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Valid belief updates for prequentially additive
loss functions arising in Semi-Modular Inference

Geoff K. Nicholls∗, Jeong Eun Lee†, Chieh-Hsi Wu‡ and Chris U. Carmona∗

Abstract. Model-based Bayesian evidence combination leads to models with
multiple parameteric modules. In this setting the effects of model misspecifica-
tion in one of the modules may in some cases be ameliorated by cutting the flow
of information from the misspecified module. Semi-Modular Inference (SMI) is a
framework allowing partial cuts which modulate but do not completely cut the
flow of information between modules. We show that SMI is part of a family of in-
ference procedures which implement partial cuts. It has been shown that additive
losses determine an optimal, valid and order-coherent belief update. The losses
which arise in Cut models and SMI are not additive. However, like the prequen-
tial score function, they have a kind of prequential additivity which we define. We
show that prequential additivity is sufficient to determine the optimal valid and
order-coherent belief update and that this belief update coincides with the belief
update in each of our SMI schemes.
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1 Introduction

Bayesian analysis integrates different sources of information or “modules” into a single
analysis through Bayes theorem and quantifies uncertainties in parameters. The infor-
mation in each module, which may be prior belief or observations or both, is encoded
as a parametric model. Evidence synthesis can give better predictability, more precise
estimation, and access to shared parameter estimation (Ades and Sutton, 2006; Sweet-
ing et al., 2009; Harris et al., 2012; Fithian et al., 2015; Pacifici et al., 2017; Nicholson
et al., 2021).

As modules are added to an overall model, there is an increasing hazard for misspec-
ification. Methods that help us carry out Bayesian analysis on misspecified models have
been in development for some time without explicit consideration of modularisation. We
divide these into three classes. Methods which temper the likelihood lead to power pos-
teriors, Walker and Hjort (2001); Grünwald (2012); Miller and Dunson (2018), methods
which use bootstrapping in a Bayesian setting, including Weighted likelihood Bootstrap
(Newton, 1991; Newton and Raftery, 1994; Lyddon et al., 2019), the Posterior Bootstrap
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2 Valid variants of Semi-Modular Inference

(Pompe and Jacob, 2021) and BayesBag (Bühlmann, 2014; Huggins and Miller, 2021),
and methods which replace the likelihood with some more general loss function medi-
ating data and parameter, including PAC-Bayes (Germain et al., 2016; Zhang, 2006;
McAllester, 1998; Shawe-Taylor and Williamson, 1997), Gibbs posteriors (Zhang, 2006;
Jiang and Tanner, 2008) and Generalized Bayes (Bissiri et al., 2016; Grünwald and van
Ommen, 2017) are relevant in the multi-modular setting.

Multi-modular Bayesian inference with misspecified models has some features which
distinguish it from misspecification in single module settings. Liu et al. (2009) gave an
early “modularization” analysis. Markov melding (Goudie et al., 2019) and Bayesian
melding (Poole and Raftery, 2000) can be characterised as dealing with priors which
conflict across modules. In our own work we assume that modules have been identified as
either misspecified or well-specified. This may be the conclusion of a first stage Bayesian
analysis of the overall multi-modular model. A typical and well-founded objective is to
estimate the parameters of a well-specified module making careful use of information
from misspecified modules.

Cut-model inference (Plummer, 2015) has proven very effective in this setting. We
discuss this in detail below. It can be thought of as a kind of sequential imputation
procedure, in which the distribution of a shared parameter is imputed form the infor-
mation in one module and then passed on as a kind of prior for the shared parameter
in a second module. This is not Bayesian inference, as information from the second
module does not inform the shared parameter. A early form of Cut model inference
has been available in WinBUGS (Spiegelhalter et al., 2014) for some time. Cut models
have found many applications: air pollution (Blangiardo et al., 2011), epidemiological
models (Maucort-Boulch et al., 2008a; Finucane et al., 2016; Li et al., 2017; Nicholson
et al., 2021; Teh et al., 2021), meta-analysis (Lunn et al., 2009, 2013; Kaizar, 2015) and
propensity scores (Zigler et al., 2013; Zigler and Dominici, 2014). Jacob et al. (2017)
gives an overview of modularized Bayesian analysis including Cut-models from the per-
spective of statistical decision theory and Pompe and Jacob (2021) gives asymptotic
properties. Nested MCMC (Plummer, 2015) is commonly used for fitting Cut models.
New developments include variational approximation (Yu et al., 2021) and a computa-
tionally efficient variant of nested-MCMC (Liu and Goudie, 2020).

In Cut-model inference, feedback from the suspect module is completely cut. How-
ever, there may be a bias-variance trade-off: if the parameters of a well-specified module
are poorly informed by “local” information then limited information from misspecified
modules may allow us to bring the uncertainty down without introducing significant
bias. Semi-Modular Inference (η-SMI, Carmona and Nicholls (2020)) generalises Cut-
model inference as it offers a means by which we can control the influence of suspect
modules on the fit for a good module. Candidate posterior distributions are indexed by
an associated influence parameter η. At η = 1 η-SMI is standard Bayesian inference
and at η = 0 η-SMI reproduces the Cut-model. Carmona and Nicholls (2020) suggest
choosing η maximizing the expected log pointwise predictive density (ELPD) though
this choice is not an essential part of their method and other criteria (Wu and Mar-
tin, 2020) may be more appropriate in different settings. Liu and Goudie (2021) adapt
η-SMI for Geographically Weighted Regression using an influence parameter across like-
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lihood factors which is modeled as a function of distance between the spatial observation
locations.

Many of the papers cited up to this point propose probability distributions which
can be seen as alternative posteriors, in the sense that they offer quantification of
uncertainty. Bissiri et al. (2016) call these alternative data-informed mappings “belief
updates” and characterise the optimal, valid and order-coherent belief update as a
Gibbs posterior in a Generalised Bayes setting. Several existing belief updates, such
as the power posterior, are known to be valid. However the characterisation of a valid
belief update holds for losses which are additive. We extend the class of losses for which
valid belief updates can be defined. In particular we show the Cut-models and η-SMI
have a kind of prequential additivity which is sufficient for the theory of Bissiri et al.
(2016) to apply. We point out alternative SMI procedures, which we call δ-SMI and γ-
SMI. These offer different interpolating sequences of candidate posterior distributions.
The δ-SMI sequence progressively “blurs” the data away using a procedure resembling
Approximate Bayesian Computation (ABC) but otherwise offers candidate posterior
distributions which are often similar to those of η-SMI. Liu and Goudie (2021) consider
a parallel framework for deriving belief updates due to Zhang (2006). This resembles
PAC-Bayesian approaches (McAllester, 1998; Shawe-Taylor and Williamson, 1997) and
is distinct from the approach of Bissiri et al. (2016).

This paper has three main parts. In the first part (Section 2) we show how prequential
additivity leads to valid updates of belief and show that the Cut model is a valid belief
update. In the second part (Sections 3 and 4) we introduce some SMI-variants and
consider their properties. We use the theory from the first part to show they are valid
belief updates. In the third part (Section 5) we give some simple examples to explore
the behavior of one of the SMI-variants introduced in the second part.

2 Belief updates

2.1 Belief updates and the Cut model

Z Y

ϕ θ

Module 1 Module 2

Figure 1: Graphical representation of a simple multi-modular model. The Bayes poste-
rior for this model in given in (2.3). The dashed vertical line indicates that a Cut model
is used. The Cut-model posterior is given in (2.5).

Consider the two-module configuration of Fig. 1. Let Z = (Z1, ..., Zm) and Y =



4 Valid variants of Semi-Modular Inference

(Y1, ..., Yn) be two vectors of data with model parameter vectors ϕ and θ. In our nota-
tion below we take the sample spaces to be Zj ∈ Rdz , j = 1, ...,m, Yi ∈ Rdy , i = 1, ..., n,
ϕ ∈ Rpϕ and θ ∈ Rpθ though this is not an essential restriction and our final example
takes discrete data. In Generalised Bayesian inference with a Gibbs posterior (Cher-
nozhukov and Hong, 2003; Zhang, 2006; Jiang and Tanner, 2008; Bissiri et al., 2016) we
have a prior π0(θ, ϕ) (a density here) and a loss l(ϕ, θ;Y, Z) connecting the data and
parameters, measuring how well the parameters agree with the data.

A belief update ψ is a rule which updates the prior distribution, taking into account
the data through the loss. It determines an updated belief distribution p̃. When we are
choosing between different belief updates we refer to these as “candidate posteriors”.
For the model in Fig. 1, we write

p̃(ϕ, θ | Y, Z) = ψ{l(ϕ, θ;Y,Z), π0}. (2.1)

When we specify a probability distribution from a loss, via a belief update, we write
it as if it is a conditional probability density. We use p() (for densities over data)
and π() (for densities over parameters) when they may be understood as a conditional
probability. However, many belief updates, like the Cut model below, do not yield
conditional probability distributions. We write p̃() for probability distributions of this
kind.

In Generalised Bayes the belief update from the prior to the posterior is

p̃(ϕ, θ|Y,Z) ∝ exp(−l(ϕ, θ;Y,Z))π0(ϕ, θ). (2.2)

For example, in Bayesian inference with observation models p(Z|ϕ) and p(Y |ϕ, θ) (prob-
ability densities, say) the posterior distribution of (ϕ, θ) is

π(ϕ, θ | Y,Z) ∝ p(Z | ϕ)p(Y | ϕ, θ)π(ϕ, θ), (2.3)

and so the loss in (2.2) “must have been” the negative log-likelihood,

l(b)(ϕ, θ;Y, Z) = − log p(Z | ϕ)− log p(Y | ϕ, θ). (2.4)

In this paper we follow Bissiri et al. (2016) and ask why (2.2) is a valid belief update
of π0 in the context of Cut-model inference (Plummer, 2015) and in related forms of
Semi-Modular Inference (SMI, Carmona and Nicholls (2020)).

We identify a feature of this setup which does not seem to have been considered
explicitly to date: the loss itself may depend on our state of knowledge of the relation
between parameters, for example, on π0(θ|ϕ). This is present in the Gibbs posterior for
the Cut model. The Cut “posterior” for (ϕ, θ) is (Plummer, 2015)

p̃(c)(ϕ, θ | Y,Z) = π(ϕ | Z)π(θ | Y, ϕ). (2.5)

The Cut is indicated in Figure 1 by the vertical dashed line. It is called a “Cut model”
because the flow of information from the Y -module into the Z-module has been cut. The
flow of information between modules of a Cut model is asymmetrical. This makes sense
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when the generative model for the data Y is misspecified, but the generative model for
the Z-module is correct. The idea is to infer or “impute” ϕ using the reliable Z-model
and stop misspecification in the Y -model from biasing that analysis.

The Cut model above can be written in terms of the Bayes posterior

p̃(c)(ϕ, θ | Y,Z) ∝ π(ϕ, θ | Y,Z)/p(Y |ϕ) (2.6)

where

p(Y |ϕ) =

∫
p(Y |ϕ, θ)π0(θ|ϕ)dθ. (2.7)

In our setting the likelihoods p(Y |varphi, θ) and p(Z|ϕ) can be easily evaluated, but
p(Y |ϕ) cannot. If the Cut model is a belief update with a Gibbs posterior, then the loss
in (2.2) yielding (2.5) “must have been”

l(c)(ϕ, θ;Y, Z, π0) = l(b)(ϕ, θ;Y, Z) + log p(Y | ϕ). (2.8)

The loss function for the Cut model depends on the prior π0(θ|ϕ) through the term
log p(Y | ϕ). In the setting of Bissiri and Walker (2012) this prior dependence could be
thought of as another “piece of information” alongside Y,Z. They write the loss l(ξ; I)
where ξ = (ϕ, θ) is the parameter and I = (Y,Z) is the data or “information” informing
the parameters. We recover that setup, at least formally, if we write I = (Y,Z, π0).
However, Bissiri et al. (2016) determine valid belief updates for additive losses only (see
below), and we will see that the Cut-model loss is not additive, so we can ask, what
is the valid belief update for the Cut-model loss? Does it coincide with the Cut-model
posterior?

2.2 Additive losses

We now consider how a loss might be additive in this setting. Consider conditionally
iid data Y1, ..., Yn|ϕ, θ and Z1, ..., Zm|ϕ. Let Y (1:K) = (Y (1), ..., Y (K)) and Z(1:K) =
(Z(1), ..., Z(K)) be partitions of Y and Z into K sets, which may be empty, with the
data taken in any order.

Definition 1. (Additivity) Loss function l(ϕ, θ;Y, Z) is additive if

l(ϕ, θ;Y,Z) =

K∑
k=1

l(ϕ, θ;Y (k), Z(k))

for any partition Y (1:K), Z(1:K) of the data (Y, Z).

The Bayes loss l(b) in (2.4) is additive for iid data. In contrast, the Cut loss in (2.8)
is not additive over k as it depends on the marginal p(Y |ϕ) in (2.7). However, the Cut
loss depends on the evolving state of knowledge and this needs to be accounted for in
the accumulated loss. The “prequential score” for prediction (Dawid and Musio (2015),
Section 4) has a similar dependence on an evolving predictive distribution and so we
call this property prequential additivity.



6 Valid variants of Semi-Modular Inference

Definition 2. (Prequential Additivity) Let a belief update ψ(q) be given. For k = 1, ...,K
let

q̃k(ϕ, θ) = ψ(q)(l(ϕ, θ;Y (1:k), Z(1:k), π0), π0) (2.9)

be the belief distribution for ϕ and θ after the arrival of the first k sets of data Y (1:k), Z(1:k).
Let q̃0 = π0. The loss l is prequentially additive with respect to the belief update ψ(q) if
the total accumulated loss over a sequence of measurements (Y (k), Z(k)), k = 1, ...,K is
equal to the loss from a single bulk measurement,

l(ϕ, θ;Y, Z, π0) =

K∑
k=1

l(ϕ, θ;Y (k), Z(k), q̃k−1), (2.10)

for any partition Y (1:K), Z(1:K) of the data (Y, Z).

This is a condition on a predefined loss, not the definition of the total loss as is the
case for the prequential score, so it will only hold if there is a relation between the loss l
and the belief update ψ(q). A loss which does not depend on the prior and is additive is
clearly prequentially additive. However, for example, the Cut-model loss is prequentially
additive but not additive.

Proposition 2.0.1. The Cut-model loss l(c)(ϕ, θ;Y,Z, π0) in (2.8) is prequentially ad-
ditive with respect to the belief update

ψ(q)(l(c)(ϕ, θ;Y, Z, π0), π0) ∝ exp(−l(c)(ϕ, θ;Y,Z, π0))π0(ϕ, θ).

which is just the Cut-model posterior.

Proof. see Appendix A1.1. The proof is closely related to the proof of order-coherence
of Cut-model inference given in Carmona and Nicholls (2020).

2.3 Order-coherence and valid belief updates

In this section we show that the conclusions of Bissiri et al. (2016) extend to cover
prequentially additive losses. We need this extension because prequential additivity is
a weaker condition than the assumed additivity. We begin by defining order-coherence.

Consider a general partition of the data (Y,Z) into K = 2 arbitrary subsets, as in the
previous section, with Y (1:2) = (Y (1), Y (2)) and Z(1:2) = (Z(1), Z(2)). A belief update
ψ is order-coherent in the sense of Bissiri et al. (2016) if the posterior for independent
data is the same regardless of whether we update belief from the prior, taking all the
data in one tranche, or update with Y (1), Z(1) and use the resulting posterior as the
prior for a belief update with Y (2), Z(2). In our setting with prior-dependence in the
loss function we have the following definition.

Definition 3. (order-coherence) Let a belief update ψ(q) be given and let

q̃1(ϕ, θ) = ψ(q){l(ϕ, θ;Y (1), Z(1), π0), π0}. (2.11)
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Belief update ψ(q) is order-coherent if

ψ(q){l(ϕ, θ;Y, Z, π0), π0} = ψ(q){l(ϕ, θ;Y (2), Z(2), q̃1), q̃1}, (2.12)

for every n,m > 0 and every partition of the data taken in any order.

The property is defined for K = 2 as it will hold for sequential belief updates along
partitions of the data into K > 2 sets if it holds for K = 2. Order-coherence seems to
us an axiomatic property for a belief update.

Bissiri et al. (2016) show that the optimal, valid and order-coherent belief update ψ
is the probability measure ν(dθ dϕ) minimising the loss

L(ν;Y,Z, π0) =

∫
l(ϕ, θ;Y, Z, π0)ν(dθ dϕ) +KL(ν||π0) (2.13)

over ν ∈ F where F is the family measures, absolutely continuous with respect to the
measure of π0, for which Eν(l(ϕ, θ;Y, Z, π0)) is finite, that is

ψ{l(ϕ, θ;Y,Z, π0), π0} = arg min
ν
L(ν;Y, Z, π0). (2.14)

They first show that a valid belief update should minimise an overall loss L of the
form L = Eν(l) +D(ν, π0), where the second term is a measure D(ν, π0) of divergence
between prior and ν. For our purposes this actually defines what we mean by a “valid”
belief update. Bissiri and Walker (2012) and Bissiri et al. (2016) show that if the loss l is
additive, and the belief update ψ determined by (2.14) is required to be order-coherent
whatever the prior, parameter space, loss and data it is updating, if L has a unique
minimum and D = Dg is a g-divergence (see Appendix A1.2) then Dg must be the
KL-divergence and so a valid coherent belief update must minimise (2.13).

An optimal belief update minimising (2.13) exists when Eπ0
(exp(−l(ϕ, θ;Y, Z, π0)))

exists, and if this holds then the optimal valid and coherent belief update is the proper
Gibbs posterior in (2.2). The result of Bissiri et al. (2016) justifies the belief update in
(2.2) for an additive loss l(ϕ, θ;Y,Z). Theorem 2.1 below extends this to prequentially
additive losses.

Theorem 2.1. If a loss l is prequentially additive with respect to the belief update given
by the Gibbs posterior,

ψ(q)(l(ϕ, θ;Y,Z, π0), π0) ∝ exp(−l(ϕ, θ;Y,Z, π0))π0(ϕ, θ) (2.15)

then ψ(q) is order-coherent. It further holds that L(ν;Y,Z, π0) in (2.13) is a valid loss
yielding an order-coherent belief update and ψ(q) itself is the optimal valid order-coherent
belief update ψ in (2.14).

Proof. See Appendix A1.2.

Having a prior-dependent loss gives the discussion of valid belief updates a circular
feeling. Prequential additivity replaces additivity to determine (with coherence) a unique
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valid belief update. However, prequential additivity depends for its definition on some
predefined rule ψ(q) for updating belief from π0 to q̃1 and so on. The question remaining
is whether prequential additivity and the coherence requirement are enough to impose
a unique valid belief update, and whether that valid belief update coincides with the
belief update ψ(q) which ensured the loss was prequentially additive.

We consider the Cut model as a first example of how this may be used to show the
validity of a given belief update.

Corollary 2.1.1. The Cut-model belief update defined in (2.5) is the optimal, valid and
coherent belief update for the loss in (2.8).

Proof. It is sufficient by Theorem 2.1 that the loss (2.8) is prequentially additive with
respect to the belief update (2.5). This follows from Proposition 2.0.1.

3 Semi-Modular Inference

Having established the Gibbs posterior as the valid belief update for the Cut-model
loss, we now point to some other related belief updates for prequentially additive losses.
These are variants of η-SMI, a family of belief updates introduced in Carmona and
Nicholls (2020). We define three families of candidate posterior distributions interpo-
lating between the full-Bayes posterior (2.3) and the Cut-model posterior in (2.5). The
idea here, following Carmona and Nicholls (2020), is to provide modulated input to the
ϕ inference from the (ϕ, θ, Y )-module. In the next section we motivate this step in a bit
more detail.

3.1 The Cut model and Bayesian Multiple Imputation

Plummer (2015) explains that the Cut-model approach to inference using (2.5) is
Bayesian Multiple Imputation (BMI), in essence a two-stage process: at the imputa-
tion stage the posterior distribution π(ϕ | Z) of ϕ is imputed from the data Z as if ϕ
were missing data; in the analysis stage the posterior distribution π(θ|Y, ϕ) of θ is con-
ditioned on the imputed ϕ so that uncertainty in ϕ is fed through into the distribution
of θ.

Bayesian inference (2.3) can also be given formally as a two stage imputation/analysis
procedure,

π(ϕ, θ | Y, Z) = π(ϕ | Y,Z)π(θ | Y, ϕ), (3.1)

using the posterior marginal

π(ϕ|Y, Z) ∝ π(ϕ)p(Z|ϕ)p(Y |ϕ)

in the imputation stage, with p(Y |ϕ) the marginal likelihood in (2.7). If we did carry
out Bayesian inference in this way, we would use the same model, p(Y |ϕ, θ), in both
π(ϕ | Y,Z) (imputation) and π(θ | Y, ϕ) (analysis). This is an imputation scheme Meng
(1994) calls “congenial”, where it is appropriate for the imputation and analysis to be
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carried out using the same model. In Cut-model inference the imputation and analysis
use different models for ϕ, as p(Y |ϕ, θ) is not used in the imputation. This may help in
what Meng (1994) calls “uncongenial” problems.

One negative feature of the Cut model is that it may remove too much information
from the imputation for ϕ. This will often increase the posterior variance of ϕ and θ.
In the context of hypothesis tests based on classical multiple imputation of missing
data, Knuiman et al. (1998) refer to this as “dilution” off the effect due to “imputation
noise”. We may be happy to accept some dilution, if the bias due to misspecification is
substantial. However if the (ϕ, θ, Y ) module is only weakly misspecified, we may see a
large increase in variance for just a small bias.

3.2 Semi-Modular inference and Tempered SMI

The γ-SMI posterior family of candidate posteriors simply tempers from the Cut (at
γ = 0) to full-Bayes (at γ = 1) via

p̃(t)
γ (ϕ, θ | Y,Z) ∝ p̃(c)(ϕ, θ | Y, Z)(1−γ)π(ϕ, θ | Y, Z)γ (3.2)

∝ π(ϕ, θ | Y,Z)/p(Y |ϕ)1−γ , (3.3)

using (2.6) for the last line. The loss function for which it is a Gibbs posterior is

l(t)(ϕ, θ;Y, Z) = l(b)(ϕ, θ;Y,Z) + (1− γ) log p(Y | ϕ). (3.4)

The p(Y | ϕ) term is the loss-function weighting that down-weights the influence of Y
on ϕ. We show in Section A1.3 that this loss is prequentially additive with respect to

the belief update in (3.2). It follows from Theorem 2.1 that p̃
(t)
γ (ϕ, θ | Y, Z) in (3.2) is

the optimal, valid and coherent belief update for the loss in (3.4).

The γ-SMI posterior in (3.2) is attractive as a formally straightforward family of
candidate posteriors encompassing Cut models and Bayesian inference. However it is
very awkward computationally and in fact we have no idea how to implement it in
practice. We now give two alternative interpolating sequences of candidate posterior
distributions. The first is η-SMI, given in Carmona and Nicholls (2020). We begin by
introducing an auxiliary parameter θ̃, expanding the model parameters from (ϕ, θ) to
(ϕ, θ̃, θ). The η-SMI posterior is

p̃(s)
η (ϕ, θ̃, θ|Y, Z) = p̃(s)

η (ϕ, θ̃|Y,Z)π(θ|Y, ϕ) (3.5)

where p̃
(s)
η (ϕ, θ̃ | Y,Z) is a kind of power posterior

p̃(s)
η (ϕ, θ̃ | Y,Z) =

p(Z|ϕ)p(Y | ϕ, θ̃)η π(ϕ, θ̃)∫
p(Z|ϕ)p(Y | ϕ, θ̃)η π(ϕ, θ̃)dθ̃dϕ

. (3.6)

Several authors (for example, Miller and Dunson (2018)) observe that p(Y | ϕ, θ̃)η is
not a normalised probability density in Y . The power posterior is not simply a posterior
distribution with an extra parameter η.
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We are interested in the marginal belief update for θ and ϕ, which is

p̃(s)
η (ϕ, θ|Y, Z) =

[∫
p̃(s)
η (ϕ, θ̃|Y,Z)dθ̃

]
π(θ|Y, ϕ)

∝ π(ϕ)p(Z|ϕ)Eθ̃|ϕ

[
p(Y |ϕ, θ̃)η

]
π(θ|Y, ϕ). (3.7)

The tempering or γ-SMI posterior in (3.2) can be written in a similar way

p̃(t)
γ (ϕ, θ|Y,Z) ∝ π(ϕ)p(Z|ϕ)Eθ̃|ϕ

[
p(Y |ϕ, θ̃)

]γ
π(θ|Y, ϕ), (3.8)

so the order of raising the power and marginalising is swapped.

The η-SMI posterior distribution p̃
(s)
η (ϕ, θ|Y,Z) interpolates between Bayes, p̃

(s)
η=1(ϕ, θ|Y,Z) =

p(ϕ, θ|Y, Z) and Cut, p̃
(s)
η=0(ϕ, θ|Y,Z) = p̃(c)(ϕ, θ|Y, Z) (take η = 0, 1 in (3.7) and com-

pare with Equations (2.5) and (3.1)).

The loss function for which the η-SMI family of belief updates are Gibbs posteriors
is

l(s)((ϕ, θ̃, θ);Y,Z) = l(b)(ϕ, θ;Y, Z)− η log p(Y | ϕ, θ̃) + log p(Y | ϕ). (3.9)

We show in Section A1.3 that this loss is prequentially additive with respect to its Gibbs
posterior, so that belief update is again the optimal, valid and coherent belief update.

3.3 Kernel-Smoothing δ-SMI

The third interpolating sequence of candidate distributions we describe is constructed by
taking a different relaxation of the likelihood. For y, ỹ ∈ R let Kδ(y, ỹ) be a normalised
kernel. We focus on the cases Kδ(y, ỹ) = N(y − ỹ; 0, δ2) and Kδ = (2δ)−1I|y−ỹ|<δ. For
y, ỹ ∈ Rn we define

Kδ(y, ỹ) =

n∏
i=1

Kδ(yi, ỹi) (3.10)

and

pδ(Y | ϕ, θ̃) =

∫
p(Ỹ | ϕ, θ̃)Kδ(Y, Ỹ )dỸ . (3.11)

Notice that if

p(Y | ϕ, θ̃) =

n∏
i=1

p(Yi | ϕ, θ̃)

then

pδ(Y | ϕ, θ̃) =

n∏
i=1

pδ(Yi | ϕ, θ̃) (3.12)

with

pδ(Yi | ϕ, θ̃) =

∫
p(Ỹi | ϕ, θ̃)Kδ(Yi, Ỹi)dỸi. (3.13)



G.K. Nicholls et al. 11

We define the δ-SMI posterior as

p̃
(k)
δ (ϕ, θ̃, θ|Y, Z) = π

(k)
δ (ϕ, θ̃|Y,Z)π(θ|Y, ϕ) (3.14)

where π
(k)
δ (ϕ, θ̃ | Y, Z) is the kernel-smoothed posterior

π
(k)
δ (ϕ, θ̃ | Y,Z) =

p(Z|ϕ)pδ(Y | ϕ, θ̃) π(ϕ, θ̃)∫
p(Z|ϕ)pδ(Y | ϕ, θ̃) π(ϕ, θ̃)dθ̃dϕ

(3.15)

with pδ(Y | ϕ, θ̃) defined in (3.11). We show in Section 4.1 that the δ-SMI family of
belief updates defined in (3.14) are valid for the loss,

l(k)((ϕ, θ̃, θ);Y,Z) = l(b)(ϕ, θ;Y, Z)− log pδ(Y | ϕ, θ̃) + log p(Y | ϕ). (3.16)

Interpretation of δ-SMI as a generalised Cut model

In contrast to the likelihood relaxation p(Y | ϕ, θ̃)η appearing in η-SMI, the likelihood

pδ(Yi | ϕ, θ̃) is a normalised density for Y , so the ϕ, θ̃-posterior π
(k)
δ (ϕ, θ̃ | Y,Z) is

a conditional probability (and so we write π
(k)
δ here). However, δ-SMI as a whole is

not simply Bayesian inference with some simple model elaboration. The joint δ-SMI
posterior is in fact a cut model for an enlarged model with three modules. The three data
sets are Y, Z and Y ′ = Y , the new copy of Y present in the imputation stage for ϕ. The
generative models for these three modules are (ϕ, θ̃, Y ′) ∼ π(ϕ, θ̃)pδ(Y

′|ϕ, θ̃), (ϕ,Z) ∼
π(ϕ)p(Z|ϕ) and (ϕ, θ, Y ) ∼ π(ϕ, θ)p(Y |ϕ, θ); the feedback from the final ϕ, θ, Y module
into the ϕ, θ̃, Y ′ and ϕ,Z modules has been cut. The posterior for the imputation stage is

π
(k)
δ (ϕ, θ̃|Y ′, Z) (with Y ′ = Y ) and the posterior for the analysis stage is π(θ|Y, ϕ). This

Cut-model interpretation does not hold for η-SMI, as p̃
(s)
η (ϕ, θ̃|Y, Z) is not a posterior

defined by Bayes rule, as p(Y |ϕ, θ̃)η is not a normalised probability density.

Comparison with η-SMI

We can display the relation between the marginal δ-SMI posterior and the marginal
η-SMI posterior. The marginal δ-SMI posterior can be written

p̃
(k)
δ (ϕ, θ|Y,Z) ∝ π(ϕ)p(Z|ϕ)Eθ̃|ϕ

[
pδ(Y |ϕ, θ̃)

]
π(θ|Y, ϕ), (3.17)

so the δ-SMI posterior looks like the η-SMI posterior in (3.7), with prior expectation of
the down-weighted likelihood pδ(Y |ϕ, θ̃) for the former and p(Y |ϕ, θ̃)η in the later.

δ-SMI interpolation of Bayes and Cut

Like η-SMI, the family of distributions indexed by δ interpolates between the Cut model
and the Bayes posterior.
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Proposition 3.0.1. (δ-SMI interpolation) If limδ→0 pδ(Y |ϕ, θ) = p(Y |ϕ, θ) and

lim
δ→∞

pδ(Y |ϕ, θ)
pδ(Y |ϕ′, θ)

= 1 (3.18)

for every ϕ,ϕ′ then the δ-SMI posterior p̃
(k)
δ (ϕ, θ|Y, Z) interpolates between Bayesian

inference at δ = 0 and Cut-model inference as δ →∞, that is

lim
δ→0

p̃
(k)
δ (ϕ, θ|Y, Z) = π(ϕ, θ|Y,Z)

and
lim
δ→∞

p̃
(k)
δ (ϕ, θ|Y, Z) = p̃(c)(ϕ, θ|Y,Z).

Proof. Take the limits at δ = 0 and δ = 1 in (3.17) using the stated behavior of
pδ(Y |ϕ, θ) and compare against Equations (2.5) and (3.1). The likelihood pδ(Y |ϕ, θ)
itself is improper at δ = ∞. The condition (3.18) at δ → ∞ ensures that the limit of
the posterior p̃δ exists and is equal to the cut model.

The conditions on the kernel smoothed likelihood in Proposition 3.0.1 restrict the
choice of kernel Kδ in (3.10). They are easily satisfied. For example, if the kernel Kδ

is the top hat kernel and Y1, ..., Yn have a continuous density p(Yi|θ̃, ϕ) then under the
integral in (3.11), we have Kδ(y, dy

′) → δy(dy′) (the Dirac delta-function) as δ → 0

in the sense of a distribution, and pδ(Y |θ̃, ϕ) → p(Y |θ̃, ϕ). If Y is discrete then for
all sufficiently small δ, the set {Y ′ : |Y ′i − Yi| ≤ δ, i = 1, ..., n} contains only Y so
pδ(Y |θ̃, ϕ) = p(Y |θ̃, ϕ) for all sufficiently small δ. Condition (3.18) also holds for the
top-hat kernel. For example, for continuous real scalar data and i = 1, ..., n, pδ(Yi|ϕ, θ̃) =
(1 − εδ(Yi))/(2δ) for some εδ(Yi) → 0 with δ → ∞ for any fixed data value Yi and so
ratios tend to one.

3.4 Targeting the δ-SMI posterior

Carmona and Nicholls (2020) use the nested MCMC algorithm of Plummer (2015) to

target the η-SMI posterior p̃
(s)
η (ϕ, θ|Y,Z). Here we show that similar methods can be

setup to sample p̃
(k)
δ (ϕ, θ|Y, Z). Liu and Goudie (2020) give an efficient approximation

scheme which speeds up analysis within the same nested-MCMC framework.

We may not be able to compute the δ-SMI likelihood to pδ(Y |ϕ, θ̃). However we can
treat the kernel Kδ as a probability density over “missing” data Ỹ , writing

pδ(Y, Ỹ |ϕ, θ̃) = Kδ(Y, Ỹ )p(Ỹ |ϕ, θ̃) (3.19)

so that the marginal obtained when we integrate over Ỹ is pδ(Y |ϕ, θ̃) in (3.11). The
extended posterior with auxiliary variables for the missing data is

p̃
(k)
δ (ϕ, θ̃, θ, Ỹ |Y, Z) ∝ π(k)

δ (ϕ, θ̃, Ỹ |Y,Z)π(θ|Y, ϕ) (3.20)
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where
π

(k)
δ (ϕ, θ̃, Ỹ |Y, Z) ∝ p(Z|ϕ)pδ(Y, Ỹ |ϕ, θ)π(ϕ, θ̃).

The nested MCMC approach targets

ϕ, θ̃, Ỹ ∼ π(k)
δ (ϕ, θ̃, Ỹ |Y, Z)

using standard MCMC. Marginally then,

ϕ ∼ π(k)
δ (ϕ|Y,Z).

We take this simulated ϕ and sample

θ|ϕ ∼ π(θ|Y, ϕ)

using standard MCMC. This gives a pair (ϕ, θ) distributed according to p̃
(k)
δ (ϕ, θ|Y, Z).

We do not use this Monte Carlo method below. In the main HPV-data example in
Section 5.3 below the likelihood pδ(Y |ϕ, θ̃) is given in terms of the CDF of a Poisson
distribution and is readily evaluated.

The downside of this approach is that it suffers from “double asymptotics”. We run

one MCMC chain generating samples from π
(k)
δ (ϕ|Y,Z). For each sample ϕ output in

this run we simulate a chain targeting π(θ|Y, ϕ) and take the last sampled θ-value. This
second chain must run to convergence. Whilst in our experience very high accuracy can
be achieved in a modest runtime, of the order of ten times the runtime of the chain
targeting the Bayes posterior π(ϕ, θ|Y,Z) for the same ESS (Carmona and Nicholls,
2020), this is clearly a weakness of this scheme. It may be preferable to analyse the
δ-SMI posterior using the variational framework of Yu et al. (2021) and Carmona and
Nicholls (2021).

3.5 SMI and Bayesian Multiple Imputation

Some of the forms of SMI listed above are variants of BMI in which we use information
from the Y -module to inform the ϕ imputation. This is the case for η-SMI and δ-SMI.
From a BMI perspective these SMI variants are simply trying to make the best possible
imputation of ϕ using the available information. The parameters η and δ will be set to
values that allow the right amount of information to flow back from (ϕ, θ, Y )-module
to influence the ϕ imputation. The choice of these values is discussed in Section 4.3.
However, γ-SMI cannot be setup as BMI, at least in any computationally tractable way
as it cannot be written as a suitable product of conditional probabilities.

4 Properties of SMI

In this section we show that the different forms of SMI we have written down are all valid
belief updates. We then give criteria and estimation procedures defining and computing
an optimal δ.
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4.1 Validity of new SMI variants

Carmona and Nicholls (2020) show that η-SMI is order-coherent. The proof that its loss
is prequentially additive is based on similar reasoning. We now extend these results to
γ-SMI and δ-SMI.

Corollary 4.0.1. The γ-SMI, η-SMI and δ-SMI belief updates given respectively in
(3.2), (3.5) and (3.14) are the optimal, valid and coherent belief updates for their re-
spective associated loss (see (3.4), (3.9) and (3.16) respectively).

Proof. Since the losses are obtained from the corresponding Gibbs posteriors, it is suf-
ficient by Theorem 2.1 that these losses are prequentially additive with respect to their
associated belief updates. This follows from Propostion 4.0.1 below.

Proposition 4.0.1. The loss functions for γ-SMI, η-SMI and δ-SMI given respectively
in (3.4), (3.9) and (3.16) are prequentially additive with respect to the belief updates
given respectively in (3.2), (3.5) and (3.14).

Proof. See Appendix A1.3.

4.2 Asymptotic behaviour of δ-SMI

In Bayesian inference a family of densities PΩ = {p(·|ϕ, θ) : (ϕ, θ) ∈ Ω} with parameter
space Ω is specified for unknown parameters θ, ϕ and belief about the true parameters
(θ∗, ϕ∗) is updated by the observed data using Bayes’ rule. If the model is well speci-
fied p∗ ∈ PΩ, then under regularity conditions, the posterior concentrates at the true
parameter values as the number of observations increases. If the parametric model is
misspecified p∗ 6∈ PΩ then, under regularity conditions, the posterior concentrates at the
pseudo-true parameter values minimizing the Kullback-Leibler divergence between p∗

and p(·|ϕ, θ) (Berk, 1966). In these settings the Maximum Likelihood Estimator (MLE)
is a natural estimator for the parameters minimising the Kullback-Leibler divergence
(Akaike, 1973). The pseudo-truth is given by the limiting MLE taken on large data.
The asymptotic behaviour of the Bayes posterior distribution for misspecified para-
metric models is considered in Kleijn and van der Vaart (2012). A covariance matrix
guaranteeing the correct asymptotic Frequentist coverage of the pseudo-true parameters
was given by Müller (2013).

Pompe and Jacob (2021) give asymptotics for the Cut model. Because δ-SMI is a
kind of Cut-model inference (recall, the observation model pδ(Y |ϕ, θ̃) is normalised)
that theory applies here. Denote by

(ϕ∗δ , θ̃
∗
δ ) = arg max

ϕ,θ̃
Ep∗(y,z)(p(z|ϕ)pδ(y|ϕ, θ̃)) (4.1)

θ∗δ = arg max
θ
Ep∗(y)(p(y|ϕ∗δ , θ)) (4.2)
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the pseudo-true values of ϕ, θ̃ and θ and let

(ϕ̂δ,
̂̃
θδ) = arg max

ϕ,θ̃
p(Z|ϕ)pδ(Y |ϕ, θ̃)) (4.3)

θ̂δ = arg max
θ
p(Y |ϕ̂δ, θ) (4.4)

be the separate MLE’s in the imputation and analysis modules. Pompe and Jacob (2021)
show that, under regularity conditions, and taking limits in m and n with m/n = α,
the cut-MLE’s converge as

√
n(ϕ̂δ − ϕ∗δ ,

̂̃
θδ − θ̃∗δ , θ̂δ − θ∗δ )

D−→ N(0,ΣF ),

with ΣF a covariance defining asymptotic freqentist coverage of the pseudo-true values.
Pompe and Jacob (2021) give this covariance in terms of the model elements. In contrast,

if ϕ, θ̃, θ ∼ p̃(k)
δ (ϕ, θ̃, θ|Y, Z) are samples from the δ-SMI posterior then

√
n(ϕ− ϕ̂δ, θ̃ − ̂̃θδ, θ − θ̂δ) D−→ N(0,ΣC),

for some covariance ΣC . Pompe and Jacob (2021) give ΣC in terms of the Cut-model
elements. They show that ΣC 6= ΣF in general, and so under the stated regularity
conditions, the Cut-model posterior concentrates on the pseudo-true values, but does
not have correct Frequentist coverage in the limit of large data. Since δ-SMI is a kind
of generalised Cut model (strictly a Cut at each δ) the same observations apply.

4.3 Choosing the influence parameter

Having shown how to construct valid candidate posterior distributions for the Cut model
and SMI, we select a candidate for downstream inference using an “external” criterion.
In this paper we select a candidate posterior by matching the posterior predictive dis-
tribution to the true generative distribution of the data. Wu and Martin (2021) take a
similar criterion when they select a power in the power posterior.

Following Carmona and Nicholls (2020), we consider out-of-sample predictive accu-
racy of the model as our utility function for meta-parameter selection. Our criterion is
the Expected Log Pointwise Predictive Density (ELPD),

ELPDy,z(Y, Z; δ) =

∫
p∗(y, z) log p̃

(k)
y,z,δ(y, z | Y, Z)dydz, (4.5)

where p∗ is the distribution representing the true data-generating process and

p̃
(k)
y,z,δ(y, z | Y,Z) =

∫
p(y, z | ϕ, θ)p̃(k)

δ (ϕ, θ̃, θ | Y,Z) dϕ dθ̃ dθ (4.6)

is a candidate posterior predictive distribution, indexed by δ. We would like to set

δ∗ = arg max
δ≥0

ELPDy,z(Y,Z; δ)
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and select the δ-SMI posterior p
(k)
δ∗ for analysis. In general the ELPD must be estimated

as p∗ is unknown. In Section 5.1 (a simple synthetic example) we calculate the ELPD
exactly. In Section 5.2 we use LOOCV to estimate the ELPD (for the Z-data alone). In
Section 5.3 we use the WAIC to estimate the ELPD for the Y and Z data separately
using the methods of Vehtari et al. (2017).

There is some freedom in the choice of utility function depending on the inference
objective. For example, in Section 5.2 we use the ELPD for the Z data alone as it
prioritises ϕ-inference. One weakness of the ELPD is that we often value parameter
estimation over predictive performance. It is not clear to us how to answer this issue in
general. However, there are settings where one can take a utility which more directly
targets parameter estimation. For example, if θ = (θ1, ..., θp) are model parameters
which enter as a priori exchangeable auxiliary variables naturally interpreted as missing
data, and the data Y,Z comes with actual observations of a subset (θ1, ..., θd), 1 ≤ d < p
of the ϕ-values, then we may choose δ using LOOCV, treating the observed θ-values
as the held-out data. See Carmona et al. (2022) for an example where this approach is
used.

5 Examples

Here we present three reproducible examples. R code (R Core Team, 2019) reproducing
all results below is given in https://github.com/gknicholls/delta-SMI-repository.

5.1 Simulation study: Biased data

This is a simple synthetic example taken from Liu et al. (2009) in which the source
of the “misspecification” is a poorly chosen prior. Since there is no misspecification

in the observation models the interpolating models p̃
(k)
δ , δ ≥ 0 (including Cut and

Bayes) concentrate, in the limit n → ∞ with m/n constant, on the true parameter

values (ϕ∗, θ∗). The KL-divergence between p∗ and p̃
(k)
y,z,δ tends to zero and the ELPD

converges to a constant
∫
p∗ log(p∗)dydz independent of δ.

Suppose we have two datasets informing an unknown parameter ϕ. The first is a
“reliable” small sample Z = (Z1, . . . , Zn), Zj ∼ N(ϕ, σ2

z), iid for j = 1, ...,m distribu-
tion, with σz known; the second is a larger sample Y = (Y1, . . . , Yn), Yi ∼ N(ϕ+ θ, σ2

y)
iid for i = 1, ..., n, with σy known. The “bias” θ is unknown.

This model was given in Jacob et al. (2017) as an example where Cut model ap-
proaches improve on Bayesian inference and analysed in Carmona and Nicholls (2020)
as an example of η-SMI. Here we repeat this analysis for our new SMI variants. In this
normal setup the three interpolations η-SMI, δ-SMI and γ-SMI are all identical. We
may take a fixed value of δ and recover the η-SMI and γ-SMI distributions by setting

η = σ2
y/(σ

2
y + δ2) and γ =

σ2
y

δ2+σ2
y

+ 1.

We choose true parameter values in such a way that each dataset offers apparent
advantages to estimate ϕ. One dataset is unbiased but has a small sample size, m =
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25, whereas the second has an unknown bias but more samples, n = 50, and smaller
variance. Suppose the true generative parameters are ϕ∗ = 0, θ∗ = 1, and we know
σz = 2 and σy = 1. We assign a constant prior for ϕ, while θ is subjectively assessed
to have a N(0, σ2

θ) prior. We are over-optimistic about the size of the bias and set
σθ = 0.33. These choices are all the same as previous authors except that those authors
took σθ = 0.5. Our choice is a little more “extreme”. We do this simply to get an
example where effects are a bit more visible.

We calculate the δ-SMI posterior for a range of δ ∈ [0,∞]. Picking up from the
marginal (3.17) of interest,

p̃
(k)
δ (ϕ, θ|Y, Z) = π

(k)
δ (ϕ|Y,Z)π(θ|Y, ϕ)

where the posterior for θ given ϕ is

π(θ|Y, ϕ) = N(θ;µθ|Y,ϕ, σ
2
θ|Y,ϕ),

with

µθ|Y,ϕ = ρ(Ȳ − ϕ), σ2
θ|Y,ϕ = (1− ρ)σ2

θ , ρ =
σ2
θ

σ2
θ + σ2

y/n

The marginal posterior for ϕ is

π
(k)
δ (ϕ|Y,Z) =

∫
π

(k)
δ (ϕ, θ̃|Y,Z)dθ̃

= N(ϕ;µδ, σ
2
δ ),

with

µδ = λZ̄ + (1− λ)Ȳ , σ2
δ = λσ2

z/m, λ =
m/σ2

z

m/σ2
z + n/(σ2

y + δ2 + nσ2
θ)

(5.1)

With these expressions we have p̃
(k)
δ (ϕ, θ|Y,Z) as a product of normal densities. This

may be sampled by simulating

ϕ ∼ N(ϕ;µδ, σ
2
δ )

θ|ϕ ∼ N(θ;µθ|Y,ϕ, σ
2
θ|Y,ϕ).

at any desired value of δ. We get the Bayes and Cut posteriors by taking the respective

limits δ → 0 and δ → ∞. A scatter plot of the p̃
(k)
δ posterior at three values of δ =

0, δ∗,∞ is given in Fig. 2. The δ-SMI posterior covers the truth. For ease of visualisation
the random number seed was chosen (six attempts) so that the Cut and Bayes posteriors
were reasonably well separated, but in other respects this is typical. The δ-SMI posterior
does relatively well for recovering the true parameters, though it is chosen by targeting
the ELPD. This is not expected, or even desirable, in a misspecified model. However, in
this example the observation models are both exactly correct, and the misspecification
is in the prior.
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Figure 2: Candidate posterior distributions for normal biased data example. The points

are samples from p̃
(k)
δ (ϕ, θ|Y,Z) for three values of δ = 0, δ∗ and δ = ∞ yielding the

Bayes, Cut and optimal δ-SMI posterior. The dotted lines show true parameter values.

For further visualisation we plot in Fig. 3 the marginal δ-SMI posteriors for ϕ (top)
and θ (bottom) at δ = 0 (Bayes) and δ = ∞ (Cut) together with the selected δ-
SMI at δ∗, the choice maximising the ELPD. In this example where only the θ-prior
is misspecified, Bayes has little overlap on the truth. Cut has reasonable overlap but
larger variance, as the Y data do not inform ϕ. The δ-SMI posterior selected using the
ELPD has lower variance than the Cut and better location. The data are synthetic, so
we estimate the Posterior Mean Squared Errors (PMSE) E

p̃
(k)

δ∗
[(ϕ − ϕ∗)2 | Y,Z] and

E
p̃
(k)

δ∗
[(θ − θ∗)2 | Y,Z] measuring the dispersion of the selected δ-SMI posterior around

the truth, and calculate the posterior predictive distribution for new data and the exact
ELPD in Appendix A2.1 using (4.6) and (4.5). This simple example would be quite
challenging for Monte-Carlo estimation of ELPDy,z(Y,Z; δ). Referring to Fig. 3 the
variation in the ELPD (bottom right panel) with δ is small, so its maximum is hard to
locate accurately.

In the right column of Fig. 3 we display these metrics for δ ∈ [0,∞]. The values of
PMSE and ELPDy,z(Y,Z; δ) for Bayes and Cut correspond respectively to the values
taken by the functions plotted at the left and right edges of the graphs. We see their
PMSE’s are larger (as we would expect from the marginal posterior densities) and their
ELPD-values are lower than those of the δ-SMI posterior.

The estimated value of δ∗ ' 3.5 in δ-SMI corresponds to η∗ ' 0.08 in η-SMI. The
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Figure 3: Model assessment for normal biased data example. Left column: δ-SMI pos-
teriors for ϕ (top) and θ (bottom) showing the Cut (green) and Bayes (black) and
selected δ∗-SMI posterior (blue) with the true parameter values indicated by a ver-
tical line (red). Top-right: PMSE’s for ϕ (solid) and θ (dashed) as a function of the
meta-parameter log(δ). Bottom-Right: the ELPDy,z(Y, Z; δ) as a function of log(δ).
The selected meta-parameter value δ∗ is indicated by the vertical dashed line.

scale of the “noise” added to the Y -values looks relatively large compared to their
variance σ2

y = 1. This tells us that the Y -module is misspecified. However, referring to

(5.1) we see δ∗2 ' 12 is large relative to σ2
y + nσ2

θ = 6.4, so δ-SMI is actually removing
information from the θ-prior from the ϕ-imputation.

5.2 Misspecified Regression model

This simple synthetic example illustrates the behavior of the method when the obser-
vation model in the Y -module is misspecified. The setup is otherwise similar to the
biased-data example. We have a well specified Z-module with a small data set. Interest
focuses on estimation of ϕ. We have a second larger data set (the Ymodule). Standard
Bayesian analysis has given us reason to believe the Y -module is misspecified so we
cannot estimate θ. However, we will use some information from the Y -module in order
to reduce the variance of our ϕ-estimation. We use δ-SMI to control the bias coming
from the misspecified Y -module.

The model is a regression. Covariates Xi ∼ FX , i = 1, ..., n and their sampling
distribution FX are known exactly. The fitted models are

Yi ∼ N(ϕ+ θXi, σ
2
y), i = 1, ..., n,

Zj ∼ N(ϕ, σ2
z), j = 1, ...,m.

(5.2)
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The true parameter values are ϕ∗, θ∗. The true observation model for Z is the same as
the fitted model,

Zj ∼ N(ϕ∗, σ2
z), j = 1, ...,m.

The true model for Y = (Y1, ..., Yn) is

Yi ∼ N(ϕ∗ + θ∗Xk
i , σ

2
y), i = 1, ..., n. (5.3)

with k > 0 a parameter we vary to illustrate different levels of misspecification. The
ϕ and θ priors are both flat improper priors. Parameter settings are given in Ap-
pendix A2.2.

The resulting δ-SMI distributions (once integrated over θ̃) are

p̃δ(ϕ|Y, Z,X) = N(ϕ; µ̃ϕ, σ̃
2
ϕ),

with

µ̃ϕ =
ρz̄ + ȳ

(
1− x̄x̄y

x̄2ȳ

)
ρ+ 1− x̄2

x̄2

σ̃2
ϕ =

ρσ2
z/m

ρ+ 1− x̄2

x̄2

where

ρ =
σ2
y + δ2

σ2
z

× m

n

and
π(θ|Y,X) = N(θ; µ̃θ|ϕ, σ̃

2
θ|ϕ),

with

µ̃θ|ϕ =
x̄y − ϕx̄
x̄2

, σ̃2
θ|ϕ =

σ2
y

nx̄2
.

The joint δ-SMI posterior is then

p̃δ(ϕ, θ|Y,Z,X) = N(ϕ; µ̃ϕ, σ̃
2
ϕ) × N(θ; µ̃θ|ϕ, σ̃

2
θ|ϕ) (5.4)

The MLE’s (4.3) obtained by maximising the likelihoods on each side of the cut

coincide with the posterior means above, ϕ̂δ = µ̃ϕ and θ̂δ = µ̃θ|ϕ̂δ (the MLE’s
̂̃
θδ = θ̂δ

are equal). These converge to the pseudo-true values defined in (4.1) and given here by

θ∗δ =
θ∗MXk+1 +MXϕ

∗ −MXϕ
∗
δ

MX2

(5.5)

and

ϕ∗δ = ϕ∗ + θ∗
MX2MXk −MXMXk+1

V ar(X) + αMX2(σ2
y + δ2)/σ2

z

, (5.6)

where MXr = E(Xr), r = 1, 2, ... where X ∼ FX is the scalar covariate (an abuse of
notation). Since the posterior means and MLE’s coincide, the δ-SMI posterior in (5.4)
converges as n → ∞ with α = m/n fixed to concentrate on the pseudo-true values.
It is clear from the pseudo-true expressions that σ2

y + δ2 balances α = m/n, so larger
δ gives smaller effective Y -sample size n. If δ2 = c/α − σ2

y for fixed c > 0, then the
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posterior concentrates on the same pair of (ϕ, θ)-values as α varies. As δ → ∞ (cut
model), ϕδ → ϕ∗ approaches the true value as the Z-model is not misspecified, and
θδ → θ∗MXk+1/MX2 . If k = 1 there is no model-misspecification, and the pseudo-truth
approach to the true values regardless to δ and α values.

In this setting, if we are interested in estimating ϕ then we use the ELPD for z

alone to define the optimal δ∗-value as it favors a posterior p̃
(k)
δ concentrated on ϕ∗. It

is given by

ELPDz(Y,Z; η) =

∫
p∗(z) log(p̃

(k)
δ (z|Y, Z))dz. (5.7)

We can calculate the exact ELPDz in this example. However, in order to show how well
the method works in practice, we instead estimate ELPDz in (5.7) using the LOOCV
estimator

ÊLPDz(Y,Z; δ) =
1

m

m∑
j=1

log(p̃
(k)
δ (Zj |Y,Z−j)). (5.8)

We set δ∗ = arg maxδ≥0 ÊLPDz(Y, Z; δ). We then estimate the posterior mean square
errors (PMSE) PMSEϕ = E

p̃
(k)

δ∗
[(ϕ − ϕ∗)2 | Y, Z] using S posterior samples ϕ(s) ∼

p̃
(k)
δ∗ (ϕ|Y, Z), s = 1, ..., S so that

P̂MSEϕ =
1

S

S∑
s=1

(ϕ(s) − ϕ∗)2.

In Figure 4 (top) we show how the posterior mean squared error varies as we increase
the level of misspecification by varying k from k = 1 (no misfit) up to k = 2 (linear fit

to quadratic). Each box shows the scatter of 100 P̂MSEϕ-values estimated using 100
independent replicate data sets and associated δ∗-values. At large k ' 2 the Cut model
(green) gives a lower PMSE than Bayes (red). When k ' 1 the Bayes posterior is more

concentrated on the true parameter. The LOOCV-selected δ-SMI posterior p̃
(k)
δ∗ tracks

the “best” of these two as k varies. One question is whether allowing δ to take values
other than 0 or ∞ is actually adding anything. Our EPLD-utility targets prediction so
of course δ-SMI does well on this criteria whilst the PMSE-gains are slight. Figure 4
(bottom) compares the exact ELPDz of the selected δ-SMI posterior with Bayes and
Cut and shows the clear benefit of δ-SMI. This amounts to a test of the quality of the
LOOCV estimation of ELPDz in (5.8).

There may be some advantage in using δ∗ as a summative measure of misspecifi-
cation. If it is very small, or very large, we use Bayes or Cut respectively. However,
for intermediate values of k in Figure 4 we see that δ-SMI does slightly better than
Bayes or Cut. For this range of k, the Bayes and Cut distributions are far apart, but
the misspecification is not so bad that we gain by simply cutting feedback altogether.
Carmona and Nicholls (2020) give an example for η-SMI in which more dramatic gains
are seen from using intermediate values.
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Figure 4: (top) Posterior mean squared error P̂MSEϕ as a function of k, the covariate
power in the true observation model mean ϕ∗+θ∗Xk. (bottom) Exact ELPDz of δ-SMI
at δ∗ compared to Bayes and Cut. These are boxplots with transparent whiskers and

outliers. Each box summarises 100 P̂MSEϕ-values computed from 100 independent
data sets. Cut model (green), Bayes (red), SMI (black).
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5.3 Epidemiological data

In our final example, we apply SMI to an epidemiological dataset introduced by Maucort-
Boulch et al. (2008b), studying the correlation between human papilloma virus (HPV)
prevalence and cervical cancer incidence, revisited by several authors including Plum-
mer (2015) and Jacob et al. (2017) in the context of Cut models and Carmona and
Nicholls (2020) for η-SMI.

The model has two modules: in each population i = 1, ..., n, n = 13, a Poisson
response for the number of cancer cases Yi in Ti women-years of followup, and a Binomial
model for the number Zi of women infected with HPV in a sample of size Ni from the
i’th population. For i = 1, ..., n,

Yi ∼ Poisson(µi)

µi = Ti exp(θ1 + θ2ϕi)

Zi ∼ Binomial(Ni, ϕi).

There are reasons to expect the Poisson module to be misspecified (Plummer, 2015).
The relaxation of the Poisson likelihood under δ-SMI is defined by

pδ(Yi | ϕ, θ̃) =

∞∑
Ỹi=0

p(Ỹi | ϕ, θ̃)Kδ(Yi, Ỹi). (5.9)

The kernel Kδ is a discrete uniform distribution over the δ-neighborhood V(Yi, δ) of Yi,

V(Yi, δ) =
{
ỹ ∈ Z+

0 : |ỹ − Yi| ≤ δ
}

(5.10)

so that

Kδ(Yi, Ỹi) =
IỸi∈V(Yi,δ)

|V(Yi, δ)|
, i = 1, ..., n.

Let V(Yi, δ)+ = max(V(Yi, δ) (equal bYi + δc here) and V(Yi, δ)− = min(V(Yi, δ) (equal
max(0, dYi − δe) here). Equation (5.9) becomes, for i = 1, ..., n,

pδ(Yi | ϕ, θ̃) = F (V(Yi, δ)+ | ϕi, θ̃)− F (V(Yi, δ)− − 1 | ϕi, θ̃),

where F (· | ϕi, θ̃) is the Poisson CDF with mean µi. Notice that when δ < 1 the set
V(Yi, δ) = {Yi} contains only the observed data so pδ(Yi | ϕ, θ̃) = p(Yi | ϕ, θ̃) for that
range of δ-values, as observed below Proposition 3.0.1.

Following Carmona and Nicholls (2020), we use the ELPDy of the Poisson data
(where ELPDy is defined in a similar way to ELPDz in (5.7)) as estimated by WAIC

Vehtari et al. (2017) to select the δ-SMI distribution p̃
(k)
δ∗ with posterior predictive

distribution most closely matching the true generative model, and compare against η-
SMI, with η∗ chosen in the same way. Nested MCMC targeting the the δ-SMI posterior
was implemented using STAN (Carpenter et al., 2017).

Fig. 5 presents the joint distribution of θ1 and θ2 estimated from the full Bayes
model, Cut model, δ-SMI and η-SMI. The Bayes (navy blue) and Cut-model (yellow)
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Figure 5: Estimates of the joint distribution of θ1 and θ2 in δ- and η-SMI. The Bayes
posterior is represented by navy blue dots, the Cut model by yellow dots, δ-SMI by
solid purple contour lines, and η-SMI by dashed purple contour lines. The δ and η
values were selected for illustration only. Their SMI distributions are visually distinct
from the Bayesian and the Cut-model posteriors and they give comparable values of
ELPD (estimated by WAIC).
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Figure 6: Estimated ELPD values (using WAIC) as predictive criteria for selection of
η ∈ [0, 1] and δ ∈ {0, 1, ...} for the HPV model. The η values are transformed by non-
linear but monotone regression to match the δ-SMI ELPD-values. The left panel shows
ELPDy and is computed on the Poisson Y -data alone. The right panel shows ELPDz

and is computed on the Binomial Z data.

posteriors are well separated. The two candidate δ-SMI and η-SMI distributions (pur-
ple and dashed-purple contours) in this figure are not those at δ∗ and η∗ respectively.
Instead, we choose a “central” δ-value and then choose a corresponding η with a com-
parable ELPDy-value. This is done to show how similar the δ- and η-SMI posteriors
for θ1 and θ2 are across the range of candidate posteriors, when we match them by their
ELPD values. The δ- and η-SMI posteriors are of course identical at Bayes and Cut and
this shows how similar they are over the range.

Figure 6 presents the ELPD values of the candidate δ-SMI (crosses) and η-SMI
distributions (red curve). For each δ there is an η giving the same ELPD. We find a
monotone decreasing function transforming the η values. The function is chosen so that
the ELPD trend across η matches that across δ as closely as possible.

In Figure 6 (left), the Bayes posterior gives better posterior predictive performance
for the Poisson data, the Y ’s (largest ELPDy at small δ) so we choose Bayes when
we choose δ to maximise ELPDy in the graph on the left. In this case the Y -model is
misspecified so the well specified Binomial model “‘helps” for Y -prediction. In contrast,
if we care about predicting the Binomial data Z, so we select a δ-SMI posterior using
ELPDz, then we see from Figure 6 (right) that the Cut model is favored: the Z model is
well-specified, so information from the misspecified Y -model only worsens performance.

The δ meta-parameter in δ-SMI seems more readily interpretable than the η meta-
parameter in η-SMI. Suppose we use the ELPD and select η∗ = 0.1. This seems rather
far from Bayes at η = 1. However, based on the ELPDy values of the Poisson module
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shown in Fig. 6, η∗ = 0.1 gives a similar ELPDy to δ-SMI with δ = 8. Now typical
values of the Poisson data Y are in the hundreds (the median is 162) so “coarsening”
these data with a kernel of bandwidth δ = 8 should lead to a mild modification of the
posterior.

Many kernels would satisfy Proposition 3.0.1. We investigated sensitivity to the
choice of kernel, considering in particular kernels in which the “bandwidth” δ was larger
at larger Y -values (we used the top-hat kernel centred at y with width

√
yδ). The results

(which we do not report) were robust to this variation at least.

6 Discussion

In this paper we have extended the property of valid belief updates to prequentially addi-
tive losses. We gave some examples of prequentially additive losses arising in Cut models
and three forms of SMI. These order-coherent inference schemes treat misspecification
in models with multiple modules. One criticism of this program is that order-coherence
is not axiomatic for misspecified models. However, it seems to us a desirable property
if the fitted model imposes conditional independence.

Another criticism we note in Section 4.2 is that Cut models and δ-SMI do not
have correct Frequentist coverage of the pseudo-true parameters in the limit of many
observations (Pompe and Jacob, 2021). However, first, we expect SMI to be useful when
one module is well specified and we wish to bring in information from other potentially
misspecified modules. In our running example, Figure 1, the Frequentist coverage of the
asymptotic Cut-model posterior for ϕ under replication of the Z-data will be correct as
that module is by assumption well-specified. Secondly, in our experiments in Section 5.2
on a small data set the distribution of PMSE values obtained for SMI under replication
of the data was not worse than Cut and Bayes and often better. This behavior is
observed over a range of different levels of misspecification using fitting methods that
are available in realistic settings. Finally, the cut-alternative suggested in Pompe and
Jacob (2021), which does have correct asymptotic Frequentist coverage, is not an order
coherent belief update.

A broader criticism is that the parameters of a strongly misspecified model loose the
physical meaning they get from the generative model. Whilst prediction of new data
still makes sense, parameter estimation does not. Again, this criticism does not arise
when our aim is to control the flow of information from a misspecified model into a
well-specified model and estimate parameters in the well specified model.

We used the ELPD as a utility to select a belief update. In general the utility should
take into account the objectives of analysis. The ELPD targets predictive performance.
When our interest is in parameter estimation and not prediction, we use the ELPD as
a proxy for a utility targeting the parameters. We can choose the data on which the
ELPD is computed so that the ELPD is sensitive to the parameters we care about. For
example, if our aim is to infer ϕ in Figure 1 then ELPDz in (5.7) is a natural choice.

The model components identified as “modules” may to some extent be chosen in the
analysis. A module may contain more than one distinct data type, or none. Modules
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with no data incorporate prior information, and this information may need to be cut,
or modulated in the same way as any other source of information entering the analysis.
Styring et al. (2017) and Yu et al. (2021) give Cut-model analyses, and Carmona and
Nicholls (2020) and Styring et al. (2022) give η-SMI analyses of a hierarchical model for
archaeological data in which one of the modules has a large vector of missing data, but
no observed data.

We have seen that δ-SMI and η-SMI can give very similar posteriors, identical in
the simple normal example in Section 5.1, and in general depending on the chosen δ-
SIM smoothing kernel Kδ. We presented SMI as examples of Gibbs posteriors with loss
functions which are only prequentially additive but give valid and order-coherent belief
updates. The η-SMI family of posterior distributions are based on power posteriors.
This is a natural choice, but not the only one available. Any order-coherent family of
distributions interpolating Cut and Bayes is potentially of interest. One good feature
of δ-SMI posteriors is that δ has the same dimension as the data Y , so the measure
of misspecification has a simple interpretation. It is large or small compared to the
variation in the sampled Y -values. Also, the δ-SMI posterior is a kind of ABC-posterior
in which we condition on the data in some neigbourhood of the observed data. However,
in δ-SMI this neighborhood is a product space of neighborhoods for each observation
Yi, i = 1, ..., n, there is no “summary statistic” and we recover Bayesian inference as
δ → 0. This kind of connection between ABC-like methods and misspecification has
been noted elsewhere (Miller and Dunson, 2018).

One other feature of δ-SMI distinct from η-SMI is that the likelihood relaxation
pδ(Y |ϕ, θ) is itself a probability distribution normalised over the data. The power-
likelihood p(Y |ϕ, θ)η in η-SMI is not normalised in this way. It follows that the im-

putation distribution π
(k)
δ (ϕ, θ̃|Y,Z) is given by Bayes rule for the observation model

pδ(Y |ϕ, θ). However the inference itself is not Bayesian, unless δ = 0, as p̃
(k)
δ (ϕ, θ̃, θ|Y,Z)

is not given by Bayes rule.

A number of extensions and variations seem possible. Goudie et al. (2019) consider
multi-modular models which are in conflict because shared parameters have different
priors in different models. They use Markov melding to bring these together in a sin-
gle model with pooled priors. The pooled priors represent a kind of consensus across
modules. This could be combined with SMI if some individual generative models are
mispecified. In dictatorial pooling the pooled prior is taken to be the prior in one “au-
thoritative” module. This may lead to misspecification in modules sharing the param-
eter. This is a setting suitable for SMI, where we know which modules are misspecified
and need to modulate their influence on inference in the authoritative module.

The Cut and Bayes posteriors can be replaced by distributions derived from the Pos-
terior Bootstrap (Pompe and Jacob, 2021) or Bagged posteriors (Huggins and Miller,
2021) and this suggests δ-SMI-like sequences of distributions interpolating these “Cut”
and ”Bayes” distributions by adding “noise” with bandwidth δ to Y . Since these
bootstrapped posterior distributions have good asymptotic Frequentist coverage of the
pseudo-true parameters, at least for misspecified variance, it is to hoped that the δ-SMI
sequence would inherit these properties.
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Bühlmann, P. (2014). “Discussion of Big Bayes Stories and BayesBag.” Statistical
science, 29(1): 91–94.
URL https://doi.org/10.1093/biomet/asz006 2

Carmona, C. U., Loake, M. A., Haines, R. A., Benskin, M., and Nicholls, G. K. (2022).
“Simultaneous Reconstruction of Spatial Frequency Fields and Sample Locations via
Bayesian Semi-Modular Inference.” In preparation. 16

Carmona, C. U. and Nicholls, G. K. (2020). “Semi-Modular Inference: enhanced learning
in multi-modular models by tempering the influence of components.” In Chiappa, S.
and Calandra, R. (eds.), Proceedings of the Twenty Third International Conference on
Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning
Research, 4226–4235. 2, 4, 6, 8, 9, 12, 13, 14, 15, 16, 21, 23, 27

— (2021). “Scalable Modular Bayesian Inference with Normalizing Flows.” In prepa-
ration. 13

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). “Stan: A Probabilistic Pro-
gramming Language.” Journal of Statistical Software, 76(1): 1–32.
URL https://www.jstatsoft.org/index.php/jss/article/view/v076i01 23

Chernozhukov, V. and Hong, H. (2003). “An MCMC approach to classical estimation.”
Journal of Econometrics, 115: 293–346. 4

http://arxiv.org/abs/1306.6430 http://doi.wiley.com/10.1111/rssb.12158
http://arxiv.org/abs/1306.6430 http://doi.wiley.com/10.1111/rssb.12158
https://www.sciencedirect.com/science/article/pii/S1352231010008642
https://www.sciencedirect.com/science/article/pii/S1352231010008642
https://doi.org/10.1093/biomet/asz006
https://www.jstatsoft.org/index.php/jss/article/view/v076i01


G.K. Nicholls et al. 29

Dawid, A. P. and Musio, M. (2015). “Bayesian Model Selection Based on Proper Scoring
Rules.” Bayesian Analysis, 10(2): 479 – 499.
URL https://doi.org/10.1214/15-BA942 5

Finucane, M. M., Rowley, C. F., Paciorek, C. J., Essex, M., and Pagano, M. (2016).
“Estimating the prevalence of transmitted HIV drug resistance using pooled samples.”
Stat Methods Med Res, 25(2): 917–935. 2

Fithian, W., Elith, J., Hastie, T., and Keith, D. A. (2015). “Bias correction in species
distribution models: pooling survey and collection data for multiple species.” Methods
in Ecology and Evolution, 6: 424—-438. 1

Germain, P., Bach, F., Lacoste, A., and Lacoste-Julien, S. (2016). “PAC-Bayesian The-
ory Meets Bayesian Inference.” In 30th Conference on Neural Information Processing
Systems (NIPS 2016), Barcelona, Spain. 2

Goudie, R. J. B., Presanis, A. M., Lunn, D., Angelis, D. D., and Wernisch, L. (2019).
“Joining and Splitting Models with Markov Melding.” Bayesian Analysis, 14: 81–109.
URL https://projecteuclid.org/euclid.ba/1523671251 2, 27

Grünwald, P. (2012). “The Safe Bayesian.” In Bshouty, N. H., Stoltz, G., Vayatis, N.,
and Zeugmann, T. (eds.), Algorithmic Learning Theory: 23rd International Confer-
ence, ALT 2012, Lyon, France, October 29-31, 2012. Proceedings, volume 7568 LNAI,
169–183. Springer Berlin Heidelberg.
URL http://link.springer.com/10.1007/978-3-642-34106-9_16 1

Grünwald, P. and van Ommen, T. (2017). “Inconsistency of Bayesian Inference for
Misspecified Linear Models, and a Proposal for Repairing It.” Bayesian Analysis,
12(4): 1069–1103.
URL http://arxiv.org/abs/1412.3730https://projecteuclid.org/euclid.

ba/1510974325 2

Harris, R. J., Ramsay, M., Hope, V. D., Brant, L., Hickman, M., Foster, G. R., and D.,
D. A. (2012). “Hepatitis C prevalence in England remains low and varies by ethnicity:
an updated evidence synthesis.” Eur J Public Health., 22(2): 187–192. Supplement 3
(October 2008). 1

Huggins, J. H. and Miller, J. W. (2021). “Using bagged posteriors for robust inference
and model criticism.” arXiv .
URL https://arxiv.org/abs/1912.071040 2, 27

Jacob, P. E., Murray, L. M., Holmes, C. C., and Robert, C. P. (2017). “Better together?
Statistical learning in models made of modules.” ArXiv.
URL http://arxiv.org/abs/1708.08719 2, 16, 23

Jiang, W. and Tanner, M. A. (2008). “Gibbs posterior for variable selection in high-
dimensional classification and data mining.” Annals of Statistics, 36: 2207–2231. 2,
4

Kaizar, E. E. (2015). “Incorporating Both Randomized and Observational Data into a
Single Analysis.” volume 2, 49––72.
URL https://doi.org/10.1146/annurev-statistics-010814-020249 2

https://doi.org/10.1214/15-BA942
https://projecteuclid.org/euclid.ba/1523671251
http://link.springer.com/10.1007/978-3-642-34106-9_16
http://arxiv.org/abs/1412.3730 https://projecteuclid.org/euclid.ba/1510974325
http://arxiv.org/abs/1412.3730 https://projecteuclid.org/euclid.ba/1510974325
https://arxiv.org/abs/1912.071040
http://arxiv.org/abs/1708.08719
https://doi.org/10.1146/annurev-statistics-010814-020249


30 Valid variants of Semi-Modular Inference

Kleijn, B. J. K. and van der Vaart, A. W. (2012). “The Bernsstein-Von-Mises theorem
under misspecification.” Electronic Journal of Statistics, 6: 354–381. 14

Knuiman, M. W., Divitini, M. L., Buzas, J. S., and Fitzgerald, P. E. (1998). “Ad-
justment for Regression Dilution in Epidemiological Regression Analyses.” Annals of
Epidemiology , 8(1): 56–63.
URL http://linkinghub.elsevier.com/retrieve/pii/S1047279797001075 9

Li, L. M., Grassly, N. C., and Fraser, C. (2017). “Quantifying Transmission Heterogene-
ity Using Both Pathogen Phylogenies and Incidence Time Series.” Molecular Biology
and Evolution, 34(11): 2982–2995.
URL https://doi.org/10.1093/molbev/msx195 2

Liu, F., Bayarri, M. J., and Berger, J. O. (2009). “Modularization in Bayesian analysis,
with emphasis on analysis of computer models.” Bayesian Analysis, 4(1): 119–150.
URL http://projecteuclid.org/euclid.ba/1340370392 2, 16

Liu, Y. and Goudie, R. J. B. (2020). “Stochastic Approximation Cut Algorithm for
Inference in Modularized Bayesian Models.” Statistics and Computing , 32.
URL https://link.springer.com/article/10.1007/s11222-021-10070-2 2, 12

— (2021). “Generalized Geographically Weighted Regression Model within a Modular-
ized Bayesian Framework.”
URL http://arxiv.org/abs/2106.00996 2, 3

Lunn, D., Barrett, J., Sweeting, M., and Thompson, S. (2013). “Fully Bayesian hier-
archical modelling in two stages, with application to meta-analysis.” Journal of the
Royal Statistical Society: Series C (Applied Statistics), 62(4): 551––572. 2

Lunn, D., Best, N., Spiegelhalter, D., Graham, G., and Neuenschwander, B. (2009).
“Combining MCMC with ‘sequential’ PKPD modelling.” Journal of Pharmacokinet-
ics and Pharmacodynamics, 36(1): 19–38.
URL http://link.springer.com/10.1007/s10928-008-9109-1 2

Lyddon, S. P., Holmes, C. C., and Walker, S. G. (2019). “General Bayesian updating
and the loss-likelihood bootstrap.” Biometrika, 106(2): 465––478.
URL https://doi.org/10.1093/biomet/asz006 1

Maucort-Boulch, D., Franceschi, S., and Plummer, M. (2008a). “International correla-
tion between human papillomavirus prevalence and cervical cancer incidence.” Cancer
Epidemiol Biomarkers, 17(3): 717–720. 2

— (2008b). “International Correlation between Human Papillomavirus Prevalence and
Cervical Cancer Incidence.” Cancer Epidemiology Biomarkers & Prevention, 17(3):
717–720.
URL http://cebp.aacrjournals.org/cgi/doi/10.1158/1055-9965.

EPI-07-2691 23

McAllester, D. (1998). “Some pac-bayesian theorems.” In Proceedings of the Eleventh
Annual Conference on Computational Learning Theory , 230—-234. 2, 3

Meng, X.-L. (1994). “Multiple-Imputation Inferences with Uncongenial Sources of In-

http://linkinghub.elsevier.com/retrieve/pii/S1047279797001075
https://doi.org/10.1093/molbev/msx195
http://projecteuclid.org/euclid.ba/1340370392
https://link.springer.com/article/10.1007/s11222-021-10070-2
http://arxiv.org/abs/2106.00996
http://link.springer.com/10.1007/s10928-008-9109-1
https://doi.org/10.1093/biomet/asz006
http://cebp.aacrjournals.org/cgi/doi/10.1158/1055-9965.EPI-07-2691
http://cebp.aacrjournals.org/cgi/doi/10.1158/1055-9965.EPI-07-2691


G.K. Nicholls et al. 31

put.” Statistical Science, 9(4): 538–558.
URL http://projecteuclid.org/euclid.ss/1177010269 8, 9

Miller, J. W. and Dunson, D. B. (2018). “Robust Bayesian Inference via Coarsening.”
Journal of the American Statistical Association, 1–13.
URL https://www.tandfonline.com/doi/full/10.1080/01621459.2018.

1469995 1, 9, 27

Müller, U. K. (2013). “Risk of Bayesian Inference in Misspecified Models, and the
Sandwich Covariance Matrix.” Econometrica, 81: 1805–1849.
URL https://doi.org/10.3982/ECTA9097 14

Newton, M. A. (1991). “The weighted likelihood bootstrap and an algorithm for prepiv-
oting.” Ph.D. thesis. PhD thesis. 1

Newton, M. A. and Raftery, A. E. (1994). “Approximate Bayesian inference with the
weighted likelihood bootstrap.” Journal of the Royal Statistical Society: Series B
(Methodological), 56(1): 3–26. 1

Nicholson, G., Blangiardo, M., Briers, M., Diggle, P. J., Fjelde, T. E., Ge, H., Goudie,
R. J. B., Jersakova, R., King, R. E., Lehmann, B. C. L., Mallon, A.-M., Padellini, T.,
Teh, Y. W., Holmes, C., and Richardson, S. (2021). “Interoperability of statistical
models in pandemic preparedness: principles and reality.”
URL http://arxiv.org/abs/2109.13730 1, 2

Pacifici, K., Reich, B. J., Miller, D. A. W., Gardner, B., Stauffer, G., Singh, S., McK-
errow, A., and Collazo., J. A. (2017). “Integrating multiple data sources in species
distribution modeling: a framework for data fusion.” Ecology , 98(3): 840––850.
URL http://www.jstor.org/stable/26164910 1

Plummer, M. (2015). “Cuts in Bayesian graphical models.” Statistics and Computing ,
25(1): 37–43.
URL http://link.springer.com/10.1007/s11222-014-9503-z 2, 4, 8, 12, 23

Pompe, E. and Jacob, P. E. (2021). “Asymptotics of cut distributions and robust
modular inference using Posterior Bootstrap.” arXiv .
URL https://arxiv.org/abs/2110.11149 2, 14, 15, 26, 27

Poole, D. and Raftery, A. E. (2000). “Inference for deterministic simulation models:
The Bayesisan melding approach.” Journal of the American Statistical Association,
95: 1244—-1255. 2

R Core Team (2019). R: A Language and Environment for Statistical Computing . R
Foundation for Statistical Computing, Vienna, Austria.
URL https://www.R-project.org/ 16

Shawe-Taylor, J. and Williamson, R. (1997). “A PAC analysis of a Bayesian estimator.”
In Proceedings of the Tenth Annual Conference on Computational Learning Theory .
New York: ACM Press. 2, 3

Spiegelhalter, D. J., Thomas, A., Best, N., and Lunn, D. (2014). “OpenBUGS User
Manual.” 2

http://projecteuclid.org/euclid.ss/1177010269
https://www.tandfonline.com/doi/full/10.1080/01621459.2018.1469995
https://www.tandfonline.com/doi/full/10.1080/01621459.2018.1469995
https://doi.org/10.3982/ECTA9097
http://arxiv.org/abs/2109.13730
http://www.jstor.org/stable/26164910
http://link.springer.com/10.1007/s11222-014-9503-z
https://arxiv.org/abs/2110.11149
https://www.R-project.org/


32 Valid variants of Semi-Modular Inference

Styring, A. K., Carmona, C. U., Isaakidou, V., Karathanou, A., Nicholls, G. K., Sarpaki,
A., and Bogaard, A. (2022). “Urban form and scale shaped the agroecology of early
’cities’ in northern Mesopotamia, the Aegean and central Europe.” (to appear). 27

Styring, A. K., Charles, M., Fantone, F., Hald, M. M., McMahon, A., Meadow, R. H.,
Nicholls, G. K., Patel, A. K., Pitre, M. C., Smith, A., So?tysiak, A., Stein, G., Weber,
J. A., Weiss, H., and Bogaard, A. (2017). “Isotope evidence for agricultural extensi-
fication reveals how the world’s first cities were fed.” Nature Plants, 3(6).
URL http://www.nature.com/articles/nplants201776 27

Sweeting, M. J., De Angelis, D., Ade, A. E., and Hickman, M. (2009). “Estimating the
prevalence of ex-injecting drug use in the population.” Statistical Methods in Medical
Research, 18(4): 381–395.
URL https://doi.org/10.1177/0962280208094704 1

Teh, Y. W., Bhoopchand, A., Diggle, P., Elesedy, B., He, B., Hutchinson, M., Paquet,
U., Read, J., Tomasev, N., and Zaidi, S. (2021). “Efficient Bayesian Inference of
Instantaneous Reproduction Numbers at Fine Spatial Scales, with an Application to
Mapping and Nowcasting the Covid-19 Epidemic in British Local Authorities.”
URL https://rss.org.uk/RSS/media/File-library/News/2021/

WhyeBhoopchand.pdfhttps://localcovid.info/ 2

Vehtari, A., Gelman, A., and Gabry, J. (2017). “Practical Bayesian model evaluation
using leave-one-out cross-validation and WAIC.” Statistics and Computing , 27(5):
1413–1432.
URL http://link.springer.com/10.1007/s11222-016-9696-4 16, 23

Walker, S. and Hjort, N. L. (2001). “On Bayesian consistency.” Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 63(4): 811–821.
URL http://linkinghub.elsevier.com/retrieve/pii/

S037837581300116Xhttp://doi.wiley.com/10.1111/1467-9868.00314 1

Wu, P.-S. and Martin, R. (2020). “A comparison of learning rate selection methods in
generalized Bayesian inference.” arXiv .
URL http://arxiv.org/abs/2012.11349 2

— (2021). “Calibrating generalized predictive distributions.” arXiv .
URL https://arxiv.org/abs/2107.01688 15

Yu, X., Nott, D. J., and Smith, M. S. (2021). “Variational inference for cutting feedback
in misspecified models.” arXiv .
URL http://arxiv.org/abs/2108.11066 2, 13, 27

Zhang, T. (2006). “Information-theoretic upper and lower bounds for statistical esti-
mation.” IEEE Transactions on Information Theory , 52: 1307–1321. 2, 3, 4

Zigler, C. M. and Dominici, F. (2014). “Uncertainty in Propensity Score Estimation:
Bayesian Methods for Variable Selection and Model-Averaged Causal Effects.” Jour-
nal of the American Statistical Association, 109(505): 95–107.
URL http://www.jstor.org/stable/24247140 2

http://www.nature.com/articles/nplants201776
https://doi.org/10.1177/0962280208094704
https://rss.org.uk/RSS/media/File-library/News/2021/WhyeBhoopchand.pdf https://localcovid.info/
https://rss.org.uk/RSS/media/File-library/News/2021/WhyeBhoopchand.pdf https://localcovid.info/
http://link.springer.com/10.1007/s11222-016-9696-4
http://linkinghub.elsevier.com/retrieve/pii/S037837581300116X http://doi.wiley.com/10.1111/1467-9868.00314
http://linkinghub.elsevier.com/retrieve/pii/S037837581300116X http://doi.wiley.com/10.1111/1467-9868.00314
http://arxiv.org/abs/2012.11349
https://arxiv.org/abs/2107.01688
http://arxiv.org/abs/2108.11066
http://www.jstor.org/stable/24247140


G.K. Nicholls et al. 33

Zigler, C. M., Watts, K., Yeh, R. W., Wang, Y., Coull, B., and Dominici, F. (2013).
“Model feedback in Bayesian propensity score estimation.” Biometrics, 69(1): 263–73.
2

Supplementary Material

Appendix A1: Proofs

A1.1 Proof of Proposition 2.0.1

Proposition 2.0.1. The Cut-model loss l(c)(ϕ, θ;Y, Z, π0) in (2.8) is prequentially additive
for the Cut-model posterior, that is, Equation (2.10) holds for l = l(c),

q̃k(ϕ, θ) ∝ p̃(c)(ϕ, θ|Y (1:k), Z(1:k)), k = 1, ...,K

and any partition Y (1:K), Z(1:K) of conditionally independent data (Y,Z).

Proof. It is sufficient to show that (2.10) holds for any partition of the data of size
K = 2 (as we can then split down to any partition), so we split each data set Y, Z into
two subsets. Since q̃0 = π0 and q̃1 is the Cut posterior given data (Y (1), Z(1)), we should
show that

l(c)(ϕ, θ;Y, Z, π0) = l(c)(ϕ, θ;Y (1), Z(1), π0) + l(c)(ϕ, θ;Y (2), Z(2), q̃1), (A1.1)

where q̃1(ϕ, θ) = p̃(c)(ϕ, θ|;Y (1), Z(1)) so from (2.5),

q̃1(ϕ, θ) = π(ϕ|Z(1))π(θ|Y (1), ϕ). (A1.2)

The loss on the LHS of (A1.1) is given in (2.8). The loss in the first term on the RHS
of (A1.1) is

l(c)(ϕ, θ;Y (1), Z(1), π0) = l(b)(ϕ, θ;Y (1), Z(1)) + log(p(Y (1)|ϕ))

where

p(Y (1)|ϕ) =

∫
p(Y (1)|ϕ, θ)π(θ|ϕ)dθ.

The loss in the second term on the RHS of (A1.1) is

l(c)(ϕ, θ;Y (2), Z(2), p̃(c)(ϕ, θ|;Y (1), Z(1))) = l(b)(ϕ, θ;Y (2), Z(2)) + log(p(Y (2)|Y (1), ϕ))

where

p(Y (2)|Y (1), ϕ) =

∫
p(Y (2)|ϕ, θ)q̃1(θ|ϕ)dθ,

since q̃1(θ|ϕ) is the “prior” passed on to the second stage from the belief update in the
first stage. From (A1.2), this is the conditional probability for θ|Y (1), ϕ in the Cut-model
posterior p̃(c) so q̃1(θ|ϕ) = π(θ|Y (1), ϕ).
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We are checking the condition holds for iid data so for the Bayes loss,

l(b)(ϕ, θ;Y,Z) = l(b)(ϕ, θ;Y (1), Z(1)) + l(b)(ϕ, θ;Y (2), Z(2)).

Assembling the terms,

RHS(A1.1) = l(b)(ϕ, θ;Y,Z) + log p(Y (1)|ϕ) + log

∫
p(Y (2)|ϕ, θ)π(θ|Y (1), ϕ)dθ

= l(b) + log p(Y (1)|ϕ) + log

∫
p(Y (2)|ϕ, θ)p(Y

(1)|ϕ, θ)π(θ|ϕ)

p(Y (1)|ϕ)
dθ

= l(b) + log p(Y |ϕ),

since p(Y (2)|ϕ, θ)p(Y (1)|ϕ, θ) = p(Y |ϕ, θ) and p(Y |ϕ) is given by (2.7). This completes
the proof as

l(b) + log p(Y |ϕ) = l(c)(ϕ, θ;Y,Z, π0).

A1.2 Proof of Theorem 2.1

Theorem 2.1. If a loss l is prequentially additive with respect to the belief update given
by the Gibbs posterior,

ψ(q)(l(ϕ, θ;Y,Z, π0), π0) ∝ exp(−l(ϕ, θ;Y,Z, π0))π0(ϕ, θ)

then ψ(q) is order-coherent. It further holds that L(ν;Y,Z, π0) in (2.13) is the only valid
loss for an order-coherent belief update and ψ(q) itself is the optimal valid order-coherent
belief update ψ in (2.14).

Proof. The candidate ψ(q) is order-coherent due to the exponential form. We have from
Definition 3 and (2.15) that

ψ(q){l(ϕ, θ;Y (2), Z(2), q̃1), q̃1} ∝ exp(−l(ϕ, θ;Y (2), Z(2), q̃1))q̃1(ϕ, θ),

then expanding the q̃1 “prior” using (2.11) and (2.15) again,

∝ exp(−l(ϕ, θ;Y (2), Z(2), q̃1)) exp(−l(ϕ, θ;Y (1), Z(1), π0))π0(ϕ, θ),

but l is prequentially additive with respect to ψ(q) so,

∝ exp(−l(ϕ, θ;Y, Z, π0))π0(ϕ, θ),

which we recognise as ψ{−l(ϕ, θ;Y,Z, π0), π0}. This verifies that (2.12) holds.

We now show that L(ν;Y,Z, π0) in (2.13) is the only valid loss in the sense of Bissiri
et al. (2016). Our proof shows that we can substitute prequential additivity for additivity
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in the Theorem in the supplement to Bissiri et al. (2016) which establishes KL as the
unique prior to posterior loss in (2.13), so the following is very similar.

Let ξ = (ϕ, θ) and O = (Y,Z) so the belief update is from π0(dξ) to ν(dξ) under the
loss l(ξ;O, π0). Denote by ξ ∈ Ω the parameter space of (ϕ, θ). We assume the total loss
must be the sum of the expected loss and a prior to posterior divergence Dg, that is,

L(ν;O, π0) = Eν [l(ξ;O, π0)] +Dg(ν, π0).

Bissiri et al. (2016) justify this form which we take as given. They establish the valid
belief update for the class of g-divergences,

Dg(ν, π0) =

∫
g

(
dν

dπ0

)
π0(dξ)

with g a fixed differentiable and convex function from (0,∞) to R satisfying g(1) = 0.
Under these conditions they give a concise proof that Dg must be the KL divergence (in
fact, g(x) = kx log x+ (g′(1)− k)(x− 1) for some k > 0 - the extra terms integrate to
zero). The authors cite Bissiri and Walker (2012) for a proof under weaker conditions.
They show that over this class of g-divergences, the KL divergence is necessary and
sufficient for the optimal belief update ψ to be order-coherent for every parameter
space Ω and every loss such that the objects involved exist.

First of all is clear that KL is sufficient for order-coherence as the optimal valid belief
update is then equal to the Gibbs posterior ψ(q) (see below) and we have seen this is
order-coherent under the conditions of Theorem 2.1. In order to show KL is necessary
it is enough to give an example where the KL divergence is the only g-divergence
giving coherence, so Bissiri et al. (2016) take a parameter space with just two states,
Ω = {ξ1, ξ2} say. Let O(1) = (Y (1), Z(1)), O(2) = (Y (2), Z(2)) and

q̃1(ξ) ∝ exp(−l(ξ;O(1), π0))π0(ξ)

in Definitions 2 and 3, using the belief update ψ(q) which makes l(ξ;O, q̃) prequentially
additive. Now take I1 = (O(1), π0), I2 = (O(2), q̃1) and I = (O, π0) in the proof page
3 of the supplement to Bissiri et al. (2016). We go through this to make it clear that
everthing continues to fall into place and the presence of q̃1 inside the information I2
is just what we need to make things work. We should keep in mind below that that π0

and q̃1 are fixed pieces of information inside I1 and I2 as p is varied.

By prequential additivity,

l(ξ; I) = l(ξ; I1) + l(ξ; I2). (A1.3)

As there are just two states the distribution ν is a probability mass function of the form
pIξ=ξ1 + (1− p)Iξ=ξ2 parameterised by p so we substitute p for ν and write L(p; I, π0).
The prior is

π0(ξ) = p0Iξ=ξ1 + (1− p0)Iξ=ξ2 ,

for some p0 ∈ [0, 1]. Let
p1 = arg min

p∈[0,1]
L(p; I1, π0) (A1.4)
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so that the belief update from the prior, with the first block of data, is

p̃1(ξ) = p1Iξ=ξ1 + (1− p1)Iξ=ξ2 .

The overall belief update p̃2 is given by the belief update from the prior with all of the
data, so we set

p2 = arg min
p∈[0,1]

L(p; I, π0). (A1.5)

and define
p̃2(ξ) = p2Iξ=ξ1 + (1− p2)Iξ=ξ2 .

The requirement that the belief update be order-coherent imposes

arg min
p∈[0,1]

L(p; I2, p̃1) = p2. (A1.6)

With these identifications for I1, I2 and I and substituting p0, p1 and p2 for π0, p̃1 and
p̃2 in the notation, the losses can be written

L(p, I1, p0) = p l(ξ1; I1) + (1− p) l(ξ2; I1) + p g

(
p

p0

)
+ (1− p) g

(
1− p
1− p0

)
, (A1.7)

L(p, I2, p1) = p l(ξ1; I2) + (1− p) l(ξ2; I2) + p g

(
p

p1

)
+ (1− p) g

(
1− p
1− p1

)
, (A1.8)

L(p, I, p0) = p l(ξ1; I) + (1− p) l(ξ2; I) + p g

(
p

p0

)
+ (1− p) g

(
1− p
1− p0

)
. (A1.9)

Differentiating with respect to p in order to solve Equations (A1.4), (A1.5) and (A1.6)
respectively gives

l(ξ1; I1)− l(ξ2; I1) = g′
(
p1

p0

)
− g′

(
1− p1

1− p0

)
, (A1.10)

l(ξ1; I)− l(ξ2; I) = g′
(
p2

p0

)
− g′

(
1− p2

1− p0

)
, (A1.11)

l(ξ1; I2)− l(ξ2; I2) = g′
(
p2

p1

)
− g′

(
1− p2

1− p1

)
. (A1.12)

Now by prequential additivity in (A1.3) the sum of the LHS of (A1.10) and the LHS of
(A1.12) is

l(ξ1; I1)− l(ξ2; I1) + l(ξ1; I2)− l(ξ2; I2) = l(ξ1; I)− l(ξ2; I)

which is the LHS of (A1.11) so

g′
(
p1

p0

)
− g
(

1− p1

1− p0

)
+ g′

(
p2

p1

)
− g′

(
1− p2

1− p1

)
= g′

(
p2

p0

)
− g′

(
1− p2

1− p0

)
. (A1.13)

This is Equation 7 in the proof on pages 3 and 4 of the supplement to Bissiri et al.
(2016). From this point the proof goes through without change: the assumed and derived
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properties of g require g(x) = kx log x+ (g′(1)− k)(x− 1) and the second term doesn’t
contribute to Dg as it integrates to zero.

This establishes L in (2.13) as a valid loss for an order-coherent belief update.
However, π0 is fixed in the variation over ν in (2.14), so (2.15) is the density of the
measure ν maximising (2.13) for both additive and prequentially additive losses. The
proof of this step is unchanged from that given at the end of Section 1.1 of Bissiri et al.
(2016).

A1.3 Proof of Proposition 4.0.1

Proposition 4.0.1. The loss functions for γ-SMI, η-SMI and δ-SMI given respectively in
(3.4), (3.9) and (3.16) are prequentially additive with respect to the belief updates given
respectively in (3.2), (3.5) and (3.14).

Proof. The proof is similar to that of Proposition 2.0.1. We wish to show that

l(ϕ, θ;Y, Z, π0) = l(ϕ, θ;Y (1), Z(1), π0) + l(ϕ, θ;Y (2), Z(2), p̃(ϕ, θ|;Y (1), Z(1))) (A1.14)

for (l, p̃) in turn (l(t), p̃
(t)
γ ), (l(s), p̃

(s)
η ) and (l(k), p̃

(k)
δ ).

The respective total losses appearing on the LHS of (A1.14) are given in (3.4),
(3.9) and (3.16). The corresponding losses in the first term on the RHS of (A1.14) are
respectively

l(t)(ϕ, θ;Y (1), Z(1), π0) = l(b)(ϕ, θ;Y (1), Z(1)) + (1− γ) log p(Y (1)|ϕ)

l(s)(ϕ, θ;Y (1), Z(1), π0) = l(b)(ϕ, θ;Y (1), Z(1))− η log p(Y (1)|ϕ, θ) + log p(Y (1)|ϕ)

l(k)(ϕ, θ;Y (1), Z(1), π0) = l(b)(ϕ, θ;Y (1), Z(1))− log pδ(Y
(1)|ϕ, θ) + log p(Y (1)|ϕ)

where

p(Y (1)|ϕ) =

∫
p(Y (1)|ϕ, θ)π(θ|ϕ)dθ

throughout. The loss in the second term on the RHS of (A1.14) is respectively

l(t)(ϕ, θ;Y (2), Z(2), p̃
(t)
1 ) = l(b)(ϕ, θ;Y (2), Z(2)) + (1− γ) log p(Y (2)|Y (1), ϕ)

l(s)(ϕ, θ;Y (1), Z(1), π0) = l(b)(ϕ, θ;Y (1), Z(1))− η log p(Y (2)|ϕ, θ) + log p(Y (2)|Y (1), ϕ)

l(k)(ϕ, θ;Y (1), Z(1), π0) = l(b)(ϕ, θ;Y (1), Z(1))− log pδ(Y
(2)|ϕ, θ) + log p(Y (2)|Y (1), ϕ)

where again

p(Y (2)|Y (1), ϕ) =

∫
p(Y (2)|ϕ, θ)π(θ|Y (1), ϕ)dθ.

This last relation holds throughout because π(θ|Y (1), ϕ) is the “prior” passed on to the
second stage from the belief update in the first stage, and the conditional probability for
θ|Y (1), ϕ is actually the same in γ-SMI, η-SMI and δ-SMI as can be seen by inspecting
(3.8), (3.7) and (3.17).
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The contribution from the Bayes-loss l(b) is straightforwardly additive. Assembling
the terms,

RHS(A1.14) = l(ϕ, θ;Y (1), Z(1), π0) + l(ϕ, θ;Y (2), Z(2), p̃(ϕ, θ|;Y (1), Z(1)))

= l(b)(ϕ, θ;Y,Z)


+ (1− γ)

[
log p(Y (1)|ϕ) + log p(Y (2)|Y (1), ϕ)

]
− η

[
log p(Y (1)|ϕ, θ) + log p(Y (2)|ϕ, θ)

]
+ log p(Y (1)|ϕ) + log p(Y (2)|Y (1), ϕ)

− log pδ(Y
(1)|ϕ, θ)− log pδ(Y

(2)|ϕ, θ) + logp(Y (1)|ϕ) + log p(Y (2)|Y (1), ϕ)

= l(b)(ϕ, θ;Y,Z)

 + (1− γ) log p(Y |ϕ) (γ-SMI)
− η log p(Y |ϕ, θ) + log p(Y |ϕ) (η-SMI)
− log pδ(Y |ϕ, θ) + log p(Y |ϕ) (δ-SMI)

=


l(t)(ϕ, θ;Y,Z, π0)
l(s)(ϕ, θ;Y,Z, π0)
l(k)(ϕ, θ;Y,Z, π0)

where we used the defining equations (3.4), (3.9) and (3.16) for the losses for the full
data to make the last step and

p(Y (2)|ϕ, θ)p(Y (1)|ϕ, θ) = p(Y |ϕ, θ)
pδ(Y

(2)|ϕ, θ)pδ(Y (1)|ϕ, θ) = pδ(Y |ϕ, θ)
p(Y |ϕ) = p(Y (1)|ϕ)p(Y (2)|Y (1), ϕ)

for these iid data.

Appendix A2: Details of examples

A2.1 Simulation study: Biased data

The model components are given in Section 5.1. The fitted and true observaiton models
for Y and Z are the same. We used parameter values n = 50,m = 25, σθ = 0.33, σy =
1, σz = 3, ϕ∗ = 0, θ∗ = 1.

We estimated the PMSE’s from samples. The posterior predictive density for y, z ∈ R
is needed in order to calculate the ELPD. It is,

p
(k)
y,z,δ(y, z | Y,Z) = N((y, z)T ;µyz,Σyz),

with

µyz =

(
(1− ρ)µδ + ρȲ

µδ

)
, Σyz =

(
(1− ρ)σ2

δ + σ2
θ|Y,ϕ + σ2

y (1− ρ)σ2
δ

(1− ρ)σ2
δ σ2

δ + σ2
z

)
.

The formula for the ELPD in this setting is

ELPDy,z(Y,Z; δ) = − log(2π)−1

2
log(det(Σyz))−

1

2
Ep∗

(
((y, z)− µTyz)Σ−1

yz ((y, z)T − µyz)
)
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where the expectation in y, z is taken in the true generative distribution p∗ where

y ∼ N(θ∗ + ϕ∗, σ2
y), z ∼ N(ϕ∗, σ2

z).

Let µ∗ = (θ∗ + ϕ∗, ϕ∗) and Σ∗ = diag(σ2
y, σ

2
z). The expectation is

Ep∗
(
((y, z)− µTyz)Σ−1

yz ((y, z)T − µyz)
)

= trace[Σ−1
yz Σ∗] + (µ∗T − µTyz)Σ−1

yz (µ∗ − µyz).

A2.2 Simulation study: Regression data

The fitted and true models are given in Section 5.2. The parameter settings are n = 50,
m = 50, σy = 0.25, σz = 3 and Xi ∼ U(0, 2), i = 1, ..., n. The true parameter values
are ϕ∗ = 0 and θ∗ = 1.

.
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