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Abstract 

Background  Prostate-Specific Membrane Antigen (PSMA) PET/CT and multiparametric MRI (mpMRI) are well-
established modalities for identifying intra-prostatic lesions (IPLs) in localised prostate cancer. This study aimed to 
investigate the use of PSMA PET/CT and mpMRI for biologically targeted radiation therapy treatment planning by: (1) 
analysing the relationship between imaging parameters at a voxel-wise level and (2) assessing the performance of 
radiomic-based machine learning models to predict tumour location and grade.

Methods  PSMA PET/CT and mpMRI data from 19 prostate cancer patients were co-registered with whole-mount 
histopathology using an established registration framework. Apparent Diffusion Coefficient (ADC) maps were com-
puted from DWI and semi-quantitative and quantitative parameters from DCE MRI. Voxel-wise correlation analysis was 
conducted between mpMRI parameters and PET Standardised Uptake Value (SUV) for all tumour voxels. Classification 
models were built using radiomic and clinical features to predict IPLs at a voxel level and then classified further into 
high-grade or low-grade voxels.

Results  Perfusion parameters from DCE MRI were more highly correlated with PET SUV than ADC or T2w. IPLs were 
best detected with a Random Forest Classifier using radiomic features from PET and mpMRI rather than either modal-
ity alone (sensitivity, specificity and area under the curve of 0.842, 0.804 and 0.890, respectively). The tumour grading 
model had an overall accuracy ranging from 0.671 to 0.992.

Conclusions  Machine learning classifiers using radiomic features from PSMA PET and mpMRI show promise for pre-
dicting IPLs and differentiating between high-grade and low-grade disease, which could be used to inform biologi-
cally targeted radiation therapy planning.
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Background
Prostate cancer is the second most common cancer in 
men worldwide after lung cancer and the fourth most 
common cause of cancer death [1]. Traditionally, patients 
with localised prostate cancer who have radiation ther-
apy receive a uniform dose to the entire gland, which is 
planned and delivered using CT imaging. Prostate can-
cer is known to be a multi-focal disease, however, and 
intra-prostatic lesions (IPLs) are not typically visible on 
CT. To address this, multiparametric MRI (mpMRI) and/
or Prostate-Specific Membrane Antigen (PSMA) PET/
CT can be used to assist in defining IPLs and have been 
used to inform targeted boost-focal radiation therapy 
planning. Such boost-focal strategies have been shown 
to improve biochemical control rates compared to tradi-
tional uniform dose prescriptions [2].

An alternative focal dose boosting approach is Bio-
logically targeted Radiation Therapy (BiRT) which aims 
to deliver a non-uniform radiation dose distribution to 
the tumour according to its spatially defined biological 
characteristics [3]. The BiRT approach aims to eradi-
cate the tumour while minimising radiation exposure to 
normal tissue, which requires an accurate delineation of 
the tumour at a voxel-wise level and an estimation of the 
tumour characteristics. This information can be derived 
from imaging to devise an optimised, tailored dose dis-
tribution [3].

Combining mpMRI and PSMA PET/CT to implement 
BiRT offers advantages to using either modality alone, as 
they offer different but complementary information. Mul-
tiparametric MRI provides anatomical information from 
T2-weighted imaging and functional information from 
diffusion-weighted imaging (DWI) and dynamic contrast 
enhanced (DCE) MRI which characterise tumour diffu-
sion and perfusion, respectively [4]. PSMA PET using the 
Ga68-PSMA-11 tracer offers molecular information by 
indicating its level of PSMA type II transmembrane pro-
tein expression [5]. PSMA PET has shown high detection 
sensitivity especially for high-risk disease [6, 7]. Using 
PSMA PET and mpMRI together reduces the drawbacks 
of each, with mpMRI at times missing small or low-grade 
tumours [8], whereas PSMA PET suffers from low spa-
tial resolution, can struggle to visualise tumours which 
are close to the bladder base due to urinary activity, and 
a small proportion of tumours do not express PSMA. The 
benefits of using mpMRI and PSMA PET together were 
analysed in the recent multicentre PRIMARY clinical 
trial, showing that it reduced false positives when detect-
ing clinically significant disease compared with mpMRI 
alone [9].

Despite these benefits, there are still uncertainties 
regarding how signals in PSMA PET and mpMRI com-
pare with each other, owing to the limited number of 

studies and lack of ground truth histology data to quan-
tify their relationships. Furthermore, to facilitate non-
uniform IPL dose-distribution approaches such as BiRT, 
a voxel-wise approach must be taken. Hence, this study 
aimed to assess the relative value of mpMRI and PSMA 
PET at a voxel level, by building upon our earlier proof-
of-concept study [10], and by investigating machine 
learning models incorporating radiomic features to 
detect IPLs and predict grade, which could be used to 
inform BiRT treatment planning.

Methods
Patient data
Data from 19 patients diagnosed with localised pros-
tate cancer and recruited as part of a Human Research 
Ethics Committee (HREC)-approved study (HREC/15/
PMCC125) were included. Patients were scheduled for 
radical prostatectomy at the Peter MacCallum Can-
cer Center in Melbourne, Australia, and had mpMRI 
and PET/CT imaging prior to surgery. Patient clinical, 
imaging, and pathological details are given in Table  1. 
The Prostate Imaging-Reporting and Data System (PI-
RADS) for the index lesion on mpMRI ranged from 2 to 
5, with patient 59 being indeterminate due to imaging 
artefacts. SUVmax on PSMA PET ranged from 2.43 to 
59.40. The Grade Group (GG) of index lesions and other 
tumour foci show that 10 patients had high-grade disease 
(defined as an index lesion with GG ≥ 3) and the remain-
ing 9 patients had low-grade disease (defined as an index 
lesion with GG ≤ 2).

Multiparametric MRI
In vivo mpMRI was acquired using two 3  T scanners, 
the first five patients scanned with a Siemens MAG-
NETOM Trio (Siemens Healthcare GmbH, Erlan-
gen, Germany) and all other patients scanned with 
a Siemens MAGNETOM Skyra. The imaging proto-
col followed guidelines from the European Society 
of Urogenital Radiology (ESUR) [12] and included 
T2-weighted (T2w), Diffusion-Weighted Image 
(DWI) and Dynamic Contrast-Enhanced (DCE) imag-
ing. A surface body coil was used without an endo-
rectal coil to reduce the chance of deformation of 
the prostate, and patients without contraindications 
were given Buscopan to reduce peristaltic motion. 
T2w imaging was obtained using a 2D turbo spin 
echo sequence using acquisition matrix = 320 × 320, 
FOV = 160  mm × 160  mm, slice thickness = 3  mm, 
TE = 89–96  ms, TR = 3500–4830  ms. DWI images 
were obtained using a 2D spin echo sequence with 
echo planar readout, with b-values = 50, 400, 800 and 
1200  s/mm2, acquisition matrix = 250 × 250, FOV 
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250  mm × 250  mm, slice thickness = 4  mm. Apparent 
Diffusion Coefficient (ADC) maps were computed from 
DWI images using inline software.

Pre-contrast 3D T1-weighted images with variable flip 
angles (5°, 10°, 15°, 20°, 30°) were acquired. DCE-MRI was 
performed using a 3D spoiled gradient echo with a time-
resolved view sharing sequence for high temporal reso-
lution imaging (TWIST, Siemens Healthineers, Erlangen, 
Germany). Each patient received a 10-ml bolus injec-
tion of contrast agent Dotarem (gadoterate meglumine, 
Guerbet, USA), followed by a saline flush. Semi-quanti-
tative parameters and pharmacokinetic parameters were 
computed using Dynamika software (Image Analysis 
Group, London, UK) [13]. Semi-quantitative parameters 
included the initial rate of enhancement (IRE), the time 
to peak enhancement (TTP), the maximum enhance-
ment (ME), the time of contrast agent onset (Tonset), 
the time of contrast agent washout (Twashout) and the 
initial rate of washout (IRW). Pharmacokinetic param-
eters were computed using the Tofts model [14] includ-
ing Ktrans (the volume transfer constant between blood 
plasma and extra-vascular extra-cellular space) and Ve 
(volume of extra-vascular extra-cellular space). The initial 
area under the gadolinium contrast agent concentration 
curve for the first 60 s post-injection (iAUGC60) was also 
computed.

PET/CT imaging
All patients had PET/CT imaging after injection with a 
68  Ga PSMA-HBED-CC (PSMA-11) tracer. Five differ-
ent PET/CT scanners were used, with scanning from 
the base of the skull or the vertex to the upper thighs. 
The PET scanning bed steps were acquired starting at 
the upper thighs to minimise the chance of spatial shifts 
between PET and CT at the level of the prostate, which 
can be caused by patient movement, bladder filling or 
intestinal movements. Further acquisition details are 
given in Additional file  1: Table  S1, including the PET 
image reconstruction method, Gaussian filter kernel size, 
the time of bed positions, tracer uptake time and PET 
and CT image resolution information. PET images were 
corrected for attenuation using the contemporaneous 
low-dose non-contrast CT scan and normalised by body 
weight to obtain PET Standardised Uptake Values (SUV) 
images for each patient.

Ex vivo MRI and histology data
After prostatectomy, the prostate specimens were 
embedded in agarose gel in a custom-made sectioning 
box for ex  vivo MRI scanning, after which the speci-
men was cut into 5-mm sections and then microtomed 
at 3 µm to obtain whole-mount haematoxylin and eosin 

Table 1  Patient clinical, imaging and pathological details

Prostate volume is calculated using the ellipsoid formula from pathology measurements [11]

GG Grade group

Patient PSA level 
(ng/mL)

Pathological 
T-stage

Prostate 
volume (cm3)

# Histology 
slices

GG (index 
lesion)

GG (other foci) PIRADS v2 (index lesion) SUVmax

11 6.8 T3b 36.89 4 3 3, 4 5 3.88

12 16 T3a 64.35 4 3 – 5 6.47

20 9 T3b 33.25 5 5 1, 2, 4 4 9.64

26 42 T3a 52.17 4 3 1 4 12.11

34 8.1 T3a 50.34 4 2 2 5 3.70

46 3.2 pT2 33.49 3 3 1, 2 4 3.08

51 18 pT2 54.08 6 2 1 5 5.04

53 10 pT3a 33.77 5 3 – 5 5.95

54 12 pT2 34.03 5 2 1 3 6.45

55 6.5 pT2 30.23 4 3 1, 2 5 14.78

56 6.6 pT2 41.07 5 2 2 5 2.43

58 5.6 pT3b 48.55 5 5 Mix of 1–5 5 15.76

59 10.7 pT3a 39.40 5 2 – Indeterminate 10.91

60 6.7 pT3a 49.80 5 2 1 4 3.23

62 10.7 pT3a 31.81 4 5 1 5 46.34

64 9 pT3a 37.44 5 3 1, 2 5 59.40

65 7.3 pT2 35.69 4 2 1, 2 5 7.79

66 6.5 pT2 26.21 5 2 – 2 8.46

68 10.8 pT2 57.33 8 2 1, 2 5 5.75
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(H&E) stained sections. The most apical and basal histol-
ogy sections obtained were not included in this study, as 
standard pathology processing required them to be cut in 
a parasagittal orientation which could not be easily co-
registered with ex vivo MRI. Table 1 details the number of 
axial histology sections obtained for each patient, and the 
estimated prostate volume calculated using the ellipsoid 
method and prostate specimen measurements [11]. Each 
axial H&E-stained section was annotated for tumour and 
assigned a GG by an experienced uro-pathologist (CM) 
and digitised with an Epson Perfection V700 scanner to 
give images approximately 0.01  mm resolution. Further 
details of this are given in Reynolds et al. [15].

Co‑registration
Co-registration of PET/CT with mpMRI and ground 
truth histology was carried out using our established 
framework [10, 15], which utilised ex  vivo MRI to 
account for tissue deformation and shrinkage after pros-
tatectomy. In brief, the PET and CT images were first 
qualitatively inspected to determine whether there were 
any spatial shifts between them due to the different tim-
ing between the scans; however, none of the PET or CT 
images required manual correction. Then, PET images 
were rigidly registered with in  vivo 3D T2w MRI in 3D 
Slicer software [16] by using the contemporaneous CT, 
which provided anatomical information and higher 
resolution than the PET image. The computed transfor-
mation between CT and in vivo 3D T2w MRI was then 
applied to co-register PET with in vivo MRI. The 2D T2w, 
ADC maps from DWI and DCE MRI parameter maps 
were rigidly registered with the reference 3D T2w MRI in 
3D Slicer. All co-registered in vivo MRI and PET/CT data 
were re-sampled to isotropic 0.8 mm voxels to match the 
3D T2w MRI resolution, and deformable image regis-
tration was applied to co-register with ex vivo MRI and 
ground truth histology data. Figure 1 shows an example 
co-registered dataset with PET, in  vivo T2w MRI and 
histology.

Correlation analysis
Correlation analysis was carried out at a voxel-wise level 
using the co-registered images to investigate the relation-
ship between signals on mpMRI and PET SUV values. 
For this and subsequent analyses, DCE MRI parameters 
Tonset, Twashout and IRW were excluded as the Ton-
set parameter was inconsistent across the dataset and 
challenging to reproduce, while Twashout and IRW 
contained many zero value pixels as the contrast agent 
had not washed out from the entire prostate during the 
imaging timeframe. To account for an estimated 3.3 mm 
average registration uncertainty between histology and 
in vivo mpMRI and PET/CT computed in our prior study 
[15], benign voxels were defined as all voxels within the 
prostate contour which were at least 3.3 mm away from 
the tumour boundary (see Fig.  1). Additionally, small 
tumour foci with an area below that for a tumour with an 
average 5 mm diameter were excluded, corresponding to 
the upper bounds of the registration uncertainty as well 
as studies indicating the minimum tumour size that can 
be identified on mpMRI [17, 18].

Kolmogorov–Smirnov tests were performed to deter-
mine whether PET SUV and mpMRI voxel values for 
tumour and benign tissue were normally distributed, 
and whether the benign and tumour voxel values for 
each imaging parameter exhibited the same distribu-
tion. Spearman correlation coefficients were computed 
to assess the degree of correlation between the PET SUV 
and the mpMRI parameter tumour voxel values. Bon-
ferroni correction was applied to the correlation cut-off 
p-values to assess its significance.

Feature extraction and selection
Voxel-wise radiomic features were extracted from co-reg-
istered mpMRI and PET imaging data using the PyRadi-
omics Library (v.3.0.1) [19] in the Python programming 
environment (v3.8). Features were extracted from the 
PET, T2w MRI, ADC maps from DWI and DCE MRI 
parameters TTP, Ktrans and iAUGC60. These DCE MRI 
parameters were chosen based on prior studies which 

Fig. 1  Co-registered imaging data for patient 26 showing a histology and T2w MRI with tumour annotated by a pathologist, and b–d axial, coronal 
and sagittal (respectively) T2w MRI aligned with PET showing tumour voxels defined from histology outlined in white and benign voxels defined as 
being 3.3 mm beyond the tumour voxel boundary outlined in blue
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indicated they were the most predictive for tumour 
[20–22]. Radiomic features included first-order statis-
tics, shape-based and texture features based on Grey 
Level Co-occurrence Matrix (GLCM) (number of fea-
tures, n = 24), Grey Level Run Length Matrix (GLRLM) 
(n = 16), Grey Level Size Zone Matrix (GLSZM) (n = 16), 
Neighbouring Grey Tone Difference Matrix (NGTDM) 
(n = 5), Grey Level Dependence Matrix (GLDM) (n = 14). 
Radiomic features were extracted from the original 
images and after applying filters including wavelet trans-
form, gradient magnitude, Laplacian of Gaussian, 2D 
local binary pattern (LBP) and 3D LBP. A kernel size of 
9 voxels in each direction (7.2 mm in each direction) was 
chosen, as it was closest to the average tumour radius in 
the dataset when assumed to be spherical.

Patient-based clinical features including age and PSA 
level, and PET-specific features were added to the model, 
including SUVmax, SUVmean, radioactive tracer uptake 
time and tracer radioactivity. Feature reduction was per-
formed to prevent overfitting and reduce model train-
ing cost by applying the following strategies: (i) reject all 
highly correlated features, (ii) retain the top 10% of the 
features based on the ANOVA test and (iii) retain the top 
50 features based on the mean decrease in random forest 
Gini impurity.

Tumour detection and grading
Machine learning classifiers were trained to predict 
tumour location using a radial basis function kernel with 
the Python scikit-learn library (v0.24.2) [23]. Two classifi-
ers were used to compare performance, a Random Forest 
Classifier (RFC) and a Support Vector Classifier (SVC). A 
fivefold cross-validation scheme was used to optimise the 

parameters of each classifier via a halving successive grid 
search procedure. Data imbalance, caused by the number 
of benign voxels vastly surpassing the number of tumour 
voxels, was addressed through data augmentation by 
flipping images 180 degrees about the axial, sagittal and 
coronal axes. This increased the number of tumour vox-
els fourfold.

Classifiers were trained to predict tumour location 
using (1) PET images alone, (2) mpMRI data alone (T2w, 
ADC, TTP, Ktrans and iAUGC60) and (3) mpMRI and 
PET images combined. For the best performing tumour 
detection model, a second model was trained to predict 
the grade of each predicted tumour voxel, by classifying 
it as either high grade (defined as GG ≥ 3) or low grade 
(defined as GG ≤ 2). The performance of the tumour 
grade prediction model was assessed using balanced 
accuracy and weighted F1 score. Balanced accuracy was 
computed via the arithmetic mean of the sensitivity and 
specificity, measuring the combined performance of 
the tumour detection and tumour grading models. The 
weighted F1 score was calculated by taking the average 
F1 score from the high-grade and low-grade grading per-
formance, which were each weighted by the proportion 
of voxels with the corresponding grade in the patient.

Results
Correlation analysis
Kolmogorov–Smirnov tests showed the distribution 
of voxel values for each imaging parameter did not fol-
low a normal distribution for either tumour or benign 
tissue, and the distribution of all parameter values was 
significantly different between tumour and benign 
voxels. Figure  2 shows a box and whisker plot with the 

Fig. 2  Box and whisker plot showing the range of Spearman correlation coefficient values computed between PET SUV and MRI parameter voxel 
values. Outlier values were excluded, and mean data values are shown with an ‘x’
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range of Spearman correlation coefficient values across 
all patients for each mpMRI parameter compared with 
PET SUV. Additional file 1: Table S2 gives more detailed 
Spearman correlation coefficient values (mean, standard 
deviation, median, minimum and maximum) with fur-
ther separation into low-grade and high-grade tumours.

Overall, the parameter which was the most highly cor-
related with PET SUV was Ktrans (mean 0.470, range 
0.040–0.780), followed by ME (mean 0.459, range -0.060 
to 0.750) and then iAUGC60 (mean 0.445, range 0.020 
to 0.750). For high-grade tumours, Ktrans remained the 
most highly correlated parameter (mean 0.546), followed 
by iAUGC60 (mean 0.552) and then ME (mean 0.504), 
whereas for low-grade tumours, ME was the most highly 
correlated parameter with PET SUV (mean 0.410), fol-
lowed by Ktrans (mean 0.386) and then iAUGC60 (mean 
0.326). The DCE MRI parameter IRE was positively 

correlated with PET SUV for all patients, and Ve was 
positively correlated for most voxels. The DCE MRI 
parameter TTP mainly showed negative correlations 
with PET SUV tumour voxel values (mean -0.284, range 
-0.760 to 0.100), whereas T2w and ADC did not show a 
high degree of correlation with PET SUV.

Tumour detection
Table  2 details the cross-validation score (F1) for each 
tumour detection model: PET alone, mpMRI alone, and 
PET with mpMRI combined. The RFC performed better 
than the SVC for all three models, where the best per-
forming model overall was shown by the combined PET 
and mpMRI RFC, which gave a cross-validation score 
of 0.757. Each RFC model was then re-trained using a 
patient-wise leave-one-out scheme to generate tumour 
location predictions for each patient.

Table  3 details the individual patient sensitivity, 
specificity and Area Under the Receiver Operating 
Characteristic Curve (ROC-AUC) values for the three 
RFC tumour prediction models and the overall model 
performance. Patient 46 has been excluded from these 
results, as the patient’s tumour foci were smaller than 
the predetermined threshold. Figure 3 shows the plot-
ted ROC-AUC curves for the overall model perfor-
mance, which indicates the PET and mpMRI combined 
model gives a higher overall performance (sensitivity 

Table 2  Cross-validation performance of the tumour detection 
models

Model Cross-validation score (F1)

RFC SVC

PET 0.652 0.534

mpMRI 0.716 0.543

PET + mpMRI 0.757 0.565

Table 3  Patient-wise leave-one-out performance of each RFC detection model and the overall performance

Patient PET mpMRI PET + mpMRI

Sensitivity Specificity ROC-AUC​ Sensitivity Specificity ROC-AUC​ Sensitivity Specificity ROC-AUC​

11 0.937 0.531 0.681 0.937 0.531 0.885 0.937 0.533 0.878

12 0.662 0.968 0.897 0.877 0.828 0.878 0.663 0.944 0.888

20 0.899 0.555 0.882 0.316 0.823 0.719 0.846 0.745 0.861

26 0.839 0.921 0.938 0.883 0.848 0.935 0.881 0.912 0.946

34 0.865 0.629 0.809 0.150 0.873 0.755 0.798 0.690 0.801

51 0.000 1.000 0.781 0.898 0.843 0.933 0.770 0.898 0.922

53 0.975 0.614 0.892 0.970 0.732 0.931 0.829 0.795 0.899

54 0.936 0.468 0.803 0.827 0.527 0.685 0.888 0.550 0.732

55 0.735 0.666 0.808 0.784 0.818 0.876 0.880 0.726 0.869

56 0.000 1.000 0.674 0.391 0.930 0.771 0.330 0.967 0.780

58 0.849 0.836 0.902 0.730 0.930 0.908 0.833 0.876 0.928

59 0.843 0.750 0.853 0.941 0.703 0.876 0.908 0.709 0.863

60 0.032 0.922 0.636 0.000 0.968 0.806 0.006 0.933 0.607

62 0.915 0.863 0.944 0.754 0.951 0.935 0.891 0.910 0.942

64 0.638 0.817 0.832 0.890 0.739 0.878 0.863 0.768 0.872

65 0.991 0.543 0.864 0.909 0.731 0.919 0.948 0.633 0.911

66 0.623 0.957 0.949 0.515 0.899 0.869 0.614 0.940 0.919

68 0.415 0.880 0.789 0.613 0.830 0.833 0.688 0.838 0.851

Overall 0.781 0.799 0.865 0.802 0.801 0.882 0.842 0.804 0.890
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0.842, specificity 0.804, ROC-AUC 0.890) than PET 
alone (sensitivity 0.781, specificity 0.799, ROC-AUC 
0.865) or mpMRI alone (sensitivity 0.802, specificity 
0.801, ROC-AUC 0.882). However, Table  3 also shows 
that the PET alone model or the MRI alone model 
can outperform the combined model for individual 
patients.

Figure  4 shows co-registered images and the pre-
dicted tumour location (Fig.  4f ) from the best per-
forming patient 26, where the sensitivity was 0.881, 
specificity 0.912 and ROC-AUC 0.946. This patient had 
a high-grade GG3 (PIRADS 4) index lesion and a high 
PSA of 42 ng/mL. The tumour annotations from co-reg-
istered histology correspond well with the focal uptake 
shown on PSMA PET, a region of decreased ADC val-
ues, increased Ktrans values and decreased TTP val-
ues which are all typical within tumours. The predicted 
tumour location (Fig. 4f ) was consistent with the tumour 
annotations from histology across all four slides, but 
missed a small tumour foci on the third slide which had 
low-grade GG1.

Figure  5 shows co-registered images and the pre-
dicted tumour location from the worst performing 
patient 60, using the combined PET and mpMRI model, 
which gave sensitivity 0.006, specificity 0.933 and ROC-
AUC 0.607. This patient had a PSA of 6.7  ng/mL and 
a low-grade index lesion of GG2 (PIRADS 4) on the 
left posterior apex along with other tumour foci with 
GG1 which were excluded from the analysis for being 
too small. Histopathology showed this patient had 
high-grade prostatic intraepithelial neoplasia (HG-PIN) 
within the prostate which appears to show as a region 

Fig. 3  ROC curves for each of the tumour detection models. TPR True 
positive rate, FPR False positive rate

Fig. 4  Results from the best performing patient 26 showing four image slices from top to bottom (base to apex) with: a tumour annotations on 
histology, b PET and T2w MRI, c the ADC map, d Ktrans map, e TTP map and f the predicted tumour voxels in green overlaid on the T2w MRI, each 
visualised with the tumour location outline from histology
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Fig. 5  Results from the worst performing patient 60 showing three histology slices out of six, which had tumour visible, from top to bottom 
(mid-gland to apex) with: a tumour annotations on histology, b PET and T2w MRI, c the ADC map, d Ktrans map, e TTP map and f the predicted 
tumour voxels in green overlaid on the T2w MRI, each visualised with the tumour location outline from histology

Fig. 6  Results from patient 64 showing image slices top to bottom (base to apex) with a tumour annotations on histology, b PET and T2w MRI, 
c the ADC map, d Ktrans map, e TTP map and f the predicted tumour voxels in green overlaid on the T2w MRI, each visualised with the tumour 
location outline from histology
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of decreased diffusion on ADC and corresponds to a 
region of high uptake on PET images. As a result, the 
tumour location is incorrectly predicted to be within 
this region of decreased ADC and increased PET signal 
while entirely missing the small index lesion.

Results from an average performing patient (num-
ber 64) are shown in Fig.  6, where there were multi-
ple tumour foci within the prostate. This patient had 
a high-grade index lesion of GG3 (PIRADS 5) in the 
left lobe posterolaterally, while other tumour foci were 
low-grade GG1 and GG2 lesions. The combined PET 
and mpMRI model was able to identify the index lesion 
which corresponded well to an area of high uptake on 
PET, increased Ktrans and decreased TTP. The model 
was also able to predict the low-grade GG2 tumour 
foci in the anterior mid zone (shown in the last three 
slices in Fig.  6f ) but was unable to identify the lowest 
grade GG1 lesion in slices three and four. Overall, the 
tumour location is over predicted, which is reflected in 
the model sensitivity, specificity and ROC-AUC values 
of 0.863, 0.768 and 0.872.

The top 10 performing features in each of the RFC 
tumour detection models are listed in Table 4. The top 
three features in the combined model were all radiomic 
features from PET, after which the next two important 
features were radiomic features from ADC. SUVmax 
was the sixth most important feature in this model. For 
the PET alone model, the same 3D LoG radiomic fea-
ture was the most important followed by a mixture of 
clinical and PET radiomics-based features. The mpMRI 
model showed that PSA was more important than any 
of the other radiomic features, followed by ADC radi-
omic features and various TTP radiomic features from 
DCE MRI.

Tumour grading
Tumour classification was carried out for each patient, to 
classify whether a predicted tumour voxel was high grade 
or low grade, using output from the combined PET and 
mpMRI model. This tumour grading model was built 
using an RF classifier, and a patient-wise leave-one-out 
cross-validation scheme, to give the performance results 
as shown in Table 5. The overall accuracy of the tumour 
grading model ranged from 0.671 to 0.992, and low-
grade balanced accuracy was from 0.496 to 0.863, while 
high-grade balanced accuracy was 0.500 to 0.891. The 
weighted F1 score had a relatively low range from 0.000 
to 0.486 with the worst result for patient 60 who had no 
correct tumour predicted (see Fig.  5f ), while the best 
result was for patient 26 whose tumour location predic-
tion was the best from all patients (see Fig. 4f ).

Discussion
In this study we have analysed the voxel-wise relationship 
between PSMA PET  SUV and mpMRI parameters and 
developed radiomics-based machine learning models to 
predict tumour location and grade. This builds upon our 
earlier proof-of-concept study [10] which had a smaller 
cohort of nine patients imaged with a non-uniform set 
of PET tracers with only five having the Ga68-PSMA-11 
tracer. For this study, we combined imaging from these 
five patients with an additional 14 patients who all had 
PET imaging with the Ga68-PSMA-11 tracer, along with 
mpMRI according to ESUR guidelines [12], to ensure 
data consistency. Furthermore, the earlier study did not 
investigate the use of radiomics-based machine learn-
ing models to predict tumour location and grade which 
we have been able to develop here, for the future goal 

Table 4  Top 10 features in each of the tumour detection models ranked from most to least important

LoG Laplacian of Gaussian, LBP Local binary pattern, NGTDM Neighbouring Grey Tone Difference Matrix, GLDM Grey Level Dependence Matrix, LDLGLE Large 
Dependence Low Grey Level Emphasis

Rank PET model mpMRI model mpMRI + PET model

Image Feature Image Feature Image Feature

1 PET 3D LoG σ = 3 mm minimum – PSA PET 3D LoG σ = 3 mm minimum

2 – Uptake time ADC NGTDM Coarseness PET Gradient Magnitude Energy

3 PET SUVmax ADC 10th percentile PET LBP 3D m = 1 maximum

4 – PSA TTP 10th percentile ADC NGTDM Coarseness

5 PET LBP 3D m = 1 maximum ADC GLCM Correlation ADC 10th percentile

6 PET SUV ADC Entropy PET SUVmax

7 PET Gradient Magnitude Energy – Age ADC GLCM Correlation

8 – Age ADC GLDM LDLGLE ADC Entropy

9 – Injected activity TTP 90th percentile – PSA

10 – Grade Group other TTP GLDM LDLGLE PET GLDM LDLGLE
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of implementing BiRT which requires a voxel-level dose 
distribution.

Strengths of this study include the use of a highly con-
trolled dataset, the accurate co-registration of PET/CT 
and mpMRI with ground truth histology data using an 
established framework [15], and the inclusion of DCE 
MRI parameters when most other studies have incorpo-
rated only ADC and T2w imaging from mpMRI. Further-
more, the voxel-wise approach differs from most other 
studies which have used a region of interest (ROI)-based 
approach, and the step-wise development of two classi-
fiers to predict tumour location and then tumour grade is 
unique, as all other studies, according to our knowledge, 
have focussed on only one of these classification tasks.

Correlation analysis
Correlation analysis was conducted using Spearman rank 
correlation between imaging parameters rather than 
Pearson correlation, which had been used in our prior 
study [10]. The Spearman rank correlation method was 
considered more appropriate, as it did not assume the 
underlying data were normally distributed which was 
confirmed by the Kolmogorov–Smirnov test results. 
Despite the different correlation method, overall correla-
tion trends validated our earlier findings [10], confirm-
ing that perfusion-related mpMRI parameters from DCE 
MRI are most strongly correlated with PSMA PET SUV, 

whereas ADC and T2w MRI are not strongly correlated. 
Quantitative parameters Ktrans and iAUGC60, the most 
common DCE MRI biomarker used in oncology trials 
[22], and semi-quantitative parameters ME and IRE each 
showed consistently strong positive correlations with 
PSMA PET SUV, while the semi-quantitative parameter 
TTP showed a negative correlation with PSMA PET SUV. 
These findings are consistent with a study by Zhao et al. 
[20] who compared PSMA PET with DCE MRI param-
eters in 39 patients and reported malignant lesions had 
significantly shorter TTP than benign lesions. Overall 
results indicate that tumour voxels with increased PSMA 
PET tracer uptake correspond with higher levels of tissue 
perfusion, a key characteristic of tumours.

Tumour detection
Many artificial intelligence models that use radiomic 
features have been developed to predict tumour loca-
tion from prostate mpMRI, with some gaining FDA and 
CE approval [24, 25]. In contrast, relatively few studies 
have predicted tumour location or tumour grade using 
radiomic features from PET and mpMRI in combination 
[26]. This is partially due to a lack of standardisation for 
PET imaging and for computing PET radiomic features, 
as well as limited datasets available with ground truth 
histopathology for model development and validation. 
The larger voxel sizes used in PET and inherently lower 

Table 5  Overall performance of tumour grading RFC model, with patients ordered according to whether they had a low-grade (LG) or 
high-grade (HG) index lesion

Patient Grade Low-grade balanced 
accuracy

High-grade balanced 
accuracy

Overall accuracy Weighted 
F1 score

34 LG 0.767 – 0.841 0.143

51 LG 0.705 – 0.975 0.329

54 LG 0.760 – 0.802 0.201

56 LG 0.530 – 0.984 0.092

59 LG 0.844 – 0.827 0.274

60 LG 0.496 – 0.992 0.000

65 LG 0.863 0.500 0.906 0.222

66 LG 0.687 – 0.964 0.211

68 LG 0.723 – 0.892 0.143

11 HG – 0.786 0.671 0.338

12 HG – 0.636 0.969 0.100

20 HG 0.500 0.756 0.950 0.145

26 HG 0.495 0.858 0.977 0.486

53 HG 0.783 0.500 0.905 0.015

55 HG 0.758 0.504 0.905 0.114

58 HG 0.500 0.891 0.958 0.242

62 HG 0.554 0.849 0.927 0.282

64 HG 0.730 0.581 0.922 0.134
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signal-to-noise ratio when compared with mpMRI also 
provide challenges [27]. Standard PET SUV parameters, 
including SUVmax, are often used in clinical practice 
however PET radiomic features offer significant potential 
for prostate cancer applications [27] which may outper-
form standard metrics, and studies using PET radiomics 
are on the rise [28–32].

The mpMRI and PET radiomics-based models devel-
oped in this study, contribute towards this growing 
research field. The tumour prediction and tumour grad-
ing models were developed as two separate classifica-
tion tasks, with the predicted tumour voxels output by 
the tumour detection model being further classified into 
high-grade or low-grade voxels by the grading classi-
fier. A single classifier approach would have resulted in 
a multi-class classification problem, with three classes: 
benign, high-grade tumour and low-grade tumour, which 
would have given a highly imbalanced class split in the 
dataset requiring a lot of data augmentation to reduce the 
imbalance and more feature inputs. Hence the two-clas-
sifier approach was preferred as it lowered the compu-
tational cost and simplified the performance assessment 
for each task.

Results showed that an RFC model for detecting pros-
tate cancer using combined PET and mpMRI radiomic 
features performed better than RFC models developed 
using radiomic features from either modality alone. This 
was not unexpected, due to the aforementioned com-
plementary nature of the imaging modalities as demon-
strated in many non-radiomics studies and clinical trials 
[9, 33–35]. This result was also consistent with studies by 
Zamboglou et al. [36] and Spohn et al. [37] who did not 
utilise radiomics, but similarly validated imaging with 
ground truth pathology data and showed that PSMA PET 
is a valuable addition alongside mpMRI for defining the 
gross tumour volumes (GTV) for focal therapy applica-
tions, where mpMRI is more likely to underestimate 
tumour volume than PSMA PET [36, 37].

The top 10 features for each model in our study dem-
onstrated the superior performance of PET radiomic 
features for tumour detection, compared to mpMRI radi-
omic features, and their better predictive performance 
than the commonly used metric SUVmax. When assess-
ing the most predictive features from mpMRI, the ADC 
map ranked the highest in the combined and the mpMRI 
alone models, with the NGTDM coarseness texture fea-
ture being the top-ranking in both followed by the 10th 
percentile ADC value. The only other mpMRI parameter 
with radiomic features in the top 10 list for the mpMRI 
alone model was the semi-quantitative DCE MRI param-
eter TTP, demonstrating the importance of perfusion 
imaging for detecting tumours especially when PSMA 
PET is unavailable.

Tumour grading
The tumour grading model in our study showed prom-
ising results, with high overall accuracy values across 
patients. The performance of the grading model was lim-
ited by the tumour detection model however, because 
any voxel with undetected tumour would automatically 
be considered benign and the tumour grading model 
would not classify them into high grade or low grade at 
all. Therefore, further development of these models with 
larger datasets would be required to improve individual 
patient performance.

Several studies aiming to assess tumour grade using 
PET and mpMRI data can be compared with these find-
ings. Domachevsky et  al. [38] previously analysed data 
from 22 patients to characterise prostate cancer and cell 
density using Ga68-PSMA-PET/MRI data. While they 
did not extract radiomic features, they showed that PET 
SUVmax, ADCmin and ADCmean were distinct bio-
markers for differentiating between tumours with Glea-
son Score ≥ 7 and benign tissue. In another study by Papp 
et al. [39], data from 52 patients were used to investigate 
the diagnostic performance of RFC classifiers with radi-
omic features from PSMA PET, ADC and T2w MRI to 
predict low-risk versus high-risk lesions. Their radiom-
ics-based RFC model was better for predicting lesion risk 
than SUVmax (AUC was 0.86 versus 0.80). Their feature 
ranking analysis similarly showed that PSMA radiomic 
features were the most important, compared to ADC and 
T2w MRI features. A study by Solari et al. [29] reported 
the complementary value of PSMA-PET and ADC radi-
omics. With a retrospective cohort of 101 patients, they 
extracted radiomic features from the entire prostate 
gland and developed a series of SVM models using sin-
gle modality and combined modalities to predict Gleason 
Score. Models which combined PET and ADC radiomic 
features outperformed single modality radiomics-based 
models and other combined modality radiomic-based 
models (PET + T1w and PET + T2w) to give balanced 
accuracy 82% ± 5%. In a recent study by Feliciani et  al. 
[31], preliminary results were shown using radiomic fea-
tures from PSMA PET and ADC maps to predict ISUP 
grade obtained from ground truth histology, which 
showed the complementary nature of PET and ADC 
radiomic features. In contrast to our study, none of these 
studies incorporated perfusion parameters from DCE 
MRI and they all had the tumour location delineated 
manually prior to development of their tumour grade 
model.

There are limitations to our study, including the 
small dataset of 19 patients, with imaging per-
formed on two different MRI scanners and five dif-
ferent PET/CT scanners (Additional file  1: Table  S1). 
Fourteen of 19 PET scans in the dataset were from 
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two GE scanner types, which used the same VPFXS 
reconstruction method and PET voxel size of 
2.86  mm × 2.86  mm × 3.27  mm; however, the time 
of bed positions varied between patients from 2 to 
4 min. The remaining five patients in the dataset were 
scanned with three different Siemens scanner types 
and used either a point spread function (PSF) or and 
ordered-subset expectation maximisation (OSEM) 
reconstruction method with varying sized Gauss-
ian filter kernels, differing bed position times rang-
ing from 2 to 3.5 min and all utilised a larger in-plane 
resolution than GE scanner PET images. Each of these 
acquisition parameters can impact the partial volume 
effects in the PET images; however, in this study, it was 
not possible to account for all these variations and we 
assumed the images and SUV values could be directly 
compared. All PSMA PET and mpMRI parameter 
maps were resampled into 0.8-mm isotropic voxels to 
enable accurate co-registration with histology, which 
inherently assumed that resampling did not result in 
information loss or negatively impact radiomic fea-
ture extraction. Further studies would be required to 
determine how best to account for the partial volume 
effects caused by differing PET acquisition parame-
ters for optimal utilisation in radiomic-based machine 
learning models.

Additional limitations include that histology data 
were not obtained from prostate tissue at the apex or 
the base, due to standard histology processing requir-
ing these sections to be cut in a parasagittal manner 
which meant they could not be co-registered with 
imaging data. This means the spatial coverage of the 
histology used for ground truth validation varied 
between patients, with a median 5 histology slices cov-
ering 2  cm of tissue and ranging from a minimum 3 
slices (covering 1 cm of tissue) and maximum 8 slices 
(covering 3.5  cm). Hence the predictive models may 
not be as accurate at the apex and base, as they are at 
the mid-gland. Only a selection of perfusion parame-
ters from DCE MRI was used to develop the classifica-
tion models; however, incorporating other parameters, 
such as Ve, may have improved accuracy. In addi-
tion, the prostate was not separated into peripheral 
and transitional zones, which would have allowed the 
development of zone-specific models as the tissue dif-
fers between zones.

There are no standardised rules for choosing ker-
nel size, so a large kernel of 9 voxels in each direc-
tion was chosen to match the average tumour size 
on PET imaging; however, a different kernel size may 
have given better results and improved the detection 
of small tumours. Studies by Yi et  al. [40] and Zam-
boglou et  al. [32] may be valuable to consider here, 

as they have both recently demonstrated that PSMA 
PET radiomic features can detect invisible tumour 
lesions with high accuracy. Both researchers extracted 
radiomic features within the whole or half gland, but 
could not indicate where these invisible lesions were 
located, an important requirement for BiRT treatment 
planning.

Conclusions
Machine learning models which utilise radiomic fea-
tures from both PSMA PET and mpMRI in combina-
tion are better for predicting tumour location than 
using radiomic features from either modality alone. 
Model predictions could be used to inform voxel-wise 
dose distributions for biologically targeted radiation 
therapy treatment planning. Further work is warranted 
to externally validate such models and to improve their 
accuracy for classifying predicted tumour voxels into 
low-grade or high-grade disease to inform appropriate 
treatment strategies.
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