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Abstract

Various nonparametric approaches for Bayesian spectral density
estimation of stationary time series have been suggested in the litera-
ture, mostly based on the Whittle likelihood (Whittle, 1957) approxi-
mation. A generalization of this approximation has been proposed in
Kirch et al. (2019) who prove posterior consistency for spectral density
estimation in combination with the Bernstein-Dirichlet process prior
for Gaussian time series. In this paper, we will extend the posterior
consistency result to non-Gaussian time series by employing a general
consistency theorem of Shalizi (2009) for dependent data and misspec-
ified models. As a special case, posterior consistency for the spectral
density under the Whittle likelihood as proposed by Choudhuri et al.
(2004) is also extended to non-Gaussian time series. Small sample
properties of this approach are illustrated with several examples of
non-Gaussian time series.

1 Introduction

Many ecological, epidemiological, and physical time series show periodic be-
haviour. Spectral analysis of stationary time series in the frequency domain
is useful in detecting cycles and modelling the second order dependence
structure of the data. However, a Bayesian approach generally requires
an evaluation of the likelihood function. Even in the Gaussian case, the
likelihood function can be computationally intractable due to the necessary
inversion of a high-dimensional covariance matrix. Therefore, most Bayesian
nonparametric methods for spectral density estimation (e.g. Gangopadhyay
et al. 1999; Liseo et al. 2001; Choudhuri et al. 2004; Hermansen 2008; Chopin
et al. 2013; Cadonna et al. 2017) have used the Whittle likelihood approxi-
mation (Whittle, 1957) which was originally suggested as an approximation
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for Gaussian time series but later extended to non-Gaussian time series by
Hannan (1973). Apart from avoiding matrix inversion, the Whittle like-
lihood has the advantage that it depends directly on the spectral density
instead of indirectly via an inverse Fourier transform. However, using the
Whittle likelihood approximation can be inefficient for non-Gaussian time
series with moderate sample sizes (Contereras-Cristán et al., 2006) and even
for Gaussian time series with high autocorrelations and small sample sizes.
To address this issue, Chopin et al. (2013) used importance sampling to
correct a posterior sample based on the Whittle likelihood, Sykulski et al.
(2019) introduced the de-biased Whittle likelihood, Rao and Yang (2020)
suggested a new frequency-domain quasi-likelihood, and Kirch et al. (2019)
the so-called corrected likelihood. The latter is a generalization of the Whit-
tle likelihood based on the idea of utilizing the efficiencies of a parametric
working model but correcting this nonparametrically in the frequency do-
main to make it robust with respect to violations of the parametric model
assumptions.

When using any of these pseudo-likelihoods, one has to deal with model
misspecification. An ensuing question is: When one adopts a pseudo-
likelihood, will the posterior distribution associated with this pseudo-likelihood
still be consistent in the sense that the posterior distribution eventually con-
centrates in the neighbourhood of the true parameter, namely the underly-
ing spectral density function in this case, as the sample size gets large? For
parametric Bayesian modelling using the Whittle likelihood, the Bernstein-
von Mises theorem (Tamaki, 2008) guarantees that under some regular-
ity conditions, Bayesian and frequentist inference procedures can produce
the same asymptotic result. In the case of nonparametric Bayesian mod-
elling, however, posterior consistency needs to be proved explicitly. While
in the frequentist literature on nonparametric spectral density estimation
(e.g. Pawitan and O’sullivan 1994; Kakizawa 2006) it is common to prove
asymptotic results beyond the Gaussianity assumption, the same cannot be
said for Bayesian nonparametric spectral density estimation. Prior works
such as Choudhuri et al. (2004) and Kirch et al. (2019) established poste-
rior consistency by utilizing the result that the Gaussian measure and the
distribution associated with the pseudo-likelihood are mutually contiguous.
However, in practice, it is often the case that the time series data at hand
does not look anywhere close to a Gaussian time series. This calls for a
theoretical justification of posterior consistency under mild assumptions on
the time series without having to assume Gaussianity.

The difficulty of extending the consistency result to non-Gaussian time
series is due to the fact that the contiguity argument, on which prior works
relied heavily, is no longer viable for general non-Gaussian time series as
shown in Meier (2018, Section 4.3). Therefore, a novel method is needed to
establish posterior consistency under mild conditions on the time series. To
this end, we adopt the general consistency theorem of Shalizi (2009).
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The goal of this paper is to prove that under rather general conditions
regarding the underlying time series, the posterior distribution associated
with the corrected Whittle likelihood will still be consistent. As the Whittle
likelihood is a special case of the corrected likelihood, the result will carry
over to the posterior distribution based on the Whittle likelihood.

The article is organized as follows. A modification of the general con-
sistency theorem of Shalizi (2009), which is the main tool used to prove
consistency in this paper, is introduced in Section 2. The assumptions on
the time series, together with the working model, the parameter space and
the prior are detailed in Section 3. In Section 4 the conditions on time series
are summarized with some examples. The proof of posterior consistency
is illustrated in Section 5. Section 6 discusses the tools and assumptions
employed in this paper and outlines possible future directions. The proof of
Theorem 2.1, the modified theorem of Shalizi (2009), is given in Appendix A.
The proof of Proposition 3.1 as well as some results regarding Lipschitz norm
and Bernstein polynomials are stated in Appendix B. Finally, Appendix C
contains the proof of Proposition 3.2.

2 Modification of the general consistency theorem
of Shalizi

Historically, people tend to prove posterior consistency by gauging the dis-
crepancy between the probability distribution of the sample and the ’proxy
model’ via Kullback-Leibler (KL) divergence. Examples are Schwartz (1965),
Choudhuri et al. (2004), Choi and Schervish (2007), Kleijn and van der Vaart
(2006) and Shalizi (2009), to name but a few. Most of these papers require
that the KL divergence be finite, which is reasonable as it ensures that even
in the case of misspecification, the discrepancy between the true distribu-
tion and the proxy model is not too severe. Nevertheless, an interesting
question is: Will we obtain a consistent result even if we use some proxy
model which drastically deviates from the true distribution in terms of the
KL divergence? If the answer is affirmative, then is it possible to prove the
consistency without resorting to the KL divergence?

Often, we just want to estimate the value of a parameter pertaining to
the probability distribution of the sample. For instance, the parameter of
interest may be the expectation, the variance-covariance matrix, the quantile
function or the spectral density function. It is possible that the proxy model
will result in a consistent posterior even though it deviates from the true
distribution severely. We will use a rather simple example to illustrate this
idea. Suppose we observe an i.i.d. real sequence Y1, Y2, · · · , Yn. We know
nothing about the true probability distribution except E|Y1| < ∞. The
parameter of interest is the expectation µ0 = EY1. From a frequentist
perspective, one can always use the arithmetic mean µ̂n = Y1+···+Yn

n as the
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estimator because the Law of Large Numbers (LLN) tells us that µ̂n is always
a consistent estimator no matter what the true probability distribution is.
From a Bayesian point of view, however, it becomes complicated in that we
have to adopt some (possibly) misspecified proxy model when using Bayes
theorem in light of the absence of the true distribution. Suppose in this case
we use the normal distribution with mean µ and variance 1 as proxy model
and assume µ ∼ N(0, 1), i.e. the prior is the standard normal distribution.
The resulting posterior distribution will be

N

(
n

n+ 1
µ̂n,

1

n+ 1

)
.

From the LLN as n → ∞, the posterior will concentrate on µ0, which is
the true value of the parameter. In other words, posterior consistency is
achieved by using a normal proxy model, even though this is not the actual
likelihood associated with the sample. Even if the data come from the
Cantor distribution (cf. e.g. Schmidt (1991)), posterior consistency holds
despite the fact that the normal proxy model is not a good approximation in
this case because the Cantor distribution does not even possess probability
density function. In fact, the KL divergence between the Cantor distribution
and the normal proxy model N(µ, 1) is infinity for all µ ∈ R due to the
mutual singularity of the two probability measures.

There are some attempts to prove posterior consistency without invoking
the KL divergence in the literature. For example, Sriram et al. (2013) con-
sidered Bayesian quantile regression with proxy model being the asymmetric
Laplacian distribution and proved consistency without evaluating the KL di-
vergence between the true distribution and the proxy model when the prior
is proper. When extending the result to an improper prior, however, they
did use the KL assumption mainly to ensure that the posterior was a prob-
ability measure. Another example is Syring et al. (2019) in the context of
the quantile estimation in combination with a carefully chosen proxy model,
where posterior consistency is achieved without using the KL assumption.

Despite the fact that Shalizi (2009) proved the consistency theorem by
evaluating the KL divergence, those techniques can be adapted so that the
evaluation of the KL divergence is no longer required. In this section we
derive a version of the consistency theorem of Shalizi (2009) that will then
be used to prove posterior consistency for a spectral density estimator in
Section 3, where we both strengthen and weaken certain assumptions. For
instance, apart from the avoidance of the KL assumption, we consider con-
vergence in probability while Shalizi (2009) adopts almost sure convergence.
Also, instead of considering a large parameter space, we confine ourselves to
a smaller parameter set on which some desired properties hold.

Let X1, X2, · · · , for short X∞1 , be a sequence of random variables on a
probability space (Ω,F , P ), taking values in the measurable space (Ξ,X ).
The sigma field generated by Xn

1 := (X1, X2, · · · , Xn) is denoted by σ (Xn
1 ).
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Unless otherwise noted, all probabilities are taken with respect to P , and
E[·] always means expectation under this probability measure.

We begin with a prior probability measure Π0 over (Θ, T ), and update
this using Bayes rule after seeing xn1 = Xn

1 (ω). This updating is done based
on a proxy model via a linking function

Rn (θ, ω) := fθ (xn1 ) ,

where θ is the parameter of interest taking values in the parameter space,
a measurable space (Θ, T ). In classical Bayesian analysis the likelihood
function fθ(x

n
1 ) is used but here this is not required, rather a quasi-likelihood

or some exponentiated loss or discrepancy function (see Bissiri et al. 2016;
Syring 2017) can be used. In the next section we will use a generalization
of the Whittle likelihood to this end.

In analogy to classical Bayesian statistics, for any A ∈ T , we define the
so-called (pseudo) posterior measure after seeing xn1 = Xn

1 (ω) to be

Πn (A) :=

∫
ARn (θ, ω) Π0 (dθ)∫
ΘRn (θ, ω) Π0 (dθ)

=

∫
A fθ (xn1 ) Π0 (dθ)∫
Θ fθ (xn1 ) Π0 (dθ)

. (2.1)

The parameter space can either be finite-dimensional such as Rn or infinite-
dimensional such as C([0, 1]).

In the following, we will often suppress the arguments θ and/or ω for
brevity if this is possible without causing ambiguity.

The assumptions required for the proof of the main theorem, Theorem
2.1, follow:

Assumption 2.1. For each n ∈ N, the proxy model Rn (θ, ω) is positive,
T ⊗ σ (Xn

1 ) -measurable and,

0 <

∫
Θ
Rn (θ, ω) Π0 (dθ) <∞ P -a.s.

As already stated we do not require fθ(·) to be the probability den-
sity function of some distribution, rather the inequalities in Assumption 2.1
ensures that the posterior measure Πn is well-defined.

Let Rn(θ) denotes the random variable ω 7→ Rn(θ, ω).

Assumption 2.2. For each θ ∈ Θ and n ∈ N, E | ln(Rn(θ))| <∞ and,

h (θ) := − lim
n→∞

1

n
E(ln(Rn(θ)))

exists pointwise in θ such that h is T -measurable. Moreover, |h(Θ)| < ∞,
where h(A) denotes the essential infimum of h on A ∈ T with respect to Π0.

The function h(·) defined in Assumption 2.2 can be negative. Note that
the definition of h(θ) is different to Assumption 2 of Shalizi (2009) where
h(θ) denotes the KL divergence rate from P .
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Assumption 2.3. As a function of ω,

sup
θ∈Θ

∣∣∣∣ 1n ln(Rn (θ, ω)) + h (θ)

∣∣∣∣
is σ (Xn

1 ) -measurable and,

sup
θ∈Θ

∣∣∣∣ 1n ln(Rn (θ)) + h (θ)

∣∣∣∣ P→ 0, n→∞.

Assumption 2.3 effectively states a Uniform Weak Law of Large Num-
bers.

Now we state the modified general consistency theorem in which the
proof is closely related to Theorem 3 of Shalizi (2009), and is given in Ap-
pendix A.

Theorem 2.1. Suppose that Assumptions 2.1 –2.3 hold and in addition
h(A) > h(Θ) for any A ∈ T such that Π0(A) > 0. Then

Πn (A)
P→ 0, n→∞.

The proof of the above theorem shows P (Πn(A) ≥ exp(−nα)) → 0 for
some α > 0 as n→∞.

3 Bayesian modelling and posterior consistency

In this section, we turn back to our original problem of interest and intro-
duce the assumptions on the observed time series, the proposed approximate
likelihood function with its parameter space, as well as the nonparametric
prior on the space of spectral density functions.

3.1 Assumptions on the time series

Let {Xk}k∈Z be a real-valued, zero-mean strongly stationary time series with
finite variance on (Ω,F , P ). It is assumed that

E(X0|U−∞) = 0, E(X0Xk|U−∞) = E(X0Xk) =: γ0(k), ∀k ∈ Z, (3.1)

where Uk = σ(Xs, s 6 k), U−∞ = ∩∞k=−∞Uk and
∑

k∈Z |γ0(k)| < ∞. Then,
the spectral density exists, is continuous, 2π-periodic and symmetric at 0,
such that it is fully defined if known on the interval [0, π]. For convenience,
we will rescale the spectral density to [0, 1], such that

ϕ0(x) =
1

2π

∑
k∈Z

γ0(k) exp (−ikπx) =
1

2π

∑
k∈Z

γ0(k) cos (kπx) , x ∈ [0, 1] .
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Here the second representation is due to the real and symmetric autocovari-
ance function. The above assumptions also guarantee that a law of large
numbers for the quadratic form (Xn

1 )′AnX
n
1 for all ‖An‖s 6 1 (see Corollary

1 in Yaskov (2018)) where Xn
1 now denotes the column vector (X1, . . . , Xn)′

and ‖ · ‖s denotes the matrix spectral norm. This is closely related to spec-
tral density estimation (see Yaskov (2018) for some further discussion) and
will also be a key element of the below proof of consistency.

We further assume that

ϕ0(x) > β for some β > 0, (3.2)

and that ϕ0 is Lipschitz continuous with Lipschitz constant L(ϕ0), i.e.

L(ϕ0) := sup
x,y∈[0,1],x 6=y

∣∣∣∣ϕ0(x)− ϕ0(y)

x− y

∣∣∣∣ <∞.
The assumption of a Lipschitz continuous spectral density is stronger

than absolute summability of the autocovariance sequence; see e.g. Bern-
stein’s Theorem (Katznelson, 2004, Theorem 6.3).

However, it is weaker than the assumption made in Choudhuri et al.
(2004) and Kirch et al. (2019), that the auto-covariance function γ0(·) sat-
isfies ∑

k∈Z
|k|α|γ0(k)| <∞ for some α > 1.

The latter implies that ϕ0 is differentiable with (α − 1)-Hölder-continuous
derivative (see e.g. Remark 8.5 in page 46 of Serov (2017)), which in turn
implies Lipschitz continuity. This stronger assumption is required to show
contiguity of the proxy and true likelihood functions, which cannot be ex-
pected to hold beyond Gaussian time series. Because we will prove consis-
tency using Theorem 2.1 above, we no longer require contiguity to hold.

We will present some examples of time series that satisfy all of our as-
sumptions in Section 4.

3.2 Proxy model

The Whittle likelihood (Whittle, 1957) has been used in a variety of sit-
uations in both frequentist and Bayesian time series analysis. Whittle’s
likelihood assumes that the periodograms are exactly independent and ex-
ponentially distributed, which is well known to be true under quite gen-
eral assumptions in some asymptotic sense. For applications concerning the
spectral density alone this approximation is usually good enough, however,
higher-order quantities (in the non-Gaussian case) often depend on the in-
formation coded in this dependency as observed by Dahlhaus et al. (1996).
To mitigate this effect Kreiss et al. (2003) and Kirch et al. (2019) pro-
pose a related likelihood that inherits the dependency between periodogram
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ordinates from a parametric working model in the time domain, while at
the same time ‘nonparametrically correcting’ the inherited spectral density
coded in the variances of the periodograms. In this context Whittle’s likeli-
hood becomes a ‘nonparametrically corrected’ version of the Gaussian white
noise working model.

Here, we use this corrected Whittle likelihood approximation with a
Gaussian mean-zero parametric working model as proxy model. We as-
sume that the (rescaled) spectral density of the Gaussian parametric working
model ϕpar(x), x ∈ [0, 1] is Lipschitz continuous and satisfies

ϕpar(x) > βpar for some βpar > 0

with autocovariance matrix Γpar = Γn,par = (γpar(k− j))nk,j=1, where γpar(·)
is the autocovariance function of the parametric working model.

The corrected Whittle likelihood is then defined as

fϕ(xn1 ) = (2π)−
n
2 det

(
Γ−1

parC
2
n(ϕ)

) 1
2 exp

(
−1

2
(xn1 )′Cn(ϕ)Γ−1

parCn(ϕ)xn1

)
,

(3.3)

where Cn (ϕ) = F ′nD
−1/2
n

(
ϕ
ϕpar

)
Fn, Fn is an orthogonal matrix called the

real Discrete Fourier Transform matrix (see e.g. formula (4.5.4) of Brockwell
and Davis (1991) and Section 2.1 of Kirch et al. (2019) for details), ξ is a
function on [0, 1] and Dn(·) the following corresponding diagonal matrix

Dn(ξ) =

{
diag

(
ξ (0) , ξ (y1) , ξ (y1) , · · · , ξ (yN ) , ξ (yN ) , ξ

(
yn

2

))
, n even.

diag (ξ (0) , ξ (y1) , ξ (y1) , · · · , ξ (yN ) , ξ (yN )) , n odd.

where yj = 2j
n , j = 1, · · · , N =

⌊
n−1

2

⌋
are scaled Fourier frequencies. The

unknown spectral density ϕ is the parameter of interest.
The name corrected Whittle likelihood comes from the fact that a poten-

tially misspecified parametric working model is nonparametrically corrected

in the frequency domain by the matrix Dn

(
ϕ
ϕpar

)
. When a Gaussian white

noise model is used as parametric working model, i.e. ϕpar(x) is a constant
function, then the corresponding corrected Whittle likelihood coincides with
the original Whittle likelihood.

3.3 Parameter space

The true value of parameter is often assumed to lie in a compact set when
proving consistency results. The parameter space, (C([0, 1]), ‖ · ‖∞), is the
collection of all continuous functions on [0, 1] endowed with the sup-norm
‖ · ‖∞. It is well-known that the closed unit ball of C([0, 1]) is not com-
pact (Searcòid, 2006, Theorem 12.10.2) and, compact subsets of C([0, 1]) is
obtained by using the following Lipschitz norm ‖ · ‖Lip:
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For any ϕ ∈ C([0, 1]), the Lipschitz norm is defined by

‖ϕ‖Lip = ‖ϕ‖∞ + L(ϕ),

with Lipschitz constant of ϕ,

L(ϕ) = sup
06x 6=y61

∣∣∣∣ϕ(x)− ϕ(y)

x− y

∣∣∣∣ .
The parameter space is defined as

Θ =

{
ϕ ∈ C[0, 1] : ‖ϕ‖Lip 6M, inf

06x61
ϕ(x) > m

}
(3.4)

for some suitably chosen values 0 < m < M < ∞ and the true spectral
density ϕ0 is contained in Θ. The choices for m and M will be shown later
in Assumption 3.1.

Let the metric d∞(·, ·) be induced by the sup-norm ‖ · ‖∞,

d∞(φ, ψ) = ‖φ− ψ‖∞ = sup
x∈[0,1]

|φ(x)− ψ(x)| , for all φ, ψ ∈ Θ.

In this paper, we will work on the space (Θ, d∞(·, ·)) equipped with the
Borel σ-algebra T . The following proposition shows that this space is a
compact metric space and, the proof is given in Appendix B.

Proposition 3.1. Θ, equipped with d∞(·, ·), is a compact metric space.

3.4 Bernstein-Dirichlet process prior

For the Bayesian analysis, we will use the Bernstein-Dirichlet process prior
ΠBDP proposed by Choudhuri et al. (2004) for spectral density estimation.

As in Kirch et al. (2019) we will not put the prior directly on the spectral
density ϕ ∈ Θ but rather on the correction c(x), which relates to the spectral
density via

ϕ(x) = c(x)ϕδpar(x) (3.5)

for some 0 6 δ 6 1. This implies that only for δ = 0 the Bernstein Dirichlet
process prior is actually specified directly for the spectral density ϕ (as in
(Choudhuri et al., 2004)), while for δ > 0 the spectral density of the para-
metric working model provides some pre-smoothing. The latter is important
because Bernstein polynomials are better for smoother functions (see e.g.
Farouki 2012, Section 3.3 and Ghosal and van der Vaart 2017, Appendix E).
Indeed for an (almost) correctly specified parametric working model a choice
close to δ = 1 is ideal in terms of smoothness of the correction term while
for a completely misspecified working model a choice of δ = 0 is better. For
this reason, the parameter δ is called model confidence parameter. In this

9



work we assume δ to be fixed a priori. However, if a uniform prior is put
on δ, the MCMC algorithm implemented in the beyondWhittle R-package
(Meier et al., 2017) does provide estimates of δ with values according to the
above intuition (see the simulations in Kirch et al. (2019)).

The Bernstein-Dirichlet process prior approximates the unknown correc-
tion function c by Bernstein polynomials, which have a uniform approxima-
tion property (see e.g. Kruijer 2008, p. 20): For any c ∼ ΠBDP , define for
x ∈ [0, 1]

c(x) = τb(x;K,G), (3.6)

with b(x;K,G) = b(x;K,wK(G)) :=

K∑
j=1

wj,K(G)β (x; j,K − j + 1),

where β (x; a, b) = Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1 are Beta-densities. Priors are
then put on both the variance parameter τ , the order of the polynomial
K, as well as the weights of the Bernstein polynomial. The weight vector
wK(G) = (w1,K(G), · · · , wK,K(G)) is obtained from a Dirichlet process
G ∼ Dirichlet Process(MG0), where M > 0 and G0 is a probability distri-

bution function on [0, 1] via wj,K(G) = G
(
j−1
K , jK

]
, j = 1, 2, · · · ,K. Sam-

ples from the Dirichlet process can be readily obtained using the truncated
stick-breaking representation Sethuraman (1994).

The Dirichlet process G, the order K as well as the variance parameter
τ are assumed to be a priori independent, where K has a probability mass
function, ρ(k) > 0, for k = 1, 2, · · · , and τ is a continuous random variable
with support (0,∞).

Some properties of Bernstein polynomials that are important for the
proofs in this work are summarized in Appendix B.

Clearly, c ∼ ΠBDP puts an implicit prior denoted by ΠC onto ϕ via
(3.5). We will further restrict this prior to the parameter set of interest Θ
as follows:

Π0(A) :=
ΠC(A ∩Θ)

ΠC(Θ)
,

for any A ∈ T .
This is well defined by the next proposition (proven in Appendix C)

which shows prior positivity in any ball around ϕ0 for appropriately chosen
m,M in (3.4).

Assumption 3.1. Let inf06x61 ϕ0(x) > m and
∥∥∥ ϕ0

ϕδpar

∥∥∥
Lip
·
∥∥ϕδpar

∥∥
Lip

< M .

Assumption 3.1 guarantees that ϕ as in (3.5) with c as in (3.6) that are
close enough to ϕ0 in the supremum norm are also contained in Θ.

Remark. (a) For δ = 0 the second part of Assumption 3.1 clearly simplifies
to ‖ϕ0‖Lip < M .
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(b) If we make the slightly stronger assumption that ϕ0 and ϕpar are contin-
uously differentiable, then the second assertion of Assumption 3.1 can
be weakend to ‖ϕ0‖Lip < M for any 0 6 δ 6 1. For a proof we refer to
Appendix C.

Proposition 3.2. Under Assumption 3.1 it holds ΠC(B(ϕ0, r)) > 0 for all
r > 0, where

B(ϕ0, r) = {ϕ ∈ Θ : ‖ϕ− ϕ0‖∞ < r} . (3.7)

Thus Π0(Θ) = 1 and Π0 will assign positive probability to any neigh-
bourhood of ϕ0.

3.5 Posterior consistency

The posterior with respect to Π0 and the proxy likelihood after updating
Xn

1 is denoted by Πn and is defined in (2.1).
The following theorem is the main result of this paper, showing that with

increasing sample size the posterior Πn contracts towards a Dirac measure
centred at the true spectral density ϕ0. In particular, any (reasonable) point
estimator obtained from the posterior will be a consistent estimator for the
true spectral density even for non-Gaussian time series.

Theorem 3.1 (Posterior consistency). Under the assumptions on the time
series and the prior in addition to Assumption 3.1, for any r > 0,

Πn({ϕ ∈ Θ : ‖ϕ− ϕ0‖∞ > r}) = Πn(Bc(ϕ0, r))
P→ 0, t→∞,

where Bc(ϕ0, r) denotes the complement of B(ϕ0, r) with respect to Θ and
B(ϕ0, r) is as in (3.7).

Before we come to the proof of this theorem in Section 5, we will present
some non-Gaussian time series in which our posterior consistency result is
applicable.

4 Examples

To obtain posterior consistency, some assumptions on the underlying time
series as outlined in Section 3.1 are required. A time series {Xn}n∈Z is called
regular (Bradley, 2007, Definition 2.13) if its past tail σ-field ∩∞n=−∞σ(Xk, k 6
n) is (almost) trivial. If the time series is regular, then (3.1) automatically
holds. Peligrad and Wu (2010) presents several examples of regular pro-
cesses, including mixing sequences, functions of Gaussian processes, func-
tions of i.i.d. random variables and reversible Markov chains. Apart from
the above assumptions, we also require that the spectral density function of
the time series ϕ0(λ), λ ∈ [0, 1] is strictly positive and Lipschitz continuous.
Consequently, any regular time series with strictly positive and Lipschitz
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continuous spectral density function satisfies all our assumptions. Below
are two concrete examples of this category: The first one is non-Gaussian
with a singular distribution and the second one has a Lipschitz continuous
but not continuously differentiable spectral density.

4.1 Causal and invertible ARMA processes

Causal and invertible ARMA(p, q) model is powerful and popular in time
series analysis. As a result of Pourahmadi (2001, Theorem 5.22), any such
process {Xn}n∈Z is regular. It is well-known that the spectral density func-
tion of {Xn}n∈Z is strictly positive and continuously differentiable (cf. e.g.
Brockwell and Davis 1991, Theorem 4.4.2).
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Figure 1: Simulated MA(1) time series with standard Cantor distributed
innovations, sample size n=256.

Some simulation results of posterior consistency for causal and invert-
ible ARMA process with i.i.d non-Gaussian innovation are reported in the
supplementary material of Kirch et al. (2019), indicating that posterior con-
sistency does hold, which corroborates our finding. Here, we complement
these finding with a more extreme innovation sequence, namely an MA(1)
process with i.i.d. innovation obeying a centred standard Cantor distribu-
tion (see e.g. Dovgoshey et al. 2006; Schmidt 1991):

Xn = εn +
1

3
εn−1 , εk =

∞∑
n=1

2Bn,k
3n

− 1

2
,

where {Bn,k}∞n,k=1 are i.i.d. Bernoulli random variables with expectation
1/2. The standard Cantor distribution has a cumulative distribution func-
tion which is continuous on [0, 1], but not absolutely continuous with respect
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Figure 2: Log-periodogram of the time series in Figure 1, overlaid by the true
log-spectral density functions scaled to [0, 1] in solid purple, the estimated
log-spectral density in solid black, pointwise 90% credible bands in dashed
blue, and uniform 90% credible bands in dashed red.

to the Lebesgue measure (Dovgoshey et al., 2006, Proposition 2.1). There-
fore, it is a so-called singular distribution (Dovgoshey et al., 2006, Remark
2.2), a property that is then inherited by Xn. Figure 1 shows a realization
of this time series with length n = 256. In Figure 2, the corresponding es-
timated spectral density function is represented by the black solid line, the
blue dashed lines represent 90% pointwise credible bands, the red dashed
lines represent 90% uniform credible bands and the purple solid line is the
true spectral density function. The y-axis in Figure 2 is on the log scale.
The corresponding Bayesian analysis via an MCMC algorithm as described
in Kirch et al. (2019) is conducted using the beyondWhittle R package (Meier
et al., 2017).

4.2 Strong mixing sequences

A stationary time series {Xt}t∈Z is said to be strong mixing if

lim
n→∞

α(F0,Fn) = 0

where F0 = σ(Xk, k 6 0), Fn = σ(Xk, k > n), and α is the strong mixing
coefficient defined by

α(A,B) = sup {|P (A ∩B)− P (A)P (B)| : A ∈ A, B ∈ B}

for two σ-algebras A and B.
By Bradley (2007, Theorem 2.14), any strong mixing sequence is also

a regular sequence. Therefore, any strong mixing sequence with strictly
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Figure 3: Realization of a Gaussian stationary time series with spectral
density function (4.1) and sample size n = 1024.
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Figure 4: Log-periodogram of the time series in Figure 3, overlaid by true
log-spectral density function scaled to [0, 1] in solid purple, its estimate in
solid black, and pointwise 90% credible bands in dashed blue, and uniform
90% credible bands in dashed red.

positive and Lipschitz continuous spectral density function satisfies all our
assumptions. Many time series models used in practice, including countable-
state ergodic Markov chains (Bradley, 2005) and some of the ARCH and
GARCH models (Francq and Zakoian, 2019, Section 3.2), are strong mix-
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ing. Specifically, a stationary Gaussian time series with strictly positive and
Lipschitz continuous spectral density is also strong mixing (Ibragimov and
Linnik, 1971, Section 3, Chapter 17). Nevertheless, this property does not
hold even for some AR(1) models with discrete innovations, see e.g. Andrews
(1984).

Figures 3 and 4 show the trace plot, the spectral density function and
its estimate for a mean-zero Gaussian process with spectral density function

ϕ(x) = π|x|+ π

2
, x ∈ [0, 1]. (4.1)

The spectral density ϕ(x) is chosen to be strictly positive and Lipschitz
continuous but not continuously differentiable. Therefore, this time series
satisfies our assumptions but not the assumptions in Choudhuri et al. (2004)
and Kirch et al. (2019). In fact, ϕ0 admits the following representation.

ϕ0(λ) =
1

2π

(
2π2 − 8

∞∑
n=1

cos(2n− 1)πx

(2n− 1)2

)
.

Hence, the auto-covariance sequence is

γ0(h) =


2π2, if h = 0.

0, if h is non-zero and even.

− 4
h2
, if h is odd.

such that for all α > 1∑
h∈Z
|h|α|γ0(h)| = 8

∞∑
n=1

(2n− 1)α−2 =∞.

5 Proof of the posterior consistency

We start with verification of Assumptions 2.1 – 2.3 then show our main
proof of Theorem 3.1 using Theorem 2.1.

Verification of Assumption 2.1

As a result of Proposition 3.1, (Θ, d∞) is a separable metric space (Aliprantis
and Border, 2006, Lemma 3.26). T is the corresponding Borel σ-algebra on
Θ. Denote by B(Rn) the Borel σ-algebra on Rn. In order to prove that the
proxy model Rn(ϕ, ω) = fϕ(xn1 ) defined in (3.3) is T ⊗σ (Xn

1 )-measurable for
all n, it suffices to prove that for any fixed n ∈ N, Rn(ϕ, ω) is a Carathéodory
function (Aliprantis and Border, 2006, Lemma 4.51). That is,

C.1 for each ω ∈ Ω, Rn(·, ω) is a continuous functional on Θ,
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C.2 for each ϕ ∈ Θ, Rn(ϕ, ·) is σ (Xn
1 )-measurable.

For any fixed n and ω the corrected likelihood defined in (3.3) is clearly a
continuous functional in φ with respect to uniform convergence, confirming
C.1.

Furthermore, as a composition of Xn
1 and an n-dimensional normal den-

sity function fϕ, clearly Rn(ϕ, ·) is also σ (Xn
1 )-measurable, showing C.2.

Next, we will show that the inequalities in Assumption 2.1 are satisfied:
Clearly, for each ϕ ∈ Θ and each n ∈ N, Rn(ϕ, ω) is P -a.s. strictly positive
noting that (Xn

1 )′Xn
1 < ∞ a.s. by the existence of second moments. This

fact, along with Proposition 3.2, implies that∫
Θ
Rn (θ, ω) Π0 (dθ) > 0 P -a.s.

Furthermore, because ϕ ∈ Θ has the uniform lower bound m, it holds that
det(C2

n(ϕ)) ≤ 1
m det(Dn(ϕpar)) <∞ such that∫

Θ
Rn (θ, ω) Π0 (dθ) <∞ P -a.s.

Verification of Assumption 2.2

We will first verify the integrability of lnRn(ϕ). By direct calculation, we
have

lnRn(ϕ, ω) = −n ln(2π)

2
+

1

2
ln det

(
Γ−1

parC
2
n(ϕ)

)
− 1

2
(xn1 )′Cn(ϕ)Γ−1

parCn(ϕ)xn1 .

(5.1)
Therefore, for each ϕ ∈ Θ and each n ∈ N,

E | lnRn(ϕ)| 6 n ln(2π)

2
+

1

2

∣∣ln det
(
Γ−1

parC
2
n(ϕ)

)∣∣+1

2
E
∣∣(Xn

1 )′Cn(ϕ)Γ−1
parCn(ϕ)Xn

1

∣∣ .
Because Cn(ϕ) and Γ−1

par are positive definite, we have

E
∣∣(Xn

1 )′Cn(ϕ)Γ−1
parCn(ϕ)Xn

1

∣∣ = E
[
(Xn

1 )′Cn(ϕ)Γ−1
parCn(ϕ)Xn

1

]
= tr

(
Cn(ϕ)Γ−1

parCn(ϕ)Γn
)
,

where Γn = E [(Xn
1 )(Xn

1 )′] is the autocovariance matrix of the time series.
We are now ready to calculate h(ϕ). The functions ϕ ∈ Θ, ϕ0, ϕpar,√
ϕpar

ϕ , ϕ
ϕpar

as well as their products are all Lipschitz continuous due to

Proposition B.1. Thus, by the Bernstein’s Theorem (Katznelson, 2004, The-
orem 6.3) they are in the class of functions with absolutely summable Fourier
(i.e. autocovariance) functions (Wiener algebra). Let F be a continuous
function, f from the above class and τn,k, k = 1, · · · , n, be the eigenvalues
of an n× n matrix Tn. Furthermore, let Tn ∼ Tn(f) in the sense of Section
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2.3 in Gray (2006), where Tn(f) is the n×n Toeplitz matrix associated with
f . Then, the fundamental eigenvalue distribution theorem of Szegö (cf. e.g.
Gray 2006, Theorem 4.2), in conjunction with Theorem 2.4 of Gray (2006),
yields

lim
n→∞

1

n

n∑
k=1

F (τn,k) =

∫ 1

0
F (f(x))dx.

Theorems 5.2 and 5.3 of Gray (2006) imply:

ΓparC
−2
n (ϕ) ∼ Tn

(
2πϕpar

2πϕ

2πϕpar

)
= Tn(2πϕ),

Cn(ϕ)Γ−1
parCn(ϕ)Γn ∼ Tn

(√
2πϕpar

2πϕ

1

2πϕpar

√
2πϕpar

2πϕ
2πϕ0

)
= Tn

(
ϕ0

ϕ

)
.

Thus, a choice of F (x) = lnx yields

lim
n→∞

ln det
(
ΓparC

−2
n (ϕ)

)
n

=

∫ 1

0
lnϕ(x)dx+ ln(2π),

while choosing F (x) = x yields

lim
n→∞

1

n
tr
(
Cn(ϕ)Γ−1

parCn(ϕ)Γn
)

=

∫ 1

0

ϕ0(x)

ϕ(x)
dx.

Consequently, for each ϕ ∈ Θ, we have by (5.1)

h (ϕ) = − lim
n→∞

1

n
E [lnRn(ϕ)]

= ln(2π) +
1

2

∫ 1

0
lnϕ0(x)dx+

1

2

∫ 1

0

(
ϕ0(x)

ϕ(x)
− ln

ϕ0(x)

ϕ(x)

)
dx. (5.2)

Next, we show that h is a continuous functional on Θ by verifying the
Lipschitz condition. For any 0 < u < v, by the mean value theorem, there
exists w ∈ (u, v) such that

|(u− lnu)− (v − ln v)| =
∣∣∣∣1− 1

w

∣∣∣∣ |u− v| 6 v + 1

u
|u− v|.

For all ξ ∈ Θ, we have m
M 6 ϕ0(x)

ξ(x) 6 M
m for all 0 6 x 6 1. Therefore, for

any φ, ξ ∈ Θ

|h(ξ)− h(φ)| 6
∫ 1

0

∣∣∣∣(ϕ0(x)

ξ(x)
− ln

ϕ0(x)

ξ(x)

)
−
(
ϕ0(x)

φ(x)
− ln

ϕ0(x)

φ(x)

)∣∣∣∣ dx
6

M
m + 1
m
M

∫ 1

0
ϕ0(x)

∣∣∣∣ 1

ξ(x)
− 1

φ(x)

∣∣∣∣ dx
=

M
m + 1
m
M

∫ 1

0

ϕ0(x)

ξ(x)φ(x)
|ξ(x)− φ(x)|dx

6

(
M
m + 1

)
M

m
Mm

2
‖ξ − φ‖∞.
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This indicates that h is continuous on Θ, which in turn implies h is T -
measurable.

Finally, we will show that |h| is bounded from above: Using the inequal-
ity y − ln y > 1 on y > 0, we have for all ξ ∈ Θ,

1 6
∫ 1

0

(
ϕ0(x)

ξ(x)
− ln

ϕ0(x)

ξ(x)

)
dx 6

M

m
+ ln

M

m
,

such that

sup
ξ∈Θ
|h (ξ) | 6 ln(2π) +

1

2

∣∣∣∣∫ 1

0
lnϕ0(x)dx

∣∣∣∣+
1

2

(
M

m
+ ln

M

m

)
<∞.

Verification of Assumption 2.3

Let

ln(ϕ, ω) :=
1

n
lnRn (ϕ, ω) + h (ϕ) .

We first show that for each ϕ ∈ Θ, ln(ϕ)
P→ 0 as n→∞, and then strengthen

it to uniform convergence.
Since for any ϕ ∈ Θ, ϕ and ϕpar are both lower bounded away from 0

and upper bounded, the spectral norm of Cn(ϕ)Γ−1
parCn(ϕ) is upper bounded

uniformly over n ∈ N (Gray, 2006, Theorem 2.1 and Lemma 4.1). Therefore,
by Corollary 1 of Yaskov (2018), we have∣∣∣∣ 1n [(Xn

1 )′Cn(ϕ)Γ−1
parCn(ϕ)Xn

1

]
− 1

n
E
[
(Xn

1 )′Cn(ϕ)Γ−1
parCn(ϕ)Xn

1

]∣∣∣∣ P→ 0.

In view of equations (5.1) and (5.2), the above result yields |ln(ϕ)| P→ 0.
It is straightforward to show that supϕ∈Θ |ln(ϕ, ω)| is σ (Xn

1 ) -measurable.
Since Rn(ϕ, ω) is a Carathéodory function and h (ϕ) is T -measurable,
|ln(ϕ, ω)| is also a Carathéodory function. According to the measurable max-
imum theorem (Aliprantis and Border, 2006, Theorem 18.19), supϕ∈Θ |ln(ϕ, ω)|
is σ (Xn

1 ) -measurable.
We now show that

sup
ϕ∈Θ
|ln(ϕ)| P→ 0, n→∞.

By Proposition 3.1, we know that Θ is compact with respect to d∞. Ac-
cording to Davidson (1994, Theorem 21.9), we can strengthen the pointwise
convergence to uniform convergence by showing that ln(ϕ) is asymptotically
uniformly stochastically equicontinuous. In order to prove equicontinuity, it
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suffices to show that ln(ϕ) satisfies a Lipschitz-type condition on Θ (David-
son, 1994, Theorem 21.10). That is, there exists S ∈ N such that for any
φ, ψ ∈ Θ and n > S,

|ln(φ)− ln(ψ)| 6 Bn‖φ− ψ‖∞, (5.3)

where Bn = Op(1). Since the Lipschitz continuity of h(ϕ) has been verified
in the preceding subsection, we now prove that 1

n lnRn (θ, ω) satisfies (5.3).
In light of equation (5.1), we have

1

n
lnRn (θ, ω) = − ln(2π)

2
− 1

2

ln det
(
ΓparC

−2
n (ϕ)

)
n

− 1

2

(Xn
1 )′Cn(ϕ)Γ−1

parCn(ϕ)Xn
1

n

=: − ln(2π)

2
− 1

2
l(1)
n (ϕ)− 1

2
l(2)
n (ϕ, ω).

It suffices to prove that l
(i)
n , i = 1, 2 satisfy the Lipschitz condition on Θ.

For all x, y > 0, as per the mean value theorem, there exists z ∈
(min{x, y},max{x, y}) such that

| lnx− ln y| = 1

z
|x− y| 6 1

min{x, y}
|x− y|.

Consequently, for any φ, ξ ∈ Θ, n ∈ N,

∣∣∣l(1)
n (φ)− l(1)

n (ξ)
∣∣∣ =

1

n

∣∣ln detC−2
n (φ)− ln detC−2

n (ξ)
∣∣ =

1

n

∣∣∣∣∣∣
N∑
j=1

(lnφ(yj)− ln ξ(yj))

∣∣∣∣∣∣
6

1

n

N∑
j=1

1

min{φ(yj), ξ(yj)}
|φ(yj)− ξ(yj)| 6

1

2m
max

j=1,2,··· ,N
|φ(yj)− ξ(yj)|

6
1

2m
‖φ− ξ‖∞.

Furthermore,∣∣∣l(2)
n (φ)− l(2)

n (ξ)
∣∣∣ =

1

n

∣∣(Xn
1 )′
(
Cn(φ)Γ−1

parCn(φ)− Cn(ξ)Γ−1
parCn(ξ)

)
(Xn

1 )
∣∣

=
1

n

∥∥(Xn
1 )′
(
Cn(φ)Γ−1

parCn(φ)− Cn(ξ)Γ−1
parCn(ξ)

)
(Xn

1 )
∥∥
s

6 ‖Cn(φ)Γ−1
parCn(φ)− Cn(ξ)Γ−1

parCn(ξ)‖s
∑n

k=1X
2
k

n
,

where ‖ · ‖s denotes the matrix spectral norm and the last inequality is due
to the submultiplicativity of the spectral norm (see e.g. Gloube and van
Loan 1996, formula (2.3.3)). By the triangle inequality, we have

‖Cn(φ)Γ−1
parCn(φ)− Cn(ξ)Γ−1

parCn(ξ)‖s
6 ‖(Cn(φ)− Cn(ξ))Γ−1

parCn(φ)‖s + ‖Cn(ξ)Γ−1
par(Cn(φ)− Cn(ξ))‖s.
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For the first term of the right hand side, again by the submultiplicativity of
the spectral norm, we get

‖(Cn(φ)− Cn(ξ))Γ−1
parCn(φ)‖s 6 ‖Cn(φ)− Cn(ξ)‖s‖Γ−1

par‖s‖Cn(φ)‖s.

According to Gray (2006, Theorem 2.1 and Lemma 4.1), ‖Γ−1
par‖s 6 1

βpar
. By

direct calculation, we have

‖Cn(φ)− Cn(ξ)‖s = max
j=1,··· ,N

∣∣∣∣ϕ 1
2
par(yj)

(
φ−

1
2 (yj)− ξ−

1
2 (yj)

)∣∣∣∣
= max

j=1,··· ,N

ϕ
1
2
par(yj)

φ
1
2 (yj)ξ

1
2 (yj)

(
ξ

1
2 (yj) + φ

1
2 (yj)

) |ξ(yj)− φ(yj)|

6
‖ϕ

1
2
par‖∞

2m
3
2

‖ξ − φ‖∞

and

‖Cn(φ)‖s = max
j=1,··· ,N

ϕ
1
2
par(yj)

φ
1
2 (yj)

6
‖ϕ

1
2
par‖∞
m

.

Therefore,

‖(Cn(φ)− Cn(ξ))Γ−1
parCn(φ)‖s 6

‖ϕpar‖∞
2βparm

5
2

‖ξ − φ‖∞.

By the same token,

‖Cn(ξ)Γ−1
par(Cn(φ)− Cn(ξ))‖s 6

‖ϕpar‖∞
2βparm

5
2

‖ξ − φ‖∞.

Putting things together, we have∣∣∣l(2)
n (φ)− l(2)

n (ξ)
∣∣∣ 6 ∑n

k=1X
2
k

n

‖ϕpar‖∞
βparm

5
2

‖ξ − φ‖∞ = Op(1)‖ξ − φ‖∞,

where the last equation is due to Corollary 1 of Yaskov (2018).

Since l
(i)
n , i = 1, 2 satisfy the Lipschitz condition, we have shown that

ln = − ln(2π)
2 − 1

2 l
(1)
n − 1

2 l
(2)
n + h does indeed satisfy the Lipschitz-type con-

dition (5.3). Therefore, according to Davidson (1994, Theorem 21.10), ln is
asymptotically uniformly stochastically equicontinuous in probability over
Θ.
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Proof of posterior consistency

Our goal is to show that for any r > 0, Πn(Bc(ϕ0, r))→ 0 in P -probability.
If Π0(Bc(ϕ0, r)) = 0, then clearly we have Πn(Bc(ϕ0, r)) = 0 for any n ∈ N.
If Π0(Bc(ϕ0, r)) > 0, then according to Theorem 2.1, we only need to show

h (Bc(ϕ0, r)) = ess inf
ϕ∈Bc(ϕ0,r)

h(ϕ) > h(Θ) = ess inf
ϕ∈Θ

h(ϕ),

where here and throughout the essential infimum is with respect to the prior
measure Π0.

First, notice that the continuity of h on Θ has been proved when verifying
Assumption 2.2. We will now focus on proving that h has a unique minimum
point at ϕ0. Since for any y > 0, it holds y − ln y − 1 > 0 with equality if
and only if y = 1, and Θ is a collection of continuous functions on [0, 1], we
have for any ϕ ∈ Θ,

ϕ0

ϕ
− ln

ϕ0

ϕ
− 1

is a non-negative continuous function on [0, 1]. Hence,∫ 1

0

(
ϕ0(x)

ϕ(x)
− ln

ϕ0(x)

ϕ(x)
− 1

)
dx > 0,

where the equality holds if and only if ϕ = ϕ0. By virtue of equation (5.2),
we get

ϕ0 = argmin
ϕ∈Θ

h(ϕ).

Now we will prove that h(Θ) = h(ϕ0). For any z > h(ϕ0), by the
continuity of h, there exists δ > 0 such that h(ϕ0) 6 h(ϕ) < z, for all
ϕ ∈ B(ϕ0, δ). Consequently, Π0({ϕ ∈ Θ : h(ϕ) < z}) > Π0(B(ϕ0, δ)) > 0
by Proposition 3.2 showing that indeed h(Θ) = h(ϕ0).

Finally, we will show that h (Bc(ϕ0, r)) > h(Θ) for all r > 0. It is clear
that Bc(ϕ0, r), as a closed subset of a compact set Θ is also compact. Since
h is continuous on Bc(ϕ0, r), it can attain its local minimum on this set. i.e.

h (Bc(ϕ0, r)) > min
ϕ∈Bc(ϕ0,r)

h(ϕ) > h(ϕ0) = h(Θ).

Theorem 3.1 now follows from Theorem 2.1.

6 Discussion and outlook

The general consistency theorem introduced in this paper does not rely on
the KL formulation which is otherwise popular in the literature. It has the
capability to deal with situations where the proxy model does not approx-
imate the data generating process sufficiently well with respect to the KL
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divergence. Examples of such time series with singular marginal distribu-
tions are presented in subsection 4.1. Since the proxy model in this case
corresponds to a non-degenerate Gaussian probability measure, the Radon-
Nikodym derivative and consequently the KL divergence between these two
measures is not defined. On the other hand, these time series meet the
assumptions of this paper so that the proposed methodology is applicable.
Moreover, the proxy model is not required to be tied to a probability distri-
bution, it has the potential to deal with generalized Bayesian updating such
as Gibbs posterior distributions.

The main objective in this paper was to make as weak assumptions on
the time series as possible. Indeed posterior consistency is proven without
invoking stronger assumptions such as the existence of higher order cumu-
lants and certain complicated dependence structures which are commonly
seen in the literature on nonparametric Bayesian (and frequentist) spectral
density estimation (e.g. Choudhuri et al. 2004; Pawitan and O’sullivan 1994;
Kakizawa 2006).

Mild assumptions on the time series structure, however, require stronger
assumptions elsewhere. Similar to (3.2) of Meier et al. (2020) and (15)
of Gao and Zhou (2016), the parameter space in this paper is chosen to
be compact under a pre-specified topology which is a common assumption.
This restriction may be relaxed by using a sieve defined on the parameter
space of positive continuous functions on [0,1] endowed with the sup-norm.
Nevertheless, this comes at the cost of stronger assumptions on the time
series. To elaborate, suppose we use Θ = {f ∈ C([0, 1]) : f > 0} as the
parameter space and a suitable sequence of sets Θn = {f ∈ C([0, 1]) : f >
mn, ‖f‖Lip 6Mn} that approximate Θ well for growing n where the covering
number of Θn needs to be controlled. The latter often relies on some sort of
concentration inequality which in turn requires the existence of higher order
moments and certain dependence structures (e.g. linear process, mixing
condition, etc.). These are exactly the kind of assumptions which we aim to
avoid. Such concentration inequalities are also typically required to obtain
posterior contraction rates.

It is of future interest to establish a posterior contraction rate under
minimal constraints on the time series structure. Another direction of future
research, which may be of practical interest, is to generalize the results to
priors other than the Bernstein-Dirichlet process prior used in this paper.
As the proof relies mainly on the uniform approximation property of the
Bernstein polynomials, we conjecture that it can be generalized as long as the
basis functions have the uniform approximation property. Some examples
are priors based on B-spline (Edwards et al. 2019 and Belitser and Serra
2014) and wavelet basis (Giné and Nickl, 2011) functions. Furthermore,
our future research will also aim to extend the consistency proof to the
estimation of the Hermitian positive definite spectral density matrix of a
non-Gaussian multivariate time series using a matrix-Gamma process prior
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(Meier, 2018).

A Proof of Theorem 2.1

The proofs in this section are closely related to the proofs for Lemmas 1, 2,
3, 6 and Theorem 1 in Shalizi (2009).

Lemma A.1. Let Qn ⊆ Θ × Ω, n = 1, 2, · · · be a sequence of jointly mea-
surable sets, with sections Qnθ,• = {ω ∈ Ω : (θ, ω) ∈ Qn} and Qn•,ω = {θ ∈
Θ : (θ, ω) ∈ Qn}.

If, for some probability measure P on Ω,

lim
n→∞

P
(
Qnθ,•

)
= 1, ∀θ ∈ Θ.

Then for any probability measure Π on Θ,

Π
(
Qn•,ω

) P→ 1.

Proof. As in the proof of Lemma 1 in Shalizi (2009), we obtain by Tonelli’s
theorem ∫

Θ
P (Qnθ,•)Π(dθ)) = E Π(Qn•,ω),

such that by the dominated convergence theorem it holds

lim
n→∞

E |Π(Qn•,ω)− 1| = 1−
∫

Θ
lim
n→∞

P (Qnθ,•)Π(dθ) = 0,

which implies

Π
(
Qn•,ω

) P→ 1.

Lemma A.2. Under Assumptions 2.1, 2.2 and 2.3, for any η > 0 it holds

Π0

(
Qn•,ω(η)

) P→ 1, where Qn•,ω(η) is the ω-section of

Qn(η) :=

{
(θ, ω) ∈ Θ× Ω :

1

n
lnRn(θ, ω) > −h(θ)− η

}
.

Proof. For any η > 0 and n ∈ N, Qn(η) is jointly measurable according to
Assumptions 2.1 and 2.2. Furthermore, Assumption 2.3 implies that for all
θ ∈ Θ

lim
n→∞

P
(
Qnθ,•(η)

)
= 1,

such that by Lemma A.1, we have

Π0

(
Qn•,ω(η)

) P→ 1.
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Lemma A.3. Under Assumptions 2.1, 2.2 and 2.3, for any ε > 0,

lim
n→∞

P ({ω ∈ Ω : Π0 (Rn) > exp {−n (h (Θ) + ε)}}) = 1,

where Π0 (Rn) :=
∫

ΘRn(θ, ω)Π0(dθ).

Proof. For any ω ∈ Ω, we have

Π0(Rn) > exp {−n (h (Θ) + ε)} ⇔
∫

Θ
exp

{
n

(
h (Θ) + ε+

lnRn(θ)

n

)}
Π0(dθ) > 1.

Consequently, it is sufficient to prove

lim
n→∞

P

({
ω ∈ Ω :

∫
Θ

exp

{
n

(
h (Θ) + ε+

lnRn(θ)

n

)}
Π0(dθ) > 1

})
= 1.

(A.1)

For N ε
2

= {θ : h(θ) 6 h(Θ) + ε
2} it holds for any θ ∈ N ε

2
∩ Qn•,ω

(
ε
3

)
by

definition of these sets

lnRn(θ, ω)

n
> −h(θ)− ε

3
> −h(Θ)− 5

6
ε.

Consequently,∫
Θ

exp

{
n

(
h (Θ) + ε+

lnRn(θ)

n

)}
Π0(dθ) > Π0

(
N ε

2
∩Qn•,ω

( ε
3

))
exp

{ ε
6
n
}

(A.2)

According to Lemma A.2,

Π0

(
Θ \Qn•,ω

( ε
3

))
P→ 0

and by definition that Π0

(
N ε

2

)
> 0, such that

Π0

(
N ε

2
∩Qn•,ω

( ε
3

))
> Π0

(
N ε

2

)
−Π0

(
Θ \Qn•,ω

( ε
3

))
P→ Π0

(
N ε

2

)
> 0.

This concludes the proof in combination with (A.1) and (A.2).

Lemma A.4. Let Assumptions 2.1, 2.2 and 2.3 hold, and take any set
G ∈ T such that Π0(G) > 0. Then for any ε > 0,

lim
n→∞

P ({ω ∈ Ω : Π0 (GRn) 6 exp {n (−h(G) + ε)}}) = 1,

where Π0 (GRn) =
∫
GRn(θ, ω)Π0(dθ).
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Proof. For any ω ∈ Ω and sufficiently large n such that

sup
θ∈G

∣∣∣∣ 1n ln (Rn(θ, ω)) + h(θ)

∣∣∣∣ 6 ε,

we have

Π0 (GRn) =

∫
G

exp{ln(Rn(θ, ω))}Π0(dθ) 6
∫
G

exp {n (−h(θ) + ε)}Π0(dθ)

6 exp {n (−h(G) + ε)} Π0(G) 6 exp {n (−h(G) + ε)} .

With these lemmas, we can proceed to proving Theorem 2.1.

Proof of Theorem 2.1. By the assumption that h(A) > h(Θ), we can choose
ε such that h(Θ)−h (A)+2ε < 0. Then, on the intersection of the asymptotic
1-sets of Lemmas A.3 and A.4 it holds

Πn(A) =
Π0(ARn)

Π0(Rn)
6 exp {n (h (Θ)− h(A) + 2ε)} → 0,

such that indeed Πn (A)
P→ 0 for n→∞.

B Parameter space, Lipschitz functions and Bern-
stein polynomials

In this section, we will first prove Proposition 3.1, and then give some results
regarding Lipschitz functions and Bernstein polynomials.

Proof of Proposition 3.1. According to the Arzelà-Ascoli theorem, the com-
pactness of Θ is guaranteed if it is bounded, closed, and equicontinuous. The
boundedness of Θ with respect to ‖·‖∞ follows directly from the definition of
Θ. The equicontinuity follows immediately from the uniform boundedness
of the Lipschitz constants over Θ.

To prove that Θ is closed, consider an arbitrary sequence {ϕn}∞n=1 of
functions in Θ which converge uniformly to ϕ ∈ C([0, 1]). It is then sufficient
to show that ϕ ∈ Θ. By the triangle inequality it follows from ‖ϕn−ϕ‖∞ →
0, that ‖ϕn‖∞ → ‖ϕ‖∞. Thus, for any x ∈ [0, 1],

ϕ(x) = lim
n→∞

ϕn(x) > m.

Furthermore,

‖ϕ‖+ L(ϕ) = lim
n→∞

‖ϕn‖+ sup
06x6=y61

lim
n→∞

|ϕn(x)− ϕn(y)|
|x− y|

= sup
06x 6=y61

lim
n→∞

(
‖ϕn‖+

|ϕn(x)− ϕn(y)|
|x− y|

)
6 lim sup

n→∞
‖ϕn‖Lip 6M.
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Results regarding Lipschitz norm and the Bernstein polyno-
mials

Let
Lip([0, 1]) := {ϕ ∈ C([0, 1]) : ‖ϕ‖Lip <∞} .

The following inequalities regarding the Lipschitz norm will be useful in the
proof of positivity of prior probabilities in Appendix C.

Proposition B.1.

(a) If f ∈ Lip([0, 1]) and f > 0, then we have 1
f , f

δ ∈ Lip([0, 1]) for any
0 6 δ 6 1.

(b) For any f, g ∈ Lip([0, 1]), we have fg ∈ Lip([0, 1]). Furthermore,
‖fg‖Lip 6 ‖f‖Lip‖g‖Lip.

Proof. The proof of (a) is a simple consequence of Theorems 12.5 and 12.6
of Eriksson et al. (2004). The proof of (b) can be found in Dudley (2004,
Proposition 11.2.1)

The general n-th order Bernstein polynomial is of the form

b(x;n,w) =

n∑
i=1

wiβ(x; i, n− i+ 1), x ∈ [0, 1],

where w = (w1, · · · , wn) ∈ Rn and β (x; a, b) = Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1, x ∈
[0, 1], a, b > 0.

Proposition B.2. For any w = (w1, · · · , wn) ∈ Rn, we have

(a) ‖b(·;n,w)‖∞ 6 nmaxi=1,2,··· ,n |wi|.
(b) L(b(·;n,w)) 6 2n2 maxi=1,2,··· ,n |wi|.

Proof. The first inequality is proved in Lemma 2.2 of Kruijer (2008, p. 21).
We will focus on proving the second inequality. By direct calculation, we
obtain

b′(x;n,w) = n
n−1∑
i=1

(wi+1 − wi)β(x; i, n− i)

with the convention
∑0

i=1 = 0. By noticing that
∑n−1

i=1 β(x; i, n− i) = n−1,
we have

|b′(x; k,w)| 6 n

n−1∑
i=1

|wi+1,n − wi,n|β(x; i, n− i)

6 n max
i=1,··· ,n−1

{|wi+1 − wi|}
n−1∑
i=1

β(x; i, n− i) = n(n− 1) max
i=1,··· ,n−1

{|wi+1 − wi|}
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for all 0 6 x 6 1. Therefore,

L(b(·;n,w)) =
∥∥b′(·;n,w)

∥∥
∞ 6 n(n− 1) max

i=1,··· ,n−1
{|wi+1 − wi|} 6 2n2 max

i=1,2,··· ,n
|wi|.

Let f ∈ Lip([0, 1]) be a probability density function with corresponding
cumulative distribution function F , then the n-th order (Kantorovich-type)
Bernstein polynomial associated with f is defined as

b(x;n,wn(F )) =

n∑
i=1

wi,n(F )β(x; i, n− i+ 1), x ∈ [0, 1],

where wi,n(F ) = F
(
i
n

)
− F

(
i−1
n

)
, i = 1, 2, · · · , n, and

wn(F ) = (w1,n(F ), w2,n(F ), · · · , wn,n(F )).

Proposition B.3. We have

(a) ‖f − b (·;n,wn(F )) ‖∞ 6 3L(f)√
n
.

(b) If f is continuously differentiable, then ‖f − b (·;n,wn(F )) ‖Lip → 0.

(c) ‖b (·;n,wn(F )) ‖Lip 6 ‖f‖Lip.

Proof. (a) is proved in Lemma 2.1 of Kruijer (2008, p. 20). (b) is a direct
consequence of Theorem 2.4 of Özarslan and Duman (2016). As for (c), we
have by definition

wi,n(F ) = F

(
i

n

)
− F

(
i− 1

n

)
=

∫ i
n

i−1
n

f(x)dx.

Thus, we get wi,n(F ) 6 1
n‖f‖∞, i = 1, 2, · · · , n, which implies ‖b(·; k,wn(F ))‖∞ 6

‖f‖∞ in light of the fact that
∑n

i=1 β(x; i, n− i+ 1) = n.
As for the bound of Lipschitz constant, because for any i = 1, 2, · · · , n−1,

we have

|wi+1,n(F )− wi,n(F )| 6
∫ i

n

i−1
n

∣∣∣∣f (x+
1

n

)
− f (x)

∣∣∣∣ dx 6
L(f)

n2
.

Therefore, for all x ∈ [0, 1],

|b′(x; k,wn(F ))| = n

∣∣∣∣∣
n−1∑
i=1

(wi+1,n(F )− wi,n(F ))β(x; i, n− i)

∣∣∣∣∣ 6 L(f),

which implies L(b(·; k,wn(F ))) 6 L(f). Together this yields (c).
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C Proof of Proposition 3.2

Let

τ0 =

∫ 1

0

ϕ0(x)

ϕδpar(x)
dx,

and q0 = 1
τ0

ϕ0

ϕδpar
. Then q0 is a probability density function on [0, 1]. Denote

by Q0 the cumulative distribution function corresponding to q0. Our goal is
to show that ΠC (B(ϕ0, r)) > 0 for all r > 0. To this end, consider

BM1,M2,M3 =
{
τb (·; k,wk(G))ϕδpar :

k = M1, |τ − τ0| 6M2, max
i=1,2,··· ,k

|wi,k(G)− wi,k(Q0)| 6M3

}
We will show that (a) ΠC(BM1,M2,M3) > 0 for allM1 = 1, 2, . . . andM2,M3 >
0 and (b) that there exist such M1,M2,M3 that BM1,M2,M3 ⊂ B(ϕ0, r) for
any r > 0.

Recall that ρ, which is the probability mass function of K, has full
support. Clearly, we have ρ(M1) > 0. Since both the distribution of τ
and the Dirichlet process have full support (see e.g. Choudhuri et al. 2004,
Appendix B.1), the following two sets:

{τ ∈ (0,∞) : |τ − τ0| 6M2}

and {
G : max

i=1,2,··· ,M1

|wi,M1(G)− wi,M1(Q0)| 6M3

}
also have positive probabilities. Therefore, ΠC(BM1,M2,M2) > 0, showing
(a).

For (b), first note that by the triangle inequality, Propositions B.2(a)
and B.3(a),

‖τb(·; k,wk(G))ϕδpar − τ0q0ϕ
δ
par‖∞

6 τ‖b(·; k,wk(G)− wk(Q0))‖∞‖ϕpar‖δ∞ + |τ − τ0|‖b(·; k,wk(Q0))‖∞‖ϕpar‖δ∞
+ τ0‖b(·; k,wk(Q0))− q0‖∞‖ϕpar‖δ∞

≤ (τ0 +M2)M1M3 ‖ϕpar‖δ∞ +M2 ‖q0‖∞‖ϕpar‖δ∞ + τ0
L(q0)√
M1

,

which by Propositions B.1(a) can be made arbitrarily small by first choosing
an M1 large enough for the last term to become small as well as an M2 small
enough for the second term to become small and finally (dependent on M1

and M2) an M3 small enough for the first term to become small.
This shows in particular that for any ε > 0 there exists M1 big and

M2,M3 small enough that ‖ϕ − ϕ0‖∞ < ε for any ϕ ∈ BM1,M2,M3 as well

28



as ϕ(x) ≥ ϕ0(x) − ‖ϕ − ϕ0‖∞ > m for ε small enough by Assumption 3.1.
In particular, for any r > 0 it holds ‖ϕ− ϕ0‖∞ < r and ϕ fulfills the lower
bound in (3.4). We will now complete the proof that for sufficiently large
M1 and small M2,M3 it holds that ‖ϕ‖Lip fulfills the upper bound. Indeed,
we get by the triangle inequality, Propositions B.1(b) and B.2

‖τb(·; k,wk(G))ϕδpar‖Lip

6 ‖τb(·; k,wk(Q0))ϕδpar‖Lip + ‖τb(·; k,wk(G)− wk(Q0))ϕδpar‖Lip

6

(
1 +

M2

τ0

) ∥∥∥τ0b(·; k,wk(Q0))ϕδpar

∥∥∥
Lip

+ 3(τ0 +M2)M2
1M3‖ϕδpar‖Lip.

The second part becomes again arbitrarily small for appropriately chosen
Mj , j = 1, 2, 3, such that the upper bound of (3.4) can be met as soon as
‖τ0b(·; k,wk(Q0))ϕδpar‖Lip < M .

Indeed, by Propositions B.1(b) and B.3(c), we have

‖τ0b(·; k,wk(Q0))ϕδpar‖Lip ≤ τ0‖q0‖Lip ‖ϕδpar‖Lip =

∥∥∥∥ ϕ0

ϕδpar

∥∥∥∥ ‖ϕδpar‖Lip, (C.1)

such that the assertion follows from Assumption 3.1.

Proof of Remark 3.4. In this case, we can prove (C.1) without Assump-
tion 3.1, since by the triangle inequality and Proposition B.1(b),

‖τ0b(·; k,wk(Q0))ϕδpar‖Lip 6 τ0‖b(·; k,wk(Q0))− q0‖Lip ‖ϕδpar‖Lip + ‖ϕ0‖Lip,

where the first term becomes arbitrarily small for M1 = k large enough due
to Proposition B.3(b) and the second one is strictly smaller than M .
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and RM support by the DFG Grant KI 1443/3-2.

References

Aliprantis, C. D. and Border, K. C. (2006). Infinite Dimensional Analysis:
A Hitchhiker’s Guide. Springer-Verlag, 3rd edition.

Andrews, D. W. K. (1984). “Non-Strong Mixing Autoregressive Processes.”
Journal of Applied Probability , 21(4): 930–934.

Belitser, E. and Serra, P. (2014). “Adaptive priors based on splines with
random knots.” Bayesian Analysis, 9(4): 859–882.

29



Bissiri, P. G., Holmes, C. C., and Walker, S. G. (2016). “A general framework
for updating belief distributions.” Journal of the Royal Statistical Society
- Series B , 78(5): 1103–1130.

Bradley, R. C. (2005). “Basic properties of strong mixing conditions. A
survey and some open questions.” Probability Surveys, 2: 107–144.

— (2007). Introduction to strong mixing conditions, volume I. Kendrick
press.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods.
Springer-Verlag, 2nd edition.

Cadonna, A., Kottas, A., and Prado, R. (2017). “Bayesian mixture modeling
for spectral density estimation.” Statistics & Probability Letters, 125:
189–195.

Choi, T. and Schervish, M. J. (2007). “On posterior consistency in non-
parametric regression problems.” Journal of Multivariate Analysis, 98:
1969–1987.

Chopin, N., Rousseau, J., and Liseo, B. (2013). “Computational aspects
of Bayesian spectral density estimation.” Journal of Computational and
Graphical Statistics, 22(3): 533–557.

Choudhuri, N., Ghosal, S., and Roy, A. (2004). “Bayesian estimation of
the spectral density of a time series.” Journal of the American Statistical
Association, 99(468): 1050–1059.

Contereras-Cristán, A., Gutiérrez-Peña, E., and Walker, S. G. (2006). “A
note on Whittle’s likelihood.” Communications in Statistics - Simulation
and Computation, 35(4): 857–875.

Dahlhaus, R., Janas, D., et al. (1996). “A frequency domain bootstrap
for ratio statistics in time series analysis.” Annals of Statistics, 24(5):
1934–1963.

Davidson, J. (1994). Stochastic Limit Theory: An Introduction for Econo-
metricians. New York: Oxford University press.

Dovgoshey, O., Martio, O., Ryazanov, V., and Vuorinen, M. (2006). “The
Cantor function.” Expositiones Mathematicae, 24: 1–37.

Dudley, R. M. (2004). Real Analysis and Probability . Cambridge University
Press.

Edwards, M., Meyer, R., and Christensen, N. (2019). “Bayesian nonpara-
metric spectral density estimation using B-spline priors.” Statistics and
Computing , 29: 67–78.

30



Eriksson, K., Estep, D., and Johnson, C. (2004). Applied Mathematics: Body
and Soul Volume 1: Derivatives and Geometry in IR3 . Springer-Verlag
Berlin Heidelberg, 1 edition.

Farouki, R. T. (2012). “The Bernstein polynomial basis: A centennial ret-
rospective.” Computer Aided Geometric Design, 29: 379–419.

Francq, C. and Zakoian, J. (2019). GARCH Models structure, statistical
inference and financial applications. John Wiley & Sons, 2nd edition.

Gangopadhyay, A., Mallick, B., and Denison, D. (1999). “Estimation of
spectral density of a stationary time series via an asymptotic representa-
tion of the periodogram.” Journal of statistical planning and inference,
75(2): 281–290.

Gao, C. and Zhou, H. (2016). “Rate exact Bayesian adaptation with modi-
fied block priors.” The Annals of Statistics, 44(1): 318–345.

Ghosal, S. and van der Vaart, A. (2017). Fundamentals of Nonparametric
Bayesian Inference, volume 44. Cambridge University Press.
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