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Abstract

The mechanisms that regulate the control of energy demand and energy supply in the
heart muscle are crucial for maintaining normal cardiac function, yet they are not very
well understood. Although a number of mechanisms have been proffered by which mi-
tochondrial supply of ATP can change to match varying workload in the myocardium,

identifying the underlying regulatory pathways remains controversial.

In this study, we have developed mathematical models of the sarcoplasmic endo-
plasmic reticulum Ca?* ATPase (SERCA) pump and the acto-myosin cross-bridge cy-
cle which, along with the Nat /KT pump, are the key energy-consuming processes in
the cardiomyocyte. These models encapsulate both thermodynamic considerations and
metabolite sensitivity into a cycle-based framework. The parameters of these models
are constrained by experimental data which characterise their physiological behaviour.
These models are then placed within the context of a whole-cell electrophysiological
framework, alongside a model of mitochondrial energy supply, to investigate the mech-
anisms that regulate energy control and to shed light on two experimental observations
which, for many decades, have evaded a mechanistic explanation: the apparent linearity
of the VO3 — PVA (pressure-volume area) relationship and the metabolic stability hy-
pothesis, wherein demand-supply homeostasis is maintained despite negligible variation

in metabolite concentrations at varying workloads.

The predictions from our model simulations indicate that, under constant metabolite

concentrations, the ATP-FTT (force-time integral) relationship is linear, while the ATP-



ii

FLA (force-length-area, cellular equivalent of VO, — PVA) relationship is linear only at
low work rates. The linearity of the ATP-FTI relationship is found to arise from kinetic
properties of the cross-bridge model. This property is not retained in the ATP-FLA
relationship and is lost when metabolite concentrations are allowed to vary, as during
normal variation with changing workload. This suggests that FTI and FLA are not

equivalent, and that the VO, — PVA relationship may only be approximately linear.

Finally, we show that metabolite concentrations change significantly with increas-
ing workload if Pi feedback onto mitochondrial oxidative phosphorylation is removed
from the model, suggesting that Pi-regulation alone is sufficient to maintain metabolic

homeostasis in the absence of other regulatory mechanisms.
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