Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the [Library Thesis Consent Form](http://researchspace.auckland.ac.nz) and [Deposit Licence](http://researchspace.auckland.ac.nz).

Note: Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.
Modelling Levator Ani Mechanics During the Second Stage of Labour

Xinshan Li

A thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Bioengineering.

The Auckland Bioengineering Institute

The University of Auckland

February 24, 2011
Abstract

This thesis presents a modelling framework that quantitatively analyses the mechanical behaviour of the levator ani (LA) muscle during the second stage of labour. This modelling framework would enable the identification of risk factors (for muscle damage) associated with vaginal delivery.

Detailed three dimensional (3D) geometries of thirteen female pelvic floor structures were segmented from magnetic resonance (MR) images. The LA muscle model was augmented with surrounding structures to simulate the second stage of labour. Twelve individualised pelvic floor models were constructed. Preliminary feature analysis showed considerable inter-individual variations in LA muscle size and orientation.

The mechanism of labour was modelled by applying minimal movement constraints to the fetal skull. In order to improve simulation performance during the finite element solution procedure, an “energy norm” convergence criterion and a line search method were implemented. It was demonstrated that allowing the fetal skull to find its own minimum potential energy state substantially affected the mechanical response of the LA muscle during delivery compared to employing a fixed head path, which has been used in all previous studies.

The constitutive parameters for the LA muscle were fitted to experimental data from in vitro mechanical tests on fresh cadavers. The elastic nonlinear and anisotropic properties of the constitutive relations were investigated through a series of child-
birth simulations. Both factors showed marked effects on the mechanical response of the LA muscle. The dorsal-caudal aspect of the LA muscle and the insertions to the pubis were identified as high risk areas of muscle damage, due to large stretches (>2.5) predicted by the model. LA muscle trauma at these locations has also been observed clinically.

This modelling framework was then applied to simulate the use of an intra-vaginal device test in order to investigate the passive muscle properties in control and high impact, frequent intense training (HIFIT) women. Results of this study suggest no difference in the passive stiffness between these two groups, which is in contrast to previous findings based on a simplified conceptual model. However, the relative difference in the average force was comparable with previous results. The study demonstrated the ability of the modelling framework to quantitatively interpret clinical data in silico.
Acknowledgements

I would like to first thank my supervisors Associate Professor Poul Nielsen and Associate Professor Martyn Nash for their guidance and support, and all their brilliant ideas and inspirations over the past years. Thank you Poul for initiating this project and extending it into a PhD study. Thank you Martyn for always going the extra mile and translating much of the engineering jargon into simple “English”. This has been a great journey!

I would also like to express my gratitude to the following people. To Jenny who has given me so much enthusiasm, strength, and confidence in my work. You have so much passion and love in this subject, which motivates everybody! To Leo and Kim for guiding me through the lengthy process of digitisation and mesh fitting. To my interns, Connie, Sara, Anna, Amani, and Nancy, thank you for contributing to this study. To Prasad and Hayley for advice on optimisation and principal component analysis, respectively.

Lastly, I wish to dedicate the following paragraph to my friends and families who have kept me going for all of this time. To my corner buddies, Vicky, Angela, Helen, and Jess, for sharing the ups and downs, and all the girly gossip. To my New Zealand family who always make me laugh after a long day. To my parents for always supporting me and trying to understand my work. To my husband for always being there for me and tolerating my occasional emotional break-downs. We made it!
Table of Contents

Abstract i

Acknowledgements iii

Table of Contents v

List of Figures xi

List of Tables xxiii

1 Introduction 1
 1.1 Motivation .. 1
 1.2 Overview of thesis ... 3
 1.2.1 Objectives ... 3
 1.2.2 Chapter outline ... 3
 1.3 Thesis contributions ... 5

2 Pelvic Floor Anatomy and Labour 9
 2.1 The female pelvic floor 10
 2.1.1 Reproductive system 10
 2.1.2 The bony pelvis ... 12
 2.1.3 Pelvic floor muscles 13
 2.1.4 The perineal body 17
TABLE OF CONTENTS

2.2 The fetal skull .. 17
2.3 Three stages of labour 18
2.4 Mechanism of labour 20
2.5 HIFIT women ... 23

3 Review of Biomechanical Models of Childbirth 25

3.1 Visualising the pelvic floor 26
3.2 Models of childbirth 27
 3.2.1 First stage of labour 27
 3.2.2 Second stage of labour 27
 3.2.3 Clinical relevance 33
3.3 Challenges modelling childbirth 35
 3.3.1 Expulsive and opposing forces 35
 3.3.2 Material properties 36
 3.3.3 Pelvic floor structures 37
 3.3.4 The fetus ... 37
 3.3.5 Population based modelling 39
3.4 From model to clinic 39
3.5 Remarks .. 41

4 Modelling Large Deformation and Contact Interactions 43

4.1 Finite deformation elasticity 44
 4.1.1 Stress and equilibrium 44
 4.1.2 Hyperelastic constitutive equations 45
4.2 Contact mechanics 46
4.3 The system of nonlinear equations 47
4.4 Solution Method 49
 4.4.1 Convergence criterion: energy norm 50
TABLE OF CONTENTS

4.4.2 Line search ... 53
4.5 Remarks .. 58

5 Modelling the Female Pelvic Floor and the Fetal Skull

5.1 Finite element model of the female pelvic floor 60
5.1.1 Imaging protocol .. 60
5.1.2 3D digitisation .. 60
5.1.3 Mesh generation .. 62
5.2 Finite element model of the fetal skull 65
5.3 Finite element modelling of the second stage of labour 67
5.3.1 Geometric model construction 67
5.3.2 Boundary constraints and solution method 68
5.3.3 Mesh convergence analysis 70
5.4 Remarks .. 72

6 Modelling Fetal Head Motion

6.1 Fetal skull constraints 76
6.2 Effect of fetal skull constraints on mechanics of vaginal delivery . 78
6.2.1 Fetal skull path .. 78
6.2.2 Levator ani muscle mechanical response 83
6.3 Discussion .. 86

7 Nonlinear Mechanical Response of Levator Ani Muscle

7.1 Hyperelastic material parameter estimation 92
7.2 Effect of muscle nonlinearity on simulated vaginal delivery 95
7.2.1 Force .. 95
7.2.2 Maximum principal stretch ratio 97
7.3 Discussion .. 100
TABLE OF CONTENTS

8 **Anisotropic Mechanical Response of Levator Ani Muscle** 103
8.1 Fibre orientations .. 104
8.2 Transversely isotropic material model 104
8.2.1 Strain energy function 104
8.2.2 The anisotropy ratio 106
8.3 Effects on vaginal delivery 110
8.4 Degree of nonlinear material properties 110
8.5 Discussion .. 113

9 **Investigating Levator Ani Deformation With an Intra-vaginal Device** 117
9.1 The intra-vaginal device 118
9.1.1 Overview of the study 118
9.2 Finite element model of the device test 120
9.2.1 The speculum model 120
9.2.2 The LA model and boundary constraints 120
9.2.3 Force estimation 123
9.2.4 Convergence analysis 124
9.3 Comparison between control and HIFIT women 127
9.4 Discussion .. 129

10 **Conclusions** 133
10.1 Discussion on key findings 133
10.1.1 Pelvic floor geometries 133
10.1.2 Modelling the second stage of labour 135
10.1.3 Location of maximum principal stretch 136
10.1.4 Control versus HIFIT women 136
10.2 Limitations ... 138
10.2.1 Individual geometries 139
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.2 Material properties</td>
<td>139</td>
</tr>
<tr>
<td>10.2.3 Boundary constraints</td>
<td>141</td>
</tr>
<tr>
<td>10.3 Future directions</td>
<td>143</td>
</tr>
<tr>
<td>10.3.1 Obtaining geometric and fibre information</td>
<td>143</td>
</tr>
<tr>
<td>10.3.2 Estimating material properties and failure strength</td>
<td>144</td>
</tr>
<tr>
<td>10.4 Summary</td>
<td>144</td>
</tr>
<tr>
<td>A Population Based Feature Analysis</td>
<td>147</td>
</tr>
<tr>
<td>A.1 Levator ani muscle features</td>
<td>148</td>
</tr>
<tr>
<td>A.2 Mesh transformation</td>
<td>148</td>
</tr>
<tr>
<td>A.3 Affine transformation</td>
<td>151</td>
</tr>
<tr>
<td>A.4 Principal components analysis</td>
<td>153</td>
</tr>
<tr>
<td>B Stress Calculation for Uniaxial Extension</td>
<td>157</td>
</tr>
<tr>
<td>C Levator Ani Models</td>
<td>161</td>
</tr>
<tr>
<td>D Modelling Fetal Head Moulding</td>
<td>165</td>
</tr>
<tr>
<td>D.1 Modified fetal skull model</td>
<td>166</td>
</tr>
<tr>
<td>D.2 Material properties and boundary constraints</td>
<td>167</td>
</tr>
<tr>
<td>D.3 Results and discussion</td>
<td>169</td>
</tr>
<tr>
<td>List of References</td>
<td>173</td>
</tr>
</tbody>
</table>
List of Figures

2.1 Sagittal cross section of the female pelvic floor, containing the bladder, uterus, and rectum, with pelvic floor muscles highlighted in red. (Reproduced from Lewis (2000)) 10

2.2 Cross section of the uterus showing the cavity, uterine wall and vagina. (Reproduced from Lewis (2000)) 11

2.3 (a) Superior view of the pelvic inlet, with the ischial spines circled. (b) Inferior view of the pelvic outlet. (Reproduced from Lewis (2000)) 12

2.4 Left lateral view of the true pelvis showing the pelvic inlet, outlet, and the axis of cavity. (Reproduced from Lewis (2000)) 13

2.5 Drawing of major pelvic floor muscles and surrounding bony structures in the superior view. Pr, puborectalis; Pc, pubococcygeus; Ic, iliococcygeus; C, coccygeus; and Oi, obturator internus. (Reprinted with permission from Frohlich et al. (1997). Copyright 1997 Wiley Periodicals, Inc.) 14

2.6 An individualised computer model illustrating relative positions of the LA and external anal sphincter muscles with respect to pelvic organs and the bony pelvis in left lateral, anterior, and inferior views. Gold, LA muscle; green, external anal sphincter; light brown, rectum; red, vagina; blue, bladder and urethra; silver, bony pelvis. 15
LIST OF FIGURES

2.7 Superior (a) and right lateral (b) views of the fetal skull. (Reproduced from Varney et al. (2004)).

2.8 The second stage of labour in the right lateral view: (a) Full dilation of the cervix; (b) Birth of the occiput. (Reproduced from Evans (2007)).

2.9 Descent of fetal head in vertex presentation relative to maternal ischial spines in the anterior view. (Reproduced from Evans (2007)).

2.10 Inferior view of (a) flexion of a fetal head, (b) internal rotation into the occiput-anterior (OA) orientation; (c) birth of the head by extension; and (d) external rotation. (Reproduced from Varney et al. (2004)).

3.1 Right lateral view of the fetal head model with bone (red), and sutures (blue). (Reprinted with permission from Lapeer and Prager (2001). Copyright 2001 Elsevier).

3.2 Left lateral view of the female pelvic floor: 1 is puborectalis, 2-8 are pubococcygeus, 9-24 are iliococcygeus, urethra (umber), vagina (pink), rectum (brown), and arcus tendineus (white). (Reprinted with permission from Lien et al. (2004). Copyright 2004 Wolters Kluwer Health).

3.3 Right lateral view of the fetus, the pelvic floor muscles (dark grey), and the bony pelvis (pale grey). (Reprinted with permission from Parente et al. (2009a). Copyright 2009 Elsevier).

3.4 Left lateral view: H is head, C is coccyx, S is symphysis pubis, and TB are ties. (Reprinted with permission from Hoyte et al. (2008). Copyright 2008 Elsevier).
4.1 (a) Initial overlap of a simple contact model. (b) The converged solution. .. 52

4.2 Line search using Brent’s method. The approximated parabola is shown in a solid line and the objective function is plotted in a dashed line. The estimated extremum for the approximated parabolic function (solid line) is u. The interval for the next iteration is $[b, u, c]$. .. 55

4.3 The reference (above) and deformed (below) models solved using Newton-Raphson method with line search. .. 57

5.1 (a) Axial image of a 23 year old female volunteer with LA muscle outlined in yellow at the level of proximal urethra in a superior view: U, urethra; V, vagina; R, rectum. (b) Elevated anterior view of the LA muscle data set within a transparent 3D reconstruction of the MR image stack. .. 62

5.2 Personalised computer model of the female pelvic floor shown in left lateral (left column) and anterior (right column) views. (a) and (b): organs of the female pelvic floor: blue, bladder; pink, uterus; red, vagina; light brown, rectum; brown, perineal body. (c) and (d): addition of the LA muscle (yellow) and the external anal sphincter (green). (e) and (f): addition of the pubis and ischium (ivory), and the coccyx (grey). LA, levator ani; EXAS, external anal sphincter. .. 64

5.3 Top: fetal skull surface data in left lateral (a) and superior (b) views. A, anterior; P, posterior. Bottom: the finite element mesh for the fetal vault in left lateral (c) and superior (d) views. SOFD = suboccipitofrontal diameter; BPD = biparietal diameter. .. 66

5.4 Right lateral (a) and anterior (b) views of the pelvic floor model with the LA muscle (yellow), support mesh (brown) and pubis (silver). .. 68
5.5 The model for second stage of labour showing initial location of the fetal skull (ivory) in the right lateral (left) and the anterior (right) views. The node where the vertical displacement was prescribed is circled in blue. The direction of fetal skull descent is indicated by the red arrow. 69

5.6 The coarsest (a) and refined (b) pelvic floor meshes in right lateral views in undeformed state. Figures (c) and (d) show the deformed LA meshes when the fetal skull passed through. 71

5.7 Normalised peak reaction forces in the y (a) and z (b) directions with respect to the mesh degrees of freedom. Forces of the numerically converged mesh were circled in blue. 73

6.1 A flexed fetal skull (ivory) placed on top of the LA muscle at the start of the simulation in the anterior view with three different skull constraint scenarios. The nodes at which the displacement constraints were applied in scenario (1) are circled in blue. In scenarios (2) and (3), the approximate location of the lowest internal node is circled. The direction along which the fetal skull was displaced is illustrated by the red arrow. The axes show y direction pointing into the page. 77

6.2 The sequence of fetal skull motion in the right lateral view for all three constraint scenarios. The dashed lines represent the antero-posterior position of the ischial spines. The location of the maximum overall principal stretch ratio is circled in black. 79

6.3 The sequence of fetal skull motion in the anterior view for all three constraint scenarios. The dash-dotted lines represent the vertical position of the ischial spines. 80
6.4 The sequence of fetal skull motion in scenario (3) is shown in the right lateral, the anterior, and the superior views at four descent stages. The dashed lines represent the antero-posterior position of the ischial spines in the right lateral and the superior views. The dash-dotted line represents the vertical position of the ischial spines in the anterior view. The arrow indicates the occiput of the fetal skull.

6.5 The relative displacements of the centre of mass of the fetal skull in the x and y directions with respect to their initial values plotted against fetal skull descent in scenarios (1) and (2).

6.6 The relative displacements of the centre of mass of the fetal skull in the x and y directions with respect to their initial values plotted against fetal skull descent in scenario (3). Dashed lines indicate the four descent stages (20mm, 50mm, 70mm, and 87mm) with corresponding deformed meshes illustrated in Figure 6.4.

6.7 Plots of the normalised x (a), y (b), z (c) components and the total (d) reaction forces plotted against fetal skull descent for boundary constraint (BC) scenarios (1), (2) and (3). Each plot was normalised to the peak value for scenario (1). The small offset observed in the y direction in scenario (3) is the constant body force applied to the skull to keep it in initial contact with the LA muscle.

6.8 Maximum principal stretch ratio at the dorsal-caudal aspect of the LA muscle for three different constraint scenarios against fetal skull descent.
6.9 The maximum principal stretch ratio (λ_{max}) distributions across the LA muscle at 80mm descent for the three scenarios: (1) a completely prescribed skull path; (2) allowing rotation about one point on the skull; and (3) a minimally constrained skull, allowing both rotation and translation. Models are shown in the left lateral and anterior views. ... 87

7.1 Uniaxial tension test data from Jing et al. (2008). PVM, pubovisceral (or pubococcygeus) muscle; ICM, iliococcygeus muscle; PB, perineal body. Data from all specimens are shown. 93

7.2 First Piola-Kirchhoff stress versus stretch in the fibre direction. The stress-strain curves for the exponential (solid line) and the neo-Hookean (dashed line) constitutive relations are overlaid with the experimental data (circles). ... 95

7.3 The process of the fetal skull descending through the pelvic floor for the neo-Hookean and the exponential materials in the right lateral view. Dashed lines indicate the antero-posterior positions of the maternal ischial spines. The locations of the maximum principal stretch ratios are circled in black. 96

7.4 The force exerted on the LA muscle versus fetal skull descent for the exponential and neo-Hookean constitutive relations. 97

7.5 Mean and standard deviation of the maximum principal stretch ratio (λ_{max}) in the LA muscle. Vertical dash-dotted lines represent descent (80mm) at which λ_{max} distributions are illustrated in Figure 7.6. ... 98
7.6 The maximum principal stretch ratio (λ_{max}) distributions across the LA muscle at 80mm descent for the exponential and the neo-Hookean material models. The models are shown in the left lateral, right lateral, and anterior views. .. 99

7.7 Histograms of the maximum principal stretch ratio across the LA muscle at 80mm descent for the exponential and the neo-Hookean material models. .. 101

8.1 The individualised pelvic floor model in (a) anterior and (b) right lateral views. Yellow, LA muscle; brown, support mesh; grey, pubis; and pale brown, coccyx. The coccyx is shown in (b) as a structural reference. Green arrows indicate fibre orientation. 105

8.2 The stress-strain curves for different values of α. Curves were fitted over the range of experimental stretch ratios. The experimental data are shown in open circles. .. 109

8.3 Stress-strain curves for the isotropic component in Equation 8.3 over a large range of stretch ratios with different values of α. 109

8.4 The process of fetal skull descent through the pelvic floor with two different values of α (0 and 0.8). Locations of the overall maximum principal stretch ratios are circled. Dashed lines indicate the antero-posterior location of the maternal ischial spines. 111

8.5 The estimated force exerted on the LA muscle versus the skull descent with different anisotropy ratios. 112

8.6 The maximum principal stretch ratio at the dorsal-caudal aspect of the LA muscle for different anisotropy ratios. 112

8.7 Stress-strain curves for the isotropic component in Equation 8.3 with a more linear response at higher stretches. 113
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>The estimated force exerted on the LA muscle versus the skull descent with a more linear stress-strain response.</td>
<td>114</td>
</tr>
<tr>
<td>8.9</td>
<td>The maximum principal stretch ratio at the dorsal-caudal aspect of the LA muscle with a more linear stress-strain response.</td>
<td>114</td>
</tr>
<tr>
<td>9.1</td>
<td>Dimensions of the intra-vaginal device. (Reprinted with permission from Kruger (2008)).</td>
<td>119</td>
</tr>
<tr>
<td>9.2</td>
<td>The speculum meshes with opening dimensions of 25mm, 30mm, 35mm, and 40mm. The speculum meshes are shown in ivory. The green components were added to provide the specific opening dimensions for the speculum.</td>
<td>121</td>
</tr>
<tr>
<td>9.3</td>
<td>The LA muscle with inserted specula at an opening dimension of 25mm in the right lateral (a) and anterior (b) views. The LA muscle and pubis meshes were made translucent in (a) and (b), respectively, in order to illustrate the orientation of the specula within the LA muscle.</td>
<td>122</td>
</tr>
<tr>
<td>9.4</td>
<td>The coarsest (a) and the most refined (b) speculum meshes at an opening dimension of 40mm, with the corresponding deformed LA muscles in contact with the coarsest (c) and the most refined (d) speculum meshes.</td>
<td>124</td>
</tr>
<tr>
<td>9.5</td>
<td>Normalised forces (after five augmentations) for four speculum opening dimensions with speculum meshes of varying numbers of degrees of freedom.</td>
<td>125</td>
</tr>
<tr>
<td>9.6</td>
<td>Normalised force versus the number of augmentations for four different speculum opening dimensions.</td>
<td>126</td>
</tr>
<tr>
<td>9.7</td>
<td>The deformed LA muscle (Control 5) with four different speculum opening dimensions.</td>
<td>128</td>
</tr>
</tbody>
</table>
10.1 Above: Right lateral view of the LA muscle model with the insertion to the pubis circled in black. Below: Axial MR images at the level of midurethra showing the normal anatomy of the LA muscle in (A). A similar image is shown in (B) from a primiparous woman with a complete loss of muscle insertion to the pubis after delivery (expected location of LA muscle is outlined). PB, pubis bone; U, urethra; V, vagina; R, rectum. (Reprinted with permission from (DeLancey, 2005). Copyright 2005 Elsevier). ... 137

10.2 Above: Right lateral view of the LA muscle model with the dorsal-caudal aspect of the muscle circled in black. Below: Anal endosonography images of a primiparous women before (A) and after (B) delivery. White arrows illustrate a postpartum defect of the external anal sphincter. EAS, external anal sphincter; IAS, internal anal sphincter. (Reprinted with permission from (Sultan et al., 1993). Copyright 1993 Massachusetts Medical Society). 138

A.1 Axial images of a 35 year old (a) and a 28 year old (b) female at the level of proximal urethra. The LA muscle is outlined in yellow for each individual. .. 149

A.2 Feature analysis process for the LA muscle. PCA, principal component analysis. ... 150

A.3 The tricubic Hermite LA (yellow) and external anal sphincter (green) mesh for the 23 year old in left lateral and anterior views. The top row shows the original tricubic Hermite mesh fitted using the method described in Section 5.1. The bottom row shows the refitted tricubic Hermite mesh after applying affine transformation to the generic mesh. ... 151
A.4 Landmarks (in red) on the bony pelvis (left column) and the LA and external anal sphincter (right column) in the left lateral, anterior, and inferior views. 1-2, ischial spines; 3-4, centre of the femoral heads; 5-6, midline of the pubis symphysis; 7, base of the coccyx; 8-9, apex of the ischium; 10-11, LA attachments to the coccyx; 12-13, LA attachments to the pubis; and 14-16, extremity of the external anal sphincter. 154

A.5 (a) The averaged model (yellow) and hypothesized models with c values of 3 (orange) and -3 (brown) in the left lateral view. (b) Hypothesized meshes in the anterior view, showing variations in thickness indicated by white arrows. 155

C.1 LA muscle models for the six control subjects in the right lateral view. Yellow, LA muscle; silver, part of the pubis; and brown, part of the obturator internus muscle. 162

C.2 LA muscle models for the six HIFIT subjects in the right lateral view. Yellow, LA muscle; silver, part of the pubis; and brown, part of the obturator internus muscle. 163

D.1 The fetal head surface data in the left lateral view showing the suboccipitobregmatic diameter (a), the occipitofrontal diameter (b), and the occipitomental diameter (c). The location of the occipitomental diameter is approximated due to the absence of mandible data. Sutures and fontanelles are highlighted in green. 166

D.2 Left lateral (a) and superior (b) views of the modified fetal skull model. Elements representing sutures and fontanelles are shown in light brown, overlaid with suture data (Lapeer and Prager, 2001) in green. 167
D.3 The fetal skull and the LA muscle model in the right lateral (a) and anterior (b) views. The dashed line indicates the imaginary boundary representing the body of the fetus. The distance between the black circled nodes is indicated, and it was used to calculate the force F, applied to the red nodes. Vertical displacements were prescribed at the blue nodes on the fetal skull, and the resulting moment is indicated by the blue arrow. The axes show x direction pointing into the page.

D.4 Plot of Equation D.1. Distance was calculated as the difference between the y coordinates (antero-posterior direction) of the two black circles in Figure D.3.

D.5 The sequence of fetal skull motion through the LA muscle in the right lateral and anterior views. The dashed lines above represent the antero-posterior position of the maternal ischial spines. The dash-dotted line below represents the vertical position of the ischial spines. The green circle highlights the element of the coronal suture where the mesh collapsed beyond a fetal skull descent of 78mm.
List of Tables

3.1 Summary of recent computational models of childbirth. 28

4.1 Updating the search interval for each line search iteration. 55

5.1 Demographics of volunteers in Kruger et al. (2008a). 60

9.1 Forces measured by the intra-vaginal device at 40mm opening for
the control and HIFIT groups (Kruger, 2008). SD, standard deviation. 120

9.2 Force (N) generated by the LA muscle for twelve individuals (six
control and six HIFIT women) at various opening dimensions of the
device. SD, standard deviation. 129