Ω). Then lim Trun = Trw in L2(Γ), since

by Proposition 2.11(b) the map Tr is compact. Let R ≥ R0 and let v ∈ WD
R (Ω). Then

v ∈ WD
Rn

(Ω) for all n ∈ N sufficiently large. Hence (15) yields that

a(w, v) + λ

∫
Γ

TrwTr v = lim
n→∞

a(un, v) + λ

∫
Γ

Trun Tr v

= lim
n→∞

∫
Γ

ψn Tr v =

∫
Γ

ψTr v.

Note that since WD(Ω) = {χ|Ω : χ ∈ C∞c (Rd)}
W (Ω)

, it follows that
⋃
R≥R0

WD
R (Ω) is dense

in WD(Ω). So

a(w, v) + λ

∫
Γ

TrwTr v =

∫
Γ

ψTr v

for all v ∈ WD(Ω). Therefore w = BD
λ ψ = u and lim Trun = Tru in L2(Γ). Then

lim
n→∞

Re a(un) + λ

∫
Γ

|Trun|2 = lim
n→∞

Re

∫
Γ

ψn Trun

= Re

∫
Γ

ψTru = Re a(u) + λ

∫
Γ

|Tru|2.

Moreover, limun = u weakly in WD(Ω). Hence by using Lemma 3.1 and arguing as in the

proof of Proposition 3.9, one deduces that limun = u in WD(Ω).

The operator BD
λ (R) is positivity preserving and is dominated by BD

λ . Moreover, BD
λ (R)

is increasing in the parameter R.

Proposition 4.6. Let ψ ∈ L2(Γ)+ and λ ≥ 0.

(a) Let R ≥ R0. Then BD
λ (R)ψ ≥ 0.

(b) Let R ≥ R0. Then BD
λ (R)ψ ≤ BD

λ ψ.

(c) Let R2 ≥ R1 ≥ R0. Then BD
λ (R1)ψ ≤ BD

λ (R2)ψ.

Proof. The proofs of Statements (a) and (b) are similar to the proofs of the Proposi-

tions 3.5 and 3.6, respectively. We prove (c).

Write u1 = BD
λ (R1)ψ and u2 = BD

λ (R2)ψ. Then

a(u1, v) + λ

∫
Γ

Tru1 Tr v =

∫
Γ

ψTr v

for all v ∈ WD
R1

(Ω) and

a(u2, v) + λ

∫
Γ

Tru2 Tr v =

∫
Γ

ψTr v

for all v ∈ WD
R2

(Ω). So

a(u1 − u2, v) + λ

∫
Γ

Tr (u1 − u2) Tr v = 0 (16)
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for all v ∈ WD
R1

(Ω). Moreover, u1 ≥ 0 and u2 ≥ 0 by Statement (a). Since u1|Ω\ΩR1
= 0,

it follows that (u1 − u2)+|Ω\ΩR1
= 0. Then by Proposition 2.15(b) one deduces that

(u1 − u2)+ ∈ WD
R1

(Ω) and the choice v = (u1 − u2)+ in (16) yields that

µ‖(u1 − u2)+‖2
WD(Ω) ≤ a((u1 − u2)+) + λ

∫
Γ

|Tr (u1 − u2)+|2 = 0.

So (u1 − u2)+ = 0 and u1 ≤ u2.

Corollary 4.7. Let R ≥ R0 and λ ≥ 0. Then the map ψ 7→ BD
λ (R)ψ is continuous from

Lp(Γ) into Lp(Ω) for all p ∈ [2,∞].

Proof. The proof is similar to that of Corollary 3.8(c). Note that since suppBD
λ (R)ψ ⊂ ΩR

for all ψ ∈ L2(Γ), the cut-off function 1ΩR is no longer required.

For the proof of the next lemma we introduce the following definitions. Let X denote

a σ-finite measure space and let p, q ∈ [1,∞]. Two operators Bp ∈ L
(
Lp(X)

)
and Bq ∈

L
(
Lq(X)

)
are called consistent if Bp|Lp∩Lq = Bq|Lp∩Lq . Two semigroups T (p) = (T

(p)
t )t>0

on Lp(X) and T (q) = (T
(q)
t )t>0 on Lq(X) are called consistent if the operators T

(p)
t and

T
(q)
t are consistent for all t > 0. A semigroup T (p) on Lp(X) is said to extend consistently

to a semigroup on Lq(X) if there exists a semigroup T (q) on Lq(X) such that T (p) and

T (q) are consistent. We revisit these notions in Section 6 when considering the semigroup

generated by the Dirichlet-to-Neumann operator.

For the remainder of this section we assume that the coefficients (akl) are Lipschitz

continuous on Ω. Note that by [Ste70] Theorem VI.5 we may assume that the coefficients

extend to Rd such that akl ∈ W 1,∞(Rd,R) for all k, l ∈ {1, . . . , d} and

Re
d∑

k,l=1

akl(x)ξkξl ≥
µ

2
|ξ|2

for a.e. x ∈ Rd and all ξ ∈ Cd, where µ is as in (4) and we continue to denote by akl the

extension to Rd. We define the continuous elliptic form ã : H1(Rd)×H1(Rd)→ C by

ã(u, v) =
d∑

k,l=1

∫
Rd
akl(∂ku)∂lv

and denote by A the associated m-sectorial operator in L2(Rd). Then −A generates a

C0-semigroup (e−tA)t>0 on L2(Rd). Moreover, for all p ∈ [1,∞) the semigroup (e−tA)t>0

extends consistently to a C0-semigroup (e−tAp)t>0 on Lp(R
d) with generator −Ap.

The following proof uses the resolvent consistency and optimal regularity associated

with the elliptic operator A in L2(Rd).

Lemma 4.8. Suppose that akl ∈ W 1,∞(Ω,R) for all k, l ∈ {1, . . . , d}. Let u ∈ W (Ω) and

suppose that Au = 0. Then u ∈ W 2,2d
loc (Ω).

Proof. We first show that u ∈ W 2,2
loc (Ω). Let χ ∈ C∞c (Ω). Then

∫
Ω
|∇(χu)|2 < ∞ and it

follows that χu ∈ W 1,2(Rd), where we continue to denote by χu the zero extension to Rd.

Then for all τ ∈ C∞c (Rd),

ã(χu, τ) =
d∑

k,l=1

∫
Rd
akl
(
∂k(χu)

)
∂lτ
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=
d∑

k,l=1

∫
Rd
akl(u∂kχ)∂lτ +

d∑
k,l=1

∫
Rd
akl(χ∂ku)∂lτ

=
( d∑
k,l=1

∫
Rd
akl(∂kχ)∂l(uτ)−

d∑
k,l=1

∫
Rd
akl(∂kχ)(∂lu)τ

)

+
( d∑
k,l=1

∫
Rd
akl(∂ku)∂l(χτ)−

d∑
k,l=1

∫
Rd
akl(∂ku)(∂lχ)τ

)

= −
d∑

k,l=1

∫
Rd
u
(
∂l(akl∂kχ)

)
τ −

d∑
k,l=1

∫
Rd
akl(∂kχ)(∂lu)τ

+ 〈Au, χτ〉 −
d∑

k,l=1

∫
Rd
akl(∂ku)(∂lχ)τ

=
(
uAχ, τ

)
L2(Rd)

−
d∑

k,l=1

(
akl(∂kχ)∂lu, τ

)
L2(Rd)

−
d∑

k,l=1

(
akl(∂ku)∂lχ, τ

)
L2(Rd)

.

So χu ∈ D(A) and

A(χu) = uAχ−
d∑

k,l=1

akl(∂kχ)∂lu−
d∑

k,l=1

akl(∂ku)∂lχ (17)

with A(χu) ∈ L2(Rd). Hence by [GT83] Theorem 8.8 together with the fact that suppχ ⊂
Ω, one obtains that χu ∈ W 2,2(Ω).

For each n ∈ {1, . . . , d} define pn ∈ [2,∞] by 1
pn

= n
2d

. Then p1 = 2d, pd = 2 and
1
pn
− 1

pn−1
= 1

2d
for all n ∈ {1, . . . , d}. By downwards induction we shall prove that for each

n ∈ {1, . . . , d}, one has that χu ∈ W 2,pn(Ω) for all χ ∈ C∞c (Ω). Since the conclusion of the

preceding paragraph implies that χu ∈ W 2,2(Ω) = W 2,pd(Ω) for all χ ∈ C∞c (Ω), it follows

that the base case n = d is valid.

Let j ∈ {1, . . . , d} and suppose that χu ∈ W 2,pj(Ω) for all χ ∈ C∞c (Ω). Then u ∈
W

2,pj
loc (Ω). Let χ ∈ C∞c (Ω). By a zero extension χu ∈ W 2,pj(Rd) and the Sobolev embedding

theorem provides that χu ∈ Lpj−1
(Rd). Note that since akl∂kχ ∈ W 1,∞

c (Ω) for all k, l ∈
{1, . . . , d}, it follows that Aχ ∈ L∞,c(Ω). By Nash [Nas58] the function u is continuous on

the compact set suppχ ⊂ Ω, so uAχ ∈ L2(Ω)∩L∞(Ω). Then uAχ ∈ L2(Rd)∩L∞(Rd) by

a zero extension and consequently uAχ ∈ Lpj−1
(Rd). Moreover, since u ∈ W 2,pj

loc (Ω) by the

inductive hypothesis and suppχ ⊂ Ω is compact, it follows that (∂kχ)∂lu ∈ W 1,pj(Ω) for

all k, l ∈ {1, . . . , d}. Then by a zero extension and the Sobolev embedding theorem, one

obtains that
d∑

k,l=1

akl(∂kχ)∂lu ∈ Lpj−1
(Rd)

since akl is bounded for all k, l ∈ {1, . . . , d}. One similarly deduces that
∑
akl(∂ku)∂lχ ∈

Lpj−1
(Rd) and it then follows from (17) that A(χu) ∈ Lpj−1

(Rd). Write f = (I +A)(χu) ∈
L2(Rd) ∩ Lpj−1

(Rd). Since the semigroup (e−tA)t>0 on L2(Rd) extends consistently to
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(e−tApj−1 )t>0 on Lpj−1
(Rd), the resolvents (I + A)−1 and (I + Apj−1

)−1 of the respective

generators are consistent. So

χu = (I + A)−1f = (I + Apj−1
)−1f ∈ D(Apj−1

) = W 2,pj−1(Rd)

by [ER97] Theorem 1.5.II. Therefore χu ∈ W 2,pj−1(Ω) for all χ ∈ C∞c (Ω). Then by induc-

tion it follows that for all n ∈ {1, . . . , d}, one has χu ∈ W 2,pn(Ω) for all χ ∈ C∞c (Ω). The

claim then follows from the case n = 1.

Proposition 4.9. Suppose that akl ∈ W 1,∞(Ω,R) for all k, l ∈ {1, . . . , d}. Let K ⊂ Ω be

a compact set and let λ ≥ 0. Then

lim
R→∞

sup
‖ψ‖L2(Γ)≤1

‖
(
BD
λ ψ
)
|K −

(
BD
λ (R)ψ

)
|K‖C(K) = 0.

In particular, lim
R→∞

BD
λ (R)ψ = BD

λ ψ locally uniformly on Ω for all ψ ∈ L2(Γ).

Proof. For each n ∈ {0, . . . , d} define pn ∈ [2,∞] by 1
pn

= n
2d

. Then p0 = ∞, p1 = 2d,

pd = 2 and 1
pn
− 1

pn−1
= 1

2d
for all n ∈ {1, . . . , d}. Moreover, there exists a collection {Un}dn=0

of Lipschitz bounded open subsets of Ω such that K ⊂ Un−1 ⊂ Un−1 ⊂ Un ⊂ Un ⊂ Ω

for all n ∈ {1, . . . , d}. Since |Ud| < ∞ and pn ≤ p1 for all n ∈ {1, . . . , d}, it follows

from Hölder’s inequality that there exists a c > 0 such that for all n ∈ {1, . . . , d} one has

‖u‖Lpn(Ud)
≤ c‖u‖Lp1(Ud)

for all u ∈ Lp1(Ud).

Let n ∈ {1, . . . , d}. By the Sobolev embedding theorem there exists a cn > 0 such that

‖u‖Lpn−1 (Un−1) ≤ cn‖u‖W 1,pn (Un−1)

for all u ∈ W 1,pn(Un−1). Moreover, by [GT83] Theorem 9.11 there exists a c̃n > 0 such

that

‖u‖W 2,pn (Un−1) ≤ c̃n
(∥∥∑∂l(akl∂ku)

∥∥
Lpn (Un)

+ ‖u‖Lpn (Un)

)
for all u ∈ W 2,pn(Un). Let u ∈ W 2,p1(Ud). Then for all n ∈ {1, . . . , d}, one has that

u ∈ W 2,pn(Un) ∩W 1,pn(Un−1) and

‖u‖Lpn−1 (Un−1) ≤ cn‖u‖W 2,pn (Un−1) ≤ cnc̃n
(∥∥∑∂l(akl∂ku)

∥∥
Lpn (Un)

+ ‖u‖Lpn (Un)

)
.

So

‖u‖Lpn−1 (Un−1) ≤ cnc̃n
(∥∥∑∂l(akl∂ku)

∥∥
Lpn (Un)

+ ‖u‖Lpn (Un)

)
≤ cnc̃n

(
c
∥∥∑∂l(akl∂ku)

∥∥
Lp1 (Ud)

+ ‖u‖Lpn (Un)

)
≤ ĉn

(∥∥∑∂l(akl∂ku)
∥∥
Lp1 (Ud)

+ ‖u‖Lpn (Un)

)
for all n ∈ {1, . . . , d}, where ĉn = cnc̃n(c+ 1). Hence there exists a ĉ > 0 such that

‖u‖C(K) ≤ ‖u‖L∞(U0) ≤ ĉ1

∥∥∑∂l(akl∂ku)
∥∥
Lp1 (Ud)

+ ĉ1‖u‖Lp1 (U1)

≤ ĉ1

∥∥∑∂l(akl∂ku)
∥∥
Lp1 (Ud)

+ ĉ1ĉ2

∥∥∑∂l(akl∂ku)
∥∥
Lp1 (Ud)

+ ĉ1ĉ2‖u‖Lp2 (U2)
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≤
( d∑
n=1

n∏
k=1

ĉk

)∥∥∑∂l(akl∂ku)
∥∥
Lp1 (Ud)

+
( d∏
n=1

ĉn

)
‖u‖Lpd (Ud)

≤ ĉ
(∥∥∑∂l(akl∂ku)

∥∥
Lp1 (Ud)

+ ‖u‖Lpd (Ud)

)
= ĉ

(∥∥∑∂l(akl∂ku)
∥∥
L2d(Ud)

+ ‖u‖L2(Ud)

)
for all u ∈ W 2,2d(Ud).

Let ψ ∈ L2(Γ) and write u = BD
λ ψ. Then

〈Au, χ〉 = a(u, χ) =

∫
Γ

ψTrχ− λ
∫

Γ

TruTrχ = 0

for all χ ∈ C∞c (Ω). So Au = 0 and Lemma 4.8 provides that u|Ud ∈ W 2,2d(Ud). Let

R ≥ R0 be such that Ud ⊂ ΩR and write uR = BD
λ (R)ψ. Then 〈AuR, χ〉 = 0, first for

all χ ∈ C∞c (ΩR) and then for all χ ∈ C∞c (Ω), since uR|Ω\ΩR = 0. Hence AuR = 0 and

uR|Ud ∈ W 2,2d(Ud). Then by the conclusion of the preceding paragraph together with

Proposition 2.11(d), there exists a c̃ > 0 such that

‖u− uR‖2
C(K) ≤ ĉ 2‖u− uR‖2

L2(Ud) ≤ ĉ 2‖u− uR‖2
L2(Ud) +

∫
Ω

|∇(u− uR)|2

≤ c̃ ‖u− uR‖2
W (Ω) = c̃ ‖u− uR‖2

WD(Ω)

≤ c̃ ‖BD
λ −BD

λ (R)‖2
L(L2(Γ),WD(Ω))‖ψ‖

2
L2(Γ).

The claim then follows from Proposition 4.5.

We are now able to prove Theorem 1.2.

Proof of Theorem 1.2. We first prove (a). By [ER97] Theorem 1.1, the C0-semigroup

(e−tA)t>0 on L2(Rd) generated by −A has a kernel K : (0,∞) × Rd × Rd → (0,∞) and

there exist a, b > 0 such that

0 < Kt(x, y) ≤ at−d/2e−b
|x−y|2

t (18)

for all t > 0 and x, y ∈ Rd. Moreover, Kt is Hölder continuous on Rd × Rd for all t > 0.

Define G : {(x, y) ∈ Rd ×Rd : x 6= y} → (0,∞) by

G(x, y) =

∫ ∞
0

Kt(x, y) dt.

Then G is continuous. By (18) together with a change of variable, one deduces that

0 < G(x, y) ≤ c1

|x− y|d−2
(19)

for all x, y ∈ Rd with x 6= y, where c1 =
∫∞

0
at−d/2e

−b
t dt <∞.

Without loss of generality we may assume that B1 ⊂ Rd \ Ω. Fix τ ∈ C∞c (Rd) such

that supp τ ⊂ B1 and τ > 0. Define w : Ω→ (0,∞) by

w(x) =

∫
Rd
G(x, y)τ(y) dy.
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Then w is continuous. Since w(x) > 0 for all x ∈ Ω, we may assume that w(x) ≥ 1 for all

x in the compact set ∂BR0 . Moreover, by Tonelli

w(x) =

∫ ∞
0

(e−tAτ)(x) dt

for all x ∈ Ω.

Let R > R0 and let χ ∈ C∞c (Rd) be such that suppχ ⊂ ΩR+1. Then suppχ∩supp τ = ∅
and it follows from the Gaussian bound (18) that

lim
t→∞
|
(
e−tAτ, χ

)
L2(Rd)

| ≤ lim
t→∞

∫
Rd

∫
Rd
Kt(x, y) τ(y)|χ(x)| dy dx

≤ ‖τ‖L1(Rd)‖χ‖L1(Rd) lim
t→∞

at−d/2 = 0.

Write A#χ = −
∑d

k,l=1 ∂k(akl ∂lχ) ∈ L∞,c(ΩR+1). Then∫
ΩR+1

∫ ∞
0

|(e−tAτ)(x) (A#χ)(x)| dt dx =

∫
ΩR+1

|(A#χ)(x)|
(∫ ∞

0

(e−tAτ)(x) dt
)

dx

≤ ‖A#χ‖∞
∫

ΩR+1

w <∞.

Hence by Fubini∫
ΩR+1

w(x)(A#χ)(x) dx =

∫ ∞
0

∫
ΩR+1

(e−tAτ)(x) (A#χ)(x) dx dt

=

∫ ∞
0

(
e−tAτ, A#χ

)
L2(ΩR+1)

dt =

∫ ∞
0

(
e−tAτ, A∗χ

)
L2(Rd)

dt

=

∫ ∞
0

(
Ae−tAτ, χ

)
L2(Rd)

dt = −
∫ ∞

0

d

dt

(
e−tAτ, χ

)
L2(Rd)

dt

= lim
t↓0

(
e−tAτ, χ

)
L2(Rd)

− lim
t→∞

(
e−tAτ, χ

)
L2(Rd)

= 0.

Since our choice of χ was arbitrary, it follows that(
w|ΩR+1

, A#χ
)
L2(ΩR+1)

= 0

for all χ ∈ C∞c (Rd) with suppχ ⊂ ΩR+1. Then w|ΩR+1
∈ H1

loc(ΩR+1) by [AEG20] Proposi-

tion A.1. Consider the annulus

ZR = {x ∈ Rd : R0 < |x| < R}.

Then w|ZR ∈ H1(ZR) and for all χ ∈ C∞c (ZR) one has that

d∑
k,l=1

∫
ZR

akl (∂kw) ∂lχ =
d∑

k,l=1

∫
ΩR+1

(∂kw) akl ∂lχ = −
d∑

k,l=1

∫
ΩR+1

w ∂k(akl ∂lχ)

=
(
w|ΩR+1

, A#χ
)
L2(ΩR+1)

= 0,

so w is harmonic on ZR.
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It follows as in the proof of Corollary 3.8(c) that |BD
λ ψ| ≤ BD

λ |ψ| ≤ ‖ψ‖L∞(Γ)B
D
λ 1Γ.

Hence we may assume that ψ = 1Γ. Write u = BD
λ ψ and uR = BD

λ (R)ψ. Then

0 ≤ uR ≤ u ≤ 1
λ
1Ω

by Proposition 4.6(a), Proposition 4.6(b) and Corollary 3.8(a). So uR|∂BR0
≤ 1

λ
1∂BR0

.

Recall that uR|∂BR = 0 by definition. Then uR ≤ 1
λ
w on ∂ZR and since uR is harmonic

on ZR, the maximum principle [GT83] Theorem 8.1 provides that uR ≤ 1
λ
w on ZR. Hence

(19) provides that for all x ∈ ZR

0 ≤ uR(x) ≤ 1

λ
w(x) =

1

λ

∫
Rd
G(x, y)τ(y) dy

≤ c1

λ

∫
B1

τ(y)

|x− y|d−2
dy ≤

c1 ‖τ‖L1(Rd)

λ
· 1

(|x| − 1)d−2

=
c1 ‖τ‖L1(Rd)

λ
· 1

(1− 1
|x|)

d−2
· 1

|x|d−2
<

c1 ‖τ‖L1(Rd)

λ(1− 1
R0

)d−2
· 1

|x|d−2

Write c = c1‖τ‖L1(Rd)(1− 1
R0

)−(d−2). Then

0 ≤ uR(x) ≤ c

λ
· 1

|x|d−2

for all x ∈ Ω \ ΩR0 , since uR = 0 on Ω \ ΩR. This is for all R > R0. By Proposition 4.9

limuR = u locally uniformly on Ω, so

u(x) = lim
R→∞

uR(x) ≤ c

λ
· 1

|x|d−2

for all x ∈ Ω \ ΩR0 as claimed.

We now prove (b). Since by Proposition 3.4

Bλψ − 〈Bλψ〉1Ω = BD
λ (ψ − λ〈Bλψ〉1Γ),

it follows from (a) that there exists a c > 0 such that

|(Bλψ)(x)− 〈Bλψ〉| ≤
c ‖ψ − λ〈Bλψ〉1Γ‖L∞(Γ)

λ
· 1

|x|d−2

≤ c
(‖ψ‖L∞(Γ)

λ
+ |〈Bλψ〉|

) 1

|x|d−2

for all x ∈ Ω \ ΩR0 .

Harmonic elements of W (Ω) converge radially uniformly to their average at infinity.

Corollary 4.10. Suppose that akl ∈ W 1,∞(Ω,R) for all k, l ∈ {1, . . . , d}. Let u ∈ W (Ω)

and suppose that Au = 0. Then

lim
R→∞

sup
|x|≥R

|u(x)− 〈u〉| = 0.
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Proof. Note that by Nash the function u is continuous on Ω. Moreover, it follows from

Lemma 4.8 that u ∈ W 2,2d
loc (Ω), so ∂ku ∈ W 1,2d

loc (Ω) for all k ∈ {1, . . . , d}. Write Z =

BR0+1 \ BR0−1 ⊂ Ω. Then ∂ku ∈ W 1,2d(Z) for all k ∈ {1, . . . , d} and it follows from

[Bré11] Corollary 9.14 that ∂ku ∈ L∞(Z).

Let c > 0 be as in Theorem 1.2. Write Ω′ = Rd \BR0 and define ψ : ∂Ω′ → R by

ψ(z) = u(z) +
d∑

k,l=1

νl(z)akl(z)(∂ku)(z),

where ν denotes the unit outer normal on ∂Ω′. Then ψ ∈ L∞(∂Ω′). Fix λ = 1 and

let B′λ denote the solution operator corresponding to the boundary value problem (1) for

the exterior domain Ω′ with Neumann boundary conditions at infinity. With the trace

and conormal derivative now defined for ∂Ω′, one has that Tru = u|∂Ω′ and (∂νu)(z) =∑d
k,l=1 νl(z)akl(z)(∂ku)(z) for all z ∈ ∂Ω′. Then B′λψ = u|Ω′ . Moreover, 〈u〉 = 〈u|Ω′〉 since

|Ω \ Ω′| = |ΩR0| <∞. Hence

lim
R→∞

sup
|x|≥R

|u(x)− 〈u〉| = lim
R→∞

sup
|x|≥R

|(u|Ω′)(x)− 〈u|Ω′〉|

≤ lim
R→∞

c
(
‖ψ‖L∞(Γ) + |〈u|Ω′〉|

) 1

Rd−2
= 0

by Theorem 1.2(b).

Corollary 4.11. Suppose that akl ∈ W 1,∞(Ω,R) for all k, l ∈ {1, . . . , d}. Let u ∈ WD(Ω).

Suppose that Au = 0 and Tru = 0. Then u = 0.

Proof. Without loss of generality we may assume that u is real-valued. Let ε > 0. By

Proposition 2.12 one has that 〈u〉 = 0, so K = supp (u− ε)+ is compact by Corollary 4.10.

Then u|K ∈ W 2,2d(K) by Lemma 4.8, so u|K ∈ L∞(K) and it follows that (u−ε)+ ∈ H1(Ω).

Moreover, Tr ((u − ε)+) = 0 by Proposition 2.15(c), so (u − ε)+ ∈ H1
0 (Ω). Since Au = 0,

by density one deduces that
d∑

k,l=1

∫
Ω

akl(∂ku)∂lv = 0

for all v ∈ H1
0 (Ω). Then the choice v = (u− ε)+ yields that

µ

∫
Ω

|∇((u− ε)+)|2≤
d∑

k,l=1

∫
Ω

akl
(
∂k((u− ε)+)

)
∂l((u− ε)+)=

d∑
k,l=1

∫
Ω

akl(∂ku)∂l((u− ε)+)=0

by [GT83] Lemma 7.6. Hence (u− ε)+ is constant. Since Tr ((u− ε)+) = 0 it follows that

(u − ε)+ = 0, so u ≤ ε. By a similar argument one deduces that −u ≤ ε and the result

then follows.

Our final endeavour for this section is to prove the following variant of Theorem 1.1.

Theorem 4.12. Suppose that akl ∈ W 1,∞(Ω,R) for all k, l ∈ {1, . . . , d}. Let p ∈ (d−1,∞].

(a) Let ψ ∈ Lp(Γ) and λ > 0. Then BD
λ ψ ∈ C(Ω).
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(b) Let ψ ∈ Lp(Γ) and λ > 0. Then Bλψ ∈ C(Ω).

We require the following extension of the Nash–De Giorgi result, which can be found

at [Nit11] Proposition 3.14 (iv).

Lemma 4.13. Let U ⊂ Rd be a bounded Lipschitz domain and let p ∈ (d − 1,∞]. Then

there exists a c > 0 such that for every ψ ∈ Lp(∂U) and u ∈ H1(U) satisfying

d∑
k,l=1

∫
U

akl(∂ku)∂lv +

∫
∂U

TrUuTrUv =

∫
∂U

ψTrUv

for all v ∈ H1(U), it follows that u is Hölder continuous on U and

|u(x)| ≤ c ‖ψ‖Lp(∂U)

for all x ∈ U . Here TrU : H1(U)→ L2(∂U) is the trace map on U .

Lemma 4.14. Suppose that akl ∈ W 1,∞(Ω,R) for all k, l ∈ {1, . . . , d}. Let S ≥R0−2 and

p ∈ (d− 1,∞]. Let λ > 0. Then there exists a cN > 0 such that for every ψ ∈ Lp(Γ) and

u ∈ H1(ΩS+2) satisfying

d∑
k,l=1

∫
ΩS+2

akl(∂ku)∂lv + λ

∫
Γ

TrS+2uTrS+2v =

∫
Γ

ψTrS+2v (20)

for all v ∈ WD
S+2(Ω), it follows that u|ΩS extends to a continuous function on ΩS and

|u(x)| ≤ cN
(
‖ψ‖Lp(Γ) + ‖u‖L∞(∂BS) + ‖u‖H1(ΩS+1)

)
for all x ∈ ΩS.

Proof. Without loss of generality we may assume that λ = 1. Let c1 > 0 be such that

‖v‖L2(∂B1) ≤ c1‖v‖H1(B1) for all v ∈ H1(B1) ∩ C(B1). Let c > 0 be as in Lemma 4.13

with U = ΩS. Let ψ ∈ Lp(Γ) and u ∈ H1(ΩS+2), and suppose that (20) is valid for all

v ∈ WD
S+2(Ω). Note that u admits a continuous representative on H1(ΩS+2), which we

continue to denote by u.

We first bound ∂νu on ∂BS. Let x0 ∈ ∂BS and denote by γ : H1/2(∂B1(x0)) →
H1(B1(x0)) the harmonic lifting associated with the operator −

∑
∂l(akl∂k) on B1(x0).

By [EO19b] Proposition 5.5 the map γ has a continuous kernel Kγ : B1(x0)×∂B1(x0)→ C

given by

Kγ(x, z) = −
d∑

k,l=1

νk(z) akl(z) (∂
(1)
l G)(z, x),

where G : {(x, y) ∈ B1(x0) × B1(x0) : x 6= y} → C is the Green function corresponding

to the operator −
∑
∂l(akl ∂k) on B1(x0) with Dirichlet boundary conditions, and ∂

(n)
j G

denotes the jth-partial derivative of G in the nth variable for all j ∈ {1, . . . , d} and n ∈
{1, 2}. Note that by [EO19b] Theorem 4.1, the functions ∂

(1)
l G and ∂

(2)
k ∂

(1)
l G are continuous

on B1(x0) × B1(x0) for all k, l ∈ {1, . . . , d}. Moreover, there exists a c2 > 0 (independent

of x0) such that

|(∂(2)
k ∂

(1)
l G)(x, y)| ≤ c2

|x− y|d
(21)
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for all x, y ∈ B1(x0) with x 6= y and all k, l ∈ {1, . . . , d}. Since by (20)

d∑
k,l=1

∫
B1(x0)

akl(∂ku)∂lχ =
d∑

k,l=1

∫
ΩS+2

akl(∂ku)∂lχ = 0

for all χ ∈ C∞c
(
B1(x0)

)
, it follows that

u(x) =

∫
∂B1(x0)

Kγ(x, z)u(z) dz

first for a.e. x ∈ B1(x0), and then for all x ∈ B1(x0) by the continuity of Kγ and u. So

(∂ku)(x) =

∫
∂B1(x0)

(∂
(1)
k Kγ)(x, z)u(z) dz

= −
d∑

k,l=1

∫
∂B1(x0)

νk(z) akl(z) (∂
(2)
k ∂

(1)
l G)(z, x)u(z) dz

for all x ∈ B1(x0) and k ∈ {1, . . . , d}. Then (21) provides that

|(∂ku)(x)| ≤M
d∑

k,l=1

∫
∂B1(x0)

|(∂(2)
k ∂

(1)
l G)(z, x)||u(z)| dz ≤Mc2d

2

∫
∂B1(x0)

|u(z)|
|z − x|d

dz

for all x ∈ B1(x0) and k ∈ {1, . . . , d}, where M = sup
{
‖akl‖L∞(Ω)

}d
k,l=1

. Hence

|(∂ku)(x0)| ≤Mc2d
2

∫
∂B1(x0)

|u(z)| dz ≤Mc2d
2(dωd)

1/2‖u‖L2(∂B1(x0))

≤Mc2d
2(dωd)

1/2c1‖u‖H1(B1(x0)) ≤Mc2d
2(dωd)

1/2c1‖u‖H1(ΩS+1)

for all k ∈ {1, . . . , d} and it follows that

‖∂νu‖L∞(∂BS) ≤ c3‖u‖H1(ΩS+1),

where c3 = M2c2d
4(dωd)

1/2c1. Therefore ∂νu ∈ Lp(∂BS).

Define ξ ∈ Lp(∂ΩS) by

ξ(x) =

{
ψ(x) if x ∈ Γ,

u(x) + (∂νu)(x) if x ∈ ∂BS.

Then by the divergence theorem [Alt16] Theorem A8.8, one deduces that

d∑
k,l=1

∫
ΩS

akl(∂ku)∂lv +

∫
∂ΩS

TrΩSuTrΩSv =

∫
∂ΩS

ξ TrΩSv

for all v ∈ H1(ΩS). Hence by Lemma 4.13 the restriction u|ΩS is uniformly continuous and

therefore extends to a continuous function on ΩS. Moreover,

|u(x)| ≤ c‖ξ‖Lp(∂ΩS) ≤ c
(
‖ψ‖Lp(Γ) + σ(∂BS)1/p‖u‖L∞(∂BS) + σ(∂BS)1/p‖∂νu‖L∞(∂BS)

)
≤ c
(
‖ψ‖Lp(Γ) + σ(∂BS)1/p‖u‖L∞(∂BS) + σ(∂BS)1/pc3‖u‖H1(ΩS+1)

)
for all x ∈ ΩS.
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Proof of Theorem 4.12. We first prove (a). Write u = BD
λ ψ. Then u|ΩR0

∈ H1(ΩR0)

and for all v ∈ WD
R0

(Ω) one has that

d∑
k,l=1

∫
ΩR0

akl(∂ku)∂lv + λ

∫
Γ

TrR0(u|ΩR0
) TrR0v

=
d∑

k,l=1

∫
Ω

akl(∂ku)∂lv + λ

∫
Γ

TruTr v

=

∫
Γ

ψTr v =

∫
Γ

ψTrR0v.

Hence by Lemma 4.14 with S = R0 − 2, it follows that u|ΩR0−2
extends to a continuous

function on ΩR0−2. Since by [Nas58] the function u is continuous on Ω, Statement (a)

follows. Then (b) follows from Proposition 3.4.

Corollary 4.15. Suppose that akl ∈ W 1,∞(Ω,R) for all k, l ∈ {1, . . . , d}. Let R ≥ R0 and

p ∈ (d− 1,∞]. Let ψ ∈ Lp(Γ) and λ > 0. Then BD
λ (R)ψ ∈ C(Ω).

Proof. Write u = BD
λ (R)ψ. By an argument similar to the proof of Theorem 4.12(a), one

deduces that u|ΩR0−2
extends to a continuous function on ΩR0−2. The claim then follows

from Proposition 4.3.

In the sequel we use the following result to extrapolate resolvent convergence for the

Dirichlet-to-Neumann operator from L
(
L2(Γ)

)
to L

(
Lp(Γ)

)
for all p ∈ [1,∞].

Proposition 4.16. Suppose that akl ∈ W 1,∞(Ω,R) for all k, l ∈ {1, . . . , d} and let λ > 0.

Then

lim
R→∞

BD
λ (R) = BD

λ

in L
(
L∞(Γ), L∞(Ω)

)
.

Proof. Let c > 0 be as in Theorem 1.2. Let ε > 0 and fix S ≥ R0 such that 2c
λSd−2 < ε.

Let cN > 0 be as in Lemma 4.14 and let R ≥ S + 2. Let ψ ∈ L∞(Γ). Write u = BD
λ ψ and

uR = BD
λ (R)ψ. Then (u− uR)|ΩS+2

∈ H1(ΩS+2) and

d∑
k,l=1

∫
ΩS+2

akl
(
∂k(u− uR)

)
∂lv + λ

∫
Γ

TrS+2

(
(u− uR)|ΩS+2

)
TrS+2v = 0

for all v ∈ WD
S+2(Ω). So

‖u− uR‖L∞(ΩS) ≤ cN(‖u− uR‖L∞(∂BS) + ‖u− uR‖H1(ΩS+1)).

By Proposition 2.11(d), the restriction map from WD(Ω) into H1(ΩS+1) is continuous.

Hence there exists an M > 0 such that

‖u− uR‖L∞(ΩS) ≤ cN
(
‖u− uR‖L∞(∂BS) +M‖u− uR‖WD(Ω)

)
≤ cN

(
‖u− uR‖L∞(∂BS) +M‖BD

λ −BD
λ (R)‖L(L2(Γ),WD(Ω))‖ψ‖L2(Γ)

)
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≤ cN
(
‖u− uR‖L∞(∂BS) +M σ(Γ)1/2‖BD

λ −BD
λ (R)‖L(L2(Γ),WD(Ω))‖ψ‖L∞(Γ)

)
.

Moreover, by Proposition 4.6(b) and Theorem 1.2(a) one obtains that

|
(
BD
λ (R)ψ

)
(x)| ≤ |(BD

λ ψ)(x)| ≤
c ‖ψ‖L∞(Γ)

λ
· 1

|x|d−2

for all x ∈ Ω \ ΩR0 . Consequently

‖u− uR‖L∞(Ω\ΩS) ≤ sup
x∈Ω\ΩS

|(BD
λ ψ)(x)|+ |

(
BD
λ (R)ψ

)
(x)| ≤

2c ‖ψ‖L∞(Γ)

λSd−2
≤ ε‖ψ‖L∞(Γ).

Therefore

‖u − uR‖L∞(Ω)

≤ cN
(
‖u− uR‖L∞(∂BS) +M σ(Γ)1/2‖BD

λ −BD
λ (R)‖L(L2(Γ),WD(Ω))‖ψ‖L∞(Γ)

)
∨ ε‖ψ‖L∞(Γ).

Since ∂BS ⊂ Ω is compact, the claim follows from Proposition 4.9 together with Proposi-

tion 4.5.
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5 The Dirichlet-to-Neumann operator on L2(Γ)

In this section we introduce the Dirichlet-to-Neumann operator on Γ associated with the

elliptic operator −
∑
∂l(akl∂k) on Ω. We characterise the Dirichlet-to-Neumann operator

via the form a and trace map Tr , before establishing resolvent convergence with respect

to the truncated problem. We then prove in Theorem 5.14 that if the boundary Γ and

coefficients (akl) are sufficiently smooth, our two realisations of the Dirichlet-to-Neumann

operator differ only by a rank-one operator.

We define the Dirichlet-to-Neumann operator with Dirichlet boundary condi-

tions at infinity ND in L2(Γ) as follows. Let ϕ, ψ ∈ L2(Γ). We write ϕ ∈ D(ND) and

NDϕ = ψ if there exists a u ∈ WD(Ω) such that Au = 0, Tru = ϕ and ∂νu = ψ. It is a

consequence of Proposition 5.1(a) below that the operator ND is single-valued and hence

well-defined.

Recall that in the case λ = 0, a solution of (1) satisfying Neumann boundary conditions

at infinity can only exist if
∫

Γ
ψ = 0. We define the Dirichlet-to-Neumann operator

with Neumann boundary conditions at infinity N in L2(Γ) as follows. Let ϕ, ψ ∈
L2(Γ). We write ϕ ∈ D(N ) and Nϕ = ψ if there exists a u ∈ W (Ω) such that Au = 0,

Tru = ϕ, ∂νu = ψ and
∫

Γ
ψ = 0. It is a consequence of Proposition 5.1(b) below that the

operator N is single-valued and hence well-defined.

As in Section 3, several results in this section follow from relatively minor modifications

of the corresponding arguments used in [AE15] for the Laplacian, demonstrating again the

versatility of the form method. In the case of Dirichlet boundary conditions at infinity

however, to obtain that 1Γ is in the domain of the Dirichlet-to-Neumann operator requires

a different argument to that used for the Laplacian, which is the reason for the additional

regularity hypotheses appearing in Theorem 5.14. We begin with a helpful characterisation.

By Lemma 3.1 the continuous sesquilinear form a is Tr -elliptic on W (Ω). Moreover,

by the Stone–Weierstraß theorem TrW (Ω) and TrWD(Ω) are dense in L2(Γ). Define the

form aD : WD(Ω)×WD(Ω)→ C by

aD = a|WD(Ω)×WD(Ω).

Then aD is continuous and Tr |WD(Ω)-elliptic. Hence by [AE12] Theorem 2.1 there exist

m-sectorial operators in L2(Γ) associated with (a,Tr ) and (aD,Tr |WD(Ω)).

Proposition 5.1. (a) The operator ND is equal to the operator in L2(Γ) associated with

(aD,Tr |WD(Ω)).

(b) The operator N is equal to the operator in L2(Γ) associated with (a,Tr ).

Proof. We first prove (a). Let AD denote the operator associated with (aD,Tr |WD(Ω)) and

let ϕ, ψ ∈ L2(Γ). Suppose that ϕ ∈ D(AD) and ADϕ = ψ. Then there exists a u ∈ WD(Ω)

such that Tru = ϕ and aD(u, v) = (ψ,Tr v)L2(Γ) for all v ∈ WD(Ω). Hence

〈Au, v〉 = aD(u, v) = (ψ,Tr v)L2(Γ) = 0

for all v ∈ C∞c (Ω) and Au = 0 ∈ L2(Ω). Then

a(u, v)−
∫

ΩR0

(Au)v = aD(u, v) = (ψ,Tr v)L2(Γ)

42



for all v ∈ C∞c (BR0), so ∂νu = ψ. Therefore ϕ ∈ D(ND) and NDϕ = ψ.

Conversely, suppose that ϕ, ψ ∈ L2(Γ) are such that ϕ ∈ D(ND) and NDϕ = ψ.

Then there exists a u ∈ WD(Ω) such that Au = 0, Tru = ϕ and ∂νu = ψ. Hence

aD(u, v) = (ψ,Tr v)L2(Γ) for all v ∈ WD(Ω) by Proposition 3.2. So ϕ ∈ D(AD) and

ADϕ = ψ. Therefore ND = AD is the operator associated with (aD,Tr |WD(Ω)).

We now prove (b). Let A denote the operator associated with (a,Tr ). Then the inclu-

sion A ⊂ N follows as above, with the additional observation that if a(u, v) = (ψ,Tr v)L2(Γ)

for all v ∈ W (Ω), then the choice v = 1Ω implies that
∫

Γ
ψ = 0.

Now suppose that ϕ, ψ ∈ L2(Γ) are such that ϕ ∈ D(N ) and Nϕ = ψ. As above, there

exists a u ∈ W (Ω) such that a(u, v) = (ψ,Tr v)L2(Γ) for all v ∈ WD(Ω). Since
∫

Γ
ψ = 0 it

follows that

a(u,1Ω) = 0 = (ψ,1Γ)L2(Γ) = (ψ,Tr1Ω)L2(Γ).

Then by linearity together with the orthogonal decomposition in Proposition 2.12, one

deduces that ϕ ∈ D(A) and Aϕ = ψ. This proves the claim.

For all θ ∈ (0, π
2
] we denote by

Σθ =
{
z ∈ C \ {0} : | arg z| < θ

}
the (open) sector of angle θ in C. We say that a holomorphic C0-semigroup T = (Tt)t>0

on L2(Γ) is contractive on a sector if there exists a θ ∈ (0, π
2
] such that T admits a

holomorphic extension T̃ = (T̃z)z∈Σθ to the sector Σθ and ‖T̃z‖L(L2(Γ)) ≤ 1 for all z ∈ Σθ.

We make the identification T = T̃ .

Corollary 5.2. (a) The operator −ND generates a holomorphic C0-semigroup SD =

(SDt )t>0 on L2(Γ). Moreover, SD is contractive on a sector.

(b) The operator −N generates a holomorphic C0-semigroup S = (St)t>0 on L2(Γ).

Moreover, S is contractive on a sector.

Proof. By [AE12] Theorem 2.1(ii), the operators N and ND are m-sectorial with vertex

0. Then the claim follows from [Kat80] Theorem IX.1.24.

Note that it is not possible to replace the form domain W (Ω) with H1(Ω), because

the form b = a|H1(Ω)×H1(Ω) fails to be Tr -elliptic on H1(Ω). We present this fact via the

following example, which can be found at [AE15] Remark 5.2.

Example 5.3. We shall show that for each µ, ω > 0 there exists a u ∈ H1(Ω) such that

µ‖u‖2
L2(Ω) > Re b(u)+ω‖Tru‖2

L2(Γ). The invalidity of the Tr -ellipticity of b on H1(Ω) then

follows.

Let µ, ω > 0. Without loss of generality we may assume that B1 ⊂ Rd \ Ω. Fix

τ ∈ C∞c (Rd) such that τ |B1 = 1 and ‖τ‖∞ = 1. For all R > R0 define uR : Ω → C by

uR(x) = |x|−(d−1)/2τ
(
x
R

)
. Then uR ∈ H1(Ω) ∩ C∞(Ω). Since the coefficients (akl) are

bounded, there exists an M > 0 such that

Re b(uR) ≤M

∫
Ω

|∇uR|2 = M

∫
Ω

∣∣d− 1

2
· x

|x|(d+3)/2
τ
( x
R

)
+

1

|x|(d−1)/2
· 1

R
(∇τ)

( x
R

)∣∣2 dx

≤ 2M
(d− 1

2

)2

‖τ‖2
∞

∫
Ω

1

|x|d+1
dx+ 2M

∫
Ω

1

R2|x|d−1

∣∣(∇τ)
( x
R

)∣∣2 dx
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= 2M
(d− 1

2

)2

ωd

∫ ∞
1

1

r2
dr + 2M

∫
Ω

|(∇τ)(y)|2

R|y|d−1
dy

≤ 2Md2ωd + 2M

∫
Ω

|(∇τ)(y)|2

|y|d−1
dy <∞

for all R > R0. Note that the integral in the final term of the above estimate is finite

because 0 /∈ supp∇τ . Moreover,
∫

Γ
|TruR|2 =

∫
Γ
|z|−(d−1) dz <∞ for all R > R0.

Write

a = 2Md2ωd + 2M

∫
Ω

|(∇τ)(y)|2

|y|d−1
dy

and b =
∫

Γ
|z|−(d−1) dz. Choose S > 1

µωd
(a+ ωb) +R0. Then uS ∈ H1(Ω) and∫

Ω

|uS|2 =

∫
Ω

∣∣ 1

|x|(d−1)/2
τ
(x
S

)∣∣2 dx

≥
∫

ΩS

1

|x|d−1
dx ≥

∫
BS\BR0

1

|x|d−1
dx = ωd

∫ S

R0

dr = ωd(S −R0).

Hence

µ‖uS‖2
L2(Ω) ≥ µωd(S −R0) > a+ ωb ≥ Re b(uS) + ω‖TruS‖2

L2(Γ)

as required.

Clearly N 6= ND, since kerN 6= kerND.

Proposition 5.4. (a) kerND = {0}.

(b) kerN = C1Γ.

Proof. We first prove (b). Let ϕ ∈ kerN . Then by Proposition 5.1(b) there exists a u ∈
W (Ω) such that Tru = ϕ and a(u, v) = 0 for all v ∈ W (Ω). The choice v = u then yields

that µ
∫

Ω
|∇u|2 ≤ Re a(u) = 0. So u is constant and it follows that ϕ = Tru is constant.

Conversely, note that 1Ω ∈ W (Ω). Then Tr1Ω = 1Γ and a(1Ω, v) = 0 = (0,Tr v)L2(Γ) for

all v ∈ W (Ω). Hence 1Γ ∈ D(N ) and N1Γ = 0.

We now prove (a). Let ϕ ∈ kerND. By an argument similar to the above, one deduces

that there exists a constant function u ∈ WD(Ω) with Tru = ϕ. Since 〈u〉 = 0 by

Proposition 2.12, it follows that u = 0 and ϕ = Tru = 0.

From the compactness of the solution operators Bλ and BD
λ , we obtain that N and

ND have compact resolvent. The following proof also demonstrates that the resolvent

of the Dirichlet-to-Neumann operator maps the Robin data in (1) to the trace of the

corresponding solution.

Proposition 5.5. (a) Let λ ≥ 0. Then the operator (λI +ND)−1 is compact.

(b) Let λ > 0. Then the operator (λI +N )−1 is compact.

Proof. We prove (a). Let ϕ ∈ D(ND) and write ψ = (λI + ND)ϕ ∈ L2(Γ). Then

NDϕ = ψ−λϕ. Hence by Proposition 5.1(a) there exists a u ∈ WD(Ω) such that Tru = ϕ

and

a(u, v) = aD(u, v) =

∫
Γ

(ψ − λTru) Tr v
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for all v ∈ WD(Ω). So u = BD
λ ψ and (λI + ND)−1ψ = ϕ = TrBD

λ ψ. Therefore (λI +

ND)−1 = Tr ◦ BD
λ . Then the claim follows from the continuity of Tr together with the

compactness of BD
λ from Proposition 3.9(a).

The proof of (b) is similar.

By elliptic regularity, the resolvent leaves C(Γ) invariant. In Corollary 7.5 we show

that the same is true of the corresponding semigroup.

Proposition 5.6. (a) Let λ ≥ 0. Then (λI +ND)−1C(Γ) ⊂ C(Γ).

(b) Let λ > 0. Then (λI +N )−1C(Γ) ⊂ C(Γ).

Proof. We prove (b). Let ψ ∈ C(Γ) and write ϕ = (λI + N )−1ψ ∈ L2(Γ). Then

Nϕ = ψ − λϕ. Hence by Proposition 5.1(b) there exists a u ∈ W (Ω) such that Tru = ϕ

and

a(u, v) + λ

∫
Γ

TruTr v =

∫
Γ

ψTr v

for all v ∈ W (Ω). Then u = Bλψ. Since Γ is compact, it follows that ψ ∈ L∞(Γ) and

Theorem 1.1(b) therefore provides that u ∈ C(Ω). Hence ϕ = Tru ∈ C(Γ).

The proof of (a) is similar.

We now investigate resolvent convergence with respect to the truncated problem (13).

Let R ≥ R0. We define the Dirichlet-to-Neumann operator with Dirichlet bound-

ary conditions at ∂BR, denoted by ND
R , in L2(Γ) as follows. Let ϕ, ψ ∈ L2(Γ). We write

ϕ ∈ D(ND
R ) and ND

R ϕ = ψ if there exists a u ∈ WD
R (Ω) such that Au = 0, Tru = ϕ and

∂νu = ψ.

For all R ≥ R0 we define the sesquilinear form aDR : WD
R (Ω)×WD

R (Ω)→ C by

aDR = a|WD
R (Ω)×WD

R (Ω).

Then aDR is continuous and Tr |WD
R (Ω)-elliptic with TrWD

R (Ω) dense in L2(Γ). It follows from

an argument similar to the proof of Proposition 5.1(a) that ND
R is equal to the operator in

L2(Γ) associated with
(
aDR ,Tr |WD

R (Ω)

)
.

Proposition 5.7. Let λ ≥ 0. Then

lim
R→∞

(λI +ND
R )−1 = (λI +ND)−1

in L
(
L2(Γ)

)
.

Proof. By an argument similar to the proof of Proposition 5.5(a), one deduces that

(λI +ND
R )−1 = Tr ◦BD

λ (R) (22)

for all R ≥ R0. Since Tr ∈ L
(
W (Ω), L2(Γ)

)
, the claim follows from Proposition 4.5.

In Theorem 5.9 we show that if the coefficients (akl) are Lipschitz continuous, the

preceding result extrapolates to L
(
Lp(Γ)

)
for all p ∈ [1,∞]. In the proof we use the fact

that Tr is continuous from
(
WD(Ω) ∩ L∞(Ω), ‖ · ‖L∞(Ω)

)
into L∞(Γ).

Lemma 5.8. Let u ∈ WD(Ω)∩L∞(Ω). Then Tru ∈ L∞(Γ) and ‖Tru‖L∞(Γ) ≤ 2‖u‖L∞(Ω).
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Proof. Let (χn)n∈N be a sequence in C∞c (Rd) such that limχn|Ω = u in W (Ω). Then

lim Reχn|Γ = Re Tru in L2(Γ), since Tr is continuous. Write M = ‖u‖L∞(Ω). For each

n ∈ N define un = (−M) ∨ Reχn|Ω ∧M . Then un ∈ W (Ω) by Proposition 2.15(a) and

the identities w ∨ v = w + (v − w)+ and w ∧ v = −((−w) ∨ (−v)). Since limun = Reu in

W (Ω), it follows from the continuity of Tr once again that lim Trun = Re Tru in L2(Γ).

Therefore

Re Tru = lim
n→∞

Trun = (−M) ∨ lim
n→∞

Reχn|Γ ∧M = (−M) ∨ Re Tru ∧M.

So ‖Re Tru‖L∞(Γ) ≤ ‖u‖L∞(Ω). By a similar argument one obtains that ‖ Im Tru‖L∞(Γ) ≤
‖u‖L∞(Ω) and the result follows.

Theorem 5.9. Suppose that akl ∈ W 1,∞(Ω,R) for all k, l ∈ {1, . . . , d} and let λ > 0. Then

lim
R→∞

(λI +ND
R )−1 = (λI +ND)−1

in L
(
Lp(Γ)

)
for all p ∈ [1,∞].

Proof. By (22) together with Lemma 5.8 and Proposition 4.16, one deduces that the claim

is valid for the case p =∞. Hence by Proposition 5.7 and an interpolation argument, the

claim holds for all p ∈ [2,∞]. Since the matrix
(
(akl)

d
k,l=1

)∗
= (alk)

d
k,l=1 satisfies the

same Lipschitz and ellipticity conditions as (akl)
d
k,l=1, by duality one deduces that the case

p ∈ [1, 2] is also valid.

Next we examine resolvent convergence in the case of Neumann boundary conditions at

infinity. In this situation it happens not to be possible to define the Dirichlet-to-Neumann

operator as acting on traces of harmonic functions. We therefore we proceed via the form

method directly.

For all R ≥ R0 define the sesquilinear form aR : H1(ΩR)×H1(ΩR)→ C by

aR(u, v) =
d∑

k,l=1

∫
ΩR

akl(∂ku)∂lv.

Then aR is continuous and TrR -elliptic, with TrRH
1(ΩR) dense in L2(Γ). We define the

Dirichlet-to-Neumann operator with Neumann boundary conditions at ∂BR,

denoted by NR, to be the operator in L2(Γ) associated with
(
aR,TrR

)
.

Theorem 5.10. Let λ > 0. Then

lim
R→∞

(λI +NR)−1 = (λI +N )−1

in L
(
L2(Γ)

)
.

Proof. Let (Rn)n∈N be a sequence in [R0,∞) with limRn =∞. Let ψ, ψ1, ψ2, . . . ∈ L2(Γ)

and suppose that limψn = ψ weakly in L2(Γ). By Propositions 5.5(b) and A.7 it suffices

to prove that lim (λI +NRn)−1ψn = (λI +N )−1ψ in L2(Γ).

Let n ∈ N and write ϕn = (λI +NRn)−1ψn. Then NRnϕn = ψn − λϕn, so there exists

a un ∈ H1(ΩRn) such that TrRnun = ϕn and

aRn(un, v) + λ

∫
Γ

TrRnun TrRnv =

∫
Γ

ψn TrRnv (23)
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for all v ∈ H1(ΩRn). The choice v = un then yields that

Re aRn(un) + λ

∫
Γ

|TrRnun|2 = Re

∫
Γ

ψn TrRnun ≤ ‖ψn‖L2(Γ)‖ϕn‖L2(Γ).

Hence

λ‖ϕn‖2
L2(Γ) = λ

∫
Γ

|TrRnun|2 ≤ ‖ψn‖L2(Γ)‖ϕn‖L2(Γ)

for all n ∈ N and since the sequence (ψn)n∈N is bounded in L2(Γ), it follows that (ϕn)n∈N
is also bounded in L2(Γ). Then sup ‖ψn‖L2(Γ)‖ϕn‖L2(Γ) <∞ and it follows that

M = sup
n∈N

Re aRn(un) +

∫
Γ

|TrRnun|2 <∞. (24)

Note that since the ellipticity condition (4) is valid a.e. on Ω, it follows that

µ

∫
ΩR

|∇v|2 ≤ Re aR(v)

for all R ≥ R0 and v ∈ H1(ΩR). Let R ∈ [R0,∞) ∩N. Then for all n ∈ N with Rn ≥ R,∫
ΩR

|∇un|2 +

∫
Γ

|TrR(un|ΩR)|2 ≤
∫

ΩRn

|∇un|2 +

∫
Γ

|TrRnun|2

≤ 1

µ
Re aRn(un) +

∫
Γ

|TrRnun|2 ≤M
(

1 +
1

µ

)
.

Since ΩR has Lipschitz boundary, the map TrR is compact and Lemma 2.4(b) consequently

provides that the sequence (un|ΩR)n∈N, Rn≥R is bounded inH1(ΩR). By a diagonal argument

and passing to a subsequence if necessary, we may assume that for all R ≥ R0 the sequence

(un|ΩR)n∈N is weakly convergent in H1(ΩR). Hence there exists a u ∈ H1
loc(Ω) such that for

all R ≥ R0, one has that u|ΩR ∈ H1(ΩR) and limun|ΩR = u|ΩR weakly in H1(ΩR). Then

lim∇(un|ΩR) = ∇(u|ΩR) weakly in L2(ΩR), so∫
ΩR

|∇u|2 ≤ lim inf
n→∞

∫
ΩR

|∇un|2 ≤M
(

1 +
1

µ

)
for all R ≥ R0. Therefore

∫
Ω
|∇u|2 <∞ and u ∈ W (Ω).

Recall that TrR(v|ΩR) = Tr v for all R ≥ R0 and v ∈ W (Ω). So

lim
n→∞

ϕn = lim
n→∞

TrR0(un|ΩR0
) = TrR0(u|ΩR0

) = Tru

in L2(Γ), since TrR0 is compact. Let v ∈ C∞c (Rd). Then there exists an m ∈ N such that

supp v ⊂ BRm , so for all n ≥ m one has that aRn(un, v|ΩRn ) = aRm(un|ΩRm , v|ΩRm ). Hence

lim
n→∞

aRn(un, v|ΩRn ) = lim
n→∞

aRm(un|ΩRm , v|ΩRm ) = aRm(u|ΩRm , v|ΩRm ) = a(u, v|Ω)

since limun|ΩRm = u|ΩRm weakly in H1(ΩRm). Then it follows from (23) that

a(u, v|Ω) + λ

∫
Γ

TruTr (v|Ω) = lim
n→∞

aRn(un, v|ΩRn ) + λ

∫
Γ

ϕn TrRn(v|ΩRn )
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= lim
n→∞

∫
Γ

ψn TrRn(v|ΩRn ) =

∫
Γ

ψTr (v|Ω).

So

a(u, v) + λ

∫
Γ

TruTr v =

∫
Γ

ψTr v (25)

for all v ∈ WD(Ω) by density. Moreover, the choice v = 1ΩRn
in (23) provides that

λ
∫

Γ
ϕn =

∫
Γ
ψn for all n ∈ N, so

λ

∫
Γ

Tru = lim
n→∞

λ

∫
Γ

ϕn = lim
n→∞

∫
Γ

ψn =

∫
Γ

ψ

and (25) is therefore valid for v = 1Ω. Then by linearity together with the orthogonal

decomposition W (Ω) = WD(Ω)⊕ C1Ω from Proposition 2.12, it follows that (25) is valid

for all v ∈ W (Ω). Hence Bλψ = u, so limϕn = TrBλψ = (λI +N )−1ψ in L2(Γ).

The next result concerns the C0-semigroups S and SD on L2(Γ), generated by −N and

−ND respectively. We establish positivity of the semigroups using [AE12] Proposition 2.9,

which extends Ouhabaz’ generalisation of the Beurling–Deny criteria to the setting of

the form method in [AE12]. From the domination of BD
λ by Bλ we obtain an analogous

relationship between the semigroups generated by the corresponding Dirichlet-to-Neumann

operators. In Proposition 7.6 we show that this relationship propagates forward to the

associated heat kernels.

A semigroup T = (Tt)t>0 on L2(Γ) is called positive if TtL2(Γ)+ ⊂ L2(Γ)+ for all t > 0.

Proposition 5.11. The semigroups S and SD are positive. Moreover,

0 ≤ SDt ϕ ≤ Stϕ

for all ϕ ∈ L2(Γ)+ and t > 0.

Proof. We first verify that SD is positive. Define P : L2(Γ)→ L2(Γ)+ by Pϕ = (Reϕ)+.

Let u ∈ WD(Ω). Then Reu ∈ WD(Ω) and Proposition 2.15(b) provides that (Reu)+ ∈
WD(Ω). Moreover, Tr ((Reu)+) = (Re Tru)+ by Proposition 2.15(d). Then by [GT83]

Lemma 7.6 one deduces that

Re aD
(
(Reu)+, u− (Reu)+

)
= Re aD

(
(Reu)+,−(Reu)− + i Imu

)
= −aD

(
(Reu)+, (Reu)−

)
= 0.

Hence by [AE12] Proposition 2.9 ‘(ii)⇒(i)’, the semigroup SD is positive.

Let ϕ ∈ L2(Γ)+. Then by Proposition 3.6

(λI +ND)−1ϕ = TrBD
λ ϕ ≤ TrBλϕ = (λI +N )−1ϕ

for all λ > 0. Therefore

0 ≤ SDt ϕ = lim
n→∞

(I +
t

n
ND)−nϕ ≤ lim

n→∞
(I +

t

n
N )−nϕ = Stϕ

for all t > 0 and it follows that S is positive.
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An obvious consequence of Proposition 5.4 is that 1Γ ∈ D(N ) and N1Γ = 0. The

following assertion establishes that if the coefficients (akl) and boundary Γ are sufficiently

smooth, then 1Γ ∈ D(ND) also. The need for additional regularity stems from the fact

that 1Ω /∈ WD(Ω), as this means that we must construct a harmonic element of WD(Ω)

with trace equal to 1Γ and normal derivative in L2(Γ). It is clear that if 1Γ ∈ D(ND),

then ND1Γ 6= 0 since kerND is trivial. Indeed, Corollary 5.13 shows that ND1Γ > 0.

Proposition 5.12. Suppose that Ω is a C2-domain and akl ∈ W 1,∞(Ω,R)∩C1(ΩR0+1) for

all k, l ∈ {1, . . . , d}. Then 1Γ ∈ D(ND).

Proof. Let τ ∈ C∞c (Rd,R) be such that τ |ΩR0
= 1. It follows from the Lax–Milgram

theorem that for each n ∈ N with n ≥ R0, there exists a un ∈ H1
0 (Ωn) such that

d∑
k,l=1

∫
Ωn

akl(∂kun)∂lv = aD(τ, v)

for all v ∈ H1
0 (Ωn). By a zero extension we may assume that un ∈ WD(Ω). Since aD is

continuous, there exists a c > 0 such that

µ‖un‖2
WD(Ω) = µ

∫
Ω

|∇un|2 ≤ Re aD(un) = Re
d∑

k,l=1

∫
Ωn

akl(∂kun)∂lun

= Re aD(τ, un) ≤ c ‖τ‖WD(Ω) ‖un‖WD(Ω)

for all n ∈ N with n ≥ R0. Then ‖un‖WD(Ω) ≤ cµ−1‖τ‖WD(Ω) for all n ∈ N with n ≥ R0,

so the sequence (un)n∈N is bounded in WD(Ω). Passing to a subsequence if necessary we

may assume that there exists a u ∈ WD(Ω) such that limun = u weakly in WD(Ω). Then

Tru = lim Trun = 0 in L2(Γ), since by Proposition 2.11(b) the map Tr is compact.

Let v ∈ C∞c (Ω). Then v ∈ H1
0 (Ωn) for all n sufficiently large, so

〈Au, v〉 = aD(u, v) = lim
n→∞

aD(un, v) = aD(τ, v) =
(
−

d∑
k,l=1

∂l(akl ∂kτ), v
)
L2(Ω)

.

Hence 〈Au, v〉 = 〈Aτ, v〉 for all v ∈ C∞c (Ω) and Au = −
∑d

k,l=1 ∂l(akl ∂kτ) ∈ L2(Ω). Note

that u|ΩR0+1
∈ H1(ΩR0+1). Let χ ∈ C∞c (Rd) be such that χ|BR0

= 1 and suppχ ⊂ BR0+1.

Then suppχu ⊂ ΩR0+1, so χu ∈ H1
0 (ΩR0+1). Moreover,

A(χu) = uAχ+ χAu−
d∑

k,l=1

akl(∂kχ)∂lu−
d∑

k,l=1

akl(∂ku)∂lχ ∈ L2(ΩR0+1).

Then χu ∈ H2(ΩR0+1) by [Sim72] Theorem 9.12 and it follows that akl∂k(χu) ∈ H1(ΩR0+1)

for all k, l ∈ {1, . . . , d}. So ∂ν(χu) ∈ L2(∂ΩR0+1) and

1Γ∂ν(χu) =
d∑

k,l=1

νlTrR0+1(akl∂k(χu)) ∈ L2(Γ).

Note that ∂νχ = ∂ν(χ|ΩR0+1
) = 0. Hence

∂νu = 1Γχ∂νu = 1Γ∂ν(χu)− 1Γ(∂νχ)Tru = 1Γ∂ν(χu) ∈ L2(Γ).
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Write w = τ |Ω − u. Then w ∈ WD(Ω) and

〈Aw, v〉 = 〈Aτ, v〉 − 〈Au, v〉 = 0

for all v ∈ C∞c (Ω), so Aw = 0. Moreover, Trw = TrR01ΩR0
= 1Γ and ∂νw = ∂ντ − ∂νu =

−∂νu ∈ L2(Γ). Therefore 1Γ ∈ D(ND) and ND1Γ = ∂νw.

Corollary 5.13. Suppose that Ω is a C2-domain and akl ∈ W 1,∞(Ω,R) ∩ C1(ΩR0+1) for

all k, l ∈ {1, . . . , d}. Then ND1Γ > 0.

Proof. Since N1Γ = 0, it follows from Proposition 5.11 that

ND1Γ = lim
t↓0

1

t
(I − SDt )1Γ ≥ lim

t↓0

1

t
(I − St)1Γ = 0.

To see that ND1Γ is non-zero on a set of positive measure, suppose to the contrary that∫
Γ
ND1Γ = 0. Let u ∈ WD(Ω) be such that Tru = 1Γ and aD(u, v) = (ND1Γ,Tr v)L2(Γ)

for all v ∈ WD(Ω). Then the choice v = u yields that

µ

∫
Ω

|∇u|2 ≤ Re aD(u) = Re
(
ND1Γ,1Γ

)
L2(Γ)

= 0.

So ∇u = 0 and u is constant. Hence u = 0, since 〈u〉 = 0 by Proposition 2.12. Then

0 = Tru = 1Γ, a contradiction.

If the coefficients and boundary are smooth enough to allow that 1Γ ∈ D(ND), then

ND is merely a rank-one perturbation of N .

Theorem 5.14. Suppose that Ω is a C2-domain and akl ∈ W 1,∞(Ω,R) ∩ C1(ΩR0+1) for

all k, l ∈ {1, . . . , d}. Then D(ND) = D(N ) and

NDϕ = Nϕ+
1

β

(
ϕ,ND∗1Γ

)
L2(Γ)
ND1Γ

for all ϕ ∈ D(N ), where β =
∫

Γ
ND1Γ.

Proof. We first show that D(N ) ⊂ D(ND). Let ϕ ∈ D(N ) and write ψ = Nϕ. Then∫
Γ
ψ = 0. By Proposition 5.1(b) there exists a u ∈ W (Ω) such that Tru = ϕ and a(u, v) =

(ψ,Tr v)L2(Γ) for all v ∈ W (Ω). Moreover, u− 〈u〉1Ω ∈ WD(Ω) by Proposition 2.12 and it

follows that

aD(u− 〈u〉1Ω, v) = a(u− 〈u〉1Ω, v) = a(u, v) =

∫
Γ

ψTr v

for all v ∈ WD(Ω). Hence Proposition 5.1(a) provides that ϕ− 〈u〉1Γ = Tr (u− 〈u〉1Ω) ∈
D(ND) and ND(ϕ − 〈u〉1Γ) = ψ. Since 1Γ ∈ D(ND), it follows that ϕ ∈ D(ND).

Therefore D(N ) ⊂ D(ND).

Let ϕ ∈ D(N ) and write ψ = Nϕ. It follows from that above that

Nϕ = NDϕ− 〈u〉ND1Γ.

Since
(
(akl)

d
k,l=1

)∗
= (alk)

d
k,l=1 and alk ∈ W 1,∞(Ω,R) ∩ C1(ΩR0+1) for all k, l ∈ {1, . . . , d},

it follows from Proposition 5.12 that 1Γ ∈ D(ND∗). Hence(
ϕ,ND∗1Γ

)
L2(Γ)

− β〈u〉 =
(
NDϕ,1Γ

)
L2(Γ)

− β〈u〉

50



=

∫
Γ

NDϕ− 〈u〉
∫

Γ

ND1Γ =

∫
Γ

Nϕ = 0.

So 〈u〉 = 1
β

(
ϕ,ND∗1Γ

)
L2(Γ)

. Therefore

NDϕ = Nϕ+
1

β

(
ϕ,ND∗1Γ

)
L2(Γ)
ND1Γ

for all ϕ ∈ D(N ).

Define B : L2(Γ)→ L2(Γ) by Bϕ = 1
β

(
ϕ,ND∗1Γ

)
L2(Γ)
ND1Γ. Then B is bounded and it

follows from the above that N ⊂ ND −B. Moreover, since −N generates a C0-semigroup

and by [BKR17] Theorem 11.5 the perturbed operator −(ND − B) also generates a C0-

semigroup, it follows from Proposition A.15 that D(ND) = D(ND −B) = D(N ).

Corollary 5.15. Suppose that Ω is a C2-domain and akl ∈ W 1,∞(Ω,R) ∩ C1(ΩR0+1) for

all k, l ∈ {1, . . . , d}. Then N −ND is a rank-one operator and R(N −ND) = CND1Γ.

51



6 The semigroup on L2(Γ)

In this section we investigate the C0-semigroups S and SD on L2(Γ) generated by our

two versions of the Dirichlet-to-Neumann operator. We prove that both S and SD are

submarkovian, uniformly mean ergodic and converge in norm to an equilibrium at an

exponential rate. Moreover, we establish that the semigroups are irreducible and strictly

positive, assuming symmetry of the coefficients (akl) in the case of SD. In the sequel we

use these results to study the Dirichlet-to-Neumann heat kernel.

A semigroup T = (Tt)t>0 on L2(Γ) is called L∞-contractive if ‖Ttϕ‖L∞(Γ) ≤ ‖ϕ‖L∞(Γ)

for all ϕ ∈ L2(Γ)∩L∞(Γ) and t > 0. If T is positive and L∞-contractive, we say that T is

submarkovian.

Proposition 6.1. (a) The semigroup SD is submarkovian.

(b) The semigroup S is submarkovian.

Proof. We prove (b). Since by Proposition 5.11 the semigroup S is positive, it remains

only to establish L∞-contractivity. We prove the claim using the criteria in [AE12] Propo-

sition 2.9.

Define P : L2(Γ,R) → {ϕ ∈ L2(Γ)+ : ϕ ≤ 1Γ} by Pϕ = (1Γ ∧ ϕ)+. Let u ∈ W (Ω,R).

Then (1Ω ∧ u)+ = (u− (u− 1Ω)+)+ ∈ W (Ω) by Proposition 2.15(a). Moreover,

Tr ((1Ω ∧ u)+) = Tr ((u− (u− 1Ω)+)+) = (Tru− (Tru− 1Γ)+)+ = (1Γ ∧ Tru)+

by Proposition 2.15(d). Since by [GT83] Lemma 7.6 one has that

∂k((1Ω ∧ u)+) = 1[1∧u>0]∂k(1Ω ∧ u) = 1[u>0](∂ku− 1[u>1]∂ku) = 1[0<u≤1]∂ku

for all k ∈ {1, . . . , d}, it follows that

a((1Ω ∧ u)+, u− (1Ω ∧ u)+) =
d∑

k,l=1

∫
Ω

akl(∂k(1Ω ∧ u)+)∂l(u− (1Ω ∧ u)+)

=
d∑

k,l=1

∫
Ω

akl 1[0<u≤1](∂ku)(∂lu− 1[0<u≤1]∂lu)

=
d∑

k,l=1

∫
[0<u≤1]

akl(∂ku)(1[u≤0] + 1[u>1])∂lu = 0.

Hence by [AE12] Proposition 2.9 ‘(ii)⇒(i)’ one deduces that |Stϕ| ≤ 1Γ for all ϕ ∈ L2(Γ,R)

with |ϕ| ≤ 1Γ and all t > 0.

Now let ϕ ∈ L2(Γ,C) be such that |ϕ| ≤ 1Γ and let t > 0. Then for all α ∈ [0, 2π] one

has that Re eiαϕ ∈ L2(Γ,R) and |Re eiαϕ| ≤ 1Γ, so |Re(eiαStϕ)| = |St(Re eiαϕ)| ≤ 1Γ .

Hence

|Stϕ| = sup
α∈[0,2π]

Re(eiαStϕ) ≤ sup
α∈[0,2π]

|Re(eiαStϕ)| ≤ 1Γ.

This proves that S is L∞-contractive.

The proof of (a) is similar.
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A well-studied property of submarkovian C0-semigroups on L2-spaces (over σ-finite

measure spaces) is their facility for extrapolation to Lp for p ∈ [2,∞] (and then for p ∈
[1, 2] by duality). Various properties of the semigroup on L2 such as strong continuity,

holomorphy and positivity are inherited by the extrapolation semigroup on Lp, possibly

excluding the cases p = 1 and p = ∞. A summary of such properties can be found at

[Are04] Subsection 7.2.2.

Let p, q ∈ [1,∞]. Given a bounded operator B ∈ L
(
L2(Γ)

)
we denote by

‖B‖p→q = sup
{
‖Bϕ‖Lq(Γ) : ϕ ∈ L2(Γ) ∩ Lp(Γ) and ‖ϕ‖Lp(Γ) ≤ 1

}
∈ [0,∞]

the Lp-Lq norm of B.

Proposition 6.2. (a) The semigroup SD extends consistently to a contractive C0-semi-

group SD,(p) on Lp(Γ) for all p ∈ [1,∞).

(b) The semigroup S extends consistently to a contractive C0-semigroup S(p) on Lp(Γ)

for all p ∈ [1,∞).

Proof. We prove (a). Note that ‖SDt ‖2→2 ≤ 1 for all t > 0 by Corollary 5.2(a).

Let p ∈ [2,∞) and t > 0. Since SD is L∞-contractive, it follows from Proposition A.10

that

‖SDt ‖p→p ≤ ‖SDt ‖
2/p
2→2 ‖SDt ‖

1− 2
p

∞→∞ ≤ 1.

Moreover, L2(Γ) ∩ Lp(Γ) is dense in Lp(Γ), so by Proposition A.3 there exists a unique

S
D,(p)
t ∈ L

(
Lp(Γ)

)
such that S

D,(p)
t |L2∩Lp = SDt |L2∩Lp and ‖SD,(p)t ‖p→p ≤ 1. Hence SD

extends consistently to a contractive semigroup SD,(p) = (S
D,(p)
t )t>0 on Lp(Γ).

Let ϕ ∈ L2(Γ) ∩ L∞(Γ). Then by Proposition A.9

‖(I − SD,(p)t )ϕ‖Lp(Γ) ≤ ‖(I − SDt )ϕ‖2/p
L2(Γ) ‖(I − S

D
t )ϕ‖

1− 2
p

L∞(Γ)

≤ 21− 2
p‖ϕ‖

1− 2
p

L∞(Γ)‖(I − S
D
t )ϕ‖2/p

L2(Γ)

for all t > 0. Hence limt↓0 ‖(I − SD,(p)t )ϕ‖Lp(Γ) = 0 and by density it follows that SD,(p) is

a C0-semigroup on Lp(Γ).

By Proposition A.12 the dual semigroup SD
∗

= (SDt
∗
)t>0 extends consistently to a

contractive semigroup (SD
∗
)(1) = ((SDt

∗
)(1))t>0 on L1(Γ). Let ϕ ∈ L1(Γ) ∩ L2(Γ). Since

σ(Γ) <∞, it follows that

‖
(
I − (SDt

∗
)(1)
)
ϕ‖L1(Γ) ≤ σ(Γ)1/2‖(I − SDt

∗
)ϕ‖L2(Γ)

for all t > 0. Hence by density (SD
∗
)(1) is a C0-semigroup on L1(Γ). Then by interpolation

SD
∗

extends consistently to a contractive C0-semigroup on Lp(Γ) for all p ∈ [1, 2]. Since

the matrix
(
(akl)

d
k,l=1

)∗
= (alk)

d
k,l=1 satisfies the same ellipticity condition as (akl)

d
k,l=1, the

semigroup SD =
(
SD
∗)∗

extends consistently to a contractive C0-semigroup on Lp(Γ) for

all p ∈ [1, 2].

The proof of (b) is similar.

Note that by duality, the adjoint semigroups S∗ and SD
∗

are submarkovian. Since by

Corollary 5.2 the holomorphic semigroups S and SD are each contractive on a sector, it
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follows from [Ouh05] Proposition 3.12 together with duality that for all p ∈ (1,∞), the

extrapolation semigroups S(p) and SD,(p) on Lp(Γ) are also holomorphic and contractive

on a sector.

Because the form aD is coercive, more than mere contractivity is valid for SD. Our

next result shows that in the limit |z| → ∞, the operators SDz converge uniformly to zero

at an exponential rate. Recall that θD ∈ (0, π
2
] denotes the angle of analyticity for SD.

Proposition 6.3. For all θ′ ∈ (0, θD) there exists a δ > 0 such that

‖SDz ‖2→2 ≤ e−δRe z

for all z ∈ Σθ′.

Proof. Since Tr is continuous, there exists a c > 0 such that ‖Tr v‖L2(Γ) ≤ c‖v‖WD(Ω) for

all v ∈ WD(Ω). Let ϕ ∈ D(ND). By Proposition 5.1(a) there exists a u ∈ WD(Ω) such

that Tru = ϕ and aD(u, v) = (NDϕ,Tr v)L2(Γ) for all v ∈ WD(Ω). Since aD is coercive,

the choice v = u yields that

Re
(
NDϕ, ϕ

)
L2(Γ)

= Re aD(u) ≥ µ‖u‖2
WD(Ω) ≥

µ

c2
‖ϕ‖2

L2(Γ).

Hence

Re
(
NDϕ, ϕ

)
L2(Γ)

≥ µ

c2
‖ϕ‖2

L2(Γ)

for all ϕ ∈ D(ND).

Let ϕ ∈ D(ND) and t > 0. Then SDt ϕ ∈ D(ND) and the map r 7→ SDr ϕ is continuously

differentiable on (0,∞). So Proposition A.8 together with the above provides that

d

dr
‖SDr ϕ‖2

L2(Γ) = −2 Re
(
NDSDr ϕ, S

D
r ϕ
)
L2(Γ)

≤ −2µ

c2
‖SDr ϕ‖2

L2(Γ).

Write δ = 2µc−2. Then

d

dr

(
eδr‖SDr ϕ‖2

L2(Γ)

)
= eδr

(
δ‖SDr ϕ‖2

L2(Γ) +
d

dr
‖SDr ϕ‖2

L2(Γ)

)
≤ 0.

So the map r 7→ eδr‖SDr ϕ‖2
L2(Γ) is decreasing on (0,∞) and

eδt‖SDt ϕ‖2
L2(Γ) ≤ lim

r↓0
eδr‖SDr ϕ‖2

L2(Γ) = ‖ϕ‖2
L2(Γ).

Hence one deduces that

‖SDt ‖2→2 ≤ e−δ1t

for all t > 0, where δ1 = 1
2
δ.

Let θ′ ∈ (0, θD). Then there exist θ0 ∈ (θ′, θD) and κ ∈ (0, 1) such that κt + is ∈ Σθ0

for all t+ is ∈ Σθ′ . Let z ∈ Σθ′ and write z = t+ is. Then

‖SDz ‖2→2 ≤ ‖SD(1−κ)t‖2→2 ‖SDκt+is‖2→2 ≤ e−δ1(1−κ)t

since SD is contractive on ΣθD . This proves the claim.
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By Proposition 6.2(a) together with an interpolation argument, one readily deduces

from the above that for all p ∈ (1,∞), in the limit t→∞ the operators S
D,(p)
t ∈ L

(
Lp(Γ)

)
converge uniformly to zero in a similar manner. On the other hand, it is easy to see that

St does not converge to 0 as t → ∞, since 1Γ ∈ kerN and therefore St1Γ = 1Γ for all

t > 0. In Proposition 7.7 we prove that Sz instead converges to a rank-one projection on

L2(Γ) in the limit |z| → ∞, both uniformly and at an exponential rate.

Next we consider ergodicity. A C0-semigroup T = (Tt)t>0 on L2(Γ) is called mean

ergodic if the limit

P = lim
t→∞

1

t

∫ t

0

Ts ds

exists in the strong operator topology. We call P the ergodic projection of T .

Every bounded C0-semigroup on a reflexive Banach space X is mean ergodic (see

[ABHN01] Corollary 4.3.5). We provide a proof for the case X = L2(Γ).

Proposition 6.4. Let T = (Tt)t>0 be a bounded C0-semigroup on L2(Γ). Then T is mean

ergodic.

Proof. There exists an M > 0 such that ‖Tt‖2→2 ≤ M for all t > 0. Hence for all

ϕ ∈ L2(Γ) and t, r > 0, it follows that

∥∥1

r

∫ r+t

r

Tsϕ ds
∥∥
L2(Γ)

≤ 1

r

∫ r+t

r

‖Tsϕ‖L2(Γ) ds ≤M‖ϕ‖L2(Γ)
1

r

∫ r+t

r

ds = M‖ϕ‖L2(Γ)
t

r
. (26)

For each n ∈ N define

Cn =
1

n

∫ n

0

Ts ds ∈ L
(
L2(Γ)

)
.

We write

fix T =
⋂
t>0

ker(I − Tt), fix T ∗ =
⋂
t>0

ker(I − T ∗t )

and

R(I − T ) =
⋃
t>0

R(I − Tt).

We first show that fix T separates fix T ∗. Let ψ ∈ fix T ∗ \ {0}. Then there exists a

ϕ ∈ L2(Γ) \ {0} such that (ϕ, ψ)L2(Γ) 6= 0. Since T is bounded, the sequence (Cnϕ)n∈N is

bounded in L2(Γ). Passing to a subsequence if necessary, we may assume that there exists

a π ∈ L2(Γ) such that limCnϕ = π weakly in L2(Γ). Then by (26) one deduces that

Ttπ = lim
n→∞

1

n

∫ n

0

Ts+tϕ ds = lim
n→∞

1

n

∫ n+t

t

Tsϕ ds

= lim
n→∞

1

n

(∫ n

0

Tsϕ ds+

∫ n+t

n

Tsϕ ds−
∫ t

0

Tsϕ ds
)

= lim
n→∞

Cnϕ = π

weakly for all t > 0. Hence π ∈ fix T . Moreover,(
π, ψ

)
L2(Γ)

= lim
n→∞

(
Cnϕ, ψ

)
L2(Γ)

= lim
n→∞

1

n

∫ n

0

(
ϕ, T ∗s ψ

)
L2(Γ)

ds

= lim
n→∞

1

n

∫ n

0

(
ϕ, ψ

)
L2(Γ)

ds =
(
ϕ, ψ

)
L2(Γ)

6= 0.
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So fix T separates fix T ∗ and it follows that fix T ∗ ∩ (fix T )⊥ = {0}.
Write

X = fix T + spanR(I − T )

and let ψ ∈ X⊥. Clearly ψ ∈ (fix T )⊥. Moreover, for all t > 0 and ϕ ∈ L2(Γ) one has that(
ϕ, (I − T ∗t )ψ

)
L2(Γ)

=
(
(I − Tt)ϕ, ψ

)
L2(Γ)

= 0,

so ψ ∈ fix T ∗. Hence X⊥ = {0} and X = L2(Γ).

Clearly lim r−1
∫ r

0
Tsπ ds = π for all π ∈ fix T . Moreover, for all t > 0 and ϕ ∈ L2(Γ)

1

r

∫ r

0

Ts(I − Tt)ϕ ds =
1

r

∫ r

0

Tsϕ ds− 1

r

∫ r

0

Ts+tϕ ds

=
1

r

∫ r

0

Tsϕ ds− 1

r

(∫ r

0

Tsϕ ds+

∫ r+t

r

Tsϕ ds−
∫ t

0

Tsϕ ds
)

=
1

r

∫ t

0

Tsϕ ds− 1

r

∫ r+t

r

Tsϕ ds

for all r > 0. Let ψ ∈ spanR(I − T ). Then there exist k ∈ N, α1, α2, . . . , αk ∈ C,

t1, t2, . . . , tk > 0 and ϕ1, ϕ2, . . . , ϕk ∈ L2(Γ) such that ψ =
∑k

j=1 αj(I − Ttj)ϕj and it

follows from the above together with (26) that

lim
r→∞

1

r

∫ r

0

Tsψ ds =
k∑
j=1

αj

(
lim
r→∞

1

r

∫ r

0

Ts(I − Ttj)ϕj ds
)

= 0.

Consequently one deduces that for all ϕ ∈ X there exist π ∈ fix T and ψ ∈ spanR(I − T )

such that

lim
t→∞

1

t

∫ t

0

Tsϕ ds = lim
t→∞

1

t

∫ t

0

Ts(π + ψ) ds = π

in L2(Γ).

Note that

sup
t>0

∥∥1

t

∫ t

0

Ts ds
∥∥

2→2
≤M.

Let ϕ ∈ L2(Γ) and ε > 0. By density there exists a ψ ∈ X such that ‖ϕ− ψ‖L2(Γ) <
ε

4M
.

Let (rn)n∈N be a sequence in (0,∞) with lim rn =∞. Then limCrnψ exists and it follows

that

‖Crnϕ− Crmϕ‖L2(Γ) ≤ ‖(Crn − Crm)(ϕ− ψ)‖L2(Γ) + ‖(Crn − Crm)ψ‖L2(Γ)

≤ 2M‖ϕ− ψ‖L2(Γ) + ‖Crnψ − Crmψ‖L2(Γ) < ε

for all n,m ∈ N sufficiently large. Hence by completeness the limit limCrnϕ exists in

L2(Γ). Then it follows from a zip argument that the limit lim t−1
∫ t

0
Tsϕ ds exists.

In a Hilbert space, the ergodic projection associated with a contractive C0-semigroup

coincides with the orthogonal projection onto the kernel of its generator.
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Proposition 6.5. Let T = (Tt)t>0 be a contractive C0-semigroup on L2(Γ) with generator

−A. Then

L2(Γ) = kerA⊕R(A)

and the ergodic projection P of T is equal to the orthogonal projection onto kerA.

Proof. By Proposition 6.4 the semigroup T is mean ergodic. We first show that the map

P : ϕ 7→ lim
t→∞

1

t

∫ t

0

Tsϕ ds

is a projection from L2(Γ) into kerA. Let ϕ ∈ L2(Γ). Then it follows from (26) that

TtPϕ = lim
r→∞

1

r

∫ r

0

Ts+tϕ ds = lim
r→∞

1

r

(∫ r

0

Tsϕ ds+

∫ r+t

r

Tsϕ ds−
∫ t

0

Tsϕ ds
)

= lim
r→∞

1

r

∫ r

0

Tsϕ ds = Pϕ (27)

for all t > 0. So P 2ϕ = limt→∞ t
−1
∫ t

0
TsPϕ ds = Pϕ and limt↓0 t

−1(I − Tt)Pϕ = 0. Then

Pϕ ∈ D(A) and APϕ = 0. Hence P is a projection into kerA.

It follows from the above that R(P ) ⊂ kerA. Conversely, let ϕ ∈ kerA. Then Propo-

sition A.14 provides that ϕ− Ttϕ =
∫ t

0
TsAϕ ds = 0 for all t > 0. So

ϕ = lim
r→∞

1

r

∫ r

0

ϕ ds = lim
r→∞

1

r

∫ r

0

Tsϕ ds = Pϕ ∈ R(P )

and one therefore deduces that R(P ) = kerA.

Next we show that kerP = R(A). It follows from (27) together with the definition of

P that PTt = TtP = P for all t > 0. So PAϕ = limt↓0 t
−1P (I − Tt)ϕ = 0 for all ϕ ∈ D(A)

and one consequently deduces that R(A) ⊂ kerP . Since

sup
t>0

∥∥1

t

∫ t

0

Ts ds
∥∥

2→2
≤ 1,

it follows that P ∈ L
(
L2(Γ)

)
. So kerP is closed and R(A) ⊂ kerP . Conversely, let ψ ∈

kerP ∩R(A)⊥ and ϕ ∈ L2(Γ). By Proposition A.13 one has that ϕ− Ttϕ = A
∫ t

0
Tsϕ ds ∈

R(A) for all t > 0. Then (Ttϕ, ψ)L2(Γ) = (ϕ, ψ)L2(Γ) for all t > 0. Hence one deduces that

(Pϕ, ψ)L2(Γ) = lim
r→∞

1

r

∫ r

0

(Tsϕ, ψ)L2(Γ) ds = lim
r→∞

1

r

∫ r

0

(ϕ, ψ)L2(Γ) ds = (ϕ, ψ)L2(Γ)

for all ϕ ∈ L2(Γ). The choice ϕ = ψ then yields that ‖ψ‖2
L2(Γ) = (Pψ, ψ)L2(Γ) = 0. Hence

ψ = 0 and kerP = R(A).

Finally we prove that R(A)
⊥

= kerA. Let ϕ ∈ R(A)
⊥

and t > 0. Then (ϕ, ϕ −
Ttϕ)L2(Γ) = 0. So (ϕ, Ttϕ)L2(Γ) = ‖ϕ‖2

L2(Γ) and therefore

‖ϕ− Ttϕ‖2
L2(Γ) = ‖ϕ‖2

L2(Γ) − 2 Re(ϕ, Ttϕ)L2(Γ) + ‖Ttϕ‖2
L2(Γ) = ‖Ttϕ‖2

L2(Γ) − ‖ϕ‖2
L2(Γ) ≤ 0

since T is contractive. Hence ϕ = Ttϕ for all t > 0 and it follows that ϕ ∈ kerA. This

completes the proof.
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We are now able to prove that the semigroup S is uniformly mean ergodic. We argue

as in [EN00] Corollary V.4.8 in order to obtain norm convergence of the Cesàro means.

Theorem 6.6. The semigroup S is mean ergodic. Moreover,

L2(Γ) = C1Γ ⊕R(N ) (28)

and the limit

P = lim
t→∞

1

t

∫ t

0

Sr dr

exists in L
(
L2(Γ)

)
.

Proof. We first show that N has closed range. Let λ > 0. By Proposition 5.5(b) the

operator (λI +N )−1 is compact, so by Proposition A.4 the operator I − λ(λI +N )−1 has

closed range. Since

N (λI +N )−1 = (λI +N − λI)(λI +N )−1 = I − λ(λI +N )−1

and R
(
(λI +N )−1

)
= D(N ), it follows that R(N ) = R

(
N (λI +N )−1

)
is closed.

By Corollary 5.2(b) the semigroup S is contractive, so S is mean ergodic by Proposi-

tion 6.4. Moreover, the orthogonal decomposition (28) follows from Proposition 6.5, since

kerN = C1Γ by Proposition 5.4(b).

We now show that P = lim t−1
∫ t

0
Sr dr exists in the uniform operator topology. Using

Proposition A.13 we define V : L2(Γ)→
(
D(N ), ‖ · ‖N

)
by

V =

∫ 1

0

Sr dr,

where ‖ · ‖N is the graph norm on D(N ). Then for all ϕ ∈ L2(Γ)

‖V ϕ‖N =
∥∥∫ 1

0

Srϕ dr
∥∥
L2(Γ)

+
∥∥N ∫ 1

0

Srϕ dr
∥∥
L2(Γ)

=
∥∥∫ 1

0

Srϕ dr
∥∥
L2(Γ)

+ ‖ϕ− S1ϕ‖L2(Γ)

≤
∫ 1

0

‖Srϕ‖L2(Γ) dr + ‖ϕ‖L2(Γ) + ‖S1ϕ‖L2(Γ) ≤ 3‖ϕ‖L2(Γ)

since S is contractive. So V ∈ L
(
L2(Γ), (D(N ), ‖ · ‖N )

)
. Since N has compact resolvent,

it follows from Proposition A.5 that the canonical injection ι :
(
D(N ), ‖ · ‖N

)
↪→ L2(Γ) is

compact. Hence the operator Ṽ = ι ◦ V ∈ L
(
L2(Γ)

)
is compact.

It follows from (27) together with the definition of P that PSt = StP = P for all t > 0.

So

PṼ (I − St)ψ = P (I − St)Ṽ ψ = 0 = P (I − St)ψ

for all ψ ∈ L2(Γ) and t > 0. Let ϕ ∈ L2(Γ). Then by (28) and the definition of the

infinitesimal generator −N , there exist π ∈ kerN and ψ ∈ D(N ) such that ϕ = π +

limt↓0 t
−1(I − St)ψ. Clearly Stπ = π for all t > 0, so

PṼ ϕ = PṼ π + lim
t↓0

1

t
P Ṽ (I − St)ψ = Pπ + lim

t↓0

1

t
P (I − St)ψ = Pϕ
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and it follows that PṼ = P . For each t > 0 write

Ct =
1

t

∫ t

0

Sr dr ∈ L
(
L2(Γ)

)
.

Then

CtṼ − P = (Ct − P )Ṽ .

Since limCt = P strongly and Ṽ is compact, it follows from Proposition A.6 that

lim
t→∞
‖CtṼ − P‖2→2 = 0. (29)

On the other hand,

CtṼ − Ct =
1

t

∫ t

0

∫ 1

0

SrSu du dr − 1

t

∫ t

0

Sr dr

=
1

t

∫ 1

0

(∫ t

0

Sr+u dr −
∫ t

0

Sr dr
)

du

=
1

t

∫ 1

0

(∫ t

0

Sr dr +

∫ t+u

t

Sr dr −
∫ u

0

Sr dr −
∫ t

0

Sr dr
)

du

=
1

t

∫ 1

0

(∫ t+u

t

Sr dr −
∫ u

0

Sr dr
)

du

for all t > 0. Hence

‖CtṼ − Ct‖2→2 ≤
1

t

∫ 1

0

∥∥∫ t+u

t

Sr dr −
∫ u

0

Sr dr
∥∥

2→2
du

≤ 1

t

∫ 1

0

(∫ t+u

t

‖Sr‖2→2 dr +

∫ u

0

‖Sr‖2→2 dr
)

du

≤ 1

t

∫ 1

0

(∫ t+u

t

dr +

∫ u

0

dr
)

du =
1

t

for all t > 0 and it follows that

lim
t→∞
‖CtṼ − Ct‖2→2 = 0.

Then by (29) and the triangle inequality, one deduces that limCt = P uniformly.

Corollary 6.7. The ergodic projection P of S is given by

Pϕ = 1
σ(Γ)

(
ϕ,1Γ

)
L2(Γ)

1Γ

for all ϕ ∈ L2(Γ).

Proof. By Proposition 6.5 and Proposition 5.4(b), the ergodic projection P associated

with S is equal to the orthogonal projection onto C1Γ.
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Next we prove that SD is uniformly mean ergodic. Since ND has compact resolvent,

it follows as in the first paragraph of the proof of Theorem 6.6 that R(ND) is closed.

Nevertheless, in the following proof we use Proposition 6.3 and argue as in [Lin74] in order

to obtain that ND has closed range without using that (λI +ND)−1 is compact.

Theorem 6.8. The semigroup SD is mean ergodic. Moreover, R(ND) = L2(Γ) and

lim
t→∞

1

t

∫ t

0

SDr dr = 0

in L
(
L2(Γ)

)
.

Proof. By Corollary 5.2(a) the semigroup SD is contractive, so Proposition 6.4 provides

that SD is mean ergodic. Since kerND = {0} by Proposition 5.4(a), it follows from

Proposition 6.5 that the ergodic projection of SD is equal to the zero operator on L2(Γ) and

R(ND) = L2(Γ). Moreover, by Proposition 6.3 there exists a δ > 0 such that ‖SDt ‖2→2 ≤
e−δt for all t > 0, so lim t−1

∫ t
0
SDr dr = 0 uniformly.

Since ND is injective, there exists a mapping
(
ND

)−1
: R(ND) → L2(Γ) such that(

ND
)−1ND = I|D(ND) and ND

(
ND

)−1
= I|R(ND). Moreover, since

∥∥∫ 1

0

SDt dt
∥∥

2→2
≤
∫ 1

0

e−δt dt =
1− e−δ

δ
< 1,

one deduces that the operator
∫ 1

0
I − SDt dt ∈ L

(
L2(Γ)

)
is invertible. Let ψ ∈ R(ND) and

write NDϕ = ψ. Then Proposition A.14 provides that

ϕ =
(∫ 1

0

I − SDt dt
)−1

∫ 1

0

(I − SDt )ϕ dt =
(∫ 1

0

I − SDt dt
)−1

∫ 1

0

∫ t

0

SDr ψ dr dt.

Hence there exists a c > 0 such that

‖
(
ND

)−1
ψ‖L2(Γ) ≤

∥∥(∫ 1

0

I − SDt dt
)−1∥∥

2→2

∥∥∫ 1

0

∫ t

0

SDr ψ dr dt
∥∥
L2(Γ)

≤ c

2
‖ψ‖L2(Γ)

for all ψ ∈ R(ND), since SD is contractive. Then
(
ND

)−1
is bounded and densely defined.

Moreover, since the operator ND is closed it follows that
(
ND

)−1
is closed, so D

(
(ND)−1

)
is closed in L2(Γ) and therefore

R(ND) = D
(
(ND)−1

)
= D

(
(ND)−1

)
= R(ND)

as required.

Our final consideration for this section is irreducibility. Via holomorphy we subse-

quently obtain strict positivity of the C0-semigroups S and SD, a fact proved first for the

Lp-setting in [KR81] and then in [MR83] for an arbitrary Banach lattice.

A positive C0-semigroup T = (Tt)t>0 on L2(Γ) is called irreducible if for every mea-

surable set Γ1 ⊂ Γ such that

TtL2(Γ1) ⊂ L2(Γ1)

for all t > 0, it follows that either σ(Γ1) = 0 or σ(Γ \ Γ1) = 0. Here we define L2(Γ1) =

{ϕ ∈ L2(Γ) : ϕ = 0 σ-a.e. on Γ \ Γ1}.
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Theorem 6.9. The semigroup S is irreducible. Moreover, for all ϕ, ψ ∈ L2(Γ)+ \ {0},(
Stϕ, ψ

)
L2(Γ)

> 0

for all t > 0.

Proof. Let Γ1 ⊂ Γ be a measurable set with σ(Γ1) > 0 and σ(Γ \ Γ1) > 0. Let ϕ ∈
L2(Γ1)+ \ {0} and ψ ∈ L2(Γ \ Γ1)+ \ {0}. Then by Corollary 6.7

lim
t→∞

1

t

∫ t

0

(
Srϕ, ψ

)
L2(Γ)

dr = (Pϕ, ψ)L2(Γ) =
1

σ(Γ)

(
ϕ,1Γ

)
L2(Γ)

·
(
1Γ, ψ

)
L2(Γ)

> 0.

Hence there exists a t > 0 such that (Stϕ, ψ)L2(Γ) > 0. Then

σ
({
z ∈ Γ \ Γ1 : (Stϕ)(z) > 0

})
> 0,

so Stϕ /∈ L2(Γ1) and S is therefore irreducible.

Next we prove that S is strictly positive. Let ϕ, ψ ∈ L2(Γ)+ \ {0}. With a view to

contradiction suppose that there exists a t > 0 such that (Stϕ, ψ)L2(Γ) = 0. Let (tn)n∈N ⊂
(0, t) be such that lim tn = 0 and ‖(I − Stn)ϕ‖L2(Γ) ≤ 2−n for all n ∈ N. Without

loss of generality we may assume that tn 6= tm for all n 6= m. Write ϕn = Stnϕ and

ξn = ϕ−
∑∞

k=n(ϕ− ϕk)+. Then ξn ≤ ϕ for all n ∈ N. Moreover,

lim
n→∞

‖ϕ− ξn‖L2(Γ) = lim
n→∞

∥∥ ∞∑
k=n

(ϕ− ϕk)+
∥∥
L2(Γ)

= 0,

so lim ξ+
n = ϕ+ = ϕ in L2(Γ). For all n,m ∈ N with m ≥ n, one obtains that

ξn ≤ ξm ≤ ϕ− (ϕ− ϕm)+ = ϕ ∧ ϕm ≤ ϕm.

Let n ∈ N and define fn : (0,∞) → C by fn(r) = (Srξ
+
n , ψ)L2(Γ). Then it follows from

Corollary 5.2(b) that fn is analytic. Since by Proposition 5.11 the semigroup S is positive,

one deduces that

0 ≤ (St−tmξ
+
n , ψ)L2(Γ) ≤ (St−tmϕm, ψ)L2(Γ) = (St−tmStmϕ, ψ)L2(Γ) = (Stϕ, ψ)L2(Γ) = 0

for all m ≥ n. Then fn(t − tm) = 0 for all m ≥ n, so (t − tm)m∈N,m≥n is a sequence of

distinct zeros of fn with limit lim t− tm = t ∈ (0,∞). Hence fn = 0. This is for all n ∈ N.

Therefore

(Srϕ, ψ)L2(Γ) = lim
n→∞

(Srξ
+
n , ψ)L2(Γ) = lim

n→∞
fn(r) = 0

for all r > 0, which contradicts the first paragraph.

We conclude with the irreducibility of SD in the case where the coefficients (akl) are

symmetric. Since the form aD is then symmetric, the Dirichlet-to-Neumann operator ND

is self-adjoint and the semigroup SD therefore consists of self-adjoint operators on L2(Γ).

We follow the approach used in [AE15] in order to deduce that SD is irreducible. By the

positivity of SD and the following domination estimate, the task is reduced to having to

prove that the semigroup (e−tN
D
R )t>0 is irreducible.
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Proposition 6.10. Let R ≥ R0. Then

0 ≤ e−tN
D
R ϕ ≤ SDt ϕ

for all ϕ ∈ L2(Γ)+ and t > 0.

Proof. Let ϕ ∈ L2(Γ)+. Since by Proposition 2.15(d) the operator Tr is positive, it follows

from (22) together with Propositions 4.6(a) and (b) that

0 ≤ (λI +ND
R )−1ϕ ≤ (λI +ND)−1ϕ

for all λ ≥ 0. Hence

0 ≤ e−tN
D
R ϕ = lim

n→∞
(I +

t

n
ND
R )−nϕ ≤ lim

n→∞
(I +

t

n
ND)−nϕ = SDt ϕ

for all t > 0.

In order to obtain irreducibility of the semigroup (e−tN
D
R )t>0 on L2(Γ), we consider the

semigroup generated by particular realisation in L2(ΩR) of the elliptic operator−
∑
∂l(akl∂k).

The appropriate form domain is the following characterisation of WD
R (Ω) appearing in

Lemma 4.1.

Let R ≥ R0 and define

VR =
{
u ∈ H1(ΩR) : 1∂BRTrΩRu = 0

}
.

Then H1
0 (ΩR) ⊂ VR ⊂ H1(Ω) and VR is dense in L2(ΩR). We assume that akl = alk for all

k, l ∈ {1, . . . , d}. Let β ∈ L∞(Γ,R). Define the sesquilinear form aβR : VR × VR → C by

aβR(u, v) =
d∑

k,l=1

∫
ΩR

akl(∂ku)∂lv −
∫

Γ

β TrRuTrRv.

Then aβR is continuous, elliptic, symmetric and densely defined in L2(ΩR), so there exists

a lower-bounded self-adjoint operator AβR in L2(ΩR) associated with aβR. It follows from

[Ouh05] Lemma 1.25 that

D(AβR)
H1(ΩR)

= VR

and since ΩR has Lipschitz boundary, by [EE87] Theorem V.4.17 one deduces that the

embedding VR ↪→ L2(ΩR) is compact. Therefore by Proposition A.5 the operator AβR has

compact resolvent.

Lemma 6.11. Let R ≥ R0. Then the following are valid.

(a) Let β ∈ L∞(Γ,R). Then the semigroup (e−tA
β
R)t>0 on L2(ΩR) is positive and irre-

ducible.

(b) Let β1, β2 ∈ L∞(Γ,R) with β1 ≤ β2. Then

0 ≤ e−tA
β1
R u ≤ e−tA

β2
R u

for all u ∈ L2(ΩR) with u ≥ 0 and all t > 0.
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Proof. We first prove (a). Since (Reu)+ ∈ VR for all u ∈ VR and the coefficients (akl) are

real-valued, [Ouh05] Theorem 4.2 provides that (e−tA
β
R)t>0 is positive.

Let E ⊂ ΩR be a measurable set and suppose that 1EVR ⊂ VR. Since C∞c (ΩR) ⊂ VR ⊂
H1(ΩR), it follows from [Are06] Proposition 11.1.2 that either |E| = 0 or |ΩR \ E| = 0.

Let u, v ∈ VR and suppose that suppu ∩ supp v = ∅. Then supp TrRu ∩ supp TrRv = ∅,

so aβR(u, v) = 0 and by [Ouh05] Corollary 2.11 the semigroup (e−tA
β
R)t>0 is irreducible.

We now prove (b). Since β1 ≤ β2, it follows that aβ1

R (u, v) ≥ aβ2

R (u, v) for all u, v ∈ VR
with u, v ≥ 0. Moreover, by (a) the semigroups (e−tA

β1
R )t>0 and (e−tA

β2
R )t>0 are positive, so

[Ouh96] Theorem 3.7 provides that (e−tA
β2
R )t>0 dominates (e−tA

β1
R )t>0.

In the following lemma we use the Krein–Rutman theorem together with the preceding

result in order to infer the existence of an eigenfunction of AβR whose trace is strictly

positive a.e. on Γ.

Lemma 6.12. Let R ≥ R0 and β ∈ L∞(Γ,R). Denote by λ1 the smallest eigenvalue of

AβR. Suppose that u ∈ D(AβR) with u > 0 is an eigenfunction of AβR corresponding to λ1.

Then (TrRu)(z) > 0 for a.e. z ∈ Γ.

Proof. Note that since (e−tA
β
R)t>0 is positive and AβR has compact resolvent, the existence

of an element u ∈ D(AβR) such that u > 0 and AβRu = λ1u follows from the Krein–

Rutman theorem [BKR17] Theorem 12.15. By Lemma 6.11(a) the semigroup (e−tA
β
R)t>0 is

irreducible, so Proposition A.16 provides that u(x) > 0 for a.e. x ∈ ΩR. Then TrRu ≥ 0.

Define

Λ = {z ∈ Γ : (TrRu)(z) = 0}

and write β1 = β + 1Λ. Then β1 ∈ L∞(Γ,R) and

aβ1

R (u, v) = aβR(u, v) = (AβRu, v)L2(ΩR) = (λ1u, v)L2(ΩR)

for all v ∈ VR. Hence u ∈ D(Aβ1

R ) and Aβ1

R u = λ1u. Since u > 0 and Aβ1

R is self-adjoint with

compact resolvent, it follows from Proposition 6.11(a) together with Proposition A.18 that

λ1 is the smallest eigenvalue of Aβ1

R . Moreover, by Proposition 6.11(b) one obtains that

0 ≤ e−tA
β
Rw ≤ e−tA

β1
R w

for all w ∈ L2(ΩR) with w ≥ 0 and all t > 0. Then AβR = Aβ1

R by Proposition A.17. Hence∫
Γ

(β1 − β) TrRwTrRv = aβR(w, v)− aβ1

R (w, v) = 0

for all w, v ∈ VR. So β = β1 σ-a.e., since TrRVR is dense in L2(Γ). Therefore σ(Λ) =∫
Γ
β1 − β = 0 and the claim follows.

Theorem 6.13. Suppose that akl = alk for all k, l ∈ {1, . . . , d}. Then the semigroup SD

is irreducible.

Proof. Let R ≥ R0. We shall prove that the semigroup (e−tN
D
R )t>0 on L2(Γ) is irre-

ducible. Since by Proposition 5.11 the semigroup SD is positive, the claim then follows

from Proposition 6.10 together with [Ouh05] Theorem 2.9.
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Let Γ1 ⊂ Γ be a measurable set such that σ(Γ1) > 0 and suppose that e−tN
D
R L2(Γ1) ⊂

L2(Γ1) for all t > 0. Then T =
(
e−tN

D
R |L2(Γ1)

)
t>0

is a C0-semigroup on the closed subspace

L2(Γ1) of L2(Γ), by [EN00] Paragraph I.5.12. Let −N1 denote the generator of T . Then

D(N1) =
{
ϕ ∈ D(ND

R ) ∩ L2(Γ1) : ND
R ϕ ∈ L2(Γ1)

}
and N1 = ND

R |D(N1). Moreover, N1 is a self-adjoint operator in L2(Γ1) with compact

resolvent. Let µ1 denote the smallest eigenvalue of N1. By the Krein–Rutman theorem

there exists a ϕ ∈ D(N1) such that ϕ > 0 and N1ϕ = µ1ϕ. Then by Lemma 4.1 one

deduces that there exists a u ∈ VR such that TrRu = ϕ and

aDR(u, v) = (ND
R TrRu,TrRv)L2(Γ) = (N1TrRu,TrRv)L2(Γ) = (µ1TrRu,TrRv)L2(Γ) (30)

for all v ∈ VR. Since
(
TrΩR(u−)

)
|Γ = TrR(u−) = ϕ− = 0 and (TrΩRu)|∂BR = 0, it follows

that TrΩR(u−) = 0 and u− ∈ H1
0 (ΩR) ⊂ VR. Then the choice v = u− in (30) yields that

µ
∫

ΩR
|∇(u−)|2 ≤ aDR(u−) = 0, so u− is constant and it follows that u− = 0. Therefore

u ≥ 0 and since ϕ 6= 0, one obtains that u > 0.

Now consider the form aβR on VR with β = µ11Γ. Then it follows from (30) that

aβR(u, v) = 0 for all v ∈ VR. So u ∈ D(AβR) and AβRu = 0. By Proposition 6.11(a) together

with Proposition A.18, one obtains that u corresponds to the smallest eigenvalue of AβR.

Then ϕ(z) = (TrRu)(z) > 0 for a.e. z ∈ Γ, by Lemma 6.12. Since ϕ ∈ L2(Γ1), by definition

ϕ = 0 a.e. on Γ \ Γ1 and therefore σ(Γ \ Γ1) = 0.

Corollary 6.14. Suppose that akl = alk for all k, l ∈ {1, . . . , d}. Let ϕ, ψ ∈ L2(Γ)+ \ {0}.
Then (

SDt ϕ, ψ
)
L2(Γ)

> 0

for all t > 0.

Proof. Since Corollary 5.2(a) provides that the semigroup SD is holomorphic, by an ar-

gument similar to the second paragraph of the proof of Theorem 6.9, it suffices to verify

that there exists a t > 0 such that (SDt ϕ, ψ)L2(Γ) > 0.

Suppose to the contrary that (SDt ϕ, ψ)L2(Γ) = 0 for all t > 0. Write Γ1 = Γ \ suppψ.

Then σ(Γ \ Γ1) > 0. Moreover,

(ϕ, ψ)L2(Γ) = lim
t↓0

(
SDt ϕ, ψ

)
L2(Γ)

= 0.

So ϕ ∈ L2(Γ1) and since σ(suppϕ) > 0, it follows that σ(Γ1) > 0. Hence there exists an r >

0 such that SDr ϕ /∈ L2(Γ1), since SD is irreducible. Then σ({z∈ suppψ : (SDr ϕ)(z)>0})>0

and it follows that (SDr ϕ, ψ)L2(Γ) > 0, a contradiction.
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7 The heat kernel on Σθ × Γ× Γ

Our final endeavour is to examine the heat kernel associated with the Dirichlet-to-Neumann

operator. We prove joint continuity of the kernel on Σθ ×Γ×Γ, a result that seems yet to

appear in the literature, even for the case akl = δkl. It is well known that for second-order

elliptic operators, the asymptotic behaviour of the heat kernel depends on the nature

of the specified boundary conditions. This observation remains valid in the case of the

Dirichlet-to-Neumann operator.

In this section we prove the following. Recall that θD, θN ∈ (0, π
2
] denote the angles of

analyticity for the holomorphic semigroups SD and S, respectively.

Theorem 1.3. (a) There exists a continuous function KD : ΣθD ×Γ×Γ→ C such that

(SDz ϕ)(w1) =

∫
Γ

KD
z (w1, w2)ϕ(w2) dw2

for all w1 ∈ Γ, ϕ ∈ L1(Γ) and z ∈ ΣθD .

(b) The map z 7→ KD
z (w1, w2) is analytic on ΣθD for all w1, w2 ∈ Γ.

(c) For all θ′ ∈ (0, θD) there exist c, δ > 0 such that

‖KD
z ‖L∞(Γ×Γ) ≤ c (Re z)−(d−1)e−δRe z

for all z ∈ Σθ′.

Theorem 1.4. (a) There exists a continuous function K : ΣθN × Γ× Γ→ C such that

(Szϕ)(w1) =

∫
Γ

Kz(w1, w2)ϕ(w2) dw2

for all w1 ∈ Γ, ϕ ∈ L1(Γ) and z ∈ ΣθN .

(b) The map z 7→ Kz(w1, w2) is analytic on ΣθN for all w1, w2 ∈ Γ.

(c) For all θ′ ∈ (0, θN) there exists a c > 0 such that

‖Kz‖L∞(Γ×Γ) ≤ c (1 ∧ Re z)−(d−1)

for all z ∈ Σθ′.

Existence of the heat kernel follows from ultracontractivity of the semigroup, which we

verify first. We then prove the above and subsequently obtain that the semigroups S and

SD leave C(Γ) invariant, before deducing that S decays uniformly and at an exponential

rate to its associated ergodic projection P . Using this result we prove that for all θ′ ∈
(0, θN), the family (Kz)z∈Σθ′

converges uniformly to 1
σ(Γ)

1Γ×Γ in the limit |z| → ∞.

Throughout this section we fix s = 2(d−1)
d−2

> 2.

Lemma 7.1. There exists a c > 0 such that

‖Tru‖Ls(Γ) ≤ c‖u‖W (Ω)

for all u ∈ W (Ω).

65



Proof. Since ΩR0 is a Lipschitz domain, it follows from [Neč12] Theorem 2.4.2 that the

map TrΩR0
: H1(ΩR0) → Ls(∂ΩR0) is bounded. Hence by Proposition 2.11(d) there exists

a c > 0 such that

‖Tru‖Ls(Γ) = ‖TrR0(u|ΩR0
)‖Ls(Γ) ≤ ‖TrΩR0

(u|ΩR0
)‖Ls(∂ΩR0

)

≤ ‖TrΩR0
‖L(H1(ΩR0

),Ls(∂ΩR0
)) ‖u|ΩR0

‖H1(ΩR0
)

≤ ‖TrΩR0
‖L(H1(ΩR0

),Ls(∂ΩR0
))

(∫
Ω

|∇u|2 +

∫
ΩR0

|u|2
)1/2

≤ c‖u‖W (Ω)

for all u ∈ W (Ω).

Lemma 7.2. (a) SDt L2(Γ) ⊂ D(ND) for all t > 0. Moreover, there exists a c > 0 such

that

‖NDSDt ‖2→2 ≤ ct−1

for all t > 0.

(b) StL2(Γ) ⊂ D(N ) for all t > 0. Moreover, there exists a c > 0 such that

‖NSt‖2→2 ≤ ct−1

for all t > 0.

Proof. We prove (a). Let t > 0 and ϕ ∈ L2(Γ). By Corollary 5.2(a) the semigroup SD is

holomorphic, so the map r 7→ SDr ϕ is differentiable on (0,∞). Then the limit

lim
h↓0

1

h

(
I − SDh

)
SDt ϕ = lim

h↓0

1

h

(
SDt ϕ− SDt+hϕ

)
exists and therefore SDt ϕ ∈ D(ND).

Note that by Corollary 5.2(a) there exists a θ ∈ (0, π
2
] such that SD is contractive and

holomorphic on the sector Σθ ⊂ C. Let t > 0 and write r = 1
2
t sin θ. Define γ : [0, 2π]→ Σθ

by γ(s) = t+ reis. Then

−NDSDt =
d

dt
SDt =

1

2πi

∫
γ

SDz
(z − t)2

dz

by Cauchy’s formula and it follows that

‖NDSDt ‖2→2 ≤
1

2π

∫ 2π

0

‖SDt+reis‖2→2

|reis|
ds ≤ 1

r
=

2

t sin θ

as required.

The proof of (b) is similar.

The semigroups S and SD are ultracontractive.

Proposition 7.3. (a) There exists a c > 0 such that

‖SDt ‖2→s ≤ ct−1/2

for all t > 0.
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(b) There exists a c > 0 such that

‖St‖2→s ≤ ct−1/2

for all t ∈ (0, 1].

Proof. We first prove (a). Let c > 0 be as in Lemma 7.1. Note that by Lemma 7.2(a)

there exists a c1 > 0 such that ‖NDSDt ‖2→2 ≤ c1t
−1 for all t > 0. Let t > 0 and ϕ ∈ L2(Γ).

Then Lemma 7.2(a) provides that SDt ϕ ∈ D(ND), so by Proposition 5.1(a) there exists a

u ∈ WD(Ω) such that Tru = SDt ϕ and aD(u, v) = (NDSDt ϕ,Tr v)L2(Γ) for all v ∈ WD(Ω).

Since the form aD is coercive, the choice v = u yields that

‖SDt ϕ‖2
Ls(Γ) ≤ c2‖u‖2

WD(Ω) ≤
c2

µ
Re aD(u) =

c2

µ
Re
(
NDSDt ϕ, S

D
t ϕ
)
L2(Γ)

.

Therefore

‖SDt ϕ‖2
Ls(Γ) ≤

c2

µ
‖NDSDt ϕ‖L2(Γ) ‖SDt ϕ‖L2(Γ) ≤

c2

µ
c1t
−1‖ϕ‖2

L2(Γ)

since SD is contractive.

We now prove (b). By Lemma 7.2(b) there exists a c2 > 0 such that ‖NSt‖2→2 ≤ c2t
−1

for all t > 0. Let t ∈ (0, 1] and ϕ ∈ L2(Γ). By an argument similar to the above together

with Lemma 3.1, one deduces that there exists a c > 0 such that

‖Stϕ‖2
Ls(Γ) ≤ c

(
Re
(
NStϕ, Stϕ

)
L2(Γ)

+ ‖Stϕ‖2
L2(Γ)

)
≤ c(c2t

−1 + 1)‖ϕ‖2
L2(Γ) ≤ c(c2 + 1)t−1‖ϕ‖2

L2(Γ)

as required.

Lemma 7.4. (a) There exists a c > 0 such that

‖SDt ‖2→∞ ≤ ct−(d−1)/2

for all t > 0.

(b) There exists a c > 0 such that

‖St‖2→∞ ≤ c(1 ∧ t)−(d−1)/2

for all t > 0.

Proof. We first prove (a). Let c > 0 be as in Proposition 7.3(a) and let p ∈ [2,∞). Since

by Proposition 6.1(a) the semigroup SD is L∞-contractive, by Proposition A.10 one has

‖SDt ‖p→ ps
2
≤ ‖SDt ‖

2/p
2→s ‖SDt ‖

1− 2
p

∞→∞ ≤ c2/pt−1/p (31)

for all t > 0.

For each n ∈ N0 write tn = s−1
s
s−n > 0 and pn = 2( s

2
)n ∈ [2,∞). Then

∑∞
n=0 tn = 1

and
∑∞

n=0
1
pn

= s
2(s−2)

= d−1
2

. Moreover, lim pn = ∞ and since pn+1 = pns
2

, it follows from

(31) that

‖SDt ‖pn→pn+1 ≤ c2/pnt−1/pn
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for all t > 0 and all n ∈ N0. Note that

log t−1/pn
n = −2−1

(
s

2

)−n
log
(s− 1

s
s−n
)

= 2−1
(

log
s

s− 1

)(2

s

)n
+ 2−1(log s)n

(
2

s

)n
> 0

for all n ∈ N0. Therefore
∑∞

n=0 log t
−1/pn
n < ∞ and it follows that there exists a c1 > 0

such that
∏∞

n=0 t
−1/pn
n = c1. Hence by the semigroup property

‖SDt ‖2→∞ = ‖SD∑ ttn‖2→∞ ≤
∞∏
n=0

‖SDttn‖pn→pn+1 ≤
∞∏
n=0

c2/pn(ttn)−1/pn = c2t
−(d−1)/2

for all t > 0, where c2 = c d−1c1.

We now prove (b). Let c > 0 be as in Proposition 7.3(b). Since S is contractive, it

follows that for all t > 1 one has

‖St‖2→s ≤ ‖S1‖2→s ‖St−1‖2→2 ≤ c.

Therefore ‖St‖2→s ≤ ct−1/2et for all t > 0. Write Tt = e−tSt. Then ‖Tt‖2→s ≤ ct−1/2 for all

t > 0. Hence by an argument similar to the proof of (a), one deduces that there exists a

c1 > 0 such that e−t‖St‖2→∞ = ‖Tt‖2→∞ ≤ c1t
−(d−1)/2 for all t > 0. Then for all t ∈ (0, 1]

‖St‖2→∞ ≤ c1et
−(d−1)/2 = c2t

−(d−1)/2,

where c2 = c1e. By the contractivity of S once again, it follows that for all t > 1

‖St‖2→∞ ≤ ‖S1‖2→∞‖St−1‖2→2 ≤ c2.

This proves the claim.

We are now able to prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. We first show that SD maps L2(Γ) into C(Γ). Let t > 0 and

ϕ ∈ L2(Γ). Then SD2tϕ ∈ D(ND) by Lemma 7.2(a). Let λ > 0 and write ψ = NDSD2tϕ +

λSD2tϕ. By Proposition 5.1(a) there exists a u ∈ WD(Ω) such that Tru = SD2tϕ and

aD(u, v) + λ

∫
Γ

TruTr v =

∫
Γ

ψTr v

for all v ∈ WD(Ω). Then u = BD
λ ψ. Moreover, ψ = SDt NDSDt ϕ + λSD2tϕ ∈ L∞(Γ) since

SDt ∈ L
(
L2(Γ), L∞(Γ)

)
by Lemma 7.4(a). Hence u ∈ C(Ω) by Theorem 1.1(a) and it

follows that SD2tϕ = Tru ∈ C(Γ). Then SDt L2(Γ) ⊂ C(Γ) for all t > 0. Now let z ∈ ΣθD .

Then there exists a t > 0 such that z − t ∈ ΣθD , so

SDz L2(Γ) = SDt S
D
z−tL2(Γ) ⊂ SDt L2(Γ) ⊂ C(Γ).

Therefore SDz L2(Γ) ⊂ C(Γ) for all z ∈ ΣθD .

Let t > 0. In order to prove Statements (a) and (b) we shall show that for all z ∈ ΣθD ,

the operator SD4t+z has a kernelKD
4t+z : Γ×Γ→ C such that the map (z, w1, w2) 7→ KD

4t+z(w1, w2)
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is continuous on ΣθD ×Γ×Γ, and for all w1, w2 ∈ Γ the map z 7→ KD
4t+z(w1, w2) is analytic

on ΣθD . Then the claim follows from the fact that ΣθD is open in C.

By Lemma 7.4(a) the operator SDt is bounded from L2(Γ) into C(Γ), so the Riesz

representation theorem provides that for all w1 ∈ Γ there exists a k
(1)
w1 ∈ L2(Γ) such that

(SDt ϕ)(w1) = (ϕ, k(1)
w1

)L2(Γ)

for all ϕ ∈ L2(Γ). Then

‖k(1)
w1
‖L2(Γ) = sup

‖ϕ‖L2(Γ)≤1

|(SDt ϕ)(w1)| ≤ ‖SDt ‖L2(Γ)→C(Γ) <∞

for all w1 ∈ Γ, so supw1∈Γ ‖k
(1)
w1 ‖L2(Γ) <∞. Moreover, since SDt ϕ ∈ C(Γ) for all ϕ ∈ L2(Γ), it

follows that the map w1 7→ k
(1)
w1 is weakly continuous from Γ into L2(Γ). By Lemma 7.4(a)

together with duality one has that SDt ∈ L
(
L1(Γ), L∞(Γ)

)
, so by the Dunford–Pettis

theorem [DP40] Theorem 2.2.5 the operator SDt has a kernel in L∞(Γ×Γ). Since σ(Γ) <∞,

it follows that SDt is Hilbert–Schmidt and therefore compact. Hence the map w1 7→ SDt k
(1)
w1

is continuous from Γ into L2(Γ). By duality one similarly deduces that for all w2 ∈ Γ there

exists a k
(2)
w2 ∈ L2(Γ) such that

(SDt
∗
ϕ)(w2) = (ϕ, k(2)

w2
)L2(Γ)

for all ϕ ∈ L2(Γ), and that the map w2 7→ SDt
∗
k

(2)
w2 is continuous from Γ into L2(Γ).

Moreover, for all T ∈ L
(
L2(Γ)

)
and ϕ ∈ L2(Γ) one has that

(SDt TS
D
t ϕ)(w1) = (TSDt ϕ, k

(1)
w1

)L2(Γ) = (ϕ, SDt
∗
T ∗k(1)

w1
)L2(Γ)

=

∫
Γ

ϕ(w2)(SDt
∗
T ∗k

(1)
w1 )(w2) dw2

=

∫
Γ

(
Tk(2)

w2
, k(1)

w1

)
L2(Γ)

ϕ(w2) dw2

for all w1 ∈ Γ, since

(SDt
∗
T ∗k(1)

w1
)(w2) =

(
T ∗k(1)

w1
, k(2)

w2

)
L2(Γ)

=
(
k(1)
w1
, Tk(2)

w2

)
L2(Γ)

for all w2 ∈ Γ.

Now let z ∈ ΣθD and define KD
4t+z : Γ× Γ→ C by

KD
4t+z(w1, w2) =

(
SDz S

D
t k

(2)
w2
, SDt

∗
k(1)
w1

)
L2(Γ)

.

Then ‖KD
4t+z‖L∞(Γ×Γ) < ∞, since supw1∈Γ ‖k

(1)
w1 ‖L2(Γ) < ∞ and supw2∈Γ ‖k

(2)
w2 ‖L2(Γ) < ∞.

Write T = SDt S
D
z S

D
t ∈ L

(
L2(Γ)

)
. Then for all ϕ ∈ L2(Γ)

(SD4t+zϕ)(w1) = (SDt TS
D
t ϕ)(w1)

=

∫
Γ

(
Tk(2)

w2
, k(1)

w1

)
L2(Γ)

ϕ(w2) dw2

=

∫
Γ

(
SDt S

D
z S

D
t k

(2)
w2
, k(1)

w1

)
L2(Γ)

ϕ(w2) dw2
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=

∫
Γ

KD
4t+z(w1, w2)ϕ(w2) dw2

for all w1 ∈ Γ. Moreover, by Lemma 7.4(a) together with duality one obtains that SD3t+z ∈
L
(
L1(Γ), L2(Γ)

)
, as SD is contractive on ΣθD . So SD4t+zϕ ∈ C(Γ) for all ϕ ∈ L1(Γ) and by

density one deduces that

(SD4t+zϕ)(w1) =

∫
Γ

KD
4t+z(w1, w2)ϕ(w2) dw2

for all w1 ∈ Γ and ϕ ∈ L1(Γ). Finally since the maps w2 7→ SDt k
(2)
w2 and w1 7→ SDt

∗
k

(1)
w1 are

continuous from Γ into L2(Γ), and by Corollary 5.2(a) the map z 7→ SDz is continuous from

ΣθD into L
(
L2(Γ)

)
, it follows that the map

(z, w1, w2) 7→
(
SDz S

D
t k

(2)
w2
, SDt

∗
k(1)
w1

)
L2(Γ)

= K4t+z(w1, w2)

is continuous on ΣθD × Γ× Γ. Moreover, since SDt k
(2)
w2 ∈ L2(Γ) and SDt

∗
k

(1)
w1 ∈ L2(Γ) for all

w1, w2 ∈ Γ, by Corollary 5.2(a) once again one obtains that the map z 7→ KD
4t+z(w1, w2) is

analytic on ΣθD for all w1, w2 ∈ Γ. This proves Statements (a) and (b).

We now prove (c). Note that by Lemma 7.4(a) together with duality, there exists a

c > 0 such that

‖SDt ‖2→∞ ≤ ct−(d−1)/2

and

‖SDt ‖1→2 ≤ ct−(d−1)/2

for all t > 0. Let θ′ ∈ (0, θD). Then there exist θ0 ∈ (θ′, θD) and κ ∈ (0, 1) such that

κt + is ∈ Σθ0 for all t + is ∈ Σθ′ . Moreover, by Proposition 6.3 there exists a δ > 0 such

that ‖SDz ‖2→2 ≤ e−δRe z for all z ∈ Σθ0 . Let z ∈ Σθ′ and write z = t+ is. Then

‖SDz ‖1→∞ ≤ ‖SD1
2

(1−κ)t
‖2→∞ ‖SDκt+is‖2→2 ‖SD1

2
(1−κ)t

‖1→2

≤ c2(1
2
(1− κ)t)−(d−1)e−δκt

= c1(Re z)−(d−1)e−δ1 Re z

where c1 = c2 2d−1(1− κ)−(d−1) and δ1 = δκ. Hence by Statement (a)

‖KD
z ‖L∞(Γ×Γ) = sup

w1∈Γ
‖KD

z (w1, ·)‖C(Γ)

= sup
{∣∣ ∫

Γ

KD
z (w1, w2)ϕ(w2) dw2

∣∣ : ϕ ∈ L1(Γ), ‖ϕ‖L1(Γ) ≤ 1 and w1 ∈ Γ
}

= sup
{
|(SDz ϕ)(w1)| : ϕ ∈ L1(Γ), ‖ϕ‖L1(Γ) ≤ 1 and w1 ∈ Γ

}
= sup

{
‖SDz ϕ‖L∞(Γ) : ϕ ∈ L1(Γ) and ‖ϕ‖L1(Γ) ≤ 1

}
= ‖SDz ‖1→∞ ≤ c1(Re z)−(d−1)e−δ1 Re z

as required.
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Proof of Theorem 1.4. Statements (a) and (b) follow from arguments analogous to the

proofs of the corresponding statements in Theorem 1.3. We prove (c). Let θ′ ∈ (0, θN).

Then there exist θ0 ∈ (θ′, θN) and κ ∈ (0, 1) such that κt + is ∈ Σθ0 for all t + is ∈ Σθ′ .

Arguing as in the proof of Theorem 1.3(c), one deduces from Lemma 7.4(b) that there

exists a c > 0 such that

‖Sz‖1→∞ ≤ c
(
1 ∧ 1

2
(1− κ) Re z

)−(d−1) ≤ c1

(
1 ∧ Re z

)−(d−1)

for all z ∈ Σθ′ , where c1 = c 2d−1(1− κ)−(d−1). The estimate for ‖Kz‖L∞(Γ×Γ) then follows

as in the proof of Theorem 1.3(c).

The semigroups S and SD leave C(Γ) invariant.

Corollary 7.5. (a) Let z ∈ ΣθD . Then SDz C(Γ) ⊂ C(Γ).

(b) Let z ∈ ΣθN . Then SzC(Γ) ⊂ C(Γ).

Proof. In the above we have proved that SD and S map L2(Γ) into C(Γ), so the corollary

follows from the fact that C(Γ) ⊂ L2(Γ).

By the proof of Theorem 1.3, the semigroup SD consists of compact operators on L2(Γ).

Because SD is ultracontractive, this property is inherited by the extrapolation semigroup

SD,(p) on Lp(Γ) for all p ∈ [1,∞]. Indeed, as SD is contractive on both L1(Γ) and L∞(Γ)

and is continuous from L1(Γ) into L∞(Γ), an interpolation argument yields that SD maps

Lp(Γ) continuously into Lq(Γ) for all p, q ∈ [1,∞] with p ≤ q. Since σ(Γ) < ∞, it then

follows from the factorisation

Lp(Γ)
S
D,(p)
t/3→ L∞(Γ) ↪→ L2(Γ)

SD
t/3→ L2(Γ)

SD
t/3→ L∞(Γ) ↪→ Lp(Γ)

that S
D,(p)
t is compact for all t > 0. One similarly deduces that the semigroup S(p) consists

of compact operators on Lp(Γ) for all p ∈ [1,∞].

We denote by KD and K the kernels as introduced in Theorems 1.3 and 1.4. The

domination of SD by S yields an analogous relationship between the kernels for real time.

Proposition 7.6. Let t > 0. Then

0 ≤ KD
t (w1, w2) ≤ Kt(w1, w2)

for a.e. w1, w2 ∈ Γ.

Proof. Note first that Kt, K
D
t ∈ L∞(Γ × Γ) are positive by [AB94] Proposition 1.9(a),

since by Proposition 5.11 the semigroups S and SD are positive. Write S̃t = St − SDt .

Then S̃tL2(Γ)+ ⊂ L2(Γ)+ by the domination estimate in Proposition 5.11. Write K̃t =

Kt −KD
t ∈ L∞(Γ× Γ). Then

(S̃tϕ)(w1) =

∫
Γ

Kt(w1, w2)ϕ(w2) dw2 −
∫

Γ

KD
t (w1, w2)ϕ(w2) dw2

=

∫
Γ

K̃t(w1, w2)ϕ(w2) dw2

for all w1 ∈ Γ and ϕ ∈ L1(Γ). Hence K̃t is positive by [AB94] Proposition 1.9(a).
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By Proposition 6.3 the semigroup SD converges in the norm topology to its ergodic

projection 0 ∈ L
(
L2(Γ)

)
at an exponential rate. The semigroup S and its associated

ergodic projection P : ϕ 7→ 1
σ(Γ)

(ϕ,1Γ)L2(Γ)1Γ exhibit similar behaviour.

Proposition 7.7. For all θ′ ∈ (0, θN) there exist c, δ > 0 such that

‖Sz − P‖2→2 ≤ ce−δRe z

for all z ∈ Σθ′.

Proof. Note that by Proposition 5.11 and Theorem 6.9 the semigroup S is positive and ir-

reducible. Let t > 0. Since σ(Γ) <∞ and by Lemma 7.4(b) one has St ∈ L
(
L1(Γ), L∞(Γ)

)
,

it follows from the Dunford–Pettis theorem that St is compact. Moreover, duality together

with Proposition 5.4(b) provides that kerN ∗ = kerN = C1Γ. Hence by [Are08] Theo-

rem 4.5 there exist c, δ > 0 such that

‖St − P‖2→2 ≤ ce−δt

for all t > 0.

It follows from (27) together with the definition of P that StP = PSt = P for all

t > 0. Define f : ΣθN → L
(
L2(Γ)

)
by f(z) = SzP − PSz. Then f |(0,∞) = 0. Moreover,

by Corollary 5.2(b) the function f is holomorphic on the connected open set ΣθN ⊂ C,

so f = 0 on ΣθN . By a similar argument, one deduces that the map z 7→ SzP − P is

identically zero on ΣθN . Therefore SzP = PSz = P for all z ∈ ΣθN .

Let θ′ ∈ (0, θN). Then there exist θ0 ∈ (θ′, θN) and κ ∈ (0, 1) such that κt + is ∈ Σθ0

for all t+ is ∈ Σθ′ . Let z ∈ Σθ′ and write z = t+ is. Then

Sz − P = Sκt+isS(1−κ)t − Sκt+isP = Sκt+is(S(1−κ)t − P )

and

‖Sz − P‖2→2 ≤ ‖Sκt+is‖2→2 ‖S(1−κ)t − P‖2→2 ≤ ce−δ(1−κ)t

since S is contractive on ΣθN . This proves the claim.

It follows from Theorem 1.3(c) that for all θ′ ∈ (0, θD), the family (KD
z )z∈Σθ′

converges

uniformly to zero in the limit |z| → ∞. Our final result implies that for all θ′ ∈ (0, θN),

the family (Kz)z∈Σθ′
converges to 1

σ(Γ)
in a similar manner.

Theorem 7.8. For all θ′ ∈ (0, θN) there exist c, δ > 0 such that

‖Kz − 1
σ(Γ)
‖L∞(Γ×Γ) ≤ c(1 ∧ Re z)−(d−1)e−δRe z

for all z ∈ Σθ′.

Proof. Note that by Corollary 6.7, the ergodic projection P associated with S extends to

an operator on L1(Γ) defined by Pϕ = 1
σ(Γ)

(
∫

Γ
ϕ)1Γ, where we continue to denote by P

the extension to L1(Γ). Then Theorem 1.4(a) provides that for all z ∈ ΣθN ,

((Sz − P )ϕ)(w1) =

∫
Γ

Kz(w1, w2)ϕ(w2) dw2 − 1
σ(Γ)

1Γ(w1)

∫
Γ

ϕ(w2)1Γ(w2) dw2
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=

∫
Γ

Kz(w1, w2)ϕ(w2)− 1
σ(Γ)

1Γ(w1)ϕ(w2)1Γ(w2) dw2

=

∫
Γ

(
Kz − 1

σ(Γ)
1Γ×Γ

)
(w1, w2)ϕ(w2) dw2

for all w1 ∈ Γ and ϕ ∈ L1(Γ). Moreover, by Lemma 7.4(b) together with duality, there

exists a c0 > 0 such that

‖St‖2→∞ ≤ c0(1 ∧ t)−(d−1)/2

and

‖St‖1→2 ≤ c0(1 ∧ t)−(d−1)/2

for all t > 0.

Let θ′ ∈ (0, θN). Then there exist θ0 ∈ (θ′, θN) and κ ∈ (0, 1) such that κt + is ∈ Σθ0

for all t+ is ∈ Σθ′ . Moreover, by Proposition 7.7 there exist c, δ > 0 such that

‖Sz − P‖2→2 ≤ ce−δRe z

for all z ∈ Σθ0 . Let z ∈ Σθ′ and write z = t+ is. Then

Sz − P = S 1
2

(1−κ)tSκt+isS 1
2

(1−κ)t − P

= S 1
2

(1−κ)tSκt+isS 1
2

(1−κ)t − S 1
2

(1−κ)tPS 1
2

(1−κ)t

= S 1
2

(1−κ)t(Sκt+is − P )S 1
2

(1−κ)t

and it follows that

‖Sz − P‖1→∞ ≤ ‖S 1
2

(1−κ)t‖2→∞ ‖Sκt+is − P‖2→2 ‖S 1
2

(1−κ)t‖1→2

≤ c2
0c(1 ∧ 1

2
(1− κ)t)−(d−1)e−δκt

≤ c1(1 ∧ Re z)−(d−1)e−δ1 Re z

where c1 = c2
0c 2d−1(1− κ)−(d−1) and δ1 = δκ. Hence

‖Kz − 1
σ(Γ)
‖L∞(Γ×Γ) = sup

w1∈Γ
‖
(
Kz − 1

σ(Γ)
1Γ×Γ

)
(w1, ·)‖C(Γ)

= sup
{
|((Sz − P )ϕ)(w1)| : ϕ ∈ L1(Γ), ‖ϕ‖L1(Γ) ≤ 1 and w1 ∈ Γ

}
= ‖Sz − P‖1→∞ ≤ c1(1 ∧ Re z)−(d−1)e−δ1 Re z

as claimed.

73



A Appendix

In this section we gather various auxiliary facts from functional analysis.

Sobolev spaces

The following result is known as the Neumann-type Poincaré inequality.

Proposition A.1. Let Ω ⊂ Rd be a bounded Lipschitz domain. Then there exists a c > 0

such that ∫
Ω

|u− 〈u〉|2 ≤ c

∫
Ω

|∇u|2

for all u ∈ H1(Ω), where 〈u〉 = 1
|Ω|

∫
Ω
u.

Proof. See [GP05] Theorem 2.5.21 and Remark 2.5.15.

Proposition A.2. Let Ω ⊂ Rd be a bounded Lipschitz domain and let B ⊂ Rd be an open

set with Ω ⊂ B and |B| < ∞. Then there exists a bounded operator E : H1(Ω) → H1(B)

such that (Eu)|Ω = u and E1Ω = 1B.

Proof. By [AF03] Theorem 5.24 (see also [Ste70] Chapter VI) there exists a bounded

operator E0 : H1(Ω) → H1(Rd) such that (E0u)|Ω = u. Define E1 : H1(Ω) → H1(B) by

E1u = (E0u)|B. Then E1 ∈ L
(
H1(Ω), H1(B)

)
and (E1u)|Ω = u. Define P : H1(Ω)→ C1Ω

by

Pu =
1

|Ω|

(∫
Ω

u1Ω

)
1Ω.

Then P ∈ L
(
H1(Ω)

)
. Define E : H1(Ω)→ H1(B) by

Eu = E1(u− Pu) +
1

|Ω|

(∫
Ω

u1Ω

)
1B.

Then E ∈ L
(
H1(Ω), H1(B)

)
and

(Eu)|Ω = u− Pu+
1

|Ω|

(∫
Ω

u1Ω

)
1Ω = u.

Moreover,

E1Ω = E1(1Ω − 1Ω) +
1

|Ω|

(∫
Ω

1Ω

)
1B = 1B

as required.

Banach spaces

Proposition A.3. Let X be a normed linear space and Y a Banach space. Let D denote

a dense subspace of X and let T ∈ L(D, Y ). Then there exists a unique T̃ ∈ L(X, Y ) such

that T̃ |D = T and ‖T̃‖L(X,Y ) = ‖T‖L(D,Y ).
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Proof. The case T = 0 is trivial. Write M = ‖T‖L(D,Y ) > 0 and let ε > 0. Let

x, x1, x2, . . . ∈ D and suppose that lim xn = x. Then (xn)n∈N is a Cauchy sequence and

there exists an N ∈ N such that for all n,m ≥ N one has that ‖xn − xm‖X < ε
M

. Hence

‖Txn − Txm‖Y ≤M‖xn − xm‖X < ε

for all n,m ≥ N . Then (Txn)n∈N is a Cauchy sequence in Y and is therefore convergent,

since Y is complete.

Define T̃ : X → Y by T̃ x = limTxn. Let x ∈ X and (xn)n∈N, (wn)n∈N ⊂ D be such

that limxn = x and limwn = x. Then the sequences (Txn)n∈N and (Twn)n∈N are Cauchy

in Y and it follows that there exist y, z ∈ Y such that limTxn = y and limTwn = z. Then

‖y − z‖Y = lim
n→∞

‖Txn − Twn‖ ≤M lim
n→∞

‖xn − wn‖X = 0,

so y = z. Therefore T̃ is well-defined. Note that for all x ∈ X, by density there exists a

sequence (xn)n∈N in D such that lim xn = x. Moreover, it is easy to see that T̃ is linear

and T̃ |D = T .

Next we prove that ‖T̃‖L(X,Y ) = ‖T‖L(D,Y ). Clearly

sup
x∈X\{0}

‖T̃ x‖Y
‖x‖X

≥ ‖T‖L(D,Y )

since D ⊂ X and T̃ |D = T . Let x ∈ X and let (xn)n∈N be a sequence in D such that

limxn = x. Then

‖T̃ x‖Y = lim
n→∞

‖Txn‖Y ≤ ‖T‖L(D,Y ) lim
n→∞

‖xn‖X = ‖T‖L(D,Y )‖x‖X ,

so ‖T̃‖L(X,Y ) ≤ ‖T‖L(D,Y ) and equality follows.

Finally we prove that T̃ is unique. Let T̂ ∈ L(X, Y ) and suppose that T̂ |D = T . Let

x ∈ X and let (xn)n∈N be a sequence in D such that lim xn = x. Then

T̂ x = lim
n→∞

T̂ xn = lim
n→∞

Txn = lim
n→∞

T̃ xn = T̃ x

and it follows that T̂ = T̃ .

Proposition A.4. Let T be a compact operator on a Banach space X and let λ ∈ C\{0}.
Then λI − T has closed range.

Proof. Since T is compact it follows that dim ker(λI − T ) <∞ and there exists a closed

subspace M of X such that X = ker(λI − T ) ⊕ M . Write S = (λI − T )|M . Then

S ∈ L(M,X) is injective and R(S) = R(λI − T ).

Next we show that there exists an r > 0 such that

r‖x‖ ≤ ‖Sx‖ (32)

for all x ∈ M . Suppose to the contrary that for each n ∈ N there exists an xn ∈ M such

that ‖Sxn‖ < 1
n
‖xn‖. Without loss of generality we may assume that ‖xn‖ = 1 for all

n ∈ N. Then limSxn = 0 and the sequence (xn)n∈N is bounded. Since T is compact, by
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passing to a subsequence if necessary we may assume that there exists a y ∈ X such that

limTxn = y. Hence

lim
n→∞

λxn = lim
n→∞

(S + T )xn = y.

Then y ∈ M , since (λxn)n∈N ⊂ M . Therefore Sy = λ limSxn = 0, so y = 0 and it follows

that 0 = ‖y‖ = lim |λ|‖xn‖ = |λ| > 0, a contradiction.

Now let y ∈ R(λI − T ) = R(S). Then there exists a sequence (xn)n∈N in M such that

limSxn = y. So (Sxn)n∈N is a Cauchy sequence in X and it follows from (32) that (xn)n∈N
is a Cauchy sequence in M . Since M is closed there exists an x ∈M such that limxn = x

and because S is bounded it follows that y = limSxn = Sx ∈ R(S) = R(λI − T ).

Proposition A.5. Let A be a closed operator on a Banach space X with ρ(A) 6= ∅. Then

A has compact resolvent if and only if the canonical injection ι : (D(A), ‖ · ‖A) ↪→ X is

compact, where ‖ · ‖A is the graph norm on D(A).

Proof. Suppose first that A has compact resolvent. Let (xn)n∈N be a bounded sequence

in (D(A), ‖ · ‖A) and let λ ∈ ρ(A). For each n ∈ N write yn = (λI − A)xn. Then there

exists an M > 0 such that

‖yn‖X ≤ (|λ|+ 1)‖xn‖A ≤ (|λ|+ 1)M

for all n ∈ N. Since the operator (λI − A)−1 : X → X is compact, it follows that the

sequence (xn)n∈N =
(
(λI−A)−1yn

)
n∈N is contained in a subset of X with compact closure,

and therefore admits a convergent subsequence in X.

Conversely, suppose that the injection ι is compact and let λ ∈ ρ(A). Since

−A(λI − A)−1 = (λI − A+ λI)(λI − A)−1 = I + λ(λI − A)−1,

it follows that

‖(λI − A)−1x‖A = ‖(λI − A)−1x‖X + ‖x+ λ(λI − A)−1x‖X

≤
(
1 + (1 + |λ|)‖(λI − A)−1‖L(X)

)
‖x‖X

for all x ∈ X. Hence (λI − A)−1 ∈ L
(
X, (D(A), ‖ · ‖A)

)
and it follows that (λI − A)−1 =

ι ◦ (λI − A)−1 : X → X is compact.

Hilbert spaces

Proposition A.6. Let H be a Hilbert space and let T, T1, T2, . . . ∈ L(H). Suppose that

limTn = T strongly and let K ∈ L(H) be compact. Then limTnK = TK uniformly.

Proof. Suppose to the contrary that there exists a δ > 0 such that for each N ∈ N, there

exist n ≥ N and x ∈ H with ‖x‖ ≤ 1 such that ‖(T − Tn)Kx‖ ≥ δ. Then there exist

n1 < n2 < . . . and a sequence (xk)k∈N in H such that ‖xk‖ ≤ 1 and ‖(T−Tnk)Kxk‖ ≥ δ for

all k ∈ N. Passing to a subsequence if necessary, we may assume that (xk)k∈N converges

weakly in H. Then since K is compact, there exists a y ∈ H such that limKxk = y. So

‖(T − Tnk)Kxk‖ ≤ ‖(T − Tnk)y‖+ ‖(T − Tnk)(Kxk − y)‖

≤ ‖(T − Tnk)y‖+ ‖T − Tnk‖L(H)‖Kxk − y‖.
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By the uniform boundedness principle, the sequence (Tnk)k∈N is bounded in L(H). Hence

δ ≤ lim ‖(T − Tnk)Kxk‖ = 0, a contradiction.

Proposition A.7. Let H1 and H2 be Hilbert spaces. Let T, T1, T2, . . . ∈ L(H1, H2) and

suppose that T is compact. Suppose that for all x, x1, x2, . . . ∈ H1 with limxn = x weakly

in H1, it follows that limTnxn = Tx in H2. Then limTn = T in L(H1, H2).

Proof. Suppose to the contrary that there exists an δ > 0 such that for each N ∈ N,

there exist n ≥ N and x ∈ H1 with ‖x‖H1 ≤ 1 such that ‖(T − Tn)x‖H2 ≥ δ. Then there

exist n1 < n2 < . . . and a sequence (xk)k∈N in H1 such that ‖(T − Tnk)xk‖H2 ≥ δ for all

k ∈ N. Since (xk)k∈N is bounded in H1, there exist a subsequence (xkl)l∈N of (xk)k∈N and a

y ∈ H1 such that limxkl = y weakly in H1. Then limTnklxkl = Ty in H2. Moreover, since

T is compact it follows that limTxkl = Ty in H2. Then δ ≤ lim ‖(T − Tnkl )xkl‖H2 = 0, a

contradiction.

The following product rule is well known.

Proposition A.8. Let H be a Hilbert space. Then

d

dt
‖u(t)‖2 = 2 Re

(
u′(t), u(t)

)
for all u ∈ C1((0,∞), H).

Proof. Observe that

lim
h→0

1

h

(
‖u(t+ h)‖2 − ‖u(t)‖2

)
= lim

h→0

1

h

((
u(t+ h)− u(t), u(t)

)
+
(
u(t), u(t+ h)− u(t)

))
=
(
u′(t), u(t)

)
+
(
u(t), u′(t)

)
=
(
u′(t), u(t)

)
+
(
u′(t), u(t)

)
= 2 Re

(
u′(t), u(t)

)
as required.

Lp-spaces

Proposition A.9. Let X denote a measure space. Let p, q, r ∈ [1,∞] and θ ∈ [0, 1] be

such that p ≤ r ≤ q and
1

r
=
θ

p
+

1− θ
q

.

Let u ∈ Lp(X) ∩ Lq(X). Then u ∈ Lr(X) and the estimate

‖u‖Lr(X) ≤ ‖u‖θLp(X)‖u‖1−θ
Lq(X)

is valid.

Proof. Without loss of generality we may assume that θ ∈ (0, 1). Since u ∈ Lp(X) it

follows that (∫
X

∣∣ |u|p rθp ∣∣ prθ) rθp = ‖u‖rθLp(X) <∞.
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So |u|p
rθ
p ∈ L p

rθ
(X). One similarly deduces that |u|q

r(1−θ)
q ∈ L q

r(1−θ)
(X). Then since rθ

p
+

r(1−θ)
q

= 1, Hölder’s inequality provides that∫
X

|u|r =

∫
X

|u|p
rθ
p |u|q

r(1−θ)
q ≤ ‖u‖rθLp(X)‖u‖

r(1−θ)
Lq(X)

as required.

Proposition A.10 (Riesz–Thorin). Let X denote a σ-finite measure space and let

p1, p2, q1, q2 ∈ [1,∞] and θ ∈ [0, 1] be such that

1

p
=

θ

p1

+
1− θ
p2

and
1

q
=

θ

q1

+
1− θ
q2

.

Let T : Lp1(X) + Lp2(X) → Lq1(X) + Lq2(X) be such that T |Lp1 (X) ∈ L
(
Lp1(X), Lq1(X)

)
and T |Lp2 (X) ∈ L

(
Lp2(X), Lq2(X)

)
. Then T |Lp(X) ∈ L

(
Lp(X), Lq(X)

)
and the estimate

‖T‖p→q ≤ ‖T‖θp1→q1‖T‖
1−θ
p2→q2

is valid.

Proof. See [LZ12] Theorem 3.16.

Proposition A.11. Let U ⊂ Rd be an open set. Let u ∈ L2(U) and suppose that there

exists a c > 0 such that

|
∫
U

uv | ≤ c‖v‖L∞(U)

for all v ∈ L2(U) ∩ L∞(U). Then u ∈ L1(U) and ‖u‖L1(U) ≤ c.

Proof. Suppose to the contrary that
∫
U
|u| =∞. Then

sup
{∫

K

|u| : K ⊂ U is compact
}

=∞.

Write T = {χ ∈ C∞c (U) : χ ≥ 0 and ‖χ‖L∞(U) ≤ 1}. Then [HR79] Theorem 12.14 provides

that

sup
χ∈T

∫
U

|u|χ =∞.

Let χ ∈ T and write v = (sgnu)χ. Then v ∈ L2(U) ∩ L∞(U) and ‖v‖L∞(U) ≤ 1, so∫
U

|u|χ =

∫
U

u(sgnu)χ = |
∫
U

uv| ≤ c.

Therefore
∫
U
|u|χ ≤ c for all χ ∈ T , a contradiction. Hence u ∈ L1(U). Moreover,

[HR79] Theorem 12.13 provides that

‖u‖L1(U) = sup
{
|
∫
U

uχ| : χ ∈ C∞c (U) and ‖χ‖L∞(U) ≤ 1
}

and it therefore follows from the hypothesis that ‖u‖L1(U) ≤ c.

The following is a particular case of [EL17] Lemma 2.1.

78



Proposition A.12. Let U ⊂ Rd be an open set and let T ∈ L
(
L2(U)

)
. Suppose that there

exists a c > 0 such that ‖Tu‖∞ ≤ c‖u‖∞ for all u ∈ L2(U) ∩ L∞(U). Then there exist

unique operators T̂ ∈ L
(
L1(U)

)
and T̃ ∈ L

(
L∞(U)

)
such that T̂ |L1∩L2 = T ∗|L1∩L2 and

T̃ |L2∩L∞ = T |L2∩L∞ . Moreover, T̃ =
(
T̂
)∗

and ‖T̃‖L(L∞(U)) ≤ c.

Proof. Let u ∈ L1(U) ∩ L2(U). Then

|(T ∗u, v)| = |(u, Tv)| ≤ ‖u‖1‖Tv‖∞ ≤ c ‖u‖1‖v‖∞

for all v ∈ L2(U)∩L∞(U). Hence T ∗u ∈ L1(U) and ‖T ∗u‖1 ≤ c‖u‖1 by Proposition A.11.

Then T ∗|L1∩L2 is bounded from (L1(U)∩L2(U), ‖ · ‖1) into L1(U) and since L1(U)∩L2(U)

is dense in L1(U), it follows from Proposition A.3 that there exists a unique T̂ ∈ L (L1(U))

such that T̂ |L1∩L2 = T ∗|L1∩L2 .

Define T̃ : L∞(U)→ L∞(U) by T̃ =
(
T̂
)∗

. Let u ∈ L2(U) ∩ L∞(U). Then

〈T̃ u, v〉 = 〈u, T̂ v〉 = 〈u, T ∗v〉 = 〈Tu, v〉

for all v ∈ L1(U) ∩ L2(U). So 〈T̃ u, v〉 = 〈Tu, v〉 first for all v ∈ L1(U) ∩ L2(U) and then

for all v ∈ L1(U) by density. Hence T̃ |L2∩L∞ = T |L2∩L∞ .

We now show that the operator T̃ is unique. Let T ∈ L (L∞(U)) and suppose that

T |L2∩L∞ = T |L2∩L∞ . Let u ∈ L∞(U). Since L2(U) ∩ L∞(U) is w∗-dense in L∞(U), there

exists a net (uα)α∈I in L2(U) ∩ L∞(U) such that limuα = u in (L∞(U), w∗). Then

〈Tu, v〉 = lim
α∈I
〈Tuα, v〉 = lim

α∈I
〈Tuα, v〉 = lim

α∈I
〈T̃ uα, v〉 = 〈T̃ u, v〉

for all v ∈ L1(U), so Tu = T̃ u and T̃ is consequently unique. Finally, let u ∈ L∞(U).

Then

|〈T̃ u, v〉| = |〈u, T ∗v〉| ≤ c ‖u‖∞ ‖v‖1

for all v ∈ L1(U) ∩ L2(U). So |〈T̃ u, v〉| ≤ c ‖u‖∞ ‖v‖1 first for all v ∈ L1(U) ∩ L2(U) and

then for all v ∈ L1(U) by density. Therefore ‖T̃‖L(L∞(U)) ≤ c as required.

C0-semigroups

Proposition A.13. Let T = (Tt)t>0 be a C0-semigroup on a Banach space X with gener-

ator −A. Let t > 0. Then
∫ t

0
Tsx ds ∈ D(A) and

A

∫ t

0

Tsx ds = x− Ttx

for all x ∈ X.

Proof. Let x ∈ X and h > 0. Then

1

h
(I − Th)

∫ t

0

Tsx ds =
1

h

(∫ t

0

Tsx ds−
∫ t

0

Ts+hx ds
)

=
1

h

(∫ t

0

Tsx ds−
∫ t+h

h

Tsx ds
)
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=
1

h

(∫ t

0

Tsx ds−
(∫ t

0

Tsx ds+

∫ t+h

t

Tsx ds−
∫ h

0

Tsx ds
))

=
1

h

(∫ h

0

Tsx ds−
∫ t+h

t

Tsx ds
)

=
1

h

(∫ h

0

Tsx ds− Tt
∫ h

0

Tsx ds
)

= (I − Tt)
1

h

∫ h

0

Tsx ds.

Since the map s 7→ Tsx is continuous, it follows that

lim
h↓0

1

h
(I − Th)

∫ t

0

Tsx ds = (I − Tt) lim
h↓0

1

h

∫ h

0

Tsx ds = (I − Tt)x

as required.

Proposition A.14. Let T = (Tt)t>0 be a C0-semigroup on a Banach space X with gener-

ator −A. Let x, y ∈ X. Then x ∈ D(A) and Ax = y if and only if∫ t

0

Tsy ds = x− Ttx

for all t > 0

Proof. Suppose first that x ∈ D(A) and Ax = y. Let t > 0. Then by the fundamental

theorem of calculus

x− Ttx =

∫ t

0

− d

ds
Tsx ds =

∫ t

0

ATsx ds =

∫ t

0

TsAx ds =

∫ t

0

Tsy ds

as required.

Conversely, one has that

lim
t↓0

1

t
(I − Tt)x = lim

t↓0

1

t

∫ t

0

Tsy ds = y

and the claim follows.

The domain of the generator of a C0-semigroup is maximal in the following sense.

Proposition A.15. Suppose that −A and −B each generate a C0-semigroup on a Banach

space X. If A ⊂ B, then A = B.

Proof. There exists an ω ∈ R such that {λ ∈ C : Reλ > ω} ⊂ ρ(−A) ∩ ρ(−B). Choose

λ ∈ ρ(−A) ∩ ρ(−B). Then λI + A ⊂ λI + B. Let x ∈ D(B). Since λI + A is surjective,

there exists a y ∈ D(A) such that (λI +A)y = (λI +B)x. By assumption D(A) ⊂ D(B),

so y ∈ D(B) and

(λI +B)y = (λI + A)y = (λI +B)x.

Hence (λI +B)(x− y) = 0. Since λI +B is injective, it follows that x = y ∈ D(A).
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Proposition A.16. Let U ⊂ Rd be an open set and suppose that −A generates an irre-

ducible C0-semigroup on L2(U). Suppose that u ∈ D(A) with u > 0 is an eigenvector of

A. Then u(x) > 0 for a.e. x ∈ U .

Proof. See [BKR17] Proposition 14.12(a) and Example 10.16(b).

The following particular case of [AB92] Theorem 1.3 was proved in [AE15] Proposi-

tion 5.13.

Proposition A.17. Let U ⊂ Rd be an open set and let A and B be two lower-bounded

self-adjoint operators in L2(U) with compact resolvent. Suppose that (e−tA)t>0 is irreducible

and that

0 ≤ e−tAu ≤ e−tBu (33)

for all u ∈ L2(U) with u ≥ 0 and all t > 0. Suppose further that the smallest eigenvalues

of A and B are equal. Then A = B.

Proof. Without loss of generality we may assume that the smallest eigenvalues of A and

B are zero. Since by hypothesis (e−tA)t>0 and (e−tB)t>0 are positive and A and B have

compact resolvent, it follows from the Krein–Rutman theorem [BKR17] Theorem 12.15

that there exist u1, u2 ∈ L2(U) with u1, u2 > 0 such that u1 ∈ kerA and u2 ∈ kerB. Hence

e−tAu1 = u1 and e−tBu2 = u2 for all t > 0, by Proposition A.14. Moreover, since (e−tA)t>0

is irreducible, it follows from (33) together with [Ouh05] Theorem 2.9 that (e−tB)t>0 is

irreducible. So u1(x) > 0 and u2(x) > 0 for a.e. x ∈ U , by Proposition A.16.

Let t > 0. Then e−tBu1 − e−tAu1 ≥ 0 by (33). Moreover, it follows from the self-

adjointness of the generators that the semigroups consist of self-adjoint operators, so

(e−tBu1 − e−tAu1, u2)L2(U) = (u1, e
−tBu2)L2(U) − (e−tAu1, u2)L2(U) = 0.

Since u2(x) > 0 a.e. on U , it follows that e−tBu1− e−tAu1 = 0. Let u ∈ L2(U) be such that

u > 0. Then e−tBu− e−tAu ≥ 0 and

(e−tBu− e−tAu, u1)L2(U) = (u, e−tBu1 − e−tAu1)L2(U) = 0.

Hence e−tBu−e−tAu = 0 and one deduces that e−tAu = e−tBu for all u ∈ L2(U) with u ≥ 0

and all t > 0. Then (e−tA)t>0 = (e−tB)t>0 by linearity and it follows that A = B.

Proposition A.18. Let U ⊂ Rd be an open set and let A be a self-adjoint operator in L2(U)

with compact resolvent. Suppose that −A generates a positive irreducible C0-semigroup on

L2(U). Let λ denote an eigenvalue of A corresponding to an eigenfunction u ∈ D(A) of A

with u > 0. Then λ is the smallest eigenvalue of A.

Proof. Let λ1 denote the smallest eigenvalue of A. Without loss of generality we may

assume that λ1 = 0. So λ ≥ 0. Since (e−tA)t>0 is positive and A has compact resolvent,

it follows from the Krein–Rutman theorem that there exists a u1 ∈ kerA with u1 > 0.

Moreover, since (e−tA)t>0 is irreducible Proposition A.16 provides that u1(x) > 0 for a.e.

x ∈ U . Then (u, u1)L2(U) > 0 and

λ(u, u1)L2(U) = (Au, u1)L2(U) = (u,Au1)L2(U) = 0,

so λ = 0.
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[CT10] Cabré, X. and Tan, J., Positive solutions of nonlinear problems involving

the square root of the Laplacian. Advances in Mathematics 224, No. 5 (2010),

2052–2093.

[Dav89] Davies, E. B., Heat kernels and spectral theory. Cambridge Tracts in Mathe-

matics 92. Cambridge University Press, Cambridge etc., 1989.

[De 57] De Giorgi, E., Sulla differenziabilità e l’analiticità delle estremali degli in-
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