
Selection Bias

Identification and Mitigation
With No Ground Truth Information

Katharina Dost

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy in Computer Science,

The University of Auckland, 2022.

Abstract

Machine Learning should be able to support decision-making by focusing
on purely logical conclusions based on historical data. If this data is biased,
however, that bias will be transferred to the model and remains undetected
as the performance is validated on a test set drawn from the same biased
distribution. Existing strategies for bias identification and mitigation gen-
erally rely on some sort of knowledge of the bias or the ground truth. This
reliance is problematic, particularly if the user is not aware of the bias, no
ground truth knowledge is available, or no concrete target task is defined
yet, e.g., during data gathering.

We argue that some indication of future problems is present in the his-
torical dataset itself. Extracting it as early as during data gathering can
help correct the flaws on-the-fly or create awareness in researchers working
with the dataset.

In this thesis, we aim to identify selection biases on the historical data
alone when no ground-truth information is available. Selection biases stem
from a non-uniform sampling process. To mitigate them, we generate ad-
ditional data points that bridge the gap between sample and ground-truth
distribution. Pioneering this research topic, we suggest three algorithms built
on the assumption that the distribution of sufficiently large and unbiased
datasets should be smooth, without any sudden drops in density.

Extensive experiments and discussions highlight the need for such data
analysis tools and illustrate that each of our methods has its own merits.
Overall, we contribute to a better understanding of the data we use and trust
and challenge existing procedures in machine learning that accept flawed
data as given and treat symptoms rather than causes.

i

Acknowledgements

First and foremost, I would like to thank my advisors Dr. Jörg Wicker and
Dr. Patricia Riddle. You found a myriad of ways to let me experience much
more than “just” a PhD and helped me grow not only as a researcher but
also as a person. I could not have found any better guides, cheerleaders,
or role models. My gratitude also goes to the School of Computer Science
at the University of Auckland for granting me the opportunity to pursue
this degree and to my research group members and peers for their warm
friendship, collaboration, and swarm intelligence, particularly Luke Chang,
Jonathan Kim, Zac Pullar-Strecker, Johnny Zhu, Liam Brydon, Dr. Ioannis
Ziogas, Olivier Graffeuille, and Mitchell Rogers.

On a more personal note, I would like to thank my three parents for,
apart from the genes I received, their constant support and love during
those challenging times: My father Thomas for enabling this PhD and for
reminding me countless times of the infinite number of gray nuances in
between black and white, my mother Ursula for her education paradigm
that everything is debatable if only I could bring a strong argument, and
my father Matthias for his unbreakable belief in me and the feeling that
there is always a safe harbor I can sail home to. I am also deeply grateful
for my partner Behzad, my camel. You would have carried me all the way
through the desert and still offered me your last sip of water. Special thanks
to my friends Steffi, Frauke, and Sabine for reserving my place in their lives
despite the distance and my long absence. I could never replace you.

Last but not least, I would like to thank the examiners of this thesis for
sacrificing their time to provide valuable feedback and guidance.

ii

Contents

Statements of Contribution vi

1 Introduction 1
1.1 Research Problem . 5
1.2 Proposed Solution . 6
1.3 Contributions . 7
1.4 Thesis Overview . 9

2 Preliminaries 11
2.1 Probability Theory . 11
2.2 Density Estimation . 19
2.3 Data Transformation . 25
2.4 Curve Fitting . 27

3 Related Research 30
3.1 Transfer Learning . 33
3.2 Domain Adaptation . 35
3.3 Dataset Shift . 36
3.4 Covariate Shift Correction 37
3.5 Sample Selection Bias . 39
3.6 Imbalanced Data . 42
3.7 Domain Generalization . 43
3.8 Fairness in Machine Learning 43
3.9 Dataset Shift Detection . 45

iii

4 Single-Cluster Selection Bias Identification and Mit-
igation 47
4.1 Introduction . 47
4.2 Problem Statement . 49
4.3 Proposed Method . 50

4.3.1 Transformation 53
4.3.2 Density Representations 54
4.3.3 Distribution Fitting 55
4.3.4 Generation . 56
4.3.5 Confidence . 58

4.4 Experiments and Discussion 59
4.4.1 Synthetic Data 59
4.4.2 Real-World Data 62
4.4.3 Use-Case: Cardiovascular Disease 64
4.4.4 Limitations . 65

4.5 Conclusion . 66

5 Multi-Cluster Selection Bias Identification and Miti-
gation 69
5.1 Introduction . 69
5.2 Proposed Method . 71

5.2.1 Initialization . 72
5.2.2 Identifying Valid Clusters 74
5.2.3 Extending Imitate: From Grid to Parameterized

Gaussians . 76
5.2.4 Extending Imitate: Automated Grid Selection . 78
5.2.5 Growing Clusters 79
5.2.6 Merging . 81
5.2.7 Data Augmentation 83
5.2.8 Assumptions and Expectations 83

5.3 Experiments and Discussion 84
5.3.1 Experimental Setup 84
5.3.2 Results . 86
5.3.3 Limitations . 90

5.4 Conclusion . 90

iv

6 An Application: Assessing and Preventing Bias in
Growing Chemical Databases 92
6.1 Introduction . 92
6.2 Problem Statement . 95
6.3 Related Research in Chemistry 96

6.3.1 Active Learning in Chemistry 96
6.3.2 Bias in the Chemical Compound Space 97

6.4 Proposed Method . 98
6.4.1 Data Transformation 100
6.4.2 Bias Identification 100
6.4.3 Extending Imitate: Boundaries 101
6.4.4 Identifying Compounds to Fill in the Gap 102

6.5 Experiments and Discussion 103
6.5.1 Experimental Setup 104
6.5.2 Results and Discussion 106

6.6 Conclusion . 116

7 Conclusion 118
7.1 Contributions . 119
7.2 Limitations . 120
7.3 Outlook . 121

Bibliography 124

v

1 Introduction

Throughout the years, machine learning and data mining have gained influ-
ence in various applications. To overcome the limitations of our own knowl-
edge and experience, these disciplines learn concepts and patterns from his-
torical data and thereby discover latent knowledge. In contrast to a human
decision-maker, machine learning should be able to overcome conscious and
unconscious human emotions, prejudices, and biases and discover patterns
that are well supported by a large body of evidence. As such, it has been
applied to domains with large amounts of data that are no longer humanly
processible and require us to rely, to a certain degree, on the models trained
in automated settings, e.g., credit scoring [63], medical diagnoses [107], or
crime risk assessment [56].

After passing thorough tests on historical data (training data), the
trained concepts are transferred to fresh, previously unseen data (target
data) under the expectation that they hold equally well and provide us with
new insights. Chiang and Yin [29] have found in a study that people, when
presented with new data similar to the historical data they (and the model)
experienced during training, tend to trust their own intuition rather than
the model. However, when presented with dissimilar new data, people tend
to rely on the model predictions when making decisions.

This reliance is risky since, by default, machine learning follows the i.i.d.
(independent and identically distributed) paradigm: If a training dataset is
distributed as the target data and independent of it, a model can train on

1

the historical data and be expected to generalize well. However, if the i.i.d.
assumption is violated, there is no guarantee that the predictions output by
the model will be even remotely correct.

We can observe a similar effect in humans. For example, one might be
familiar with housing prices in one’s hometown and could estimate a prop-
erty’s value given simple statistics there, but could only make an educated
guess for houses in other parts of the world [29]. Although it should there-
fore be intuitive that a model cannot be expected to generalize to unseen
domains, in machine learning, these effects are largely overlooked since the
model testing is carried out on the historical data only [117].

While overlooked performance drops of machine learning models due to
distributional changes cause inconveniences or monetary setbacks in some
applications, they have severe ethical implications in others. In recent years,
researchers found multiple widely established machine learning algorithms
to behave unfairly due to training data issues [97]. One of the most promi-
nent cases is the COMPAS (Correctional Offender Management Profiling for
Alternative Sanctions) algorithm that predicts the likelihood of recidivism of
defendants in U.S. courts. Here, an imbalance in data availability caused the
model to develop racist behavior against black defendants [4, 40]. Another
prominent case is Amazon’s hiring algorithm that, trained on historical data
in the male-dominated tech field, learned to discriminate against women for
technical jobs [34].

The examples above highlight that flaws in the training data cannot be
considered to be isolated problems – they can cause ripple effects reaching
substantially further than a suboptimal performance of a single model. In
fact, when used for decision-making, the trained models influence and shape
the data to be gathered in the future. For example, if the hiring algorithm
continued to choose men for technical jobs, the gender imbalance in the
dataset would deteriorate, and the algorithm, when retrained, would dis-
criminate even worse. Additionally, more subtle effects, such as discourage-
ment of women due to the rejection and simultaneous confirmation of men,
can influence, even if only slightly, gender roles on a global scale, which can
then impact further parts of our lives. To avoid these unexpected effects, it

2

Shared Domain Different Domains

Training Data Target Data

Partially Observed Domain

Figure 1.1: Distinction of different types of biases between training and target data.
Darker hues indicate higher densities.

is crucial to understand the historical datasets together with their flaws in
order to create responsible and reliable models.

Whenever the training distribution does not match the target distribu-
tion, we speak of a bias. A bias is always relative to a reference distribution.
There is a plethora of different types of and reasons for biases in datasets
[97]. We distinguish three major issues that arise frequently (see Figure 1.1
for a visualization):

1. Although training and target data might stem from the same domain,
their distributions might differ, and the model will focus on the wrong
parts of the domain (Figure 1.1 left). An example of this would be
political polls where the availability of participants dictates the distri-
bution [62].

2. The model might be applied to at least a partially different domain
(Figure 1.1 center), as discussed in the property price scenario. In this
case, the model predictions might be entirely incorrect. Another exam-
ple would be clinical trials [107] where the data is collected from local
volunteers that might only represent part of the population. However,
the resulting model will be used to predict reactions to treatments or
drugs for all future patients.

3. A special case of the previous one arises if the observed domain is a
subset of the target domain (Figure 1.1 right). This type of bias occurs
frequently, for example, if the volunteers in clinical studies are sourced

3

from university students or if groups of people are excluded due to
health concerns.

In all three cases, biases in the training data are induced into the trained
model and can harm its performance on the target data [24]. Knowledge of
the bias early in the development process can help improve the data quality
and mitigate its effect on the learned model.

Existing bias detection and mitigation strategies require the user to have
a certain knowledge of the target domain, such as a representative sample.
The bias can then be identified by comparing both domains. By up weighting
underrepresented data points in the historical dataset and down weighting
overrepresented ones [14], the model training can be calibrated accordingly.
Similarly, the data points can be re-sampled to match the target distribution
[158]. This strategy is suitable to tackle the first issue mentioned above
(Figure 1.1 left). However, since this approach is based on weighting, it
requires the historical data to cover the entire target domain. Suppose, for
example, a study on cardiovascular disease was restricted to participants
between the age 40 and 65 (see Section 4.4 for an extended discussion of this
example). However, a trained model assessing the risk of an individual falling
ill should be applied to all patients. In this case, weighting strategies will
not be sufficient to generalize to other age groups. Generally, if the second
or third issue mentioned above arises, existing bias mitigation strategies will
not be sufficient.

Comparing the historical data with the target data can help identify
distribution mismatches. However, a sample to compare with might not be
available as a clear target is not always explicitly defined. For example,
consider a fisherperson that wishes to learn about a lake’s population. No
information on the target distribution is available, which is why the fisher-
person attempts the data gathering in the first place. She throws her fishing
net day by day and lists the fish she catches. Depending on the fishing net
she uses, small fish might be able to escape since it is too coarse, whereas
large fish might be strong enough to set themselves free. This induces a bias
that can neither be quantified nor mitigated using existing techniques since
no target information is available. Nonetheless, creating awareness early on

4

is crucial since the fisherperson could have replaced her net with a larger or
smaller one if she had recognized the bias she was creating.

While the existing literature attempts to correct for biases in the model
during training, we argue that some information on problems in data collec-
tion is present in the biased dataset itself. Extracting it early on can help
support the data-gathering process by understanding flaws and shortcomings
in the dataset and allowing for correction with subsequent measurements.
That would grant the researcher the opportunity to improve her data quality
on-the-fly and avoid costly re-measurements as well as fragile bias mitigation
techniques later on. Hence, we aim to identify and mitigate biases when no
target information is available.

1.1 Research Problem

Given only a potentially biased dataset and no further information, we as-
sume that there exists a “correct” distribution, a ground truth. Connecting
to the previously introduced example of the fisherperson, we consider the
ground truth to be the true distribution of fish in a lake. This distribution
could be represented by a random sample, such as all the fish inhabiting the
lake. Both the ground-truth distribution and sample are unknown. The ob-
served dataset is a (biased) subset of this ground-truth sample, such as those
fish exhibiting a certain size that were caught by the fisherperson. Our task
is to identify potential biases, i.e., to tell the fisherperson that some fish are
missing and which ones they are. This matches the right situation in Figure
1.1 and leads to the following (informal) research problem:

Given only a potentially biased dataset and no information on
the ground truth, decide whether a bias with respect to the
ground truth is present. If it is, locate it and suggest a way
to mitigate it.

Note that this problem formulation matches that of Sample Selection Bias
[137] with the difference that, in our case, no ground truth information is
available. To the best of our knowledge, we are the first to state and attempt
to solve this problem under the assumption that no ground truth or target

5

(a) Input: Potentially
biased dataset

Fish Length (in cm)

F
is

h
H

ei
gh

t
(i

n
cm

)

(b) Identify under-
represented areas

Fish Length (in cm)

F
is

h
H

ei
gh

t
(i

n
cm

)

(c) Generate data points
to fill in the gap

Fish Length (in cm)

F
is

h
H

ei
gh

t
(i

n
cm

)

Figure 1.2: We simulate the scenario that a fisherperson is using a coarse net small fish
can escape by removing all fish with a maximum diameter below 3cm from the Fish
Market dataset [115]. Given a potentially biased set of fish measurements (a, blue), our
goal is to identify the fish that did not get caught (b, gold) and generate additional data
points that mitigate the bias (c, gold).

information is available. Chapter 3 provides an overview of related problems
and highlights their different assumptions.

1.2 Proposed Solution

Aiming to identify a bias without any information on the ground truth,
as stated in our research problem, we essentially need to “guess” the true
distribution. This is a challenging problem that will likely be infeasible to
achieve for all datasets. However, there are cases in which it is possible. To
improve our chances, we make one fundamental assumption: We expect an
unbiased dataset, i.e., the ground truth sample, to be smoothly distributed
and attribute sudden drops in density to biases, such as the age thresholds
in the cardiovascular disease example. Particularly for large datasets, this
is well justified: The central limit theorem states that the deviation of the
measurements from the true mean converges to a Gaussian with the dataset
size. Hence we can expect it to be reasonably smooth unless some factors
prevent this normal distribution, i.e., biases. We provide a more formal de-
scription of the central limit theorem and our expectations for data samples
in Section 2.1.

6

Based on the distribution of the observed dataset, our central idea is to
fit a smooth distribution. Data points can then be generated to fill in the gap
between observed and fitted distribution. If the artificial points focus on cer-
tain areas, this could indicate a bias where these areas are underrepresented
in the sample.

While we cannot expect these areas always to signal a true bias, they
can create awareness of potential weaknesses of the dataset. A researcher
can verify these areas by using additional data from other sources or domain
knowledge. If a bias is identified, the researcher can either extend her data-
gathering process or add the generated data to the model training procedure.

Figure 1.2 shows an example that reflects the real-world application:
Given a potentially biased dataset, we would like to know where the bias is
and then find a way to correct it. Note that in order to solve this problem in
practice, we swap the last two steps, as described above. This swap brings
computational advantages we exploit in our models but ultimately results
in the same information.

1.3 Contributions

Using the previously introduced proposed approach, we make the following
contributions to the research community:

1. We establish the novel problem of selection bias identification and
mitigation under the assumption that no ground truth information is
available. Designing our problem in a completely uninformed way is
advantageous and allows us to challenge existing machine-learning pro-
cedures that accept flawed data as given and treat symptoms rather
than causes: A solution can be applied at a very early stage of the
data mining process. In particular, it can be applied during the data-
gathering phase when it is still possible to improve the data quality
instead of accepting it as an immutable fact. Furthermore, it is appli-
cable later as a preprocessing step that helps prevent an induced bias
in a model.

7

2. As a first attempt to solve the stated problem, we assume that
the ground truth can be modeled as one multivariate Gaussian per
class. Filling in the gap to the ground truth, we improve a model
trained on the dataset without interfering with the algorithm or the
loss function to be optimized. This constitutes a universally applica-
ble preprocessing method that can be integrated into every machine
learning pipeline. We implement this idea as the Imitate (Identify
and MITigATE Selection Bias) algorithm that aims to “imitate” the
ground-truth data in order to reveal a potential bias and mitigate it
to enable the training of an unbiased model.

3. To expand Imitate’s scope, we model the ground truth as a mixture
of potentially overlapping multivariate Gaussians per class. This as-
sumption drastically increases the range of datasets and distributions
that can be modeled, including multi-cluster settings. As an imple-
mentation, we propose Mimic (Multi-IMItate Bias Correction), which
repeatedly uses Imitate to first find clusters and then identify poten-
tial biases.

4. We showcase the usefulness of our proposed methods and the inter-
pretability of results in the context of chemical compound datasets. To
deal with the unique challenges of these datasets, we propose Can-
cels (CounterActiNg Compound spEciaLization biaS), a specialized
version of the Imitate algorithm. Using Cancels, we demonstrate
that when adding bias-mitigating compounds from a pool of candi-
dates to a dataset, the predictive performance of a trained model ex-
ceeds that of a model trained either on the original dataset or under
the addition of the entire pool. This highlights the importance and
strength of our bias mitigation techniques.

5. In extensive sets of experiments, we show that each of the pro-
posed methods has its own merits and leads to interpretable results
that can help a researcher understand her data better. Easy-to-use
Python+sklearn [110] implementations of all methods are provided
in the PyPI package imitatebias. Cancels will additionally be inte-

8

https://pypi.org/project/imitatebias/

grated into the enviPath website1, where users can trial their datasets
freely via a web interface.

The outcomes of this research have been presented in prestigious peer-
reviewed international conferences and journals. In particular, Imitate was
presented at the International Conference on Data Mining (ICDM) 2020 [39],
Mimic was presented at the Pacific-Asia Conference on Knowledge Discov-
ery and Data Mining (PAKDD) 2022 [37]. Cancels has been submitted to
the Journal of Cheminformatics [38] and is awaiting its review.

1.4 Thesis Overview

The remainder of this work is organized in the following chapters.
Chapter 2 provides preliminary explanations on concepts relevant to

the methods discussed in the following chapters and subsequently considered
known.

Chapter 3 reviews related research on distribution shifts between histor-
ical and target data dealing with different kinds of transfer between learning
tasks and/or domains. We highlight the differences and similarities to our
problem formulation.

Chapter 4 formalizes the problem statement, motivates and introduces
the Imitate algorithm and thoroughly investigates its performance and lim-
itations. Imitate aims to “imitate” the ground-truth data in order to reveal
a potential bias and mitigate it to enable the training of an unbiased model.
It assumes a multivariate Gaussian ground truth.

Chapter 5 extends the Imitate algorithm for a more general setting
and proposes the Mimic algorithm. Mimic repeatedly uses Imitate to
model the ground truth as a mixture of potentially overlapping multivariate
Gaussians per class. A corresponding set of experiments highlights strengths
and limitations.

Chapter 6 provides the Cancels algorithm, a specialization of Imi-
tate to the chemical compound space. This chapter ties the thesis together

1enviPath: https://envipath.org/

9

https://envipath.org/

as it demonstrates our methods’ usefulness in the wild and works out a real-
world use case and in-depth analysis of the insights that can be gained using
Cancels.

Chapter 7 concludes the thesis. Here, we discuss the remaining limita-
tions and avenues to be explored in future research.

10

2 Preliminaries

This chapter ensures that the reader may find all necessary definitions and
explanations relevant to the thesis. Since it does not contain novel ideas, it
may be skipped and used as a look-up. However, for the interested reader,
we provide an introduction to probability theory in Section 2.1. The prob-
ability theory section lays the foundation, covers all aspects of Gaussian
distributions that are essential here, and discusses the fate of growing sam-
ple sizes using convergence theorems. Section 2.2 provides tools to estimate
the density of datasets. Section 2.3 introduces data transformation tech-
niques that transform a dataset into a new space with beneficial properties.
Lastly, Section 2.4 offers ways to express relationships within a dataset by
fitting suitable curves.

2.1 Probability Theory

We aim to investigate a potentially biased dataset’s distribution and thereby
identify biases and ways to mitigate them. A basic understanding of proba-
bility theory and distributions is required as a foundation, and we provide
all the necessary concepts here. See Zwillinger [165, pp. 509–511] for details
on these concepts. Particularly Gaussian distributions are essential to our
work and are discussed subsequently. Lastly, we present three fundamen-
tal theorems in probability theory that will be required: the law of total
probability, the law of large numbers, and the central limit theorem.

11

0 5 10 15

Fish Length (in cm)

0

1

2

PDF f(x)

0 5 10 15

Fish Length (in cm)

CDF F (x)

0 5 10 15

Fish Length (in cm)

xf(x)

Figure 2.1: Visualizations for the running example in Section 2.1 – ‘Foundations’: Suppose
a lake contains no fish below 5 cm or above 10 cm length, but all lengths within the interval
are equally likely. Then the probability density function (PDF) f is given on the left, the
cumulative distribution function (CDF) in the center, and xf(x), the integral of which
yields the expectation, on the right.

Foundations

For an experiment, each possible outcome corresponds to a unique element of
a set, the sample space Ω. For example, the experiment could be catching fish
in a lake and measuring their length, as discussed in the introduction. The
sample space is then the set of fish swimming in the lake. A probability space
consists of three parts: a sample space, a set of events A, and a probability
measure P able to assign probabilities to each of the events within the sample
space. A random variable formally is a function X : Ω → R that maps any
element of the sample space to a real number, such as a caught fish to
its length. Since the sample space is a part of a probability space, we can
measure probabilities that the random variable takes on certain values.

If existent, a probability density function (PDF) for X is a non-negative,
integrable function f such that

P[X ∈ A] =
∫

A
f(x) dx and

∫
f(x) dx = 1

for any event A ∈ A. Suppose, for the sake of simplicity, there cannot be
any fish of length below 5 cm or above 10 cm in a lake, but any length within
this interval is equally likely. Then, the corresponding probability density
function is f(x) = 1/(10 − 5) = 1/5 for x ∈ [5 cm, 10 cm], and 0 otherwise.
This way, f integrates to 1 and assigns equal likelihoods to all fish lengths
within the interval. See Figure 2.1 (left) for a visualization.

12

The cumulative distribution function (CDF) essentially measures the
area under the PDF below a threshold and is formally defined as

F (x) = P[X ≤ x] =
∫ x

−∞
f(t) dt.

Since the probability density function integrates to 1, we can conclude that
F (−∞) = 0 and F (∞) = 1. In the fish example, we have F (x) = 0 for
x < 5 cm, F (x) = (x− 5)/(10− 5) for 5 cm ≤ x ≤ 10 cm, and F (x) = 1 for
x > 10 cm. See Figure 2.1 (center) for a visualization. The probability that
the output of the random variable lies between a and b is then

P[a < X ≤ b] = P[X ≤ b]− P[X ≤ a] = F (b)− F (a).

Hence, the probability that a fish is 7 to 8 cm long is P[7 cm < X ≤ 8 cm] =
F (8)− F (7) = 3/5− 2/5 = 1/5. Since [7 cm, 8 cm] is exactly 1/5 of the full
interval [5 cm, 10 cm] and all lengths are equally likely, this is what we would
expect intuitively.

The expectation quantifies the “best guess” for the outcome of a random
variable X and is formally defined as

E[X] =
∫ ∞

−∞
xf(x) dx.

Suppose we were to catch much fish from the lake and average their sizes.
In that case, we would obtain the expectation (see the law of large numbers
below for the mathematical foundation of this statement). Since we have
an explicit PDF, we can alternatively calculate the expectation in the fish
example, i.e., E[X] = 7.5 cm. See Figure 2.1 (right) for a visualization of the
integrand.

Of course, when catching fish, most fish will not be exactly 7.5 cm
long. The standard deviation σ quantifies the dispersion of the caught fish’s
lengths around the expectation. In other words, it measures the expected
deviation from the expected value and is defined as

σ =
√
E[(X − E[X])2] =

√
E[X2]− (E[X])2.

To avoid the square root, researchers often use the variance instead, which
is exactly σ2.

13

Two random variables X and Y are independent if knowing about one
of their realizations does not inform about the other, i.e., if

P[X ≤ x ∩ Y ≤ y] = P[X ≤ x] · P[Y ≤ y] for all x, y.

This assumption is violated, for example, in time series data where observa-
tions depend on previous observations. One essential assumption in machine
learning is independent and identically distributed (i.i.d.) random variables.
That is, X and Y are independent as defined previously and share the same
PDF and CDF.

If X and Y were dependent, the above equation would not hold. Instead,
we would express the joint probability via conditional probabilities:

P[X ≤ x ∩ Y ≤ y] = P[X ≤ x | Y ≤ y] · P[Y ≤ y]
= P[Y ≤ y | X ≤ x] · P[X ≤ x] for all x, y

because the intersection of events is symmetric. Here, P[X ≤ x | Y ≤ y] is
the probability that X ≤ x if we already know that Y ≤ y. Since the events
are dependent, the information about Y influences the probability for X.

A direct consequence of the symmetry of the intersection (as in the above
equation) is Bayes’ theorem:

P[A | B] = P[B | A]P[A]
P[B] for all events A, B.

Normal/Gaussian Distribution

The normal distribution or Gaussian distribution is a continuous probability
distribution for a 1-dimensional real-valued random variable X. Its proba-
bility density function is given by

f(x) = 1
σ
√

2π
exp

[
−1

2

(
x− µ

σ

)2
]

(2.1)

for x ∈ R, where µ = E[X] ∈ R denotes the mean of the distribution (or
the expectation of X), and σ ∈ R its standard deviation [113]. In short, we
write X ∼ N (µ, σ2) to indicate that X is normally distributed with these

14

(a) 1D Gaussian

−5 0 5

x

0.0

0.2

0.4

0.6

0.8
f

(x
)

N (−2, 0.2)

N (0, 1)

N (2, 5)

(b) 2D Gaussian (c) 2D Gaussian Mixture

Figure 2.2: Examples of Gaussian probability density functions. Left: different 1D dis-
tributions; Center: the 2D distribution N

(
[0

1],
[1 −0.5

−0.5 1.5
])

; Right: 2D Mixture of the
previous distribution and N

([−1
−1
]
,
[1.5 −0.5

−0.5 1
])

.

parameters. See Figure 2.2a for an overview of how the parameters can shape
the density function.

The univariate Gaussian can be generalized to a multivariate Gaussian
distribution for a multivariate random variable. For d dimensions, the mean
µ ∈ Rd is a vector and the variance σ2 is replaced by the covariance matrix
Σ ∈ Rd×d. The covariance matrix for a d-dimensional random variable X =
[X1, . . . , Xd] can be calculated as Σi,j = E[(Xi−µi)(Xj−µj)] = Cov[Xi, Xj],
which makes it symmetric by definition. If the covariance matrix is positive-
definite (that is, symmetric and all eigenvalues are real and positive), the
multivariate Gaussian distribution has density

f(x1, . . . , xd) = 1√
det Σ · (2π)d

exp
[
−1

2(x− µ)TΣ−1(x− µ)
]

(2.2)

for xi ∈ R. Here, det Σ is the determinant of Σ [165, p. 527]. Figure 2.2b
shows an example of a 2-dimensional Gaussian probability density.

The condition of a positive-definite covariance matrix is particularly help-
ful when generating synthetic data drawn from random multivariate Gaus-
sian distributions because of the following theorem [165, p. 93].

Theorem (Cholesky Decomposition). Let A be a symmetric
positive-definite matrix. Then, there exists a factorization

A = LLT ,

15

µ− 3σ µ µ+ 3σ

0.0

0.1

0.2

0.3

0.4

f
(x

)

Gaussian
(with truncation markers)

µ− 3σ µ µ+ 3σ

Truncated Gaussian

Figure 2.3: A Gaussian (left) is truncated at ±3σ (right).

where L is a real lower triangular matrix with positive entries on
its diagonal.

Hence, instead of generating covariance matrices and subsequently checking
if the positive-definite condition holds, we generate L and calculate the cor-
responding covariance matrix. We use this method in Section 5.3 to generate
multivariate synthetic Gaussians.

To expand the scope of what shapes multivariate Gaussians can model,
one can consider Gaussian mixture models (GMMs) [113]. Here, multiple
Gaussians are linearly combined to model new shapes. See Figure 2.2c for
an example of a mixture with 2 Gaussians. The density of the mixture can
be expressed as

fmix(x) =
k∑

i=0
cifi(x) for parameters ci ∈ R with

k∑
i=0

ci = 1.

Here, k is the number of individual Gaussians with density fi. This defi-
nition translates directly to the multivariate case, where x and the fi are
multivariate.

For normal distributions, f(x) > 0 for all x ∈ R. This can be incon-
venient when dealing with multiple Gaussian clusters and assigning data
points to clusters based on their distribution. As a compromise, we consider
truncated Gaussians for a cleaner cut between clusters. To obtain a trun-
cated PDF, the PDF of a regular Gaussian is chopped from below, above, or
both. Expressing the general truncated PDF explicitly is substantially more
complex than the regular Gaussian (see Burkardt [22]); however, we only

16

remove ≈ 0.2% of the area under the PDF by cutting at µ± 3σ. Therefore,
our truncated PDF of N (µ, σ2) with PDF f can be approximated by

ftrunc(x) ≈

0, if x < µ− 3σ.

1
0.998f(x), if x ∈ [µ− 3σ, µ + 3σ].

0, if x > µ + 3σ.

Figure 2.3 illustrates this procedure. As we can see, the overall PDF changes
very little; however, truncating the Gaussians brings an advantage: We can
now meaningfully distinguish between areas in the space that are “covered”
by the distribution and others that are “untouched”. The support of a func-
tion is defined as the subset of the space that is mapped to non-zero values. In
the case of the original Gaussian PDF, the support would be the entire space
R. For the truncated Gaussian, however, it is the interval [µ − 3σ, µ + 3σ],
which grants us meaningful information on which parts of the space the den-
sity focuses. Note that although truncated Gaussians can be advantageous,
we actively create false distributions here and, in the cluster example, mis-
assignments of points to clusters.

Law of Total Probability

The law of total probability is an elemental result in probability theory,
according to which the probability of an event can be calculated via its
partial probabilities conditioned on a partition of the sample space [113].

Theorem (Law of Total Probability). Let B1, . . . , Bn be a par-
tition of a sample space, that is, the Bi are pairwise disjoint, and
their union equals the entire space. Then, for any event A in the
same space holds

P[A] =
n∑

i=1
P[A | Bi]P[Bi] =

n∑
i=1

P[A ∩Bi].

This theorem is particularly useful in cases where conditional probabilities
are more readily accessible; for example, the probability for a specific feature
is often easier to approximate if its class is known.

17

Law of Large Numbers

Various formulations for a law of large numbers have been proposed using
different assumptions. However, the central idea is similar. Here, we choose
to include Borel’s version due to its simplicity as it does not require a long
chain of preliminary definitions [149].

Theorem (Borel’s Law of Large Numbers). Let Sn(E) be the
number of occurrences of an event E with probability p in the first
n trials of a repeated random experiment. Then, with probability
one,

Sn(E)
n

n→∞−−−→ p.

See Wen [149] for a proof. This theorem states that if an experiment is re-
peated (independently and under the same conditions) a large number of
times, the empirical probability of an event is similar to its true probabil-
ity. The larger the number of repetitions, the closer these two probabilities
become. Therefore, if a dataset is sufficiently large, for every feature, the
empirical distribution of its realizations will be close to the true distribu-
tion. Note that convergence is not always guaranteed, and it depends on
the variability and complexity of the underlying population distribution,
the sampling method used, and the presence of any biases or confounding
factors in the data.

The Central Limit Theorem

The central limit theorem (CLT) states that, for a sufficiently large number
of independent random variables, the distribution of their sum is approxi-
mately Gaussian [113]. We provide the theorem formally before discussing
its implications.

Theorem (Central Limit Theorem after Lindeberg-Lévy). Let
X1, . . . , Xn be a sequence of i.i.d. random variables, each with
mean µ and finite variance σ2 <∞, and let X̄n = n−1(X1 + · · ·+
Xn) be the average over the first n samples. Then, the random

18

variables
√

n(X̄n − µ) converge in distribution to a Gaussian
N (0, σ2) as n→∞:

√
n(X̄n − µ)⇝ N (0, σ2),

where ⇝ denotes convergence in distribution.

The presented version of the CLT is the traditional one. Since then, different
versions have been proposed that drop the condition of identical distribu-
tions (CLT after Lyapunov) and independence of the random variables [66].
See Pfeiffer and Schum [113] for proof of the classical version.

The central limit theorem explains why normal distributions, or at least
approximately normal distributions, are so frequently observed in nature. We
can assume that real-world measurements do not measure raw signals but
rather the effect of many individual causes. These causes in themselves are
effects of a set of causes, et cetera. The further we unravel this thought, the
clearer it becomes that measurements frequently combine many individual
signals. The more signals contribute to the measured effects, the more likely
it is to resemble a Gaussian following the central limit theorem. Although
most of the measured effects will not be perfectly normally distributed, a
Gaussian often yields a reasonable approximation [94].

2.2 Density Estimation

Machine learning and data mining aim to learn concepts and deduct models
from data. This data, the training data or historical data X over a feature
space X , consists of real-valued d-dimensional vectors x = [x1, . . . , xd] ∈ Rd

called examples or data points. These can be accompanied by labels y, but
they are irrelevant in this section and hence omitted. Note that it is not a
coincidence that we use the same letter X for the dataset as for a random
variable. As is common in the literature (for an example, see Pan and Yang
[106]), we use a dataset in the role of a random variable. Although P[X] is
typically estimated via the data, due to the law of large numbers, this is
a close approximation of the true ‘theoretical’ probability (that would be
denoted using the random variable) for sufficiently large datasets. Where

19

0 20 40 60

Fish Length (in cm)

Individual Fish

= 1 Fish

0 20 40 60

Fish Length (in cm)

Parametric Density
(N (26, 99))

0 20 40 60

Fish Length (in cm)

Histogram
(#bins = 20)

0 20 40 60

Fish Length (in cm)

Gaussian KDE
(varying bw)

0.1

0.25

0.5

Figure 2.4: Comparison of different density estimators for the length distribution of fish
from the Fish Market dataset [115], including kernel density estimation (KDE) with
varying bandwidths (bw).

the distinction is necessary, we point it out throughout the thesis. In this
section, we briefly review approaches to model the probability density of
datasets, how they can be estimated from the data, and how to use them to
identify outliers.

Parametric Density Estimation

Given a sample of data points from an unknown distribution, the parametric
density estimation approach assumes a specific distribution, such as the
normal distribution, and then finds the Gaussian that fits the data best
[130].

In particular, we choose a specific family of density functions, such as
the Gaussian family in Equation 2.1 (or Equation 2.2, depending on the
data dimensionality). Then, we search for the concrete parameters µ and
σ2 such that N (µ, σ2) represents the dataset the best. In the case of one
Gaussian, this is a simple task: calculating the mean and standard deviation
(or covariance matrix in the multivariate case) of the dataset already yields
a suitable estimate for the parameters. See Figure 2.4 for an example.

However, when fitting a Gaussian mixture model, the task becomes sub-
stantially more complex as we need to estimate the parameters of all indi-
vidual Gaussians. This optimization problem is typically solved using the
expectation-maximization (EM) algorithm [35]. The assumption behind EM
is that each data point in our dataset has been generated by one of k in-
dividual Gaussians, but the concrete assignment is unknown. EM uses this

20

assumption to break the overall optimization into two steps, i.e., assigning
the points given the parameters and finding the best parameters given the
assigned points. Given an (often random) initial set of parameters, EM al-
ternates between these two steps until some convergence criterion is met. In
the E-Step, EM calculates for each point the probabilities that it was drawn
from each of the Gaussians. We call them membership probabilities. In the
M-Step, EM optimizes each Gaussian individually for its members, weighted
by these membership probabilities. See Dempster, Laird, and Rubin [35] for
a detailed outline of the algorithm.

An improvement in the convergence speed of the EM algorithm can be
made using a more informed initialization than random parameters. Fre-
quently used is an initial clustering using the k-means algorithm with k

clusters. The initial Gaussians are then centered at the identified cluster
centers. k-means operates similarly to EM. It initially selects k points in the
dataset as the initial cluster centroids. Alternatingly, it assigns all points to
the nearest centroid and then refines the centroid as the mean of the assigned
points. k-means is fast, and the found centroids are often a good starting
point for EM, reducing the number of required iterations until convergence
by a large portion.

Although Gaussian mixture models can already model substantially more
general distributions than a single Gaussian, they are still limited by the
number of individual Gaussians to be included. Using too few Gaussians
leads to underfitting (the corresponding error of the model is often referred
to as the “bias”). Using too many Gaussians leads to modeling the random
noise in the data and hence to overfitting (the corresponding error of the
model is often referred to as the “variance”). Note that the terms “bias”
and “variance” are not used in the above sense in this work. Unfortunately,
finding the right number of Gaussians that leads to the best model is not
straightforward since we cannot distinguish between a true signal and one
observed due to noisy behavior.

A compromise is to use information criteria to trade off model complex-
ity against how well the model fits the data [57]. Two examples we use later
on are the Bayesian information criterion (BIC)

BIC = o ln n− 2 ln L̂

21

and the corrected Akaike information criterion (AICc)

AICc = 2o = 2 ln L̂ + 2o2 + 2o

n− o− 1 .

In both cases, n denotes the sample size, o the number of parameters (for a
GMM, that is twice the number k of individual Gaussians plus k−1 weights
for the mixture), and L̂ = P[X |M] is the likelihood of the observed data X

given the best model M with o parameters. Both criteria are heuristics and
do not guarantee to find the optimal model. BIC typically penalizes model
complexity more strongly than AICc.

Finding the right number of individual Gaussians requires trying a large
set of numbers, calculating the preferred information criterion for each, and
selecting the optimum. While this is computationally expensive, a proba-
bilistic clustering of the input dataset is obtained as a by-product.

An alternative criterion typically used to find the number of clusters in
a dataset is the silhouette coefficient [57]. For a data point x, let a(x) be its
mean distance to all points within the same cluster, and b(x) be the mean
distance to its next closest cluster. The silhouette of a data point is defined
as

s(x) =

1− a(x)/b(x), if a(x) < b(x).

0, if a(x) = b(x).

b(x)/a(x)− 1, if a(x) > b(x).
The silhouette coefficient expressing the cohesiveness of a clustering is then
the average silhouette and a larger coefficient corresponds to better cluster-
ing.

Nonparametric Density Estimation

Parametric density estimation is rather rigid in that one has to choose the
family of density functions beforehand, which limits the expressivity of the
model. In contrast, nonparametric density estimation is more flexible as it
does not constrain the density to a particular parametric family and hence
can capture the flaws and uniqueness of datasets [130].

Due to its simplicity and computational benefits, a widely used nonpara-
metric density estimator is the histogram [130]. First, a range needs to be

22

identified over which the density will be evaluated. This can be easily inferred
from the dataset using the range from minimum to maximum, potentially
with a padding range around it. Second, the range is split into equidistant
grid cells or bins. We denote the number of bins with #bins. Third, for each
cell, we count the number of measurements that fall into the cell and as-
sign the count to the cell. To obtain a probability-like result, the cell counts
can subsequently be normalized so they add up to one. Figure 2.4 shows
an example. The main limitation of histograms is that their result strongly
depends on the choice of the grid. Extensions have been proposed that use
non-equidistant grids [130]; however, they sacrifice the model’s simplicity.

More sophisticated and widely popular due to its smoothness is kernel
density estimation (KDE) [130]. Here, we describe Gaussian KDE as this
version of KDE is particularly popular and used subsequently. For a more
general formulation of kernel density estimation, we refer the reader to Sil-
verman [130].

The histogram can be seen as stacking small boxes of height one and
width according to the grid’s width. For each observation, we add one of
these boxes on top of the stack of the corresponding grid cell. If instead of
on the grid cell, we were to stack the boxes right where their measurement
lies, we would overcome the dependency on the concrete grid location and
obtain a more robust result. Gaussian KDE spins this thought further and,
instead of boxes, stacks small Gaussians to obtain smoother results.

Formally, for any point x ∈ R, the Gaussian kernel density estimator f̂

with f being the PDF for N (0, 1) can be evaluated to

f̂(x) = 1
n · bw

n∑
i=1

f
(

x− xi

bw

)
,

where the xi are the n observations in our dataset, and bw is the bandwidth
[130]. The bandwidth controls the smoothness of the overall result. A small
bandwidth corresponds to narrow, little Gaussians and will emphasize noise
in the dataset. A large bandwidth suppresses the noise and focuses on the
general trend of the distribution. Usually, an in-between solution is favorable
in practice. See Figure 2.4 (right) for a comparison of different bandwidths.

23

Silverman [130] suggests a rule-of-thumb to choose the bandwidth for a
given dataset with n data points in d dimensions, i.e.,

bw = (n(d + 2)/4)− 1
d+4 .

Unless specified explicitly, we use this method to determine the bandwidth
for the Gaussian KDE.

Outlier Detection

Using density estimators, for any example x ∈ R, we can estimate the like-
lihood L̂ = P[x |M] = f̂M(x) of x given the model M capturing the density.
Here, the likelihood is the corresponding estimated density f̂M evaluated in
x. If the likelihood of a point is low, it is likely an outlier. However, deciding
whether a point is an outlier requires choosing a threshold for the likelihood,
separating outliers from inliers.

Local outlier factor (LOF) [21] is a parameter-free alternative. Let
dkNN(x) be the distance from x to its kth-nearest neighbor, and Nk(x) the
set of x’s k nearest neighbors, including ties in the case of equally distant
neighbors. The reachability distance rdk(x, x′) = max{dkNN(x′), d(x, x′)} be-
tween two points x and x′ is the distance d between these points, but at
least dkNN(x′) to ensure that all nearest neighbors are assigned the same
distance for statistical stability. The local reachability density lrdk(x) =
|Nk(x)| / ∑x′∈Nk(x) rdk(x, x′) is the inverse of the average reachability dis-
tance of x from its neighbors. Finally, the local outlier factor is

LOFk(x) =
∑

x′∈Nk(x) lrdk(x′)
|Nk(x)| · lrdk(x) ,

which is the quotient of the neighbors’ local reachability density and that
of x. If LOFk(x) ≤ 1, x has a density that is at least as high as that of
its neighbors, and we consider x an inlier. If LOFk(x) > 1, it is considered
an outlier. See Breunig et al. [21] for details. The authors demonstrate that
LOF’s performance is insensitive to the choice of k as long as k is sufficiently
large, such as k = 20.

24

(a) Original

Sepal Length (in cm)

S
ep

al
W

id
th

(i
n

cm
)

PCA
ICA

(b) PCA

PC 1

P
C

2

(c) ICA

IC 1

IC
2

Figure 2.5: Visualization of individual data points and their marginal distributions after
transformation of the Iris dataset [41] using PCA and ICA.

2.3 Data Transformation

Linear data transformation techniques transform a dataset X into a new
space, ideally with some beneficial properties, where the axes are linear
combinations of the original axes. This type of transformation is inexpensive
to compute as it can be expressed as a matrix multiplication

x 7→ Ix =: x′,

where each data point x ∈ Rd in the original space is mapped to x′ ∈ Rd′ in
the new space by multiplication with the transformation matrix I ∈ Rd′×d. If
both spaces share the same dimensionality, i.e., if d = d′, the transformation
retains all information contained in the dataset if it is a bijection. A bijective
function maps each input element to exactly one output element and ensures
that no two input elements are mapped to the same output.

However, data transformation techniques are also used to reduce the
dimensionality of the space for d′ < d. This can be beneficial, among other
reasons, when the data is sparse in the input space. It is important to note
that while reducing the dimensionality of the space can be largely helpful
for subsequent modeling tasks, it is a one-way transformation and cannot
be inverted.

This section reviews two popular approaches used subsequently: principal
component analysis and independent component analysis.

25

Principal Component Analysis

The idea behind principal component analysis (PCA) is to find those orthog-
onal axes (called principal components) that explain the greatest amount of
variance in the input data [74]. This way, using only the first few com-
ponents and omitting the later ones will reduce the dimensionality of the
data but preserve a large portion of the information contained in the data.
Additionally, the resulting components are uncorrelated.

The principal components can be found as the eigenvectors of the
dataset’s covariance matrix and ordered in descending order based on the
corresponding eigenvalues [74]. Eigenvalues can be found by solving the
equation

Cov(X)v = λv ⇔ Cov(X) = λ
[

1 0...
0 1

]
⇔ det

(
Cov(X)− λ

[
1 0...
0 1

])
= 0.

for λ. The eigenvectors can then be obtained via Cov(X)v = λv, and the
PCA transformation matrix A can be filled column-wise with the eigenvec-
tors in the correct order [74].

As a pre-processing step, the dataset needs to be zero-centered. In order
to ensure fair comparability of feature variation, the dataset can additionally
be scaled such that each feature shows the same range. See Figures 2.5a and
2.5b for the identified principal components in the Iris dataset [41] and the
PCA-transformed dataset, respectively.

Independent Component Analysis

Independent component analysis (ICA), in contrast, does not aim for or-
thogonal axes, but (approximately) statistically independent axes [70]. In-
dependence implies uncorrelatedness, but the opposite direction does not
necessarily hold.

Assume you find yourself in the cocktail party problem: you are in a
room where two people speak simultaneously. Two microphones are placed in
different positions in the room and record the signals x1 and x2, respectively.
We can expect each of the recorded signals to be a combination of both

26

individual speeches x′
1 and x′

2, i.e., x1 = a11x
′
1 +a12x

′
2 and x2 = a21x

′
1 +a22x

′
2

for parameters aij that depend on the location of the microphones with
respect to the speakers. In matrix notation, this can be summarized as x =
Ax′, where X ∈ Rd contains the recorded signals, A ∈ Rd×d the parameters,
and x′ ∈ Rd the original signals. The goal of ICA is to recover the original
speeches; however, neither A nor x′ is known [70].

The first assumption to be made is that the x′
j are statistically indepen-

dent. The second assumption is that the input data is normalized to zero
mean and variance one. This is not a restrictive assumption since the input
data can easily be normalized in a pre-processing step. Inspired by the cen-
tral limit theorem, the third assumption is that the original components have
non-Gaussian distributions, although the exact distributions are unknown.
Non-Gaussianity of the x′

j is crucial since the joint density of the observed
signal would not provide any information as to how they could have been
mixed otherwise. Under these three assumptions, Hyvärinen and Oja [70]
present multiple approaches to find A using numerical methods, including
FastICA that iteratively searches for the least Gaussian axes. Finally, the
transformation matrix is the inverse of the mixing matrix, i.e., I = A−1. See
Figures 2.5a and 2.5c for an example of identified independent components
and the ICA-transformed dataset, respectively.

Whereas PCA orders the components by importance, in ICA, all com-
ponents are equally important and not ordered. Hence, it is not advisable to
reduce the dimensionality with ICA. Instead, the dimensionality can be re-
duced using PCA, and ICA can be applied subsequently. Since ICA searches
for independent non-Gaussian components, it is of particular importance for
our research.

2.4 Curve Fitting

For a dataset consisting of tuples {(x1, y1), . . . , (xn, yn)}, it can be helpful
to find a curve (from a family of curves) that describes the behavior of y

with respect to x. This scenario is similar to parametric density estimation
(see Section 2.2), where a family of distributions was pre-selected, and the
concrete parameters were optimized to represent the dataset. Here, instead

27

10 20 30 40 50 60

Fish Length (in cm)

0

1

2

F
is

h
W

ei
gh

t
(i

n
k
g
)

Linear Curve

10 20 30 40 50 60

Fish Length (in cm)

Weighted Linear Curve

10 20 30 40 50 60

Fish Length (in cm)

Polynomial (Degree 5)

Figure 2.6: Fitted curves to express the weight of fish from the Fish Market dataset [115]
with respect to their length. The center displays a weighted fit where each fish (xi, yi)
was assigned the weight wi = 1/x2

i during the optimization, as indicated by the shades
of grey.

of optimizing the likelihood of the data given the model, we minimize the
distance between the curve and the data.

In least squares optimization [99], this distance is squared (hence the
name) to tackle different signs and obtain a differentiable loss function. Let
ri := yi − f(xi; β), where f is the family of curves to be fitted, and β is the
corresponding set of parameters. The optimization problem translates to

min
β

n∑
i=1

(yi − f(xi; β))2 = min
β

n∑
i=1

r2
i =: min

β
S.

The minimum can be found by setting the gradient to zero and solving the
arising system of equations, i.e.,

∂S

∂βj

= 0 ⇔ 2
∑

i

ri
∂ri

∂βj

= 0 ⇔ −2
∑

i

ri
∂f(xi; β)

∂βj

= 0

for each partial derivative. If we were to fit a line as shown in Figure 2.6
(left), the family would be given by f(xi; β1, β2) = β1x + β2. Hence, the
equations that need to be solved are −2∑i rix = 0 and −2∑i ri = 0.

In some cases, some of the data points might be more important than
others. To account for this effect during the optimization, we can define S

as the weighted sum of squares S = ∑
i wir

2
i with weights wi ∈ R and solve

the system of equations via the gradient as before. Figure 2.6 (center) shows
an example where the left points are assigned a higher weight than the right
ones leading to a different line.

28

Similarly to Gaussian mixture models, the complexity of the line needs
to be considered carefully to avoid overfitting. Figure 2.6 (right) shows a
polynomial of degree 5 that fits the data more closely than the degree 1
lines. However, using more complex models will overfit the noise in the data
rather than represent a true trend. To overcome this, information criteria
mark a suitable course of action, as well as penalization terms added to S

that penalize model complexity [99].
In our work, we do not use least squares optimization to fit the data

directly. Instead, we represent the data density as a histogram and fit a
Gaussian to the histogram bin heights, given their position in the grid.
Although unusual, this approach grants us more freedom to manipulate
the weights than parametric density estimation would and, in contrast to
nonparametric density estimation, provides us with a Gaussian density. We
refer the curious reader to Chapter 4 to see this idea in action.

29

3 Related Research

Training on a biased dataset with respect to the target data means that,
in order to perform well, the concepts and patterns found in the historical
data need to be transferred to the target task. As humans, we are used
to lifelong learning and transferring knowledge fluently between tasks and
domains [112]. For example, having seen paintings of hedgehogs in a book,
we will be able to recognize a hedgehog on the side of the road. Speaking
French may help the process of learning to speak Portuguese. Metaphors
and analogies in our everyday language are explicit connections between
two different domains. Reading our work may spark ideas or draw connec-
tions in very different contexts. For machine learning models, this concept
of transferring learned knowledge that is crucial when learning from biased
data is not natively granted [106].

Many disciplines have been established under the machine learning um-
brella that attempt to solve different kinds of shifts between datasets, distri-
butions, and tasks. “Transfer learning” aims to transfer a trained model to
a different domain or task [106, 108, 164]. As such, it is particularly popular
in applications such as image recognition [109], where training a model from
scratch would be extremely costly or infeasible due to the lack of data. “Do-
main adaptation” is closely related and often used interchangeably but is
formally defined as a special case where only the marginal distributions be-
tween source and target domains change [106]. However, domain adaptation
also has a different focus than transfer learning: Rather than transferring

30

a model, it is concerned with leveraging labeled data from a different do-
main to avoid the expenses associated with labeling the target data [148].
“Dataset shift” has been introduced to summarize a set of problems driven
by the statistics community rather than machine learning researchers [116].
Dataset shift problems generally aim to train a fresh model on a source
dataset that can be expected to perform well on a target dataset under
the assumptions that feature and label spaces remain consistent during the
transfer and at least an unlabeled sample of the target data is available [100].
Driven by a diversity of application scenarios with corresponding induced
assumptions, all three disciplines, i.e., transfer learning, domain adaptation,
and dataset shift, face problems of overcoming biases and shifting knowledge
from their unique perspectives. However, there is a non-negligible overlap
between the disciplines’ core problems. Figure 3.1 visualizes the shared prob-
lem settings when approached from different perspectives and connects them
to the research presented here.

Assuming equal feature and label spaces in source and target domains,
“prior probability shift” refers to a shift in class distributions. “Concept
drift” refers to a change in the relationship between features and labels.
“Covariate shift” describes a change in the feature distribution. “Sample
selection bias” occurs when a sample is drawn non-uniformly from a ground-
truth (target) distribution and can be considered a cause for a covariate shift
rather than a separate category of dataset shift [100]. However, there is a
body of research concerned with specific solutions under the sample selection
bias problem formulation, and it is the closest to our research. Hence, we
consider it to be a separate category of dataset shift.

In this chapter, we demonstrate that dataset biases affect a wide range of
real-life applications. Multiple research areas have been dedicated to mitigat-
ing the effects of biases in many different problem scenarios. However, they
all share their acceptance of the data as it may be and treat the symptoms of
the bias rather than the bias itself. While introducing these different problem
scenarios, we highlight the assumptions regarding ground-truth knowledge
these disciplines make and manifest our research gap: bias mitigation with
no ground-truth information.

31

Transfer Learning
For one or multiple source

tasks in source domain, trans-
fer learned models to a given

target domain and task.

Transductive
Shift between
domains; la-
beled data
available only
in the source
domain.

Equal feature
spaces with
different dis-
tributions.

Unsupervised
Shift between
domains and
tasks; no la-
beled data
available in
either do-
main.

Inductive
Shift between
tasks; labeled
data available
in the target
domain.

∼ Multitask
Learning
Large
amounts of
labeled source
data avail-
able.

∼ Self-
Taught
Learning
No labeled
source data
available.

Domain Adaptation
Given labeled samples from
a source domain, transfer a
model to a target domain
(with unlabeled samples).

∼ Semi-
Supervised
Learning
Some labels
are known
in the target
domain.

Target do-
main is
known, but
no labels are
available.

Universal
Relationship
between
source and
target classes
is unknown.

Partial
Target classes
are a sub-
set of source
classes.

Open Set
Source and
target do-
main share
some classes
but not all.

Closed Set
Same classes
in source and
target do-
main.

∼ Domain
Generaliza-
tion
Target do-
main is un-
known.

Covariate
Shift

Concept
Drift

Prior Prob-
ability Shift
(Label Shift)

Sample
Selection

Bias

THIS
THESIS

No information
on the target

domain or task
is available.

Dataset Shift
A model needs to be trained on
a source domain that generalizes
well to a target domain despite
shifts in the joint distributions.

Y → X
Problems
Class label
causally de-
termines the
covariates.

X → Y
Problems
Class label is
causally de-
termined by
the covari-
ates.

Figure 3.1: Overview of related research areas when approaching from different perspec-
tives. Dashed lines indicate similarities to other research areas, whereas solid lines stand
for categorization of the color-coded umbrella terms “transfer learning”, “domain adap-
tation”, and “dataset shift”.

32

The remainder of this chapter discusses all problems integrated into Fig-
ure 3.1 in-depth and is organized as follows: Sections 3.1 and 3.2 discuss
the research areas “transfer learning” and “domain adaptation”, respec-
tively, that are currently in high demand. Section 3.3 discusses “dataset
shift”, a third and more theoretical perspective on distribution shifts be-
tween datasets. These three research areas constitute the three perspectives
from which we approach the core problems “prior probability shift”, “concept
drift”, “covariate shift” and “sample selection bias”. The two latter ones are
most closely related to our research and are discussed separately in Sections
3.4 and 3.5, respectively. Once the foundation is laid, we draw connections to
related research areas. Section 3.6 discusses “imbalanced data” where there
is an imbalance in the class distribution of the dataset, but a model should
be trained that performs, for example, equally well on all classes. “Domain
generalization” is a special case of domain adaptation where no target do-
main is specified. Here, a trained model is expected to generalize well to all
similar potential target domains. We discuss domain generalization in Sec-
tion 3.7. Section 3.8 provides an overview of “fairness in machine learning”,
a research area concerned with avoiding discrimination against individuals
or groups of individuals such as people of certain races, backgrounds, or ages
due to dataset biases. Finally, we conclude the chapter with a discussion of
existing detection methods for dataset shifts in Section 3.9.

3.1 Transfer Learning

Transfer learning [108] covers several kinds of transfer problems and aims
to mimic our human learning using specialized strategies to train machine
learning models under different transfer settings.

For a given target learning task TT in a target domain DT , the idea
of transfer learning is that there might be one or multiple source domains
DS with source tasks TS that can be exploited to support and improve the
training of the target task.

While a distribution shift can occur naturally (and even remain unno-
ticed), it can also be a strategic decision to reduce resource requirements
for a model’s training process. For example, an already trained model might

33

be transferred to the target dataset to reduce the computational burden
imposed by the training process or because the target data would be too
small to train the model there [104]. Either way, we are dealing with a bias
between the source and target domain that needs to be accounted for during
training.

Formally, a domain D = (X ,P[X]) corresponds to a feature space X
together with a marginal probability distribution P[X] for X ∈ X [106].
Given such a domain and a label space Y , a task is to learn a predictor
f : X → Y from a training set that estimates the posterior probability dis-
tribution P[Y | X] for Y ∈ Y and X ∈ X . Hence, a task can be written as
the tuple T = (Y ,P[Y | X]). Following this notation, the transfer learning
literature speaks of domains being different, i.e., DS ̸= DT , if either XS ̸= XT

or PS[X] ̸= PT [X] or both. Similarly, tasks are different if either the label
spaces or the posterior distributions or both differ from one another. Note
that traditional machine learning assumes equal source and target domains
as well as tasks. While samples of both source and target domains are ex-
pected, depending on the concrete setting, they may not need to be labeled.

Prime examples of transfer learning are problems involving text data
where large amounts of labeled data might be available from a different do-
main with a pre-trained model and can be transferred to the target domain,
or task [33, 51, 103, 124].

Inherently, transfer learning deals with biases between source and target
domains of different natures [108]: (i) Inductive transfer learning assumes
equal source and target domains, but a shift in the tasks, and some available
labeled data in the target domain, (ii) transductive transfer learning allows
for different domains but expects the same task and a lot of labeled data
in the source domain, and (iii) unsupervised transfer learning assumes both
tasks and domains are different but related. The latter typically expects no
labeled data and focuses on unsupervised methods.

Depending on the availability of labeled data in the source domain, in-
ductive transfer learning can be split further [108]. If large amounts of la-
beled source data are available, the problem is similar to multitask learning
[26], where multiple tasks are to be learned simultaneously. While multitask
learning aims to learn all tasks equally, inductive transfer learning priori-

34

tizes one target task [106]. If no labeled source data is available, the problem
setting resembles that of self-taught learning [118] where additional unla-
beled data is used to train distinctive features that improve a target learner.
Common strategies for inductive transfers evolve around careful selection,
or iterative reweighting of training instances with respect to the new task
[33, 146], the identification and transfer of shared features to bridge the gap
between tasks [156], or the learning of shared parameters [93]. Regardless
of the source data availability, inductive transfer learning expects complete
visibility of the target domain and task, i.e., a labeled sample of the target
is expected.

In transductive transfer learning, instead, no labeled target sample is
required, but full visibility of the source domain needs to be granted. Re-
searchers further distinguish between different feature spaces, which yields
a problem setting similar to that of domain adaptation [6] (see Section 3.2),
and identical feature spaces with different marginal probability distribu-
tions of the features in source and target domains. The latter is related to
the problem settings of covariate shift [128], and sample selection bias [158].
Since these problem settings are closely related to our target problem, we
discuss each of them individually in more depth in Sections 3.4 and 3.5,
respectively. A general assumption in transductive transfer learning is that
some unlabeled data from the target domain is available during training
[106].

3.2 Domain Adaptation

Domain adaptation [6] is concerned with aligning the disparity between the
source and target domain in order to train a machine learning model on the
source domain that generalizes well to the target domain [82]. As such, it
can be seen as a special case of transductive transfer learning.

Given labeled samples from a source domain and unlabeled samples of a
target domain, domain adaptation aims to train a generalizable model. If the
purpose of domain adaptation is to predict the labels of the provided target
sample, it is called transductive. If, instead, the trained model is supposed to

35

predict the labels of new samples in the target domain, we speak of inductive
domain adaptation [82].

Depending on the relations between source and target label spaces, do-
main adaptation can be further split into the following categories [46]: (i) In
closed set domain adaptation, both domains share the same classes, although
their distributions may differ. Prior probability shifts, covariate shifts, con-
cept drifts, and our research are considered to fall under this category [46].
(ii) Open set domain adaptation expects the source and target domain to
share some but not all classes. For example, datasets containing images of
wild animals in two countries’ wildlife habitats might contain shared species
and ones unique to the respective countries. (iii) If the target classes are
a subset of the source classes, we speak of partial domain adaptation. An
example would be a worldwide animal species database as the source do-
main when species modeling in a particular country is targeted. (iv) The
most general case is universal domain adaptation where no prior knowledge
about the label spaces is available. In this setting, researchers first need to
identify common classes and place their problem into one of the previous
three settings [46]. Ben-David et al. [12] investigate under what conditions
a classifier trained on the source domain can generalize well to the target
domain and provide bounds for the expected errors.

With the assumption of an unlabeled sample of the target domain, do-
main adaptation is enclosed by semi-supervised learning [45] and domain
generalization [163]. In semi-supervised learning, a large pool of unlabeled
data can be leveraged in tandem with a small labeled dataset, both from
the target domain, to improve the quality of a trained model. In domain
generalization, the target domain is entirely unknown. See Section 3.7 for
details.

3.3 Dataset Shift

In 2009, Quionero-Candela et al. [116] coined the term dataset shift for
problems in machine learning where the joint distribution of the source data
differs from that of the target data, i.e., PS[X, Y] ̸= PT [X, Y]. Three years

36

later, Moreno-Torres et al. [100] made an additional effort to unify exist-
ing definitions and terminology regarding different types of dataset shifts.
Although the umbrella term “dataset shift” is rarely used throughout the
literature, the terms for the specific problems have become the standard.

Depending on the causal relationship between covariates and the class
label, we can split learning problems into the following [47]: (i) X → Y

problems, in which the values of the covariates causally determine the class
label, and (ii) Y → X problems, in which the class label causally determines
the values of the covariates. An X → Y example would be fraud detection,
where the user’s behavior causes the label. In contrast, medical diagnosis
typically is a Y → X problem since the disease causes the symptoms [100].

Following the categorization by Moreno-Torres et al. [100], there are three
types of dataset shift that can occur: Prior probability shift, concept drift,
and covariate shift. Sample selection bias is often considered to be either a
synonym for covariate shift [67], a special case or a cause thereof [100], or
a separate type of dataset shift [137]. Since it is the closest to our research,
we present it as a separate category.

Prior probability shift, also called label shift, refers to a change in class
distribution, i.e., PS[Y] ̸= PT [Y] but PS[X | Y] = PT [X | Y], and appears
only in Y → X problems.

Concept drift refers to situations where the relationship between features
and labels changes between source and target data. For X → Y problems,
this means that PS[Y | X] ̸= PT [Y | X] while PS[X] = PT [X]. For Y → X

problems, the roles of X and Y are swapped.
Covariate shift is the analog of prior probability shift for X → Y prob-

lems and is discussed in-depth in Section 3.4. Similarly to concept drift,
sample selection bias is defined for both types of problems. We present the
X → Y version in Section 3.5, however, the definitions for the Y → X

problem can be obtained by swapping X for Y and vice-versa.

3.4 Covariate Shift Correction

Covariate shift describes the scenario that training and test set are “shifted”
in terms of features, i.e., PS[X] ̸= PT [X], while the label distributions are

37

invariant, i.e., PS[Y | X] = PT [Y | X] [59, 100]. The goal is then to use
the available source data to train a model that overcomes the bias and
performs well on the target data. An often implicit assumption of covariate
shift correction is that an unlabeled sample of the target domain is available
to enable the shift.

Another critical assumption for a successful shift is that the support of
PT , that is, the subset of the feature space with non-zero probability, is
contained in that of PS as the training set cannot be shifted towards the
test set otherwise. This is an assumption we do not make. In fact, we assume
that parts of the test space are not represented by the training dataset.

A recent application of covariate shift correction techniques is image
re-identification, where a person needs to be spotted in images taken with
different cameras in different environments and angles [133]. Another ex-
ample of covariate shift occurs in the drug discovery process [96], where
predictive models are trained on known drugs but expected to generalize to
unexplored compounds.

Shimodaira [128] shows that minimizing a loss function l on an appropri-
ately weighted training set is equivalent to minimizing the loss on the test
set as

E(X,Y)∼PT
[l(X, Y, θ)] = E(X,Y)∼PS

[
PT [X, Y]
PS[X, Y] l(X, Y, θ)

]
.

We denote the weights as β(X, Y) := PT [X,Y]
PS [X,Y] . As a result, assuming that

there exists a way to estimate β(X, Y), a classifier can be trained on the
weighted training set and will be able to perform well on the test set.

The traditional approach to obtain β is importance reweighting. After
estimating both probability distributions (either directly [158], via the se-
lection probabilities [89], or via the class distributions if available [139]),
their quotient evaluated for every training sample yields the weights. In
all direct approaches, the quality of the obtained weights depends strongly
on the estimates of the required measures. As density estimation typically
struggles in high-dimensional applications [136], the weights will be compro-
mised [59]. Smith and Elkan [131] suggest a subsequent gradual refinement
of the weights using the expectation-maximization algorithm.

A strategy to avoid the density estimation and hence to improve the
obtained weights is kernel mean matching (KMM) [67]. After mapping both

38

sets into a reproducing kernel Hilbert space (RKHS), the weights minimize
the maximum mean discrepancy between the weighted training data and
the test data. Under the assumptions made above regarding the label distri-
bution invariance and the support, the weights obtained in the RKHS are
proven theoretically to converge to β [157]. The KMM minimization prob-
lem can be formulated as a quadratic program. More efficient extensions
involve repeated sampling of the test set [98] or the training set [28] before
aggregating the obtained weights.

Sugiyama et al. [141] propose a direct approach, Kullback-Leibler impor-
tance estimation procedure (KLIEP), that estimates β by minimizing the
Kullback-Leibler divergence between the true test density and the weighted
training density. This approach overcomes the need for intermediate den-
sity estimation and the implied performance drop in high dimensions. Sim-
ilarly, Bickel, Brückner, and Scheffer [14] suggest learning a discriminative
model that estimates the weights directly. In the domain of natural language
processing, importance reweighting has been reported to perform poorly in
many scenarios. Xia, Pan, and Xu [154] attribute this to the increased risk of
overfitting to a few examples that have been weighted highly. To overcome
this problem, the authors suggest introducing limits and penalization terms
into the loss function when learning the weights directly.

A large body of research has been dedicated to quantifying the expected
error in classification caused by the covariate shift. Tripuraneni, Adlam,
and Pennington [145] provide a recent extension of existing estimates and
an overview thereof. The authors prove that stronger shifts cause larger
error gaps, and a linear relation exists between training and test error in the
presence of a covariate shift.

3.5 Sample Selection Bias

Sample selection bias occurs when a sample is drawn non-uniformly from a
ground-truth distribution, i.e., it forms a biased sample, and hence is not
representative of this distribution [137].

Prime examples of this scenario are surveys or political polls via tele-
phone or on the street. The accessibility and the participant’s momentary

39

mood determine the sample more than the desire to capture the entire pop-
ulation accurately [137]. Similarly, sample selection biases are found when
browsing the news feed on social networks since people are more apt to post
their successes than failures or standard events. The choice of news to be
covered and broadcast is biased by limited resources, ideological affinities,
information availability, and others [20]. Credit scoring models can only be
developed based on applicants accepted in the past. Assuming that a bank
does not hand out credits randomly but selects only candidates most likely
to repay their loan, this selection makes for a biased subset [100]. Another
example is species habitat modeling, where the data is typically biased to-
wards the more accessible sampling sites [42].

To formally define sample selection bias, the literature typically intro-
duces a selection variable s : X → {0, 1} that outputs for each data point
if it is contained in the observed sample (s = 1) or not (s = 0). With the
selection variable, we can express the joint distributions in the source and
target domains, respectively, as:

PS[X, Y] = P[X, Y | s = 1] = P[s = 1 | X, Y]P[Y | X]P[X]
and PT [X, Y] = P[X, Y] = P[Y | X]P[X].

By definition, the support of the biased sample is contained in the support
of the target domain [32]. Note that this is the essential difference between
sample selection bias and covariate shift, where the target space is expected
to be covered by the source support. Note that this scenario is substantially
different from missing values [23, 114]. Rather than imputing single missing
feature values for examples, sample selection bias deals with entirely missing
examples.

There are different scenarios to consider under which the sample was
obtained, that is, there are different dependencies of the selection variable s

and an example (x, y) ∈ X × Y [100, 158]:

■ The sampling method is completely independent of the features and
labels. This means that s is independent of x and y, i.e., P[s = 1 |
x, y] = P[x, y]. In this case, the sample represents the ground truth and
is not biased. The statistical literature speaks of missing completely at
random (MCAR) [91].

40

■ The sampling method is independent of the labels, i.e., P[s | x, y] =
P[s | x]. This case is known as missing at random (MAR) [91]. In
practice, these assumptions can be fulfilled by including all variables
that led to the decision to include a sample. For example, in a medical
treatment study, including the variables the doctor used to decide who
obtains the treatment results in a MAR bias [158].

■ The sampling method is independent of the features, i.e., P[s | x, y] =
P[s | y]. This scenario corresponds to a prior probability shift [3, 30].

■ No independence assumption can be made between x, y and s. This
scenario is coined missing not at random (MNAR) [91] and constitutes
the more severe case as it can induce multiple types of biases [100].
Here, no unbiased model can be learned from the biased sample unless
we can access an additional but hidden variable xs controlling the
selection, i.e., P[s | xs, x, y] = P[s | xs].

If a MAR bias is observed, a weighting technique similar to the impor-
tance reweighting approach for covariate shift correction can be employed to
train a model suitable for the target domain. Following the bias correction
theorem presented by Zadrozny [158], for a model with parameters θ and
a loss function l, minimizing the loss on the target test set is equivalent to
minimizing it on an appropriately weighted training sample because:

E(X,Y)∼PT
[l(X, Y, θ)] = E(X,Y)∼PS

[
P[s = 1]

P[s = 1 | X] l(X, Y, θ)
∣∣∣∣ s = 1

]
.

Hence, we can train an unbiased classifier on the biased sample if we weigh
each training instance x, since P[s = 1] is constant for all x, with a weight
1/P[s = 1 | x] [14]. While the results are guaranteed to be correct with
perfect weights, those weights need to be estimated, which commonly in-
troduces inaccuracy [32, 92]. The key to determining those weights is to
model s. This can be done using prior information on the selection criteria
or learning s using an unlabeled sample of the rejected instances (i.e., those
instances with s = 0) [14, 131, 136].

In the case of MNAR bias, the selection bias can depend on features
and labels. Using an additional sample of rejected instances, Zadrozny and

41

Elkan [159] suggest training one classifier that predicts the selection variable
s before using it alongside the other observed features to train a model
for the class labels. Tran and Aussem [144] demonstrate that importance
reweighting is a valid option under the MNAR setting, even when the hidden
variable xs is only partially observed in the target set.

The problem we attempt to tackle, as formulated in Section 1.1, falls
under the category of selection bias. We make no assumptions as to the
dependencies of the selection variable and additionally restrict the bias de-
tection and mitigation to only the source data. No information on potential
target domains or samples thereof is provided. To the best of our knowledge,
we are pioneering this field.

3.6 Imbalanced Data

In many real-world datasets with multiple classes, some classes might domi-
nate others that are heavily under-represented. During the learning process,
a machine learning model would most likely focus on the majority classes
and accept errors in the minority classes since they contribute less to the
loss function. This problem is called imbalanced data [77, 137].

Depending on the application, the correct prediction of the minority
classes can be of great importance. For example, consider rare events such
as loan defaulting in credit scoring models or detecting a rare disease in
a large pool of blood samples. In both cases, we need to ensure that the
positive samples are not dominated during the learning process.

To solve the imbalanced data problem, researchers typically choose to
transform it into a distribution shift problem where the target distribution
of labels is known explicitly: It should be approximately uniform. Hence,
the problem can be seen as a special case of selection bias, and reweighting
strategies can be used to emphasize the minority classes, such as the loan
defaulters in the credit scoring examples. Alternatively, imbalanced data can
be treated as a prior probability shift with a known shift [77, 137].

42

3.7 Domain Generalization

In contrast to domain adaptation, domain generalization aims to generalize
a model from one or multiple distinct but similar source domains to any
unknown differently distributed target domain [163].

The problem of domain generalization was first introduced by Blanchard,
Lee, and Scott [16] and Muandet, Balduzzi, and Schölkopf [102] later coined
the term. It is frequently used in applications such as object recognition,
where a trained model might need to generalize to new environments or
viewpoints, as well as the similar scenarios of action recognition, face recog-
nition, speech recognition, and others [163].

Formally, given datasets drawn from similar but distinct source domains,
the task of domain generalization is to train a model that minimizes the
prediction error on an unseen target domain. During training, the target
domain is not known. Depending on the number of source domain datasets,
researchers distinguish between the more common multi-source domain gen-
eralization [16] and the less common single-source domain generalization [69,
147].

Popular approaches to solving the domain generalization problem include
domain alignment, where the multiple source domains are exploited to learn
domain-invariant features [102], data augmentation through a transforma-
tion of the provided examples, or ensemble strategies. We refer to Zhou et
al. [163] for a recent and comprehensive overview of different approaches.

Single-source domain generalization is closely related to our research.
The major difference is that domain generalization aims to generalize a spe-
cific model toward all related domains. In contrast, we aim to correct a biased
dataset towards the unbiased ground truth. Our approach is independent of
the choice of model or even learning task.

3.8 Fairness in Machine Learning

The literature on fairness in machine learning [52, 97, 134] focuses on bi-
ases towards certain individuals or groups of people resulting in unfair or
discriminating model predictions. The characteristics of these groups, e.g.,

43

race, gender, age, or income of the individuals, have to be pre-defined and
are considered “protected” attributes. Fairness problems are typically selec-
tion biases or covariate shifts. However, they assume categorical datasets
with specific pre-defined features causing the biases. These changes result in
fundamentally different mitigation strategies, as we present below.

“Fairness” is difficult to define and quantify, and many potential defi-
nitions have been proposed. Following Mehrabi et al. [97], those definitions
can be roughly categorized into (i) individual fairness [44] where similar
individuals should receive similar predictions, (ii) group fairness [83] where
all groups (based on pre-defined criteria) should be treated equally, and (iii)
subgroup fairness [78, 79] which aims to combine both. The choice of a suit-
able metric assessing fairness depends on the practitioner’s interpretation of
what fair means in their specific context; there is no one-size-fits-all solution
[49].

Unfairness in machine learning predictions typically stems from either
bias in the dataset or algorithmic bias. Methods to achieve fairness in the
dataset have been proposed and are independent of subsequent tasks and
models [97]. They mainly include attempts to improve data transparency by
documenting the exact data gathering process, as well as standard descrip-
tive statistics [54], visualization [18, 19, 88], or tests for the underrepresen-
tation of certain clear-cut groups (like age or race groups) in tandem with
mitigating sampling strategies [48, 75].

Approaches to improve algorithmic fairness are typically domain- and
task-specific and can operate either as pre-, in-, or post-processing steps [97].
Bellamy et al. [11] provide guidance on when in the machine learning cycle
the bias compromising the fairness of a trained model is best corrected (i.e.,
during pre-, in-, or post-processing) and offer a framework that integrates
implementations of state-of-the-art approaches. Other toolkits to identify
biases have been proposed: FairML [2], Themis [53], and FairTest [143] are
auditing tools that test predictive models for biases with respect to protected
attributes. Aequitas [123] audits the dataset rather than the model and
employs several metrics to identify fairness breaches. Additionally, there
are other toolkits that aim to not only identify but also mitigate the bias:

44

Themis-ML [8] and Fairness Comparison [50] both contain a subset of those
bias mitigation strategies implemented in the AI Fairness 360 toolkit [11].

Bias mitigation techniques during pre-processing included in the AI Fair-
ness 360 toolkit are the following. Kamiran and Calders [75] suggest either
suppressing those attributes that correlate strongly with the sensitive ones,
“massaging the dataset” by changing some labels to lower the influence of
the unfair bias, reweighting towards a discrimination-free dataset, or sam-
pling instead. Zemel et al. [160] learn suitable representations that obfus-
cate sensitive information while preserving as much individual information
as possible. Calmon et al. [25] combine previous ideas into a probabilistic
framework that allows trading off discrimination control against data utility.

Overall, these bias mitigation techniques rely on discrete features and
particular protected attributes that are not allowed to impact the resulting
predictions. Similarly to those problem settings presented in Figure 3.1, the
bias mitigation strategies to achieve fairness have an ideal of what is fair
in mind, that is, some form of ground truth to strive for. As such, they are
substantially different from the problem we face.

3.9 Dataset Shift Detection

Independently of the concrete type of shift between source and target
dataset, traditional machine learning techniques fail to adapt since they
rely on the i.i.d. assumption of their inputs. Since the model development
is carried out on one or multiple training and test sets that stem from the
same source data, a shift will remain undetected during training [161]. To
avoid poor performance of the trained model on the target data, it is crucial
to test for shifts routinely during model deployment.

Assuming a gradually incoming stream of target data points the model
should be applied to rather than a fixed target dataset, detecting a shift
from as few examples as possible is key as it implies an early alarm.

For the first target point, the problem of detecting a distribution shift is
essentially outlier detection [27]. The more target points come in, the more
confident statistical two-sample tests or multiple univariate tests comparing
both target and source samples can detect different distributions. However,

45

those statistical tests scale poorly to large high-dimensional datasets [117].
Lipton, Wang, and Smola [90] suggest incorporating dimensionality reduc-
tion techniques and propose black box shift estimation (BBSE) to detect
prior probability shifts. Rabanser, Günnemann, and Lipton [117] build on
BBSE and investigate the impact of different methods and dimensionality
reduction techniques on general dataset shift detection.

While these methods seem highly effective based on the presented exper-
imental results, they require unlabeled target data to identify a distribution
shift. In contrast, we focus on detecting biases inherent in the source data
without any target data availability.

46

4 Single-Cluster Selection
Bias Identification and

Mitigation

The research presented in this chapter has been adapted from

K. Dost, K. Taskova, P. Riddle, and J. Wicker, “Your best guess
when you know nothing: Identification and mitigation of selec-
tion bias,” in 20th IEEE International Conference on Data Min-
ing (ICDM 2020), IEEE, 2020, pp. 996–1001. doi: 10.1109/
ICDM50108.2020.00115.

The results of this chapter are available in the GitHub repository
github.com/KatDost/Imitate and the proposed algorithm is contained in
the PyPI package imitatebias.

4.1 Introduction

Machine learning typically assumes that training and test set are indepen-
dently drawn from the same distribution (i.i.d. assumption). However, this
assumption is often violated in practice which creates a bias. As demon-
strated in Chapter 3, many attempts to identify and mitigate the impact of
this bias on a model have been proposed, but they usually rely on ground-
truth information and build upon the assumption that the researcher is
aware of the bias.

But what if the problem already appears in the data-gathering process?
Unexpected selection biases can occur during the data collection phase. For

47

https://doi.org/10.1109/ICDM50108.2020.00115
https://doi.org/10.1109/ICDM50108.2020.00115
https://github.com/KatDost/Imitate
https://pypi.org/project/imitatebias/

example, consider the fisherperson collecting information about fish species
and counts in a lake that we discussed in Chapter 1. Her choice of the
fishing net might induce a bias if it limits the characteristics of fish that
can be caught, such as their size. Costly re-measurement or fragile domain
adaption approaches can often be prevented if the bias is identified during
the data collection. For example, the fisherperson could have replaced her
net if she had been aware of the bias she was creating.

Most machine learning techniques consider the data as given and miti-
gate the bias of the model instead of the dataset itself. In contrast to prior
work, we aim to solve the problem of selection bias identification and miti-
gation on the dataset itself when (a) we may not know if we have a bias and
(b) we have no ground-truth information on our dataset. Mitigating the bias
in the dataset itself allows us to detect biases already in the early stage of
data gathering, which might help the researchers improve the data quality
by avoiding bias in the first place.

Although we do not know how the ground truth is distributed and hence
do not know what to strive for, we believe that in many cases, there are
indicators for a selection bias hidden in the biased dataset itself. Intuitively,
we would expect a trained model to perform well on the domain it is designed
for, and we allow a certain amount of error around the fringes and would not
expect it to perform on entirely different data. This describes a Gaussian-
like shape of density. We also expect a reasonably smooth data distribution,
particularly for larger datasets. For example, for the fish measurements, the
bias created by the choice of the net would cause a smooth distribution for
larger fish and then a sudden drop in the fish size distribution when looking
at smaller fish counts. This would violate the smoothness assumption.

Motivated by these intuitions, in this chapter, we propose Imitate
(Identify and MITigATE Selection Bias), a technique that checks the data
distribution and generates points to match a smooth Gaussian probability
density. If the artificial points focus on specific areas, this could indicate a
selection bias where these areas are underrepresented in the sample. The
researcher can verify these areas by either using additional data from other
sources or by extending her data gathering. Although designed in a way
that supports the data collection process, Imitate is also applicable at a

48

D

B IÎ

Reconstruction Problem

s = 1 s = 0

reconstruct

Figure 4.1: Problem 2: A subset B of a dataset D is drawn according to a selection
attribute s. The task is to reconstruct I = D \B, resulting in a dataset Î.

later stage as a preprocessing step that helps to prevent an induced bias in
a model trained on the biased dataset.

The remainder of this chapter is organized as follows: Section 4.2 formal-
izes the general problem statement introduced in Section 1.1 and refines it to
the additional assumptions made here. Section 4.3 introduces the Imitate
algorithm before Section 4.4 studies its behavior experimentally. Finally,
Section 4.5 concludes with a discussion.

4.2 Problem Statement

Leaning on the problem formulated in the sample selection bias literature
(see Section 3.5), we propose a method to solve the following problem state-
ments that works in an unsupervised manner, i.e., it does not exploit any
information about different classes. If it is applied in a supervised setting
where several classes are present, the data is split according to the label, and
then the method is applied separately. Since the supervised setting offers pos-
sibilities for evaluation and comparison beyond domain expert consultation
or interpretation, we formulate both problem statements here. See Figure
4.1 for a visualization.

Problem 1 (Supervised Setting).
Let D = {(x1, y1), . . . , (xm, ym)} ⊂ Rn × L be an (unknown) n-dimensional
real-valued labeled dataset consisting of m feature-label pairs (xi, yi). D

49

is representative of an underlying distribution D that we consider as the
ground-truth. A biased subset B ⊆ D is drawn as follows: A selection vari-
able s decides for each tuple (xi, yi) ∈ D if it is contained in B (s = 1), or
discarded (s = 0). We consider s to be dependent on the present features or
the class label. Given only B, the goal is to approximate I := D \B by a set
Î such that the gap between the accuracy of a classifier trained on D and
that of a classifier trained on B ∪ Î is minimal.

Problem 2 (Unsupervised Setting).
Assume the same setting as in the supervised case for the one-class case
|L| = 1. Given only B, the goal is now to approximate I := D \ B as well
as possible such that the distribution of B ∪ Î reflects D.

As described above, a solution for Problem 2 can be extended to one for
Problem 1 by treating every class label separately. If Problem 2 were solved
and returned a good approximation of I, a similar classifier performance
would be guaranteed. Note that the assumption that only B is available
is a very strong restriction, but it enables us to detect potential selection
biases of which researchers might not have been aware. The outcome needs
to be carefully evaluated together with domain experts or validated using
additional data from other sources.

4.3 Proposed Method

The problems introduced in Section 4.2 are important but hard problems and
cannot be solved in all cases, but we will show in this section that, in many
cases, there is something we can do. For example, a dataset measures the
occurrences of different flower types together with geospatial coordinates,
but for a certain area there are no measurements. In the case that the
measurements are missing because the bespoken area is restricted and not
publicly accessible, solving Problem 2 makes sense, and our proposed method
helps overcome the bias by imitating the measurements in this area. But if
the data in this zone is missing because it is a lake and there are no flowers,
an attempt to “reconstruct” the area would conceal the true distribution.

50

(a) Reconstruction

Biased True Data

Refilled Data

(b) Gaussian Fitting per Dimension

Fitted Distribution Biased Data Fill up

Figure 4.2: The figure shows the central idea of Imitate: (a) shows a dataset (grey) with
a clear bias that has been “reconstructed" (gold). (b) shows both dimensions separately
(x-axis left, y-axis right). The dataset is represented by a histogram (grey), a normal
distribution density is fitted to the histogram (pink line), and the gap between fitted and
present density shows where to generate points (gold).

The only way to distinguish between these two cases is to consult domain
experts.

Aiming to solve the problems wherever useful, we introduce Imitate
(Identify and MITigATE Selection Bias), a simple, modular and extendable
approach.

Imitate mainly checks for underrepresented parts in the distributions
to identify missing zones and monitors the confidence in its own results
to decide if the output should be reported or discarded since it probably
reflects noise or algorithm-inherent problems. Figure 4.2 shows an example
of the central idea. Given the biased dataset (grey in Figure 4.2a), Imitate
measures the density for each (transformed) variable separately, e.g., in the
form of a histogram (Figure 4.2b, grey bars). It then fits a Gaussian density
function to the histogram bins (Figure 4.2b, pink lines) and fills up the gap
between present and fitted distribution with generated data points (golden
in both Figures 4.2a and 4.2b).

Although fitting only one Gaussian to the observed data is a strong
assumption that might not hold true for all datasets we might possibly
encounter, it is a valid starting point due to the following reasons. First,
Bareinboim et al. [9] prove theoretically that the true class label distribu-
tion cannot be recovered from the biased dataset alone without utilizing
additional data or assumptions, so some assumption is necessary. Second,

51

following the central limit theorem, numerical real-world observations fre-
quently are approximately Gaussian which makes normal distributions very
common [94].

However, we can assume that not all distributions we might encounter
are normally distributed. To avoid misleading results, in this case, we need
to test if a Gaussian fits the data ‘reasonably well’ and refuse any further
outputs if not. Since the observed dataset is potentially biased, skewing
its distribution, the acceptable margin necessarily needs to be sufficiently
large. Hence, if the true data distribution is similar to (but not exactly)
a Gaussian, this distinction will likely not be detected. But since we can
expect smoothing over the data distribution to improve the data quality
regardless, the implications of assuming a Gaussian distribution are overall
benevolent.

Algorithm 1 gives an overview of the main components of the algorithm.
Imitate takes a (biased) labeled dataset as input and separates the classes
(Line 4). The subset X ′ is then transformed into another coordinate system
where underrepresented parts of the distribution might be more clearly vis-
ible. For each dimension separately, the data density is represented by, e.g.,
a histogram that we use to fit a distribution density (Line 8). The gap be-
tween this estimated (unbiased) distribution D̂ and the present distribution
is the area that we identify as Î. We then generate random data points in
this area such that B including these points is distributed according to that
estimated distribution D̂ (Line 11). The algorithm then estimates its confi-
dence in the produced set of points and decides whether to keep or discard
them (Line 14).

Note that we can choose all necessary parameters for Imitate by either
using a domain expert or by selecting the parameter set with the highest
confidence. If we use confidence, we cannot guarantee that the algorithm
outputs the best possible solution but the one in which it is most confident.
The remainder of this section discusses the different elements of Algorithm
1 in detail.

52

Algorithm 1 Imitate: Simplified main algorithm
Input: A (biased) labeled dataset B = (X, y) ⊂ Rn × L
Output: A set of added labeled datapoints Î = (X̂, ŷ)

1: function Imitate(X, y)
2: X̂, ŷ ← []
3: for all classes c ∈ L do
4: X ′ ← {xi ∈ X | yi = c} ▷ split classes

▷ Remove outliers, transform coordinate system
5: X ′ ← transform(X ′)
6: for all dimensions d ∈ {1, . . . , n} do

▷ Represent density over a grid, e.g., by KDE
7: Rd ← representDensity(X ′

d)
8: Fd ← fitDensity(Rd) ▷ Fit a Gaussian
9: Gd ← Fd −Rd ▷ gap fitted vs. true data

10: end for
▷ Generate points according to the gap distribution

11: X̂ ′
c ← fillGap(G1, . . . , Gn)

▷ Transform back to the original coordinate system
12: X̂c ← transformBack(X̂ ′

c)
▷ Estimate overall confidence in the result, remove points with
low individual confidence

13: X̂c, confc ← removeLowConfidence(X̂c)
▷ Store remaining generated points

14: X̂.append(X̂c)
15: ŷ.append([c] * |X̂c|) ▷ add c until |ŷ| = |X̂|
16: end for
17: conf ← [conf1, . . . , conf|L|]
18: return X̂, ŷ, conf
19: end function

4.3.1 Transformation

Given the input data belonging to one class, the feature space might need
to be transformed into another space that gives a better view of the present
probability densities. In order to do so, we first use the local outlier factor
technique [21] to remove outliers as a preprocessing step. This technique
is beneficial since it is neighborhood-based and hence supports arbitrary
dataset shapes (e.g., banana-like shapes) and does not require parameter
choices.

53

In the examples provided in Figure 4.2, there is a bias based on a selection
variable that only relies on one of the features. This is easy to detect and does
not need to be transformed in advance. However, if the selection variable
depends on several features, bias in the densities over the axes will be less
visible. Hence, we transform the data in another coordinate system in which
the densities are aligned in a way that reveals missing areas (Figure 4.2,
gold).

Independent component analysis (ICA) [70] aims to reconstruct indi-
vidual signals if only a weighted sum of them is known. It searches for a
transformation to a new space described by independent components sep-
arating the individual signals. According to the central limit theorem [66],
those components that show the least similarities of the data density to a
Gaussian are most likely individual signals, whereas the Gaussian-like com-
ponents indicate a mix of signals. Based on that observation, ICA searches
for the independent components that show the least Gaussian density for a
dataset.

Since we are interested in the components with the most visible deviation
from the normal distribution, we use ICA as a heuristic and transform the
dataset into the space defined by the components. Note that if all dimensions
are normally distributed, ICA will not be able to find a solution. That helps
us prevent Imitate from artificially generating a bias that was not present
beforehand.

4.3.2 Density Representations

The previous step outputs the data transformed into a new coordinate sys-
tem. If we want to search for missing areas in the data distribution, we first
need to find a discrete representation of the density that we have in the
dataset, so we focus on one coordinate axis at a time. The most straight-
forward choice is a histogram. Histograms work well in many cases because
they show a very clear drop of neighboring bin heights if there is a clear
border between the biased and the present zone (see Figure 4.2b top). How-
ever, unless the dataset is very large, they are sensitive to the choice of bin
sizes and positions in the sense that the resulting histogram changes a lot if
these parameters are slightly altered.

54

For smaller datasets (or large datasets with classes that contain only
small amounts of examples) Imitate uses kernel density estimators (KDE)
with Gaussian kernels to represent the density. The estimator is then eval-
uated over a 1-dimensional equidistant grid, which results in a similar rep-
resentation to the histogram bins, but it is smoother.

We let the user choose the density representation. As a rule of thumb,
we experienced in our experiments that classes of up to 5000 instances are
well represented by a KDE, whereas for larger sets, the difference dimin-
ishes, and the histogram representation is much faster. Either way, this step
returns a 1-dimensional grid together with evaluations that are considered
representative of the entire grid cell. Note that the granularity of the grid,
i.e., the number of bins/grid cells, can be considered a user-defined constant
or be chosen according to the highest confidence value.

4.3.3 Distribution Fitting

Based on a discrete representation of the data probability density, it should
be possible to identify locations where data might be missing due to a bias.
Therefore, we fit a distribution to that representation such that the density
reveals these locations.

Many observations in real-life applications can be at least approximated
by a normal distribution [94] since we can assume that several independent
factors contribute to the output due to the central limit theorem. This is
the main inspiration for Imitate. Assuming that the original dataset D is
normally distributed, the algorithm tries to fit a normal probability density
function to the observed dataset B.

Given the density representatives r1, . . . , r#bins of the dataset over a 1-
dimensional grid with cell centers g1, . . . , g#bins (the output of the density
representation step; Section 4.3.2), we are aiming to fit a Gaussian to the
estimates. A Gaussian is generally defined as a function of the form g(x) =
a exp (−(x− b)2/2c2) for a, b, c ∈ R and c ̸= 0. In the case of a = 1/(σ

√
2π),

b = µ and c2 = σ2 the Gaussian equals the probability density of a normally
distributed random variable with mean µ and variance σ2.

Imitate initializes the parameters such that the highest bin fits the
peak of the Gaussian and then uses uses the position of the highest bin as

55

an initial estimate for the mean µ, calculates the variance σ2 of the present
data based on that mean, and adjusts the scaling factor a to match the
highest bin value. Starting with these initial values, we use a weighted least
squares optimizer [99] to solve the optimization problem

min
a,b,c

#bins∑
i=1

wi (g(gi; a, b, c)− ri)2

with the weights wi = r2
i .

The weights are designed in a way that the optimizer puts more emphasis
on high bins and is granted more freedom on the areas where very little or
no data is present, i.e., the areas where we suspect the data is missing due to
bias. We omit further details on the choice of weights here but provide them
in our repository. Looking at the example presented in Figure 4.2b (right),
equal weights would result in a probability density that is more shifted to
the left in order to capture the bin heights below 1 correctly. Although
that would be the closest fit to the present dataset, it does not indicate
the potentially biased regions. Once the optimal parameters for â, b̂, ĉ are
estimated, we evaluate g(gi; â, b̂, ĉ) over the same grid and return the fitted
values f1, . . . , f#bins.

In many cases, it is not possible to find one well-fitted Gaussian, e.g., if
the dataset consists of two clusters. If the gap between the fitted and the
present distribution becomes very large, we assume that the result is not
reliable. To overcome this, we constrain |Î| ≤ η · |B| for a user-defined η.
In our experiments, we used η = 1, which seems to be a reasonable choice.
If no solution can be found, this step returns f1, . . . , f#bins = r1, . . . , r#bins,
the input values.

4.3.4 Generation

Having transformed the data density into the representation R =
r1, . . . , r#bins and the fitted Gaussian evaluated over the same grid, F =
f1, . . . , f#bins (the outcomes of the steps described in Sections 4.3.2 and
4.3.3, respectively), Imitate next generates points that can lift the present
density to the fitted one when added to the training set. These ri and fi have

56

Algorithm 2 Imitate: Fill in the Gap
Input: Gap vectors Gd and fitted density vectors Fd over 1D-grids with cell

centers gd
1 , . . . , gd

#bins for each dimension d ∈ {1, . . . , n} restricted to one
class c

Output: A set X̂ ′
c of generated data points for this class

1: function fillGap(G1, . . . , Gn)
▷ Determine the number of points to be generated

2: #points← maxd∥Gd∥1
3: for all dimensions d ∈ {1, . . . , n} do
4: #pointsd ← ∥Gd∥1 ▷ Points for this dimension

▷ Convert to cumulative density function
5: G′

d, F ′
d ← convertToCDF(Gd, Fd)

▷ Get mixed CDF for this dimension
6: pG

d ← #pointsd/#points
7: CDFd ← pG

d ·G′
d + (1− pG

d) · F ′
d

▷ Draw #points coordinates according to CDFd

8: xd ← random(CDFd, #points)
9: end for

▷ Combine single coordinate vectors and return
10: return X̂ ′

c =
[
xT

1 , . . . , xT
d

]
11: end function

been calculated for each dimension and class separately and help decide in
which grid cells data needs to be generated. Figure 4.2b marks these cells
in gold. The size of the golden bins indicates the number of points that are
required to match the fitted distribution (pink line).

Algorithm 2 presents an overview of this step. For each dimension d and
class c, we measure the gap between fitted and present density in order to
determine how many points need to be added until this dimension’s fitted
density is achieved, i.e., #pointsd = ∑

i max{fi − ri, 0} = ∥Gd∥1 where
∥·∥1 denotes the ℓ1-norm (Line 2). Note that we use the maximum to focus
only on the bins that need to be filled up. It allows us to ignore the case
when fi < ri for any i in which points from the input dataset would have
to be removed in order to match the fitted density. The dimension with
the highest gap determines how many points will be added in total, i.e.,
#points = maxd #pointsd.

Each dimension contributes its own coordinates to the final points. The
grid cells are drawn in a way that the fitted density for this dimension

57

is achieved. At first, the gap Gd is filled. If more coordinates need to be
generated (i.e., because #pointsd < #points), the remaining ones are drawn
according to the fitted density Fd. To achieve that result, we obtain the
mixed cumulative density function (CDF, Line 7) as

CDFd = pG
d · CDF(Gd) +

(
1− pG

d

)
· CDF(Fd)

for pG
d = #pointsd/#points and use it to draw the cells in which the co-

ordinates will then be drawn uniformly. That yields a vector xd containing
#points coordinates for dimension d such that their addition to the original
points B fulfills the fitted probability density over the grid (Line 10).

Once the coordinate generation is performed for each dimension, the
results are combined into a set X̂ ′

c =
[
xT

1 , . . . , xT
d

]
of points for class c where

·T denotes the transposition of a vector. The result of this step can be seen
in Figure 4.2a: The golden points are the ones that Imitate generated.

Note that the coordinate-wise generation of points is only able to model
convex shapes. If the dataset has the shape of a ring (and Imitate is not
supposed to fill in the hole), another method needs to be found. This draw-
back will be addressed in future research (see Section 4.5).

4.3.5 Confidence

Having generated a set of points, we want to know if the results are good at
all or should be discarded.

As the output of the algorithm, we expect clearly identified zones that
are densely filled with generated points. If the points are spread over a wide
area and rather singletons than clusters, that most likely only reflects noise
in the data or a bad choice of the underlying grid (Section 4.3.2). We hence
use a heuristic for the confidence of Imitate in its output that compares
the spread of the generated points to the spread of the dataset, i.e., for
each generated point p we measure d10NN(p), the average distance to the 10
nearest neighbors. As a baseline for comparison, we use a random subset D′

of the input dataset D with |D′| = |Î|, and average over the same calculated
distance yielding µ10NN(D′) and the standard deviation σ10NN(D′) from that
mean. Other methods of comparison (such as the comparison to the spread

58

(a) α = 0 (b) 0.25π (c) 0.5π (d) 0.75π (e) 1π (f) 1.25π (g) 1.5π (h) 1.75π

Figure 4.3: We created synthetic biases on a dataset by rotating a horizontal cutting plane
by an angle α. The points that are faded out describe I, the bold ones give B.

of the class in the entire set D) have been tested. We refer to our repository
for a test of different confidence options.

All points p with d10NN(p) ≥ µ10NN(D′) + σ10NN(D′) are discarded right
away. The confidence score is then defined as the average inverted 10-NN
density, conf = 1

/
d̄10NN(p).

A result will be discarded entirely if 10 or fewer points have been gener-
ated since the 10-NN-based distance measurement is not valid anymore, or
if no points are left after the individual checks. If several parameter settings
(e.g., grid granularities) have been tested, we use the result with the highest
confidence.

4.4 Experiments and Discussion

To carry out actual real-world experiments, we would need to find already
biased datasets together with their ground truth. However, they are hard
to find (which is why we need methods like Imitate, after all!). Therefore,
we study the behavior of the proposed method mainly on synthetic datasets
where we can isolate the effects that we want to investigate and then test Im-
itate on real-world datasets with an artificially created bias. In the end, we
give an example of a real-world scenario and discuss remaining limitations.

4.4.1 Synthetic Data

For the experiments, we generated synthetic 2D datasets D with two classes
(blue and wine) and, unless advised otherwise, 10000 samples and 5% label
noise. The bias was created by a plane rotating around the center of one of
the classes: p (default: p = 0.05) denotes the proportion of data points above

59

that plane that remained in B; the rest was removed. The other class and
all points below the plane are contained in B. Figure 4.3 shows the datasets
with biases as described in the blue class where the planes were rotated.
The rotation angles α are given in the captions. For the grid granularity,
#bins ∈ {5, 8, 11, . . . , 29} have been tested in each example, and we use
the result with the highest confidence. We repeat each experiment 10 times
to make up for randomness and generate 10 datasets for each parameter
setting.

We alter all three parameters (α, p, and the dataset noise) and investigate
the improvement in accuracy of a linear support vector machine (SVM)
trained on B ∪ Î vs. B alone. report the improvement in accuracy in Figure
4.4. As a baseline, we train a linear SVM on the unbiased original dataset D

and denote its accuracy on an unbiased test set as accD. Similarly, we train
linear SVMs on B and on B ∪ Î and denote their performance on the same
unbiased test set as accB and accB∪Î , respectively. The dashed line shows
the initial accuracy gap accD − accB, the solid line shows the final accuracy
gap accD − accB∪Î after application of Imitate. The smaller the value of
the solid line, the better Imitate performed the point generation.

Rotation α

As can be seen from the dashed line in Figure 4.4a, the bias does not always
affect the performance of the classifier. Nevertheless, if it does, Imitate is
able to find a set Î that gives a substantial improvement of B ∪ Î over B

alone. In the case of an α = 1.25π rotation bias in the blue class, we even
see an improvement in the classifier performance if parts of the data are
removed. The cases with high initial gaps are considered interesting cases
since their bias mitigation is the most necessary. We use these cases for the
following experiments.

Amount p of points in the biased area

Figure 4.4b shows that for various amounts p ∈ [0, 0.5] of points that remain
in the biased area after application of the rotation bias, Imitate can achieve
a substantial improvement in performance. Note that if p is high enough,

60

(a) Bias Rotation Angles α

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Bias Rotation Angle (*PI)

0.00

0.02

0.04

A
cc

u
ra

cy
:

G
a
p

to
O

ri
gi

n
a
l

Bias Class Blue

Initial Gap

Final Gap

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Bias Rotation Angle (*PI)

0.000

0.025

0.050

0.075

Bias Class Wine

(b) Amount p of points in the biased area

0 0.05 0.1 0.2 0.5

p

0.00

0.05

0.10

A
cc

u
ra

cy
:

G
ap

to
O

ri
gi

n
al

b, 0.5

Initial

Final

0 0.05 0.1 0.2 0.5

p

b, 0.75

0 0.05 0.1 0.2 0.5

p

w, 1

0 0.05 0.1 0.2 0.5

p

w, 1.25

0 0.05 0.1 0.2 0.5

p

w, 1.5

0 0.05 0.1 0.2 0.5

p

w, 1.75

(c) Noise in the dataset

0 0.05 0.1 0.2 0.5

Noise

0.025

0.050

0.075

0.100

A
cc

u
ra

cy
:

G
ap

to
O

ri
gi

n
al

b, 0.5

Initial

Final

0 0.05 0.1 0.2 0.5

Noise

b, 0.75

0 0.05 0.1 0.2 0.5

Noise

w, 1

0 0.05 0.1 0.2 0.5

Noise

w, 1.25

0 0.05 0.1 0.2 0.5

Noise

w, 1.5

0 0.05 0.1 0.2 0.5

Noise

w, 1.75

Figure 4.4: Experiments on synthetic data using synthetic rotation biases. The plots (a),
(b), and (c) explore the behavior of Imitate for different rotation angles (α), amounts of
remaining points in the biased area (p), and noise in the dataset, respectively. Reported
is the gap in accuracy between a classifier trained on the original, unbiased dataset D
and one that is trained on B only (dashed line) and on B ∪ Î (solid line). If it hits 0, we
managed to reconstruct the performance of the unbiased classifier fully. For (b) and (c),
the type of synthetic bias is given by the title (c, α/π), which means a rotation bias in
class c ∈ {blue (b), wine (w)} with angle α.

61

Dataset Predicted Attribute Biased Set B

Abalone Sex Viscera weight < 0.144
Banknote∗ Class Variance > 0.32
Car∗∗ Class Persons > 3
Statlog (Shuttle) Class==Rad Flow Time > 54.5
Skin∗ [13] Class R ≤ 170.5

Table 4.1: Dataset overview. ∗Due to the small dimensionality of the dataset, we did not
omit the attribute used for the bias split. ∗∗The categorical variables were transformed
into integers as preprocessing.

our technique to create a bias is not sufficient anymore to cause a biased
classifier.

Label Noise in the dataset

The higher the label noise in the dataset, the less the synthetic bias affects
the results. We can see that trend in Figure 4.4c. It is also clearly visible
that Imitate helps more when there is only a small amount of noise present
and can even decrease the performance of a classifier for noisy data. That
is the expected result, as too much noise overshadows the true probability
density and leads to an incorrectly fitted density.

4.4.2 Real-World Data

For the evaluation of our method on real-world data, we used classification
datasets from the UCI machine learning repository1[41] and created a bias
as follows: To make sure that our split is relevant for the classification, a
decision stump was trained on each dataset, and we used the same split
for the bias and removed the corresponding attribute afterward. B is then
the data in the larger leaf, and I is the smaller one. If that procedure had
removed a class (almost) entirely, we used a decision stump on the data
without the original attribute. This procedure is consistent with that pre-
sented in Zadrozny [158]. Table 4.1 summarizes the datasets together with
the criteria for the bias.

1Thanks to NASA for allowing us to use the Shuttle dataset.

62

Dataset Baseline Initial Gap Final Gap
Classifier accD − accB accD − accB∪Î

Abalone SVM (linear kernel) 0.151 0.089*
SVM (RBF kernel) 0.151 0.107*
Decision Tree 0.154 0.103*

Banknote SVM (linear kernel) 0.218 0.176*
SVM (RBF kernel) 0.205 0.162*
Decision Tree 0.196 0.156*

Car SVM (linear kernel) 0.133 0.144
SVM (RBF kernel) 0.131 0.138
Decision Tree 0.146 0.152

Shuttle SVM (linear kernel) 0.607 0.466*
SVM (RBF kernel) 0.590 0.424*
Decision Tree 0.566 0.482

Skin SVM (linear kernel) 0.003 -0.010*
SVM (RBF kernel) 0.002 -0.010*
Decision Tree 0.005 -0.009*

Table 4.2: We show the initial accuracy gap between a baseline classifier trained on the
ground-truth dataset D and one trained on the biased set B and compare it to the final
gap (after application of Imitate). * indicates that the result is statistically significantly
better than the other (t-test at a significance level of 1%).

We measure the performance of Imitate by the same accuracy gaps we
used for synthetic data. Different baseline classifiers were used, i.e., SVMs
with a linear and an RBF kernel, as well as a decision tree. In order to obtain
more reliable results, we repeated each experiment 10 times and report the
average result, which is displayed in Table 4.2. The * indicates that one result
was significantly better than the other based on a t-test at a significance level
of 1%.

For the Abalone, Banknote, Shuttle, and Skin datasets, Imitate could
significantly improve the biased dataset in order to obtain better classifi-
cation results. The Skin dataset allowed us to improve over the original
result. Although that is a desirable result, it implies that Imitate did not
reconstruct the original data but generated new data. The fact that it could
improve the performance indicates that there might very well be a bias on
the original dataset! On the Car dataset, our technique does not improve

63

40 60 80

Age

0 100 200

Weight

Fitted

Data

Fill up

Class: NO Cardiovascular Disease

30 40 50 60 70 80

Age

0

50

100

150

200

250

W
ei

gh
t

Class: NO Cardiovascular Disease

Class: Cardiovascular Disease

40 60 80

Age

0 100 200

Weight

Fitted

Data

Fill up

Class: Cardiovascular Disease

Figure 4.5: We apply Imitate to Kaggle’s Cardiovascular Disease dataset, restricted to
the age and weight features. The two left plots show the data densities per axis for both
classes (healthy and sick), respectively. The right plot demonstrates the final result (Î is
bold, B is faded out).

the data quality. That is due to the fact that the Car dataset is discrete and
hence very sensitive to the choice of the underlying grid (see Section 4.3.2).
Imitate mainly fills in the gaps between the true values (with high confi-
dence) instead of focusing on other underrepresented areas. Discrete datasets
are a weakness of Imitate that we need to overcome, e.g., by adding noise
or dimensionality-reduction, as discussed in Section 4.5.

4.4.3 Use-Case: Cardiovascular Disease

In order to show how Imitate can be applied in the data gathering pro-
cess, we use Kaggle’s Cardiovascular Disease dataset2. The dataset contains
70000 medical examination measurements together with factual information
on the patient and the target variable states the presence or absence of car-
diovascular disease. Since we want to be able to visualize it easily, we restrict
the dataset to the age and the weight of a patient as well as the class label
and apply Imitate to it. Figure 4.5 shows the result: the original data B is
faded out, and the generated data points Î are the bold ones.

2Source: kaggle.com/sulianova/cardiovascular-disease-dataset

64

https://www.kaggle.com/sulianova/cardiovascular-disease-dataset

The result clearly shows three trends: (i) There is a large amount of
data missing for patients over 65 years, especially for ones suffering from
cardiovascular disease. It is well known that the risk of cardiovascular disease
increases with the age of the patients, but the dataset shows a hard border
here. Hence we consider this a reasonable result. (ii) Similarly, patients below
the age of 40 are clearly under-represented, particularly healthy ones. This
might be because younger people are at lower risk and hence do not need to
screen for cardiovascular disease regularly unless there is a concrete reason.
(iii) Especially for the healthy patients but also for the other ones, we see
a generated area below a weight of 60kg. This result could have several
reasons that a domain expert should carefully assess, e.g., it might mirror
the observation that there are more over- than underweight people in the
dataset. That is possibly due to the fact that being overweight increases the
risk of cardiovascular disease, which is why overweight people are more likely
to go for a corresponding examination, but maybe the bias here also reflects
a trend in the underlying weight distribution of the entire population in the
data collection area.

If we want to validate these results, we could either consult a domain
expert or use additional datasets to check the distributions of the underlying
population (i.e., the potential patients of the location where the data was
collected) in terms of weight or age and compare it to what we found. These
underlying distributions can then be exploited for the typical weighting ap-
proaches or other covariate shift methods to train a classifier that is reliable
for the entire population, not only for the patients of this specific location.

4.4.4 Limitations

We saw that Imitate performs well in many cases and helps us identify
potential biases. However, we need to be careful with either discrete datasets
or datasets with several clusters per class for the same reason: Imitate fills
in the gap between the clusters and thereby overshadows potential biases
inside the clusters.

Figure 4.6 shows an extreme case. If the two clusters were closer together,
the effect would be less harmful. If they were much further apart from each

65

Refilled Data

Biased True Data
Fitted Distribution Biased Data Fill up

Figure 4.6: Drawbacks of Imitate: We applied our method to a synthetic dataset con-
sisting of two clusters (grey). Imitate fills in the gap between the clusters (gold).

other, the restriction that we allow Imitate to at most double the points
(see Section 4.3.3) kicks in and results in no correction for this particular
dimension at all. That means that biases in this dimension are not analyzed,
but at least the result is not harmful.

A discrete dataset basically yields the same problem, but it can be mit-
igated by the right choice of the underlying grid, as the discreteness can be
smoothed out if the grid is coarse enough and well positioned.

Another drawback of Imitate is hard domain-dependant boundaries,
e.g., in the example explained at the beginning of Section 4.3 where we
wanted to “complete” a dataset of flower measurements in an area with
a lake. The lake here is a hard boundary, and no reconstruction over the
lake area should be made. In another identical dataset, the gap could have
occurred due to a restricted area where no measurements could be taken,
but there are flowers. We cannot expect Imitate to distinguish between
those identical datasets automatically, but we should allow for user-given
hard boundaries in the density fitting process.

We will address all of these problems in future research. See the following
section for a short discussion of strategies to solve or at least mitigate them.

4.5 Conclusion

In this chapter, we introduced Imitate, a simple, modular, and extendable
approach to identify and mitigate selection bias in the case that we may not

66

know if (and where) we have a bias, and hence no ground-truth information
is available. In contrast to comparable methods that consider the data as
given and exploit background information to learn a back-shifted classifier,
Imitate can be used in the data-gathering process to identify a potential
bias right away.

Experiments showed that Imitate can yield meaningful results and can
support the data collection process by pointing out potential biases in an
early stage, but it is also capable of bias mitigation in a later stage of the data
mining process. We discovered that fitting one Gaussian per (transformed)
feature often helps but does not always lead to success. The major problems
we identify are the following:

Discrete Datasets. If the dataset is discrete and not continuous, Imi-
tate’s performance relies heavily on the choice of the underlying grid for
the density estimation and fitting. An equidistant grid is hard to adjust and
might not always be suitable. Extensions of Imitate hence should include
an automated way of finding a well-suited grid for each dimension individ-
ually. Other options to smooth out the discreteness here could be adding
noise or dimensionality reduction. See Section 5.2.4 for an automated way
to choose the grid, and Chapter 6 for an adaptation to discrete data.

Clusters. If the dataset consists of several clusters per class, in the dimen-
sions that separate the clusters, Imitate will either fill in the gap between
the clusters or not do anything at all if the clusters are too far away from
one another. The second case is fine as long as there are dimensions where
the clusters overlap; the first case is a problem. Improvements to Imitate
should take that into account and either apply a pre-clustering and treat
each cluster separately or fit a mixture model of several Gaussians depend-
ing on the number of clusters that show in a particular dimension. The
following chapter tackles this challenge.

Hard Boundary. We cannot determine if a dataset has a hard boundary
somewhere (or if such a boundary is a sign of a bias) as boundaries are
domain-related. However, we will extend Imitate in Section 6.4.3 to allow

67

users to set constraints representing these boundaries and consider them
during the density fitting. One way would be by adjusting the weights in the
optimization accordingly. If the dataset is shaped like a ring with a circular
boundary in the middle (e.g., the lake problem in Sections 4.3 and 4.4 –
“Limitations”), a re-adjustment of the weights will not be sufficient. In this
case, a solution might be to transform the dataset into a higher-dimensional
space that can separate both areas by a plane.

Overall, Imitate is the first method to identify and mitigate selection
bias when no ground truth or additional knowledge is required. We see in
Imitate a promising start of a new direction of research that is modular
enough to allow for extensions and improvements.

68

5 Multi-Cluster Selection
Bias Identification and

Mitigation

The research presented in this chapter has been adapted from

K. Dost, H. Duncanson, I. Ziogas, P. Riddle, and J. Wicker, “Di-
vide and imitate: Multi-cluster identification and mitigation of
selection bias,” in Advances in Knowledge Discovery and Data
Mining - 26th Pacific-Asia Conference (PAKDD ’22), ser. Lec-
ture Notes in Computer Science, vol. 13281, Springer Cham,
2022, pp. 149–160. doi: 10.1007/978-3-031-05936-0_12.

The results of this chapter are available in the GitHub repository
github.com/KatDost/Mimic and the proposed algorithm is contained in the
PyPI package imitatebias.

5.1 Introduction

In order to identify and mitigate selection biases where no additional in-
formation is available, in the previous chapter, we proposed Imitate, a
technique that, given a biased dataset, aims to estimate the ground-truth
distribution and generate data points to augment the dataset accordingly.
While we demonstrated Imitate’s ability to improve model performance
through pre-augmentation on several examples, it is limited by a major
assumption: the underlying ground truth is expected to be normally dis-
tributed. In practice, this strongly limits the applicability of Imitate as it

69

https://doi.org/10.1007/978-3-031-05936-0_12
https://github.com/KatDost/Mimic
https://pypi.org/project/imitatebias/

Ground-Truth Sample Biased Sample

True
decision boundary

Biased
decision boundary

Mimic
decision boundary Augmented data

Mimic
Augmented Sample

Figure 5.1: Decision boundaries of support vector machines trained on three different
datasets: a sample representative for the ground truth (left), a biased subset (center),
and the biased subset augmented with our algorithm, Mimic (right).

is neither flexible enough to model non-Gaussian distributions nor can it
capture datasets consisting of several clusters.

In this chapter, we introduce Mimic (Multi-IMItate Bias Correction), a
multi-cluster solution for the identification and mitigation of selection bi-
ases that exploits Imitate as a building block. Modeling data as a mixture
of possibly biased and overlapping multivariate Gaussians Mimic overcomes
Imitate’s limitations and greatly increases its applicability. The parameters
of these Gaussians bridge between the estimated and the present distribu-
tion and can indicate underrepresented regions in the data that are likely
to correspond to a selection bias. Generating points in these regions helps
mitigate the effect of the bias and push the decision boundary towards the
ground truth (see Figure 5.1).

Although attempting to solve the same problem as stated before in Sec-
tion 4.2, Mimic is substantially different from Imitate in its approach.
Here, we relax Imitate’s requirement of normal distributions and assume
each class of D consists of a mixture of Gaussians. In other words, we as-
sume that each class of the dataset can be represented by a set of possibly
overlapping Gaussian clusters. Since Gaussian mixtures are very flexible in
the distributions they can model, particularly when the number of clusters
is not limited, we could expect them to fit a biased dataset reasonably well
without ever pointing out biases. Hence, modeling the ground truth with
a mixture based on only the biased subset requires us, as a first step, to

70

Biased Dataset EM (1 Cluster) EM (Multiple Clusters) Imitate & Mimic

Figure 5.2: When facing a biased sample (1st plot from left), the EM algorithm will fit
one (2nd) or multiple (3rd; here controlled by BIC) Gaussians to minimize the error on
the presented data. Imitate and Mimic (4th) instead use the histogram bin heights as
weights for the fitting procedure and capture the underlying ground truth more closely.

determine the number of clusters in the biased dataset and to group the
data points accordingly. This makes the problem particularly challenging to
solve.

The remainder of this chapter is organized as follows: We refer back to
Section 4.2 for the problem statement and to Chapter 3 for related research
fields and skip both here. Our proposed method, Mimic, is introduced in
Section 5.2, and we discuss the implicit assumptions and expectations the
algorithm makes at the end of this section. In a set of experiments in Section
5.3, we demonstrate the shortcomings of existing techniques and highlight
the potential of Mimic in these scenarios. Section 5.4 concludes the chapter
with a discussion.

5.2 Proposed Method

Aiming to provide a bias mitigation strategy for a wide range of problems,
in this chapter, we assume that ground-truth data consists of a mixture of
multivariate Gaussians. Although this is still a limiting assumption, it sub-
stantially widens the range of datasets that can be modeled when compared
to the Imitate algorithm. Before analyzing each Gaussian for potential bi-
ases, we need to find a suitable mixture model for the ground truth based
solely on the biased dataset.

If no bias is present in the dataset, Gaussian mixture models (GMMs)
[35] can fulfill the task as they are able to identify the optimal Gaussians
to describe a presented dataset given suitable initial cluster centers. These
centers (and the number of clusters) could be found using, for example, the

71

Bayesian information criterion (BIC) [57]. In the case of a selection bias,
however, one biased cluster might be split into several Gaussian clusters
as that mixture fits the presented dataset better, as shown in Figure 5.2.
Assume a clinical study testing the impact of a new drug on test and con-
trol groups. While GMM breaks the group of participants into many small
clusters as it models the presented datasets, we need to find clusters that
give an indication of where some data might be missing and thereby indi-
cate that, e.g., women below a certain age did not participate due to safety
concerns. Therefore, we need to develop a novel strategy to cluster biased
datasets into separate potentially overlapping Gaussians that capture the
ground truth rather than the biased presented data.

The central idea for Mimic is simple as illustrated in Figure 5.3: We start
with a large number of clusters and let Imitate indicate where data might
be missing. In contrast to agglomerative clustering, [61] which iteratively
merges the closest clusters, we operate on a point basis. If data is available
in another cluster to fill in the gap, we let the cluster grow by assigning these
data points until it is approximately normally distributed or no suitable data
points can be found. In this case, we found a potential selection bias and
generate data points to mitigate it. Once all initial clusters have been fully
grown, a merging procedure purges duplicates and combines suitable clusters
to overcome locally optimal solutions. This process is carried out for every
class of the initial dataset (if any) separately, but we describe it for only one
class in the following in order to simplify. See Algorithm 3 for an overview
and the following for a detailed discussion of the components.

5.2.1 Initialization [Alg. 3; Lines 2-3]

Starting with only the biased dataset B, the initialization step divides it into
a large number of initial clusters that Mimic uses to search each of them
for non-normality. It then uses this information to “steal” data points from
other clusters into this one and grow it. If the initial clusters are already
sufficiently normal, no direction for growth can be identified. Therefore,
after pre-processing the data with local outlier factor (LOF) [21] for higher
cluster quality, Mimic starts off with non-Gaussian initial clusters like those

72

Input Data 1. Initial clustering

2. Iteratively grow largest cluster

3. Grow all other clusters

4. Merge clusters and resolve overlaps 5. Generate points per cluster

Figure 5.3: Overview over Mimic: Given a potentially biased dataset, Mimic clusters it
(Step 1), grows the largest cluster first (Step 2), followed by all other clusters (Step 3).
Finally, Mimic merges the grown clusters and resolves overlaps (Step 4) before applying
Imitate to each cluster individually to generate points that mitigate the bias (Step 5).

obtained from k-means. k-means brings two major advantages: First, it is
fast. Second, it is simple enough to cut overlapping clusters and capture also
non-overlapping parts. These parts are essential to enable Mimic to grow
the clusters correctly later on. A high number of initial clusters additionally
increases the probability to capture an initial cluster that can later be grown,
even if overlaps exist. In order to use a sufficient number of initial clusters,
we use twice the number that maximizes the silhouette score [57] and split
further if we detect two density peaks in a histogram instead of one. The
data is pre-processed using LOF in order to improve the quality of the initial
clusters and to obtain a measure of density that is later used in deciding on

73

Algorithm 3 Mimic: Main algorithm
Input: A biased dataset B
Output: Parameters θi = (µi, Σi) for each cluster i and a set P of generated

points that mitigate the bias
1: function Mimic(B)

▷ Remove outliers using LOF (Sec. 5.2.1)
2: B′ ← removeOutliers(B)

▷ Initialize clustering using k-means with large K (Sec. 5.2.1)
3: l← initializeClustering(B′)
4: θ ← ∅
5: L← largestValidCluster(l) ▷ (Sec. 5.2.2)

▷ Grow every valid cluster. A cluster is valid if it is large and dense
enough and has neither been processed before nor subsumed by a
previous iteration (Sec. 5.2.5)

6: while L exists do
7: l, θL ← growCluster(L, B′, l)
8: θ ← θ ∪ θL

▷ Select the largest valid cluster based on the updated labels l (if
possible)

9: L← largestValidCluster(l) ▷ (Sec. 5.2.2)
10: end while

▷ Merge clusters if it improves normality (Sec. 5.2.6)
11: θ ← merge(θ, B′)

▷ Generate data to mitigate the bias (Sec. 5.2.7)
12: P ← augment(θ, B)
13: return θ, P
14: end function

cluster validity. We chose LOF since it is parameter-free and identifies local
outliers rather than global ones which is particularly important if clusters
are not equally dense and spread. From here on, the outlier-free dataset is
denoted as B′ and is passed on to the next step together with the initial
labels l.

5.2.2 Identifying Valid Clusters [Alg. 3; Lines 5, 9]

Once a large number of initial clusters has been found, Mimic grows them
into Gaussian clusters where possible using points from B. Aiming to secure
reliable performance during the subsequent fitting of a multivariate normal

74

Algorithm 4 growCluster (Sec. 5.2.5)
Input: Label L to be grown, outlier-free dataset B′ with labels l
Output: Updated labels l, parameters θL for cluster L

1: function growCluster(L, B′, l)
2: repeat
3: B′

L ← B′|l=L ▷ Cluster L
▷ Run Imitate on L to obtain GL that represents where data
might be missing on a grid-basis, the number of missing data
points nL and the parameters θL of the fitted normal distribution
(Sec. 5.2.3 and 5.2.4)

4: GL, nL, θL ← Imitate(B′
L)

▷ Score all remaining data points based on if they are likely to
help improve the fit of the Gaussian

5: s← score(B′ \B′
L, GL, θL)

▷ Identify nL suitable candidates in batches bi and sample based
6: on s
7: for all batches bi with ∑i bi = nL do
8: Ci ← sample(B′ \B′

L, bi, s)
▷ Assign a batch of candidates to the cluster if it improves
the likelihood of the model fitting the data

9: if P[θL | B′
L ∪ Ci] > P[θL | B′

L] then
10: l(Ci)← L ▷ Update l for accepted Ci

11: end if
12: end for
13: until l did not change
14: return l, θL

15: end function

distribution, we filter out all clusters that are either (i) too small (fewer
than 10 data points in our implementation) or (ii) too widespread with low
density (that is, if the cluster’s LOF lies below the 3σ-interval of the average
cluster LOF). Note that the latter is a necessary measure, as we can expect
to obtain unreliable results when fitting a normal distribution to a set of
singletons. Additionally, we reduce the computational burden by ensuring
that no cluster is grown more than once and no cluster that has been fully
subsumed in previous iterations is processed. Thereby, we reduce the number
of duplicate clusters we obtain and focus on the most promising ones. Each
iteration selects the largest valid cluster and grows it as described below
until no valid clusters remain.

75

The largest cluster is determined based on a label vector l that is updated
in each iteration. If, for example, an initial cluster contained 50 data points,
but 45 have been assigned to another cluster, it will be discarded as being
too small (Criterion (i)). Similarly, if the center of an initial cluster has
been assigned to a different cluster, the leftovers will be too widespread to
be processed (Criterion (ii)). This is a necessary measure as we can expect
to obtain unreliable results when fitting a normal distribution to a set of
singletons.

5.2.3 Extending Imitate: From Grid to
Parameterized Gaussians [Alg. 4; Line 4]

Given a cluster L, Imitate estimates a multivariate Gaussian (see Section
4.3) and indicates based on a grid where (and how many) points need to be
generated in order to smooth out the cluster’s density and have it resemble
the fitted Gaussian. Note that the Imitate algorithm, as described in the
previous chapter, continues to operate on the grid representation, which
would result in a high complexity given our repeated Imitate calls and
does not allow for precise probability assignments. Hence we adjust: Assume
we fitted one Gaussian (µi, σ2

i) for each of the d independent components i

in the ICA-transformed space. In other words, for each of the components,
Imitate provides us with a univariate density

fi(xi) = 1
σi

√
2π

exp
[
−1

2

(
xi − µi

σi

)2
]

.

The joint probability function f for independent densities f1, . . . , fd is the
product f(x) = ∏

i fi(xi) for a data point x ∈ Rd in ICA-space. This term

76

can be transformed to

f(x) =
d∏

i=1
fi(xi)

=
d∏

i=1

1
σi

√
2π

exp
[
−1

2

(
xi − µi

σi

)2
]

= 1
(∏i σi) · (

√
2π)d

exp
[∑

i

−1
2

(
xi − µi

σi

)2
]

= 1√
(∏i σ2

i) · (2π)d
exp

[
−1

2
∑

i

(xi − µi)2

σ2
i

]

= 1√
det Σ · (2π)d

· exp

−1
2(x− µ)T

1

σ2
1 ...

1
σ2

d

 (x− µ)

= 1√

det Σ · (2π)d
exp

[
−1

2(x− µ)TΣ−1(x− µ)
]

for µ = (µ1, . . . , µd) and Σ ∈ Rd×d with diagonal (σ2
1, . . . , σ2

d) and 0 else-
where. This is the density formula of a multivariate Gaussian parameterized
by (µ, Σ).

Assume that such a multivariate Gaussian (µ, Σ) has been found in the
ICA-space obtained by a transformation x 7→ Ix =: x′ for a data point
x ∈ Rd in the original space and the ICA matrix I ∈ Rd×d. To identify
biases in the original data space, we need to transform the Gaussian back
to the original data space. We can now insert the transformation term into
the definitions of mean and covariance matrix and exploit the linearity of
the expectation:

µ = E[x′] = E[Ix] = IE[x]
⇔ I−1µ = E[x]
and Σ = E

[
(x′ − E[x′])T(x′ − E[x′])

]
= E

[
(Ix− E[Ix])T(Ix− E[Ix])

]
= IE

[
(x− E[x])T(x− E[x])

]
IT

⇔ I−1Σ(IT)−1 = E
[
(x− E[x])T(x− E[x])

]

77

which yields a Gaussian in the original space with parameters
(I−1µ, I−1Σ(IT)−1).

This back-transformation enables us to assign cluster probabilities that
are neither grid-based nor require the storage of grid information or the ICA
transformation matrix for each cluster.

5.2.4 Extending Imitate: Automated Grid Selection
[Alg. 4; Line 4]

Additionally, we adjust Imitate’s method of selecting the grid granularity:
Instead of repeating the entire modeling and augmentation process and using
the results with the highest confidence score (as it was done in Imitate),
we use the corrected Akaike information criterion (AICc) [57] to select, for
each dimension, the grid over which a histogram represents the data best.
This adjustment is necessary since Mimic uses repeated calls of the Imitate
fitting procedure, and the inflicted computational expense of the confidence-
based strategy would be infeasible.

The decision on which information criterion to use is based on prelimi-
nary experiments developed under our supervision by Duncanson [43]. We
investigated the quality of the selected number of bins for several infor-
mation criteria: the Akaike information criterion (AIC) and its corrected
version AICc, the Bayesian information criterion (BIC), and the Hannan-
Quinn criterion (HQC). See Granichin, Volkovich, and Toledano-Kitai [57]
for the definitions. We generated 1000 standard Gaussian datasets of ran-
dom size n ∼ U(5000, 50000) with artificial biases removing h ∼ U(0, 100)%
of the data above a threshold t ∼ U(0, 1). For all tested numbers of bins
in {5, . . . , 100} we evaluate the KL-divergence between the ground-truth
N (0, 1) and the Gaussian Imitate fits to the histogram representation of
the biased data. The results are shown in Figure 5.4 and indicate that all
information criteria perform similarly and better than the confidence strat-
egy described in Chapter 4. We select AICc since it seems to have a slight
edge over its competitors.

78

Experiments (sorted)

10−4

10−2

100

K
L

-D
iv

er
g
en

ce

Confidence

AIC

AICc

BIC

HQC

Figure 5.4: Test of different information criteria to determine the optimal number of
histogram bins for Imitate

5.2.5 Growing Clusters [Alg. 4]

For a cluster L, Imitate provides us with a multivariate Gaussian θL and
a grid GL indicating where and how much (nL) data might be missing.
As outlined in Algorithm 4, both are passed on to a scoring function that
estimates for each point p outside L how well it contributes to filling in the
gap between the present (h) and fitted (f) density (first term), and how
likely it belongs to that distribution (second term):

s(p) = d log[max{f(p)− h(p), 0}+ 1] + log[f(p) + 1],

where d denotes the number of features and puts more emphasis on filling
the gap for higher dimensions. Using the score, Mimic then searches for nL

fitting candidates in batches bi to overcome locally optimal solutions.
A batch of candidates C is drawn randomly with probabilities based on

the score values s and added to the cluster if adding it improves the likeli-
hood of the fitted Gaussian (i.e., the parameters θL describing the cluster)
given the assigned data points (i.e., B′

L ∪C). In other words, we aim to find
arg maxC P[θL | BL ∪ C] and add it to the cluster if

P [θL | B′
L ∪ Ci] > P [θL | B′

L] .

For the sake of brevity and readability, we denote XC := BL∪C. In order to
avoid underflow errors, we use logarithms. Exploiting Bayes’ theorem and

79

since log-transformation preserves maxima, this term can be expressed as:

arg maxC P[θL | XC] = arg maxC log (P[θL | XC])

= arg maxC log
(
P[XC | θL] · P[θL]

P[XC]

)

= arg maxC log
(
P[XC | θL]
P[XC]

)
= arg maxC (logP[XC | θL]− logP[XC]) ,

since P[θL] does not depend on C and can hence be omitted in arg maxC .
Using the Imitate output, we obtain histogram values h and fitted Gaus-

sian densities f over a grid. With these, the first term, logP[XC | θL], can
be approximated via the grid representation as follows:

logP[XC | θL] = log
∏

p∈XC

P[p | θL]

≈ log
∏

grid cells c

f(c)h(c)

=
∑

grid cells c

h(c) · log f(c), (5.1)

which is a term that can be efficiently computed without the risk of
underflow errors. The second term, logP[XC], can be transformed into
log

∫
θi

L
P[XC | θi

L] · P[θi
L] dθi

L using the law of total probability. We simplify
the term by assuming that only one data-generating model exists that we
parameterize as follows: The mean µ0 is the grid center, and the covariance
matrix Cov0 is set up as a diagonal matrix, ensuring the grid borders are the
minimal axis-aligned bounding box for a Gaussian around µ0 truncated at
the usual 3 standard deviations. We denote the parameters of the Gaussian
(µ0, Cov0) as θ0

L and obtain the simplified term logP[XC | θ0
L]. By evaluating

the corresponding probability density f0 for all grid cell centers, this term
can be calculated similarly to Eq. 5.1 as follows:

logP[XC] ≈ logP[XC | θ0
L]

≈ log
∏

p∈XC

f0(cell_center(p)) · s

= |XC | · log s +
∑

p∈XC

log f0(cell_center(p)),

80

Overgrown
cluster

Symmetric
overlap > 80%

Symmetric
overlap < 20%

Any other case

?
⇒ remove

overgrown cluster
⇒ merge clusters ⇒ do not consider

for merging
⇒ merge if it

increases
Gaussianity

Table 5.1: Four different cases Mimic’s merging procedure considers (from left to right): 1.
overgrown clusters (vine, left) are removed, 2. overlapping clusters are merged, 3. hardly
overlapping clusters are not considered for merge, and 4. all other clusters are only merged
if it results in a more Gaussian cluster.

where s is the size of each grid cell. Although only an approximate cal-
culation, this term is able to balance off Equation 5.1 and yields easily
computable meaningful results.

In our implementation, we restart the sampling (with replacement) of a
rejected batch twice in order to avoid “unlucky” choices. If points have been
added, Mimic fits another multivariate Gaussian and repeats the process
until no further points are added. The parameters of the last fitted Gaussian
represent this cluster.

5.2.6 Merging [Alg. 3; Line 11]

Once the parameters for all clusters have been obtained, we make sure not
to have duplicate clusters or those that are locally optimally normal but
can be combined into a better fit. Additionally, Mimic risks overgrowing
clusters if the initial clustering was particularly poor, e.g., if it captures the
overlapping area of two clusters. Here, the point density is higher, and the
Imitate procedure will demand to grow the cluster in all directions simul-
taneously such that it never reaches a Gaussian-like shape and continues to
grow, absorbing more and more data. See Table 5.1 – Case 1 for a visualiza-
tion. Such a cluster L is typically characterized by a very wide probability
distribution reaching low-density values for all points, such that the points
p with L = arg maxi P[p | θi] exhibit a substantially larger distance to each
other than average. To detect them, we evaluate the within-cluster-nearest-

81

neighbor distance of each cluster and remove those whose distance exceeds
a 3-standard-deviation band around the average distance. We identify and
remove these overgrown clusters as a first step of the merging procedure.

The overlap o(i, j) of two clusters i and j can be quantified by counting
the points in the dataset for which the cluster membership is not entirely
clear and weighting them using their probabilities:

o(i, j) =
∑

p P[p | θi]1P[p|θi]<αP[p|θj]∑
p P[p | θi]

for a factor α > 1 (α = 10 in our implementation) where 1 denotes the
indicator function. Note that o is not symmetric in its arguments which
follows the intuition of overlap. Imagine two clusters in 2D arranged like
a fried egg: while the yolk fully overlaps with the egg white, the reverse
direction would not hold true.

Based on the parameters for all clusters, Mimic calculates the over-
lap between each (ordered) pair of clusters. The ones with high symmetric
overlap (that is, o(i, j) > β and o(j, i) > β for β ∈ [0, 1]; β = 0.8 in
our implementation) are merged right away into a cluster with parameters
((µi + µj)/2, (Σi + Σj)/2) since they can be expected to be duplicates. This
corresponds to Case 2 in Table 5.1.

Clusters with a small symmetric overlap, i.e., o(i, j) < γ and o(j, i) < γ,
are not considered for merging for the sake of computation efficiency (Table
5.1 – Case 3).

All other clusters with a small, possibly one-sided overlap (that is,
o(i, j) > γ and o(j, i) > γ for a small γ ∈ [0, β]; Case 4 in Table 5.1) are
merged only if, after a probabilistic cluster assignment, the Imitate fitting
error e of the merged cluster is lower than the weighted sum of the individ-
ual errors, i.e., if ei∪j < (#i · ei + #j · ej)/(#i + #j) where #i counts the
points with label i. In order to address the randomness of the involved ICA,
we repeat this test 10 times and use a majority vote for the final decision.
The merging procedure is repeated until no further clusters are merged.

In our implementation, we use hardcoded α = 10, β = 0.8, and γ = 0.2.
Note that these values reduce the number of merge tests that need to be
carried out and hence reduce the computational burden while sacrificing

82

little to no quality. Parameter tuning is not necessary as the merge tests
determine the results, not the parameters.

5.2.7 Data Augmentation [Alg. 3; Line 12]

After receiving the final cluster parameter sets from the merging step, Mimic
probabilistically assigns the data points to the clusters and generates points
for each cluster separately to “fill in the gap” between the found and the
fitted distribution as in Imitate. Points with probability 0 do not belong to
any cluster and are marked as outliers. The final cluster parameters, together
with the set of generated data points, yield the final output of Mimic.

5.2.8 Assumptions and Expectations

Selection Biases cannot be reconstructed without making some kind of as-
sumption regarding the ground truth and/or the nature of the bias [9].
Hence, Mimic assumes a ground truth that can be modeled by a mixture
of (possibly overlapping) multivariate Gaussians, which, in contrast to ex-
isting techniques, requires neither a ground-truth sample nor knowledge of
the bias. This freedom, however, comes at a cost and forces some implicit
requirements:

(i) The data cannot contain categorical, binary, or discrete features with
few values (unless the histogram bins align with them), as fitting a
Gaussian would not be meaningful (this limitation is inherited from
Imitate),

(ii) B itself cannot consist only of Gaussian clusters or Mimic will not be
able to identify growth directions,

(iii) several strongly overlapping biased clusters might not be disentangled
correctly, and

(iv) the bias in each cluster is expected to have a convex shape as our
component-wise analysis fails otherwise.

83

Lastly, biases can be misleading, pointing towards a different Gaussian than
the true one and causing Mimic to introduce new biases into the data. We
aim to suppress that behavior by refusing to take action if the Gaussians do
not fit reasonably well (as in Imitate). This, however, causes conservative
results with bias reconstructions pointing toward the right locations rather
than correcting entirely. That is the reason for only small improvements in
classification accuracy as can be seen in the experimental results. In practice,
however, this is enough to point a practitioner toward potential problems in
the data that can be corrected upon confirmation.

5.3 Experiments and Discussion

In order to investigate Mimic’s ability to improve classifier performance,
we set up all experiments similarly: we train three classifiers on a biased
training set B, the augmented biased training set B ∪ Î, and an unbiased
training set D. The accuracy accB, accB∪Î , and accD of all three classifiers,
respectively, is then evaluated on an unbiased test set with the hope that
accB∪Î > accB. After providing details on the experimental setup, we assess
the impact of different characteristics of datasets on the performance.

5.3.1 Experimental Setup

In our experiments, we compare Mimic not only to the biased accuracy as
a baseline but also for augmented biased datasets B ∪ Î where Î is obtained
using (i) augmentation with Imitate, (ii) clustering and augmentation with
Mimic, and (iii) clustering with GMM and augmentation with Mimic which
we denote as “GMMimic”. GMM selects the number of clusters (from 1 to
20) that achieve the best BIC and initializes using k-means.

Classifiers. As classifiers, we use decision trees (DT), support vector
machines with RBF-kernel (SVM), and random forests (RF) with 100 trees.
All parameters are kept at sklearn’s default values [110].

Datasets. We use synthetic datasets since they allow us a high level
of control, and real-world datasets to demonstrate that Mimic is indeed
applicable in practice. Real-world datasets are taken from the UCI machine

84

Dataset Predicted
Attribute

Biased Set B Omitted
Features

Wholesale
Customers

Region Frozen > 409.5 Channel

Vertebral
Column

Normal/
Abnormal

Spondylolisthesis
Grade ≤ 14.855

-

Banknote Class Variance > 0.32 -
Diabetes
(130 US
hospitals)

Diabetes Med #Medications
> 9.5

All but Age*,
#LabProcedures,
#Procedures,
#Medications,
#Outpatient,
#Emergency,
#Inpatient,
#Diagnoses

Skin Seg-
mentation

Class R ≤ 170.5 R**

Table 5.2: Description of real-world datasets used in the experiments. *The categorical
values were transformed into numerical variables. **This attribute was omitted to achieve
consistency with the Imitate experiments.

learning repository [1, 41, 138]. Semi-artificial biases are created as in the
previous chapter by splitting into B and I using a decision stump (the larger
subset is taken for B). This way, the impact on the classification accuracy
is guaranteed. We specify the predicted attribute as well as the created bias
in Table 5.2.

Synthetic datasets are generated using a specified number of clusters per
class and dimension. Each cluster is generated as a multivariate Gaussian
with a random covariance matrix (via the Cholesky decomposition) and
mean. All means are generated within the unit cube and pushed away from
the center using a parameter that controls the spread of the clusters. If not
explicitly mentioned, we used a medium spread of 100. Biases are created
as described for Imitate for two randomly selected dimensions per cluster:
A hyperplane is rotated through the cluster center by a random angle. Data
points above that plane associated with the cluster are omitted in B. Note
that this is a hard bias which we decided to use as it challenges our method

85

further (see Section 4.4 for a study on the impact). In order to ensure that
the bias has an impact on the classification accuracy, we select only those
randomly generated datasets and biases that inflict at least a 10% accuracy
drop with the SVM classifier. We generated datasets of size 5000 and pro-
vide all methods, parameters, and seeds necessary for the generation in the
provided code.

Performance Measure. All synthetic experiments are repeated 30
times to compensate for the randomness in the dataset generation, and we
report the median results to account less for unfortunate synthetic datasets.
Experiments on real-world datasets are repeated 10 times as there is no
dataset generation step involved. Here, we report the mean together with
90% confidence intervals. We measure the performance as the improvement
over the biased accuracy and normalize using the unbiased accuracy, i.e.,
(accB∪Î − accB)/(accD − accB).

5.3.2 Results

Subsequently, we investigate the influence of different dataset characteris-
tics on the performance. While varying the parameters mentioned in the
experiments, we keep all others fixed to isolate the variables in question.

Unbiased Datasets

Being able to mitigate a selection bias is important; however, if Mimic is
presented with an unbiased dataset, it should not “correct” it. We count the
number of points being generated for unbiased and corresponding biased
2D datasets with random spreads between 100 and 200, and we normalize
the counts with the dataset size for comparability. Figure 5.5 shows that
substantially fewer data points are generated for the unbiased datasets. We
suspected that these data points result from histogram inaccuracies and
confirm that suspicion by applying Imitate’s purging strategy (that is, it
removes the generated data points that are not distributed densely enough):
the generated points for the unbiased datasets do not focus on certain areas
and are hence removed as noise. Almost no points remain on the unbiased
dataset, while there are about 20% of generated points left on the biased

86

2 3 4 5

Clusters

0

20

40

G
en

er
at

ed
P

oi
n
ts

(i
n

%
of

D
at

as
et

S
iz

e)

Biased
Dataset

Unbiased
Dataset

raw

purged

Figure 5.5: Comparison of Mimic’s behavior with a present (light gray) and absent (dark
gray) bias on synthetic data. Lines indicate the mean; bands are 95% confidence intervals.

datasets. This trend is consistent regardless of the number of clusters in the
datasets.

Dimensionality

The dimensionality of synthetic datasets is closely related to their difficulty
as higher dimensions naturally increase the distance between clusters even
while under the same cluster-to-center distances. Figure 5.6 demonstrates
this, as lower dimensionalities typically exhibit poorer performance than
higher ones, but this effect vanishes with larger numbers of clusters. GM-
Mimic and Mimic show similar performances for a larger number of clus-
ters, while Mimic clearly dominates when only a small number of clusters
is present, regardless of the dimensionality. Imitate shows strong perfor-
mance in this case, too, but decreases rapidly since it operates with only
one cluster.

We observe the highest improvements among all three models for random
forests. This effect is likely to be observed because random forests more draw
more fine-grained decision boundaries. Hence, adding generated points is
more likely to have an impact.

Cluster Overlap

The center-to-cluster distances of the clusters directly affect the difficulty
of the clustering task as they control the overlap. In order to investigate
the influence, we adjust the spread parameter in the dataset generation
and illustrate the results in Figure 5.7. GMMimic and Mimic both show

87

1 2 3 4 5

Clusters

−50

0

50

100

Im
p

ro
ve

m
en

t
(i

n
%

)

DT

1 2 3 4 5

Clusters

SVM

Baseline :

Biased Dataset

Method :

GMMimic

Imitate

Mimic

Dimensions :

2

3

4

5

1 2 3 4 5

Clusters

RF

Figure 5.6: For each classification method, we compare the impact of the dataset dimen-
sionality and the number of clusters on the performance.

low spread
(difficult)

high
(easier)

−50

0

50

100

Im
p

ro
ve

m
en

t
(i

n
%

) 1 Cluster (per class)

low spread
(difficult)

high
(easier)

2 Clusters

low spread
(difficult)

high
(easier)

3 Clusters

Baseline :

Biased Dataset

Method :

GMMimic

Imitate

Mimic

Classifier :

Decision Tree

Random Forest

Support Vector Machine

low spread
(difficult)

high
(easier)

4 Clusters

low spread
(difficult)

high
(easier)

5 Clusters

Figure 5.7: Datasets in 2D with two classes have been generated with different numbers
of clusters per class. The spread (on the x-axes) indicates how much the clusters are
being pushed away from the center, and a low spread corresponds with a high overlap.
Even with a large number of clusters, Mimic performs consistently well. However, high
overlaps seem to be addressed better by GMMimic.

improvements even for a large number of clusters and high overlaps. Mimic
demonstrates its strength, particularly for better-isolated clusters where it
improves the classification accuracy by up to 50% of the drop due to the bias.
The center-to-cluster distances of the clusters directly affect the difficulty
of the clustering task as they control the overlap. Imitate excels in the
one-cluster case as it is designed for this case and produces less conservative
results than its competitors.

Real-Life Datasets

Figure 5.8 summarizes the results on five real-world datasets. For most
datasets, we can see Mimic’s potential to improve the classifier accuracy

88

D
T

Im
p

ro
ve

m
en

t 111

Wholesale
9

Vertebral Column
12

Banknote
0

Diabetes
2

Skin

R
F

Im
p

ro
ve

m
en

t 87 5 1 43 2

S
V

M
Im

p
ro

ve
m

en
t

Not affected
by bias

-23

5

Maximum
Improvement
(per Plot)

Baseline:
Biased Data GMMimic Imitate Mimic

Not affected
by bias

2

Figure 5.8: We compare the degree to which the classifier accuracy can improve when dif-
ferent augmentation techniques are used. The baseline (gray line) represents the accuracy
when the classifiers are trained on the biased dataset alone. The numbers annotating the
dashed lines indicate the y-axis value at the top of the plot window – 100% corresponds to
training on a ground-truth sample. Note that we omit the y-axis labels and replace them
with the dashed line indicating the maximum improvement (maximum y-value) for each
plot. The bottom of the plots is cut off unless Mimic’s performance is displayed there for
easier comparison. The black lines are 90% confidence intervals and indicate significant
differences from the baseline if they do not touch it.

substantially, in most cases more than its competitors. A few observations
are noteworthy: On the Wholesale dataset, Imitate performs well since it
consists of only one cluster per class. The Vertebral Column dataset seems
particularly hard for all methods as the semi-synthetic bias removes 70% of
the majority class points (which, therefore, cannot be reconstructed by any
method), leaving an almost balanced classification problem with full overlap
and an imbalanced test set. Here, the tree-based methods essentially select
the majority class, and Mimic is able to tip the scales favorably but cannot
help the SVM. Overall, although GMMimic demonstrates solid performance
on the synthetic dataset, it does not seem to generalize well to real-world
datasets.

89

5.3.3 Limitations

Overall, the experiments show that the application of an augmentation tech-
nique can provide a meaningful improvement on a biased dataset. While Im-
itate is designed for datasets with only one cluster per class, GMMimic and
Mimic can improve upon its performance when dealing with multi-cluster
datasets. The experiments on synthetic datasets with artificial biases point
towards a similar performance of GMM- and Mimic-based data augmen-
tation. On the real-world datasets, however, we do not see this confirmed:
Mimic can further improve the classification performance. Further research
could investigate where which method tends to be superior and particularly
if a symbiosis of both can be beneficial, e.g., with GMM as an initial model
and a Mimic-inspired merging strategy and augmentation. Existing pitfalls
of all methods are their inability to deal with discrete, binary, and categorical
data. One-hot encoding together with a dimensionality reduction via PCA
as a pre-processing step might help improve classification performance but
involves a loss of information and interpretability of the generated points.
We explore this option in the following chapter.

Mimic relaxes Imitate’s assumption that the ground-truth dataset con-
sists of only one Gaussian per class. Instead, it can model multiple Gaussian
clusters or even approximate non-Gaussian clusters with mixture models.
This makes Mimic applicable to a substantially wider range of datasets.
However, not all distributions can be approximated well as a mixture of
Gaussians. Future extensions should include an automated test of applica-
bility as well as approaches applicable to a wider range of distributions.

5.4 Conclusion

Machine learning models inherit selection biases from datasets causing them
to predict inaccurately if the biases remain undetected. Existing bias mitiga-
tion strategies require certain kinds of knowledge of the bias or the ground-
truth. In real-world scenarios, however, this requirement often cannot be
met. A first attempt to detect and mitigate selection biases in a “blind”

90

setting has been made with the Imitate algorithm, although it is limited
to datasets with only one Gaussian cluster per class.

In this chapter, we introduced Mimic, a technique that uses Imitate
as a building block but overcomes these limitations and can model a wider
range of datasets exploiting mixtures of Gaussians. As such, multi-cluster
modeling of many non-normally distributed datasets is now possible.

Although limitations still exist as discussed in Section 5.3, we believe
that Mimic is a major step forward towards automated bias identification
and mitigation in the case that no knowledge of the bias or the ground-truth
exists.

91

6 An Application: Assessing
and Preventing Bias in

Growing Chemical
Databases

The research presented in this chapter has been adapted from

K. Dost, Z. Pullar-Strecker, L. Brydon, K. Zhang, J. Hafner,
P. Riddle, and J. Wicker, “Combatting over-specialization bias
in growing chemical databases,” Journal of Cheminformatics,
vol. 15, no. 53, 2023. doi: 10.1186/s13321-023-00716-w.

The results of this chapter are available in the GitHub repository
github.com/KatDost/Cancels and the proposed algorithm is contained in
the PyPI package imitatebias.

6.1 Introduction

In domains where gathering data requires time-intensive experiments, pre-
dicting likely outcomes for experiments helps concentrate efforts on the right
experiments. One example is the development of effective yet sustainable and
environmentally-friendly products, e.g., pesticides, that (hopefully) fulfill
their purpose and then quickly degrade into harmless non-toxic compounds
over time. Experiments involve long-term studies of each compound’s effect
and observation in soil under different environmental conditions. Ruling out
compounds that might not bring the desired chemical properties or degrade
into toxic by-products is an essential aspect of the development process.

92

https://doi.org/10.1186/s13321-023-00716-w
https://github.com/KatDost/Cancels
https://pypi.org/project/imitatebias/

Similar challenges arise in other areas of chemical research and develop-
ment, such as the design of new pharmaceuticals, fragrances, or commodity
chemicals.

However, predictive models learn from and specialize to the data pro-
vided to them [24, 129]. While this specialization is useful up to the point
where the desired domain is accurately captured [65, 80], the models can
over-specialize. Starting from the initial dataset, a trained model will only
be able to make reliable predictions in densely populated areas of the com-
pound space, leaving the remaining areas outside of the model’s applicability
domain. As a consequence, it will suggest a set of experiments well within
its applicability domain, shifting the overall data distribution towards in-
domain data. Should the model be re-trained after obtaining the new ex-
perimental results, it will put more emphasis on the now densely populated
areas, further shifting the data distribution. After a few iterations of dataset
growth, we can observe that the applicability domain is either consistent or
shrinking despite the additional data [58], and new potentially interesting
areas of the compound space will never be explored. For example, in density-
based applicability domain techniques using relative thresholds [5, 122], the
density ratio between dense and sparse areas changes – and rightfully so
since a trained model will increasingly focus on dense areas and become less
reliable on sparse ones. This scenario is a self-reinforcing type of selection
bias where the model chooses to obtain new results for compounds it can
already predict reliably and therefore slows down or even stops learning.

A similar effect can be observed when humans rather than models choose
the compounds to experiment with [31]. Jia et al. [73] argue that anthro-
pogenic factors play a key role in the compound selection process for ex-
periments and hence the development of datasets. More than on the cost,
availability, or ease of use of available candidate compounds, researchers tend
to base their selection on their past successes and that of their colleagues or
research articles. This results in a specialization spiral, iteratively narrow-
ing down the scope within which models and humans can make informed
decisions.

Active learning [127] is a tool that aims to break the cycle by selecting
the most informative experiments for the model instead. Although active

93

learning has been shown to suffer from shifts in distribution [105], it is capa-
ble of slowly expanding the compound space and will eventually even explore
beyond the desired degree of specialization. In addition, active learning is al-
ways model-dependent. This is a major drawback since datasets, especially
those requiring long-term experiments, can and will be used for different
purposes over time, and it is often infeasible to gather new data specifically
for a model.

Instead, in this paper, we suggest Cancels (CounterActiNg Compound
spEciaLization biaS), a model-free and even task-free method to generally
point out potential shortcomings of the data and improve the quality without
losing the desired specialization to a specific domain. Cancels is an exten-
sion of the Imitate and Mimic algorithms that overcomes their restriction
to real-valued tabular data. Cancels adapts ideas from both and extends
them to select data from a pre-defined pool rather than generating which
allows us the freedom to select meaningful compounds worth experimenting
with from a data quality standpoint.

Possible applications for Cancels include computer-aided drug design
(CADD) [101, 125]. These methods greatly support the drug discovery and
development process by modeling the behavior of compounds, but, as is
common in all data-based methods such as machine learning, they can only
make reliable predictions for compounds that are similar to what those mod-
els trained on [85]. This might be one of the key reasons why, despite the
progress of CADD methods in recent years, still only a small fraction of the
chemical compound space has been explored in the search for drug candi-
dates (as stated by Mouchlis et al. [101]). While de novo drug design [7,
85, 126, 129] aims to base the candidate search on a broader space, it also
relies on the quality of the underlying dataset [76, 111], and it disregards
the distributions of the resulting compound set and their implications for
future predictors or generators [80]. Cancels can help select additional
compounds to test in order to improve the dataset quality for future drug
design cycles while still testing the most promising candidates for today’s
search.

The remainder of this chapter is organized as follows: The following
section adjusts the problem stated in Section 4.2 formally to the new setting

94

3D Molecule 2D Structural Formula

CC1(C)CON(CC2=C(C=CC=C2)Cl)C1=O

SMILES

[0, 0, 0, 0, 0, . . . , 1, 1, 1, 1, 0] ∈ {0, 1}166

MACCS

Figure 6.1: Different representations of the chemical compound ‘clomazone’. A molecule
is essentially a graph where nodes are atoms, and edges are connections. This graph can
be embedded in a 3D or 2D space. Alternatively, SMILES encode the structure of the
compound in a string. Numeric representations are popular as they allow for standard
data mining tools. One example is MACCS fingerprints, where each entry of the array
indicates the presence/absence of a particular substructure [135].

in cheminformatics. Section 6.3 reviews related works on active learning in
chemistry and biases in the chemical compound space that are specific to
this application and are not covered in Chapter 3. Section 6.4 introduces
the Cancels algorithm. Section 6.5.2 presents and discusses experimental
results. Finally, Section 6.6 concludes the chapter.

6.2 Problem Statement

Both Imitate and Mimic generate examples to mitigate potential biases
they detect. In cheminformatics, however, generating data in this fashion
is not straightforward. One major reason is that the chemical compound
space is not a real-valued space, as compounds are small, three-dimensional
objects consisting of different atoms connected via different bonds. Figure
6.1 shows different ways to represent a compound.

However, there are restrictions on which combinations of bonds and
atoms are feasible and stable. To avoid generating infeasible compounds,
we aim to select from a large pool of (unlabeled) but known-to-be-feasible
compounds instead. Formally, we state the problem we aim to solve as fol-
lows:

Problem 3 (Pool-based).
Let D be an (unknown) compound dataset (potentially with labels or prop-
erties) that is representative of an underlying distribution that we consider
to be the ground truth. Given only a biased subset B ⊂ D and a pool P of
candidate compounds, the task is to select a set of compounds Psel ⊆ P such

95

that a model trained on B ∪ Psel would provide minimally different outputs
(such as predictions, clusters, etc.) from one trained on D.

To solve the adjusted problem, we propose Cancels, which utilizes
(parts of) both Imitate and Mimic while overcoming their limitations in
this context.

6.3 Related Research in Chemistry

In this section, we review fields that deal with related problems and highlight
the differences to our problem statement. The topics we include are bias
detection with ground-truth samples and active learning, particularly for
chemistry. Additionally, we discuss biases in the chemical compound space.

6.3.1 Active Learning in Chemistry

Active learning is a semi-supervised machine learning setting that utilizes
information from a trained model to infer the samples which would most
improve the model [127]. The main aim is to train models using fewer labels
than would be required for random sampling, as these are often expensive to
obtain. Since, similarly to Cancels, active learning also selects additional
data points, we compare both approaches here.

An active learning strategy consists of an initial model, usually trained on
a small amount of randomly selected data; a query strategy, which is respon-
sible for identifying the most informative samples; and a setting, which de-
termines how those samples are obtained. A wide variety of query strategies
have been proposed in prior work, but uncertainty-based strategies are the
most common [127]. These strategies evaluate the confidence of the model on
each sample, and samples with the lowest confidence (highest uncertainty)
are considered the most informative. New samples can be obtained from
an unlabelled pool (pool-based) or synthesized de novo (query-synthesis).
In practice, pool-based active learning is typically preferred as synthesized
samples are often difficult to label or simply invalid [10].

In cheminformatics, active learning has demonstrated the potential to
improve the quality of models while reducing the amount of data required

96

[132]. For example, Smith et al. [132] used active learning to train a model
for molecular energetics that outperformed a model trained using random
selection while using only 10% of the available labels. Active learning has
also been applied to the fields of drug discovery [120], toxicity prediction
[60], chemogenomics [121], and others [162].

In contrast to the approach presented in this paper, active learning at-
tempts to select samples which improve the current model. The selected
samples are not necessarily transferable to other models [140]. Additionally,
active learning intentionally seeks to bias the dataset towards informative
samples and does not aim to explore the space or improve the dataset qual-
ity.

6.3.2 Bias in the Chemical Compound Space

Hert et al. [65] aim to quantify the bias of screening libraries towards biogenic
molecules, given an estimate of the entire space and a specified optimal
dataset, i.e., the optimal bias. To measure the bias, they assess the similarity
between the observed and the optimal dataset. Given that the chemical
space is estimated to contain at least 1060 molecules with 30 or fewer heavy
atoms [17], stretching even today’s largest databases across that space to
achieve the often idealized uniform distribution [7, 58] would result in very
sparse coverage. The authors hence postulate that, as opposed to the aim to
cover the entire space uniformly, biases toward specific domains are essential
to enable a successful performance of models and researchers within those
domains. In agreement with this, in this chapter, rather than aiming to cover
the entire compound space, we suggest a technique that mitigates the bias
within an observed dataset while preserving its bias within the compound
space. Therefore, despite improving the dataset quality, we preserve the
dataset’s specialization to its domain.

Sieg, Flachsenberg, and Rarey [129] investigated multiple benchmark
datasets for structure-based virtual screening and discovered that they are
all inherently biased since they have grown depending on human decisions
based on individual assumptions and goals. When screening for specific prop-
erties, these biases persist and eventually find their way into models trained

97

on these datasets resulting in negatively impacted model performance [76].
Attempts to mitigate the dataset biases during screening evolves around
different sampling techniques, or strategic omission of features [129]. While
those are feasible approaches in large databases, they mean a substantial
loss of information in small datasets [71] such as those we are working with.
Here, the long-term goal must be to smooth out the biases within the dataset
domain and improve the data quality in the future.

6.4 Proposed Method

When presented with a potentially biased dataset, we would like to identify
present biases and mitigate them in subsequent experiments. The Imitate
and Mimic algorithms presented in the previous chapters deal with this
problem for real-valued, numeric, and tabular data but are not applicable
to the chemical compound space. Compounds can be represented in a vari-
ety of different ways, e.g., as SMILES, molecules, or MACCS fingerprints,
but none of these representations fit Imitate’s and Mimic’s criteria. Ad-
ditionally, to mitigate a bias, both algorithms generate data that smooths
out the distribution of the biased dataset. However, random generation of
chemical compounds will most likely not result in meaningful and feasible
compounds. We address both problems with our novel algorithm, Cancels
(CounterActiNg Compound spEciaLization biaS).

The idea behind Cancels is to represent the compounds in the po-
tentially biased dataset as molecular access system (MACCS) fingerprints
because of their widespread use, fixed lengths, efficiency to compute, and
solid performance in a diversity of applications [135]. Based on a comparison
of different compound representations, we found that MACCS fingerprints
also perform well in our case (see Sec. 6.5.2 and Fig. 6.10 for details). We
then use principal component analysis (PCA) to strongly reduce the dimen-
sionality of the data and obtain Gaussian-like distributions. In the PCA
space, Imitate can be applied, with adaptations (as discussed below), and
point to potential biases. Data to mitigate the bias could be generated in
this space but not transformed back to the original space leaving the output
hardly interpretable. Instead, we propose to use the PubChem [81] database

98

Chemical Compound Dataset

O

OH

N

N

N

Cl

OH

N

O

OH

O

N

O

O

S

O

OH

O

Pool of Candidate Compounds

O

OH

O

N

N

N

OH

O

Cl

Cl
NO

1 0 0 · · · 1
0 0 1 · · · 0

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.
0 1 0 · · · 0

MACCS

1st Principal Component

2n
d

P
ri

n
ci

p
al

C
om

p
on

en
t

PCA Space

1st Principal Component

2n
d

P
ri

n
ci

p
al

C
om

p
on

en
t

Imitate points to
potential biases

1st Principal Component

2n
d

P
ri

n
ci

p
al

C
om

p
on

en
t

Selection of suitable candidates in
PCA space to fill in the gap

OH

O

Cl

Cl

Most suitable compounds
after back-transformation

...

IN
P
U
T

C
a
n
c
e
l
s

O
U
T
P
U
T

Figure 6.2: Overview over Cancels.

as an unlabeled pool of candidates and project each of them into the PCA
space. Rather than generating new data, Cancels chooses from the can-
didates. As a result, we not only ensure that a back-transformation to the
original compound space is possible but also that the selected candidates
to mitigate the bias are indeed feasible compounds. Figure 6.2 summarizes
the procedure. The remainder of this section discusses all involved steps in
detail.

99

6.4.1 Data Transformation

Starting from a potentially biased set of compounds, we represent each of
them using the MACCS fingerprint since it provides us with a fixed-length
feature representation. MACCS fingerprints have been shown to include cor-
related features causing distance measurements to be flawed [84]; however,
we subsequently reduce the dataset dimensionality and thereby mitigate
the effect of related features. Cancels uses PCA to reduce the compound
dataset expressed as MACCS fingerprints to the first nPC principal compo-
nents. If nPC is sufficiently small (see Fig. 6.11 for a comparison of different
values; we use nPC = 5 in our experiments), we can observe continuous
non-discrete distributions over the axes to which Imitate can be applied.

6.4.2 Bias Identification

Once the compound dataset is transformed into PCA-space, Imitate ex-
ploits the orthogonality of the principal components and analyzes the
dataset distribution over each of them separately. Histograms or kernel den-
sity estimation (KDE) evaluated over a grid approximate the data’s proba-
bility density. KDE is preferable for small datasets since it is less sensitive
to the choice of the grid, whereas histograms are substantially faster to eval-
uate. Similar to Imitate, we choose the type of density estimation based on
the dataset size (with a threshold of 1000 compounds) and select the grid
granularity that optimizes the corrected Akaike information criterion [57].

Using the density estimates on the grid as the targets and their square
as weights, Imitate fits a scaled and truncated Gaussian that models ob-
served data as closely as possible but might over-estimate areas that are
under-represented in the data. This discrepancy between observed data and
fitted Gaussian points to potential biases. Imitate’s weighted optimization
is the key to this result: It puts more emphasis on higher density values dur-
ing the optimization allowing room for error on lower densities under the
premise that densely populated areas are more ‘trust-worthy’ than sparse
ones. However, there is no guarantee that Imitate identifies areas as biased
that are actually populated in the compound space.

100

6.4.3 Extending Imitate: Boundaries

To alleviate the problem that Imitate points to areas of the compound
space that do not contain feasible compounds, we need to derive a method
to provide the optimization process with boundaries. Luckily, the goal is
to smooth out the distribution to obtain a Gaussian density. While this
problem has only one global optimum, it has multiple local optima that
bring equally smooth Gaussians at the cost of filling in more compounds. If
Imitate converges to a globally optimal solution that is outside the feasible
compound space, we redirect it to the next best solution within the space
unless the quality gap between the solutions is too extreme. The boundaries
of the feasible compound space are extracted from the pool that is used to
select bias-mitigating solutions.

In order to give the user control over the acceptable quality gap, we sug-
gest a parameterized solution. Instead of using constrained optimization,
we adjust the optimization target and weights. Out-of-bounds optimization
targets are set to 0, and their weight is set to w > 0 times the highest
within-bounds weight (see Section 4.3 for details on the weights and opti-
mization). A small w will have little impact on the optimization, and the
obtained Gaussian is not likely to change. The larger w is, the more strongly
the optimization is forced to find a different solution. Intuitively, w quanti-
fies the acceptable quality gap since errors on out-of-bounds targets can be
translated to errors in high-accuracy regions with respect to the grid and
the size of the out-of-bounds region.

In preliminary experiments, we generated multiple synthetic datasets
with 1000 data points in four Gaussian clusters and two dimensions. The
Gaussian means and covariance matrices were generated randomly (the lat-
ter via the Cholesky Decomposition), and points were drawn from these
clusters in random ratios. We observed that w = 103 performed reasonably
well among all synthetic datasets and decided to use it for our experiments
since it is sufficiently strong to move the optimizer to a suitable within-
bounds optimum unless there is no other reasonable solution. See Figure
6.3 for a comparison of different choices for w. Once the Gaussian has been
redirected, compounds need to be identified that are capable of filling in the
gap.

101

Imitate with Custom Lower Border

Data

Imitate Standard

Weight = 1

Weight = 10

Weight = 100

Weight = 1000

Custom Lower Border

Figure 6.3: Comparison of different weights for Imitate with a custom boundary.

6.4.4 Identifying Compounds to Fill in the Gap

Univariate Gaussians fitted to each component separately can be combined
into a multivariate Gaussian (see Section 5.2.3 for details) pointing to biases
in PCA space. To mitigate these biases, compounds need to be identified
that, when added to the dataset, smooth out its distribution by filling in
the gap between present data and fitted Gaussian.

The Mimic algorithm iteratively uses Imitate to find flaws in initial
clusters, scores and adds points mitigating these flaws until it finds a bias-
aware Gaussian clustering of the data. In each step, after obtaining a new
target Gaussian from Imitate, Mimic scores all available points from other
clusters and uses the scores to randomly select candidates to be added to
the cluster. It stops once adding further points would not improve the fit of
the Gaussian.

Cancels adapts this procedure and exploits Mimic’s scoring function
to select compounds from the pool transformed into the same PCA space.
Note that PCA as a dimensionality reduction technique is not invertible.
Hence we need to store the mapping of pool compounds from the original
to the PCA space in order to infer knowledge from the chosen candidates.
Given the target Gaussian from the previous steps, Cancels scores each
compound c in the pool with

s(c) = 1f(c)d(c) ̸=0 (log f(c) + nPC log d(c)) ,

where f(c) is the density assigned by the Gaussian truncated at the triple
standard deviation, d(c) measures the discrepancy between fitted Gaussian
and available data at this point, and 1 is the indicator function outputting

102

1 if the index condition holds true and 0 otherwise. After normalization,
the calculated scores can be used as probabilities to randomly select com-
pounds from the pool without replacement. Cancels stops sampling com-
pounds when adding further compounds would not improve the fitness of
the Gaussian, that is when the likelihood of the Gaussian given the train-
ing set together with the additional data does not increase, or the pool is
exhausted.

Finally, Cancels uses the stored mapping to obtain the original repre-
sentation of the selected compounds. These compounds can be interpreted
as suggestions of which experiments to carry out next, but since they have
been selected randomly based on the calculated probability distribution,
a direct interpretation might not be optimal. However, the selected com-
pounds describe underrepresented areas. Analyzing their characteristics can
help the researcher gain insights into which kinds of experiments fell short
in the past, and manual selection of experiments that fill in this gap can
be a valuable compromise between improved data quality and meaningful
experiments with interesting results.

If the pool of candidate compounds is rather small, alternatively, a re-
searcher might prefer to use the normalized scores for the entire pool directly
and, rather than sampling from it, choose manually subject to additional cri-
teria such as availability, price, or other properties not represented by the
fingerprint. Note that adding only the compounds with the highest scores
does not necessarily smooth out the dataset’s distribution but has the po-
tential to create a new bias. Instead, the researcher would need to choose a
large amount of highly-scoring compounds, some medium-score compounds,
and even a few compounds with low scores. To simplify this process, we sug-
gest repeatedly choosing a few compounds with high scores, adding them
to the dataset, retraining Cancels, and scoring the remaining pool until a
desired number of compounds has been identified.

6.5 Experiments and Discussion

To showcase what Cancels can reveal about a dataset and what insights
can be won, we apply it to multiple datasets and analyze its results. Our

103

use-case for this paper is biodegradability; however, Cancels could also
be applied to other domains such as drug development. Although Cancels
makes suggestions as to which compounds might be interesting to obtain
labels for, analyzing these recommended compounds and their characteris-
tics grants us more than that: It teaches us about weaknesses of the dataset
and underrepresented areas that might cause a lowered model reliability
regardless of the trained model. To quantitatively evaluate Cancels’ per-
formance, though, we need to train a model to evaluate changes in accuracy.
Note that no matter what we evaluate, Cancels is, in any case, provided
with only the MACCS fingerprints of the datasets and has no access to labels
or further data characteristics. We introduce the experimental setup before
presenting and discussing the results.

6.5.1 Experimental Setup

In this section, we introduce our general experimental setup. We might devi-
ate from this setup in single experiments depending on the question we aim
to answer. All deviations are listed in the following section for the sake of
reproducibility. Unless stated otherwise, we use the setup introduced here.
Our implementation, together with all experiments, results, and plots, is
publicly available in our repository for the sake of reproducibility of results
and to support further research.

Datasets. The main datasets we analyze in this paper are the EAWAG-
SOIL [87] (short: SOIL) and EAWAG-BBD (short: BBD) datasets extracted
from the enviPath platform [142, 150–152]. Both datasets contain biodegra-
dation pathways capturing the chemical changes of a given starting com-
pound (we refer to this as a “root compound”) during biotransformation.
SOIL was collected from publications and contains 343 root compounds.
BBD stems from expert workshops and contains 248 root compounds. We
prepare both datasets by extracting the compounds’ MACCS fingerprints,
and, to investigate the dataset development over time, join the year of pub-
lication of each pathway to its root compound where possible (299/343 root
compounds in SOIL have years and 215/248 in BBD) as well as use cat-
egories from the PubChem database [81]. As prediction labels, we use the

104

208 transformation rules in enviPath, try to apply each of them to a com-
pound, and assign 208 labels stating if the rule was applicable and observed
(= 1), applicable but not observed (= 0), or not applicable (= missing and
excluded from evaluation counts).

For a large-scale experiment demonstrating how the application of Can-
cels can help improve the classification accuracy, SOIL and BBD are too
small to yield statistically reliable indications. Instead, in this case, we use
the substantially larger Tox21 dataset containing 11093 chemical compounds
tested in 12 pathway essays [68, 95]. The dataset was gathered in the 2014
Tox21 Data Challenge to pool resources to replace animal testing with model
predictions in the future. The compounds are pre-assigned 12 binary labels
indicating if a compound was active (= 1) or inactive (= 0) in each of the
tested essays. Similarly to SOIL and BBD, we obtain MACCS keys as input
features as pre-processed by Stepišnik et al. [135].

To put SOIL and BBD and their development over the years in a frame of
reference, we downloaded all unique SMILES from the PubChem database
to obtain an estimate for the span and the density of the compound space.

As pools for Cancels to select compounds from, we use the subset
of PubChem with an ‘agrochemical’ flag to be able to extract the same use
categories we obtained for SOIL and BBD. When experimenting with Tox21,
we split it into subsets, so no external pool is necessary (see the following
section for details).

Classifiers, Evaluation, and Stability. Tox21 is a dataset with multiple
labels; hence we use a multi-label classifier to predict its labels. To achieve
the most stable performance among runs and reduce the effect of randomness
induced by the classifiers, we train ensembles of classifier chains (ECCs)
[119] with 10 chains per ensemble. We evaluate the classifier performance
using multilabel accuracy (short: accuracy)

acc = #TP + #TN
#TP + #TN + #FP + #FN .

Here, #TP and #TN count the number of correctly predicted positive
and negative labels, respectively. Similarly, #FP and #FN count the number
of mispredicted labels.

105

To achieve statistical stability and ensure the significance of observed
patterns, we repeat every experiment 100 times under different dataset splits
and report the average results together with 95% confidence intervals.

6.5.2 Results and Discussion

Cancels is a method that, given only an unlabeled dataset, searches for
biases and underrepresented regions and suggests additional compounds that
can improve the dataset quality. As such, we will use Cancels as a tool to
identify flaws in the dataset and investigate if the suggested compounds can
indeed help improve the performance of subsequently trained models. This
section investigates several questions ranging from if the bias spiral discussed
in the introduction can indeed be observed in the datasets to what can be
won by using Cancels. Unless specified explicitly, all experiments have
been set up as outlined in Section 6.5.1.

How did the datasets develop over time? Independent of if a model
is in place to support the choice of which experiments are the most promis-
ing or not, we can make the most reliable assumptions on the outcome of
experiments for compounds that are similar to those we observed before. We
hypothesize that this reliability shapes the process of further experimenta-
tion and hence induces specialization to the part of the compound space that
is already well populated while exploration of other parts of the compound
space falls short.

This hypothesis seems to be confirmed for the development of the SOIL
and BBD datasets. Figure 6.4 illustrates the development of the root com-
pound datasets from the year 2000 to 2015. We use the PubChem database
as a lower boundary for the space of feasible compounds (i.e., PubChem
measures the already discovered compound space). The true space is even
larger but has not yet been fully explored [101]. Regardless, neither SOIL
nor BBD covers the entire space – the datasets are specialized to their re-
spective domains. Both datasets consist of one main group of compounds
and a second group that is structurally different from the first one. In SOIL,
this smaller group mainly corresponds to sulfonamides, typically acting as

106

SOIL First PC

S
O

IL
S

ec
o
n

d
P

C

2000
(49 root compds)

SOIL First PC

2005
(139 root compds)

SOIL First PC

2010
(289 root compds)

SOIL First PC

2015
(344 root compds)

SOIL (blue) vs. PubChem (gray)

BBD First PC

B
B

D
S

ec
on

d
P

C

2000
(152 root compds)

BBD First PC

2005
(197 root compds)

BBD First PC

2010
(252 root compds)

BBD First PC

2015
(266 root compds)

BBD (wine) vs. PubChem (gray)

PubChem First PC

P
u

b
C

h
em

S
ec

on
d

P
C

2000

PubChem First PC

2005

PubChem First PC

2010

PubChem First PC

2015

SOIL (blue) vs. BBD (wine) vs. PubChem (gray)

Figure 6.4: Qualitative dataset development for SOIL and BBD root compounds in rela-
tion to the compound space represented by a bivariate histogram of the PubChem dataset
and visualized in the PCA spaces obtained from SOIL (top), BBD (center), and Pub-
Chem (bottom). In all three datasets, white represents the highest density.

antibacterial and antifungal agents. In BBD, it corresponds to compounds
containing groups of multiply oxidated elements such as sulfates and nitro
compounds. We can observe that, although compounds are continuously be-
ing added to the datasets, their distributions seem stationary, and the gaps
between the main and the small groups are never closed.

Figure 6.5 further quantifies this suspicion. For both datasets, during
the first years, the average distance of compounds to the center decreased,
indicating that compounds were added close to the center in the already

107

1998
2000

2002
2004

2006
2008

2010
2012

2014

Year

1.25

1.50

1.75

2.00

D
is

ta
n

ce
to

C
en

te
r

Distance to Dataset Center

1998
2000

2002
2004

2006
2008

2010
2012

2014

Year

100

200

300

S
iz

e

Dataset Size

BBD

SOIL

Figure 6.5: Quantitative development of SOIL and BBD root compounds in terms of the
compound’s average distance to their center in 10-dimensional PCA space (left) and their
dataset size (right).

SOIL First PC

S
O

IL
S

ec
on

d
P

C

SOIL (blue)
vs. Bias (yellow) vs. PubChem (gray)

BBD First PC

B
B

D
S

ec
on

d
P

C

BBD (wine)
vs. Bias (yellow) vs. PubChem (gray)

Figure 6.6: Potential biases detected by Cancels for SOIL (left) and BBD (right) visu-
alized in their respective PCA spaces against the PubChem compound space.

populated areas. In later years, the average distance to the center has a slight
upward trend; however, the standard deviation decreases at the same time,
indicating a shift of the center to another already populated area. In both
cases, no new areas of the compound space are being explored, although new
compounds are continuously being added. Additionally, a small standard
deviation implies that a model specializes to a small area while other more
sparsely populated areas are less reliably predictable.

Which underrepresented regions can Cancels detect? Application
of Cancels to the SOIL and BBD datasets reveals the underrepresented
regions displayed in yellow in Figure 6.6. When comparing the datasets and

108

those regions to the entire compound space estimated using PubChem, we
can see that mitigating these biases, while potentially improving the dataset
quality, does not generalize towards covering the entire chemical space but
rather smooths out the dataset’s distribution locally while retaining the
specialization to the dataset’s domain.

One interesting observation is that Cancels suggests adding compounds
on the outer ranges of PubChem rather than its center. Sampling new com-
pounds randomly would result in a distribution shift towards that of Pub-
Chem and the dataset would lose its focus on the domain for which it is
designed.

Note that the indicated areas focus on regions within the compound
space due to the boundaries introduced in Section 6.4, so finding suitable
compounds that mitigate this bias is possible.

Which kinds of compounds does Cancels suggest to mitigate the
bias? To fill in the underrepresented regions identified in the previous
experiment, we offer Cancels a pool of compounds to choose from. This
pool is assembled from those compounds in the PubChem database that
carry an ‘agrochemical’ flag. The reduction to this subset was necessary to
enable us to extract the same auxiliary information from the pool data that
is already available for the SOIL and BBD datasets. Figure 6.7 displays the
frequency of relevant, non-exclusive labels for the entire pool (in gray) as
well as the input dataset (SOIL in blue, BBD in wine) and the top 20 and
top 50 candidate compounds to mitigate the bias.

We observe a shift towards fungicides and herbicides for SOIL and bio-
cides and fungicides for BBD in the recommendations for both datasets.
This is a meaningful result since both categories are under-represented in
the datasets by design, but they seem relevant to add as they are structurally
similar in order to train models on the datasets. Comparison with the en-
tire pool shows that Cancels specifically targets compounds belonging to
these categories – they do not reflect a general trend of the pool. Note that
these results have been obtained although Cancels was never presented
with these categories but only the MACCS representations of compounds.

109

acaricide

attractant

biocide

fungicide

herbicide

insecticide

grow
th

reg.

trafo
prod.

drug
food

health
hazard

fire
hazard

0

20

40

60

80

SOIL-trained CANCELS scores PubChem-Agrochemical

Top 20 scores

Top 50 scores

SOIL

PubChem
Agrochemical

acaricide

attractant

biocide

fungicide

herbicide

insecticide

grow
th

reg.

trafo
prod.

drug
food

health
hazard

fire
hazard

0

10

20

30

40

BBD-trained CANCELS scores PubChem-Agrochemical

Top 20 scores

Top 50 scores

BBD

PubChem
Agrochemical

Figure 6.7: Qualitative evaluation of the top 20 and top 50 compounds suggested by
Cancels to mitigate the detected biases in SOIL (top) and BBD (bottom) in comparison
to the respective dataset’s compounds and the agrochemical subset of PubChem. Note
that categories are non-exclusive.

Cross-Check: Does Cancels perform as expected? To cross-check
that Cancels is working as intended, we carry out an additional experi-
ment. Training a kernel density estimator to model the dataset’s density,
we sort all compounds by their assigned densities. Holding out the x% of
the dataset with the lowest density, we use Cancels on the rest and score
the held-out compounds. Intuitively, removing data from a dataset should
reduce its quality and result in high scores for the removed data aiming to
retrieve the original dataset quality.

The results are shown in Figure 6.8. We see that for low percentages x,
the scores are generally low. This is expected since outliers will be removed

110

5 10 20 30 50 75 90

Held out the x% of points
with the lowest density.

0

50

C
A

N
C

E
L

S
S

co
re

s
o
n

H
ol

d
-O

u
t

SOIL

5 10 20 30 50 75 90

Held out the x% of points
with the lowest density.

0

20

40

C
A

N
C

E
L

S
S

co
re

s
o
n

H
ol

d
-O

u
t

BBD

Figure 6.8: While holding out x% of the SOIL (left) and BBD (right) datasets, we train
Cancels on the rest. Bar heights represent average scores of the holdout set with their
corresponding uncertainty intervals (black lines).

first and cannot be expected to score highly. For high x, the average scores
are decreasing again. This is also expected since Cancels is applied to a
very small portion of the dataset only and, by design, makes conservative
estimates resulting in high scores only for some of the removed compounds.
The peak is at x = 50% where both effects are minimal. Overall, Cancels’
general behavior fits our expectations.

We notice a few irregularities in the patterns deviating from a smooth
ascent to and descent from the x = 50% peak. These irregularities stem
from a change in the underrepresented area Cancels points to and are an
indication of a bias in the dataset: If the dataset was smooth and unbiased,
removing those x% of compounds with the lowest density would narrow
the dataset to its center (or, if there are multiple clusters, to their centers)
equally from all sides. In this case, the estimated Gaussian would stay con-
sistent over all x ≤ 50% and potentially even for higher ones. Hence, since
we observed jumps, we can conclude that a bias must be present even from
this perspective.

Can Cancels improve the model performance? To assess the rele-
vance of the compounds suggested by Cancels, we use the Tox21 dataset
(see Section 6.5.1) due to its size and set up an experiment as follows: In each
of 100 runs, we randomly hold out 40% of the dataset as a test set, offer 40%
of the remaining data as a pool and use the rest for training. Based on the
training set, we select additional compounds from the pool in four different

111

Training Set (Tr)
Tr + CANCELS

Tr + High Density Compounds
Tr + Entire Pool

Achieved Accuracies
All

95% Confidence Intervals
All

Training Set (Tr)
Tr + CANCELS

Tr + High Density Compounds
Tr + Entire Pool

C
la

ss
ifi

er
tr

ai
n

ed
on

Above Median Density Above Median Density

0.9375 0.9400 0.9425 0.9450

Accuracy

Training Set (Tr)
Tr + CANCELS

Tr + High Density Compounds
Tr + Entire Pool

Below Median Density

0.9375 0.9400 0.9425 0.9450

Accuracy

Below Median Density

Figure 6.9: Dividing the Tox21 dataset into a training set, a pool, and a test set, we
train a classifier on either the training set only, the training set together with the entire
pool, the training set plus Cancels-based compound selection, and the training set plus
a selection that feeds the biases instead of mitigating it. The box plot (left) displays
the results in terms of accuracy when evaluating the trained models on the test set.
A confidence interval plot (right) indicates that compound selection using Cancels is
significantly better than all other options.

scenarios: We can select (i) no additional compounds, (ii) nCancels com-
pounds suggested by Cancels, (iii) nCancels compounds that feed rather
than mitigate the bias based on density-based random sampling (i.e., we
sample based on the dataset distribution directly), or (iv) all available ad-
ditional compounds (i.e., the entire pool).

A classifier is then trained on the training set together with each selection
of additional compounds and evaluated on the test set.

Figure 6.9 shows that compound selection using Cancels is not only
better than continuing to feed the bias but also than using the entire pool. A
repeated measures ANOVA with posthoc Tukey HSD test [36, 64] confirms
that these results are statistically significant under significance level α =
0.01.

However, the accuracy differences are small. We attribute this effect to
the experimental design: Since we had no additional dataset with the same
labels available, we had to divide the Tox21 data into a training set, a test
set, and a pool. This places Cancels in a particularly difficult situation.

112

CDDD MACCS PaDEL Spectrophores Mol2vec

Representation

0.935

0.940

0.945

A
cc

u
ra

cy
Figure 6.10: Influence of different compound representations on Cancels’ performance.

First, the pool is equally biased and hence does not contain the compounds
required to correct the bias beyond the data domain. At most, it can rebal-
ance parts of the space. Second, the test set also is biased. Therefore, even
if a bias is mitigated, it will not pay off as those parts of the data space for
which it matters are also underrepresented in the test set. Despite these dif-
ficulties, we observe an improvement in accuracy for the Cancels-selected
compounds, which is quite remarkable.

Splitting the test dataset along the compounds’ median density reveals
that this effect is particularly strong in the low-density areas. This is an
essential result since it supports the exploration of the space that breaks
the bias spiral and has the potential to lead to global rather than local
optimization.

How does the compound representation affect the performance?
Using a MACCS fingerprint as a compound’s feature representation for
training a model is widely popular [135] due to the computational speed and
the solid performance in different applications. However, Cancels’ com-
pound feature representation is independent of that used by the model. To
investigate which representation performs best in Cancels, we repeat the
previous experiment with the following competitors to MACCS fingerprints:
(i) Continuous data-driven descriptors (CDDD) [153] obtained from an RNN
autoencoder, (ii) PaDEL [155], a set of 1875 2D and 3D molecular proper-
ties, (iii) Spectrophores [55] calculated from 3D properties of molecules using
affinity cages, and (iv) Mol2vec [72], a neural network-based embedding sim-
ilar to the word2vec models used in natural language processing trained to
embed structures co-appearing frequently near each other in latent space.

113

2 3 5 8 13 21

Number of PCs

0.938

0.940

0.942

0.944

A
cc

u
ra

cy

Classifier Trained On

Tr + CANCELS

Training Set (Tr)

Tr + Entire Pool

Figure 6.11: Influence of the number of principal components used in Cancels’ dimen-
sionality reduction on Tox21.

For all competitors, we obtained the pre-processed datasets from Stepišnik
et al. [135].

Figure 6.10 illustrates the results: The differences between representa-
tions are small. MACCS and Mol2vec perform slightly better than the rest,
and MACCS fingerprints additionally show a smaller variance among runs.
Ultimately, the right choice of feature representation depends on the appli-
cation and should be investigated individually, but in our use case, using
MACCS fingerprints for Cancels seems well justified.

How does the number of principal components influence the per-
formance? Choosing the correct number of principal components for PCA
in an unsupervised setting is difficult since we have no feedback on which
number performs best. Intuitively (and following the central limit theorem),
the smaller the number nPC of principal components, the more closely our
dataset distribution will resemble a Gaussian as more individual signals
are combined. At the same time, the higher nPC, the more variance in the
dataset we can explain using the components. That is, a dataset can be
modeled perfectly if its dimensionality matches nPC, but information will
be lost if the dimensionality is reduced. We can see both aspects in Fig-
ure 6.11 where there is a peak around nPC = 8 indicating that the results
presented here (with nPC = 5) could have been better, but our estimated
value is reasonable. To choose a suitable value for nPC, as a rule of thumb,
we suggest trialing different values and visualizing the dataset distribution
over the resulting components. A solid choice is the largest value that shows
Gaussian-like distributions over all components. In future research, we will
investigate how to choose nPC automatically.

114

0 1 2 3 4 5

Iteration

0.935

0.940

0.945
A

cc
u

ra
cy

All

0 1 2 3 4 5

Iteration

Above Median Density

0 1 2 3 4 5

Iteration

Below Median Density

Classifier trained on

Training Set (Tr)

Tr + CANCELS

Tr + High Density Compounds

Tr + Entire Pool

Figure 6.12: Iterative application of Cancels and all competing baselines (see Fig. 6.9) on
the Tox21 dataset: In each of the five iterations, the compound selection takes place based
on the training set and the selected compounds from previous iterations. For Cancels,
the accuracy improves upon all other selection strategies.

1 2 3 4 5

Iteration

3000

4000

5000

6000

N
u

m
b

er
of

C
om

p
ou

n
d

s

Category

Added Compounds (CANCELS)

Available Compounds

Figure 6.13: Number of added compounds in an iterative application of Cancels.

Can iterative application of Cancels improve the accuracy even
further? The previous experiments showed an improvement in accuracy
for Cancels-based compound selection, especially in lower-density areas of
the data space. To investigate the long-term effect, we carry out a similar
but iterative experiment where we randomly split the pool into five equally-
sized sub-pools. In each of five iterations, we select additional compounds
from the corresponding sub-pool based on the training set and the selections
from all previous iterations. Note that, as before, we select the same number
of points for both Cancels-based sampling and sampling based on the data
density in every iteration to ensure a fair comparison.

Figure 6.12 and 6.13 summarize the impact of Cancels on each of the

115

iterations. Firstly, we observe that three iterations seem sufficient to smooth
out the dataset distribution. Additional iterations have no effect, and the ac-
curacy is saturated. After three iterations, Cancels has selected only about
4000 compounds and still largely outperforms the entire pool with about
7000 compounds. The red line (“Tr + High Density Compounds”) stands
for training on the training set together with a random sample from the pool.
Since the pool follows the same distribution as the dataset, sampling from
it will mostly result in compounds in dense areas, but few compounds from
sparse areas can also find their way in, so the red line eventually catches up
with Cancels. This effect is an anomaly due to our experimental design
and will no longer be observed if the pool’s distribution does not match that
of the dataset and the test set. In summary, selecting the right compounds
not only improves the data quality but also is substantially more economical
as it means carrying out fewer experiments.

In practice, improving the dataset quality is not the only goal – a re-
searcher also aims to make decisions regarding their data collection based
on their current interests, projects, and goals. To achieve a healthy balance,
we suggest one or two iterations of Cancels after each interest-driven ad-
dition to the dataset before the dataset is fit for its upcoming tasks.

6.6 Conclusion

Predictive modeling can support the development process of new chemicals;
however, those models specialize to the data provided, and solid performance
can only be guaranteed in densely populated areas of the compound space.
Avoiding carrying out experiments with a very uncertain result, new addi-
tions to the dataset will most likely stem from already densely populated
areas where the prediction reliability is high. Over the years, this results in
a stronger over-population of already over-populated areas and a shrinking
applicability domain of trained models inducing a specialization bias.

To break this spiraling specialization cycle, in this paper, we propose
Cancels, a novel technique to investigate a dataset independently from
a specific model, create awareness of underrepresented areas, and suggest
additional compounds that can help mitigate the bias. So far, Cancels is

116

unique in many regards: (i) It generally improves the dataset quality in a
model-independent fashion while other methods are only designed to support
the training process of one specific model, (ii) while generalizing the dataset
and enabling further targeted exploration of the compound space, Cancels
does not lose the desired specialization to a certain domain when suggesting
additional compounds, and (iii) Cancels’ outputs are interpretable and
can be used to investigate different aspects of datasets as demonstrated in
our extensive set of experiments.

Our various experiments indicate that on two real-world datasets, SOIL
and BBD, a continuous specialization can indeed be observed, which renders
these datasets a valid use-case for Cancels. Validation of Cancels on the
Tox21 dataset shows that careful selection of future experiments can not
only reduce the total amount of experiments to be carried out but also
improve the performance of predictive models by a significant margin.

All results presented in this paper have been obtained based solely on the
compounds’ MACCS keys. Future research will investigate how auxiliary in-
formation can be integrated in an effective way where available. Additionally,
we aim to make Cancels fully automated for the simplest usage possible.
As such, we aim to automatically infer parameters such as the number of
principal components from the dataset and context, for example, using in-
formation criteria that incorporate a measure of Gaussianity but penalize
for every dimension lost. Overall, we hope that Cancels can be of use to
researchers to help understand the datasets they are dealing with and to
improve their quality early on to improve their usability universally.

117

7 Conclusion

We are at a point in time where we begin to trust the outputs of our machine-
learning models blindly, even in high-risk applications. However, the models
are only as good as the data they are trained on, and dataset flaws creep
into the models silently. This is mainly due to the standard model validation
processes where training and validation occur on subsets of the same dataset.
If the training set is biased, the validation set is equally biased, and the
model will not send a warning.

The bias mitigation literature detects biases by comparing training and
target data, but no approaches have been proposed that can send off an
early warning based on the training set alone. To the best of our knowledge,
we made the very first attempt to address the problem of selection bias
detection when no ground-truth information is available.

We proposed three methods with different strengths that investigate the
dataset’s distribution and generate or select additional data points to smooth
it out. If these points concentrate on several areas, this could indicate a
potential bias.

In various experiments, we demonstrated the usefulness of the methods
we proposed here. However, our most impactful contribution lies in challeng-
ing existing machine learning procedures that accept flawed data as given
and treat symptoms rather than causes.

In this chapter, we review our achievements and contributions in Sec-
tion 7.1, discuss limitations in Section 7.2 and provide potential avenues for
future research, beyond improving the proposed models, in Section 7.3.

118

7.1 Contributions

In the previous chapters, we established the novel problem of selection bias
identification and mitigation under the assumption that no ground-truth
information is available. Since no knowledge of the ground truth can be
expected, this problem is particularly challenging and likely to be impossible
to solve in a general way that works for all biases and datasets. Nonetheless,
we proposed three methods showcasing that some biases leave traces that
can be observed in the resulting datasets.

We introduced techniques that are able to detect these traces and send
off an early warning, i.e., already during data gathering. The early bias
detection allows us to improve the data collection on the fly, avoiding the
need for costly and fragile adaptation methods later on.

Our methods show remarkable results given our uninformed “guess”:
Even if the data sample correctly reflects the ground truth, our methods
point to potential issues for subsequent model training based on this data,
such as underrepresented areas. Filling in these identified gaps with gener-
ated data points or ones selected from a pool has been shown to improve
the training behavior of machine learning models.

Designing our problem in a completely uninformed way constitutes a uni-
versally applicable preprocessing method that can be integrated into most
machine learning pipelines. While existing bias mitigation strategies are typ-
ically tailored to one specific target domain or even a specific model, we
operate independently of both. Instead, we improve the overall data qual-
ity and create awareness for potential issues, regardless of the data’s future
journey.

Our three proposed methods cater to different needs: Imitate (Identify
and MITigATE Selection Bias) assumes that the ground truth could be
modeled as one multivariate Gaussian per class. While this is a strong
assumption that might not hold in complex datasets, Imitate convinces
by being fast, interpretable, and expandable. Mimic (Multi-IMItate Bias
Correction) expands Imitate’s scope by modeling the ground truth as a
mixture of potentially overlapping multivariate Gaussians per class. This as-
sumption drastically increases the range of datasets and distributions that

119

can be modeled, including multi-cluster settings. However, it comes at a
cost in terms of running time and produces more conservative results. Can-
cels (CounterActiNg Compound spEciaLization biaS) is a version of the
Imitate algorithm, specialized to chemical compound datasets, where we
showcased the usefulness and interpretability of our methods. Using Can-
cels, we demonstrated that when adding bias-mitigating compounds from
a pool of candidates to a dataset, the predictive performance of a trained
model exceeds that of a model trained either on the original dataset or un-
der the addition of the entire pool. Finally, we contribute publicly available,
and easy-to-use Python+sklearn [110] implementations of all methods in
the PyPI package imitatebias. Cancels will additionally be integrated into
the enviPath website1, where users can trial their datasets freely via a web
interface.

7.2 Limitations

Although our work marks a promising start to a new area of research, our
proposed methods should be expanded to be fully sufficient. We identify the
following main limitations:

■ Although our proposed methods have proven effective on biased
datasets and behave differently when no bias is present, we are dealing
with an under-defined problem. Only the biased dataset is available,
with no information on the ground truth or its distribution. We suc-
cessfully constrained the problem more tightly using the assumption
of Gaussianity or a Gaussian mixture; however, this assumption might
not always hold. Therefore, we aim to create awareness of a potential
issue but ultimately rely on a domain expert’s knowledge to decide
whether the result is valid.

■ Modeling the ground truth as a multivariate Gaussian is a rigid re-
quirement on the data structure and limits the applicability of our
method. Allowing for mixtures of Gaussians facilitates modeling more

1enviPath: https://envipath.org/

120

https://pypi.org/project/imitatebias/
https://envipath.org/

general data distributions. However, this generality comes at a cost:
The more flexible the fitted model is, the more apt it is to model the
existing data well instead of pointing to a bias, which is why Mimic’s
results are more conservative than Imitate’s. Similarly, in preliminary
experiments, we tried fitting a beta distribution instead – a family of
distributions that is substantially more general as it combines expo-
nential, normal, uniform, and gamma distributions. We observed that
for all datasets, biased or not, parameters that fit the data very closely
could be identified. Hence, there is a trade-off between the generality
of the method and the clarity of the obtained results.

■ For some datasets, for example, exponentially distributed ones, a
Gaussian is a poor fit, and even a mixture of Gaussians will not model
the data appropriately. Our current solution to this is to reject any
output if the number of points required to smooth out the distribu-
tion exceeds the number of observed data points. In addition, an initial
test to decide if our methods are applicable to the data would be help-
ful. One easily integrable option would be to fit different probability
densities to the density estimation of the data, weighted by their his-
togram bin heights, as done in Imitate. If a different distribution is a
substantially closer fit than a Gaussian, it could substitute the normal
density before proceeding as usual. Note that a different data trans-
formation (or none at all) might be required for this test as ICA is
closely tied to the normal distribution.

7.3 Outlook

Lifting the previously identified limitations would be a direct continuation
of this work. Beyond that, we would like to draw the reader’s attention to
the following interesting potential research avenues:

■ Under our supervision, Duncanson [43] adjusted Imitate to learn a
parametric representation of the selection bias and the Gaussian si-
multaneously using maximum likelihood optimization instead of the
heuristic weighted optimization with histograms. Duncanson tested

121

step functions, Fourier series, polynomial, and piecewise linear func-
tions for the one-dimensional case. Except for the step function, these
bias representations quickly become complex if the number of dimen-
sions increases, with an overwhelming number of parameters to be
tuned. However, the step function showed promising results in a few
exemplary tests and should be investigated further in the future, par-
ticularly concerning scalability in higher dimensions.

■ Adversarial Learning [15] is a research area that aims to make machine
learning models more robust by exposing their vulnerabilities early on.
To find these vulnerabilities, adversarial learning uses adversarial at-
tacks on a model, carefully crafted small perturbations of the input
data that are powerful enough to alter the model prediction. Adversar-
ial learning and the research we presented share the goal of exposing
model vulnerabilities and making a model more robust. However, un-
der our supervision, La et al. [86] found that both approaches identify
different flaws in the dataset. Future research could explore similari-
ties and differences further and identify potential synergies that make
a meaningful advance in either field.

■ In many applications, such as drug development in chemistry, running
experiments is costly and time-consuming. Therefore, the experiments
to be run need to be chosen carefully. Active learning [127] is a re-
search area that aims to identify those examples that, when labeled
and added to the dataset, help improve the model the most. Since this
is a substantially different goal from that in our thesis (as discussed in
Section 6.3), active learning is unaware of biases and does not attempt
to correct them. Active learning typically selects instances near the de-
cision boundary to improve one specific model, but it does not operate
on the dataset itself. However, a symbiosis between our research and
active learning could sustainably improve the data quality while re-
maining purpose-driven and optimizing the model’s performance.

■ Lastly, we hope this research ignites a spark in the community that
leads to a deeper investigation of the data we gather. Flawed data

122

causes a flawed model causes flawed decisions, and it is not sufficient to
accept the data as given without questioning it. We further hope that
a large body of research supersedes this work, ultimately leading to
automated data quality assurance that can become a fixed component
in the machine learning development pipeline and the data-gathering
process.

123

Bibliography

[1] N. Abreu, “Análise do perfil do cliente Recheio e desenvolvimento de
um sistema promocional,” Portuguese, Master’s Thesis, University
Institute of Lisbon, Portugal, 2011.

[2] J. A. Adebayo, “FairML: Toolbox for diagnosing bias in predictive
modeling,” Master’s Thesis, Massachusetts Institute of Technology,
MA, USA, 2016.

[3] R. Alaiz-Rodríguez and N. Japkowicz, “Assessing the impact of
changing environments on classifier performance,” in Advances in
Artificial Intelligence, Springer Berlin Heidelberg, 2008, pp. 13–24.
doi: 10.1007/978-3-540-68825-9_2.

[4] J. Angwin, J. Larson, S. Mattu, and L. Kirchner, Machine bias: Risk
assessments in criminal sentencing, propublica.org/article/machine-
bias-risk-assessments-in-criminal-sentencing, ProPublica, May 2016,
accessed: 2022-11-18.

[5] N. Aniceto, A. A. Freitas, A. Bender, and T. Ghafourian, “A novel ap-
plicability domain technique for mapping predictive reliability across
the chemical space of a QSAR: Reliability-density neighbourhood,”
Journal of Cheminformatics, vol. 8, no. 69, 2016, Springer Interna-
tional. doi: 10.1186/s13321-016-0182-y.

[6] A. Arnold, R. Nallapati, and W. Cohen, “A comparative study of
methods for transductive transfer learning,” in Seventh IEEE In-
ternational Conference on Data Mining Workshops (ICDMW ’07),
IEEE, 2007, pp. 77–82. doi: 10.1109/ICDMW.2007.109.

124

https://doi.org/10.1007/978-3-540-68825-9_2
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://doi.org/10.1186/s13321-016-0182-y
https://doi.org/10.1109/ICDMW.2007.109

[7] J. Arús-Pous, T. Blaschke, S. Ulander, J. L. Reymond, H. Chen, and
O. Engkvist, “Exploring the GDB-13 chemical space using deep gen-
erative models,” Journal of Cheminformatics, vol. 11, no. 20, 2019,
Springer International. doi: 10.1186/s13321-019-0341-z.

[8] N. Bantilan, “Themis-ml: A fairness-aware machine learning interface
for end-to-end discrimination discovery and mitigation,” Journal of
Technology in Human Services, vol. 36, no. 1, pp. 15–30, 2018, Taylor
& Francis. doi: 10.1080/15228835.2017.1416512.

[9] E. Bareinboim, J. Tian, and J. Pearl, “Recovering from selection
bias in causal and statistical inference,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 28, AAAI, 2014. doi: 10.
1609/aaai.v28i1.9074.

[10] E. B. Baum and K. Lang, “Query learning can work poorly when a
human oracle is used,” in Proceedings of the IEEE International Joint
Conference on Neural Networks, vol. 8, IEEE, 1992, pp. 335–340.

[11] R. K. E. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde, K.
Kannan, P. Lohia, J. Martino, S. Mehta, A. Mojsilović, S. Nagar,
K. N. Ramamurthy, J. Richards, D. Saha, P. Sattigeri, M. Singh,
K. R. Varshney, and Y. Zhang, “Ai fairness 360: An extensible toolkit
for detecting and mitigating algorithmic bias,” IBM Journal of Re-
search and Development, vol. 63, no. 4/5, 4:1–4:15, 2019, IBM. doi:
10.1147/JRD.2019.2942287.

[12] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. W. Vaughan, “A theory of learning from different domains,” Ma-
chine Learning, vol. 79, no. 1-2, pp. 151–175, 2010, Springer USA.
doi: 10.1007/s10994-009-5152-4.

[13] R. Bhatt and A. Dhall, Skin segmentation dataset,
archive.ics.uci.edu/ml/datasets/skin+segmentation, UCI Machine
Learning Repository, Jul. 2012, accessed: 2020-02-05.

[14] S. Bickel, M. Brückner, and T. Scheffer, “Discriminative learning for
differing training and test distributions,” in Proceedings of the 24th
International Conference on Machine Learning (ICML ’07), ACM,
2007, pp. 81–88. doi: 10.1145/1273496.1273507.

125

https://doi.org/10.1186/s13321-019-0341-z
https://doi.org/10.1080/15228835.2017.1416512
https://doi.org/10.1609/aaai.v28i1.9074
https://doi.org/10.1609/aaai.v28i1.9074
https://doi.org/10.1147/JRD.2019.2942287
https://doi.org/10.1007/s10994-009-5152-4
https://archive.ics.uci.edu/ml/datasets/skin+segmentation
https://doi.org/10.1145/1273496.1273507

[15] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Pattern Recognition, vol. 84, pp. 317–
331, 2018, Elsevier. doi: 10.1016/j.patcog.2018.07.023.

[16] G. Blanchard, G. Lee, and C. Scott, “Generalizing from several re-
lated classification tasks to a new unlabeled sample,” in Proceedings
of the 24th International Conference on Neural Information Process-
ing Systems, vol. 24, Curran Associates Inc., 2011, pp. 2178–2186.

[17] R. S. Bohacek, C. McMartin, and W. C. Guida, “The art and practice
of structure-based drug design: A molecular modeling perspective,”
Medicinal Research Reviews, vol. 16, no. 1, pp. 3–50, 1996, Wiley.
doi: 10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.
CO;2-6.

[18] D. Borland, W. Wang, J. Zhang, J. Shrestha, and D. Gotz, “Selection
bias tracking and detailed subset comparison for high-dimensional
data,” IEEE Transactions on Visualization and Computer Graphics,
vol. 26, no. 1, pp. 429–439, 2020, IEEE. doi: 10.1109/TVCG.2019.
2934209.

[19] D. Borland, J. Zhang, S. Kaul, and D. Gotz, “Selection-bias-corrected
visualization via dynamic reweighting,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 27, no. 2, pp. 1481–1491, 2021,
IEEE. doi: 10.1109/TVCG.2020.3030455.

[20] D. Bourgeois, J. Rappaz, and K. Aberer, “Selection bias in news
coverage: Learning it, fighting it,” in The Web Conference 2018 -
Companion of the World Wide Web Conference, (WWW ’18), ACM,
2018, pp. 535–543. doi: 10.1145/3184558.3188724.

[21] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identi-
fying density-based local outliers,” in Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data (SIG-
MOD ’00), ACM, 2000, pp. 93–104. doi: 10.1145/342009.335388.

[22] J. Burkardt, The truncated normal distribution, peo-
ple.sc.fsu.edu/~jburkardt/ presentations/truncated_normal.pdf,
Department of Scientific Computing, Florida State University, Oct.
2014, accessed: 2022-11-25.

126

https://doi.org/10.1016/j.patcog.2018.07.023
https://doi.org/10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6
https://doi.org/10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6
https://doi.org/10.1109/TVCG.2019.2934209
https://doi.org/10.1109/TVCG.2019.2934209
https://doi.org/10.1109/TVCG.2020.3030455
https://doi.org/10.1145/3184558.3188724
https://doi.org/10.1145/342009.335388
https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf

[23] S. van Buuren and K. Groothuis-Oudshoorn, “mice: Multivariate im-
putation by Chained Equations in R,” Journal of Statistical Software,
vol. 45, no. 3, pp. 1–67, 2011, FOAS. doi: 10.18637/jss.v045.i03.

[24] A. Caliskan, J. J. Bryson, and A. Narayanan, “Semantics derived au-
tomatically from language corpora contain human-like biases,” Sci-
ence, vol. 356, no. 6334, pp. 183–186, 2017. doi: 10.1126/science.
aal4230.

[25] F. P. Calmon, D. Wei, B. Vinzamuri, K. N. Ramamurthy, and K. R.
Varshney, “Optimized pre-processing for discrimination prevention,”
in Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems (NIPS ’17), Curran Associates Inc., 2017,
pp. 3995–4004.

[26] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, pp. 41–
75, 1997, Springer USA. doi: 10.1023/A:1007379606734.

[27] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Computing Surveys, vol. 41, no. 3, pp. 1–58, 2009,
ACM. doi: 10.1145/1541880.1541882.

[28] S. Chandra, A. Haque, L. Khan, and C. Aggarwal, “Efficient
sampling-based kernel mean matching,” in 2016 IEEE 16th Interna-
tional Conference on Data Mining (ICDM ’16), IEEE, 2016, pp. 811–
816. doi: 10.1109/ICDM.2016.0095.

[29] C. W. Chiang and M. Yin, “You’d Better Stop! Understanding Hu-
man Reliance on Machine Learning Models under Covariate Shift,” in
13th ACM Web Science Conference 2021 (WebSci ’21), ACM, 2021,
pp. 120–129. doi: 10.1145/3447535.3462487.

[30] D. A. Cieslak and N. V. Chawla, “A framework for monitoring clas-
sifiers’ performance: When and why failure occurs?” Knowledge and
Information Systems, vol. 18, pp. 83–108, 2009, Springer Berlin Hei-
delberg. doi: 10.1007/s10115-008-0139-1.

127

https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1126/science.aal4230
https://doi.org/10.1126/science.aal4230
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/ICDM.2016.0095
https://doi.org/10.1145/3447535.3462487
https://doi.org/10.1007/s10115-008-0139-1

[31] A. E. Cleves and A. N. Jain, “Effects of inductive bias on computa-
tional evaluations of ligand-based modeling and on drug discovery,”
Journal of Computer-Aided Molecular Design, vol. 22, pp. 147–159,
2008, Springer Netherlands. doi: 10.1007/s10822-007-9150-y.

[32] C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh, “Sample selec-
tion bias correction theory,” in Algorithmic Learning Theory (ALT
’08), ser. Lecture Notes in Computer Science, vol. 5254, Springer
Berlin Heidelberg, 2008, pp. 38–53. doi: 10 . 1007 / 978 - 3 - 540 -
87987-9_8.

[33] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for transfer
learning,” in Proceedings of the 24th International Conference on Ma-
chine Learning (ICML ’07), ACM, 2007, pp. 193–200. doi: 10.1145/
1273496.1273521.

[34] J. Dastin, Amazon scraps secret ai recruiting tool that showed bias
against women, reuters.com/article/idUSKCN1MK08G, Reuters,
Oct. 2018, accessed: 2022-11-18.

[35] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 39, no. 1, pp. 1–
22, 1977, Wiley. doi: 10.1111/j.2517-6161.1977.tb01600.x.

[36] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006,
MIT Press.

[37] K. Dost, H. Duncanson, I. Ziogas, P. Riddle, and J. Wicker, “Divide
and imitate: Multi-cluster identification and mitigation of selection
bias,” in Advances in Knowledge Discovery and Data Mining - 26th
Pacific-Asia Conference (PAKDD ’22), ser. Lecture Notes in Com-
puter Science, vol. 13281, Springer Cham, 2022, pp. 149–160. doi:
10.1007/978-3-031-05936-0_12.

[38] K. Dost, Z. Pullar-Strecker, L. Brydon, K. Zhang, J. Hafner, P. Rid-
dle, and J. Wicker, “Combatting over-specialization bias in growing
chemical databases,” Journal of Cheminformatics, vol. 15, no. 53,
2023. doi: 10.1186/s13321-023-00716-w.

128

https://doi.org/10.1007/s10822-007-9150-y
https://doi.org/10.1007/978-3-540-87987-9_8
https://doi.org/10.1007/978-3-540-87987-9_8
https://doi.org/10.1145/1273496.1273521
https://doi.org/10.1145/1273496.1273521
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1007/978-3-031-05936-0_12
https://doi.org/10.1186/s13321-023-00716-w

[39] K. Dost, K. Taskova, P. Riddle, and J. Wicker, “Your best guess when
you know nothing: Identification and mitigation of selection bias,” in
20th IEEE International Conference on Data Mining (ICDM 2020),
IEEE, 2020, pp. 996–1001. doi: 10.1109/ICDM50108.2020.00115.

[40] J. Dressel and H. Farid, “The accuracy, fairness, and limits of predict-
ing recidivism,” Science Advances, vol. 4, no. 1, 2018, AAAS. doi:
10.1126/sciadv.aao5580.

[41] D. Dua and C. Graff, UCI machine learning repository,
archive.ics.uci.edu/ml, University of California, Irvine, School of
Information and Computer Sciences, 2017.

[42] M. Dudík, S. Phillips, and R. E. Schapire, “Correcting sample selec-
tion bias in maximum entropy density estimation,” in Proceedings of
the 18th International Conference on Neural Information Processing
Systems (NIPS ’05), vol. 18, MIT Press, 2005, pp. 323–330.

[43] H. Duncanson, “Identification and mitigation of selection bias: Im-
provements, extensions and experiments,” Bachelor of Science (Hons)
Dissertation, University of Auckland, New Zealand, 2021.

[44] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fair-
ness through awareness,” in Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference (ITCS ’12), ACM, 2012,
pp. 214–226. doi: 10.1145/2090236.2090255.

[45] J. E. van Engelen and H. H. Hoos, “A survey on semi-supervised
learning,” Machine Learning, vol. 109, no. 2, pp. 373–440, 2020,
Springer USA. doi: 10.1007/s10994-019-05855-6.

[46] A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia, “A brief
review of domain adaptation,” preprint, arXiv, 2020. doi: 10.48550/
ARXIV.2010.03978.

[47] T. Fawcett and P. A. Flach, “A response to Webb and Ting’s on
the application of roc analysis to predict classification performance
under varying class distributions,” Machine Learning, vol. 58, pp. 33–
38, 2005, Springer USA. doi: 10.1007/s10994-005-5256-4.

129

https://doi.org/10.1109/ICDM50108.2020.00115
https://doi.org/10.1126/sciadv.aao5580
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.48550/ARXIV.2010.03978
https://doi.org/10.48550/ARXIV.2010.03978
https://doi.org/10.1007/s10994-005-5256-4

[48] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S.
Venkatasubramanian, “Certifying and Removing Disparate Impact,”
in Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’15), ACM, 2015,
pp. 259–268. doi: 10.1145/2783258.2783311.

[49] S. A. Friedler, C. Scheidegger, and S. Venkatasubramanian, “The
(im)possibility of fairness: Different value systems require different
mechanisms for fair decision making,” Communications of the ACM,
vol. 64, no. 4, pp. 136–143, 2021, ACM. doi: 10.1145/3433949.

[50] S. A. Friedler, C. Scheidegger, S. Venkatasubramanian, S. Choud-
hary, E. P. Hamilton, and D. Roth, “A comparative study of fairness-
enhancing interventions in machine learning,” in Proceedings of the
Conference on Fairness, Accountability, and Transparency (FAT*
’19), ACM, 2019, pp. 329–338. doi: 10.1145/3287560.3287589.

[51] G. P. C. Fung, J. Yu, H. Lu, and P. Yu, “Text classification without
negative examples revisit,” IEEE Transactions on Knowledge and
Data Engineering, vol. 18, no. 1, pp. 6–20, 2006, IEEE. doi: 10.
1109/TKDE.2006.16.

[52] P. Gajane and M. Pechenizkiy, “On formalizing fairness in predic-
tion with machine learning,” preprint, arXiv, 2017. doi: 10.48550/
ARXIV.1710.03184.

[53] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: Testing soft-
ware for discrimination,” in Proceedings of the 2017 11th Joint Meet-
ing on Foundations of Software Engineering (ESEC/FSE ’17), ACM,
2017, pp. 498–510. doi: 10.1145/3106237.3106277.

[54] T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wal-
lach, H. D. III, and K. Crawford, “Datasheets for datasets,” Com-
munications of the ACM, vol. 64, no. 12, pp. 86–92, 2021, ACM. doi:
10.1145/3458723.

130

https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1145/3433949
https://doi.org/10.1145/3287560.3287589
https://doi.org/10.1109/TKDE.2006.16
https://doi.org/10.1109/TKDE.2006.16
https://doi.org/10.48550/ARXIV.1710.03184
https://doi.org/10.48550/ARXIV.1710.03184
https://doi.org/10.1145/3106237.3106277
https://doi.org/10.1145/3458723

[55] R. Gladysz, F. M. Dos Santos, W. Langenaeker, G. Thijs, K. Au-
gustyns, and H. De Winter, “Spectrophores as one-dimensional de-
scriptors calculated from three-dimensional atomic properties: Appli-
cations ranging from scaffold hopping to multi-target virtual screen-
ing,” Journal of Cheminformatics, vol. 10, no. 9, 2018, Springer In-
ternational. doi: 10.1186/s13321-018-0268-9.

[56] N. Goel, M. Yaghini, and B. Faltings, “Non-discriminatory machine
learning through convex fairness criteria,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 32, AAAI, 2018. doi: 10.
1609/aaai.v32i1.11662.

[57] O. Granichin, Z. Volkovich, and D. Toledano-Kitai, “Cluster vali-
dation,” in Randomized Algorithms in Automatic Control and Data
Mining, ser. Intelligent Systems Reference Library. Springer Berlin
Heidelberg, 2015, vol. 67, pp. 163–228. doi: 10.1007/978-3-642-
54786-7_7.

[58] E. Gregori-Puigjané and J. Mestres, “Coverage and bias in chemical
library design,” Current Opinion in Chemical Biology, vol. 12, no. 3,
pp. 359–365, 2008, Elsevier. doi: 10.1016/j.cbpa.2008.03.015.

[59] A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and
B. Schölkopf, “Covariate Shift by Kernel Mean Matching,” in Dataset
Shift in Machine Learning, MIT Press, 2013, pp. 131–160. doi: 10.
7551/mitpress/9780262170055.003.0008.

[60] A. Habib Polash, T. Nakano, C. Rakers, S. Takeda, and J. Brown,
“Active learning efficiently converges on rational limits of toxicity pre-
diction and identifies patterns for molecule design,” Computational
Toxicology, vol. 15, 2020, Elsevier. doi: 10.1016/j.comtox.2020.
100129.

[61] J. Han, M. Kamber, and J. Pei, Data mining: concepts and tech-
niques, 3rd ed. Elsevier, 2012.

[62] E. Hargittai and G. Karaoglu, “Biases of online political polls:
Who participates?” Socius, vol. 4, 2018, ASA. doi: 10 . 1177 /
2378023118791080.

131

https://doi.org/10.1186/s13321-018-0268-9
https://doi.org/10.1609/aaai.v32i1.11662
https://doi.org/10.1609/aaai.v32i1.11662
https://doi.org/10.1007/978-3-642-54786-7_7
https://doi.org/10.1007/978-3-642-54786-7_7
https://doi.org/10.1016/j.cbpa.2008.03.015
https://doi.org/10.7551/mitpress/9780262170055.003.0008
https://doi.org/10.7551/mitpress/9780262170055.003.0008
https://doi.org/10.1016/j.comtox.2020.100129
https://doi.org/10.1016/j.comtox.2020.100129
https://doi.org/10.1177/2378023118791080
https://doi.org/10.1177/2378023118791080

[63] B. Hassani, “Societal bias reinforcement through machine learning:
A credit scoring perspective,” AI and Ethics, vol. 1, pp. 1–9, 2020,
Springer Nature. doi: 10.1007/s43681-020-00026-z.

[64] S. Herbold, “Autorank: A python package for automated ranking of
classifiers,” Journal of Open Source Software, vol. 5, no. 48, p. 2173,
2020, The Open Journal. doi: 10.21105/joss.02173.

[65] J. Hert, J. J. Irwin, C. Laggner, M. J. Keiser, and B. K. Shoichet,
“Quantifying biogenic bias in screening libraries,” Nature Chemical
Biology, vol. 5, pp. 479–483, 2009, Springer Nature. doi: 10.1038/
nchembio.180.

[66] W. Hoeffding and H. Robbins, “The central limit theorem for depen-
dent random variables,” Duke Mathematical Journal, vol. 15, no. 3,
pp. 773–780, 1948, Duke University Press. doi: 10.1215/S0012-
7094-48-01568-3.

[67] J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B.
Schölkopf, “Correcting sample selection bias by unlabeled data,” in
Advances in Neural Information Processing Systems 19 (NIPS ’06),
vol. 19, MIT Press, 2007, pp. 601–608.

[68] R. Huang, M. Xia, D.-T. Nguyen, T. Zhao, S. Sakamuru, J. Zhao,
S. A. Shahane, A. Rossoshek, and A. Simeonov, “Tox21challenge
to build predictive models of nuclear receptor and stress response
pathways as mediated by exposure to environmental chemicals and
drugs,” Frontiers in Environmental Science, vol. 3, 2016, Frontiers
Media S.A. doi: 10.3389/fenvs.2015.00085.

[69] Z. Huang, H. Wang, E. P. Xing, and D. Huang, “Self-challenging
improves cross-domain generalization,” in Computer Vision (ECCV
2020), ser. Lecture Notes in Computer Science, vol. 12347, Springer
Cham, 2020, pp. 124–140. doi: 10.1007/978-3-030-58536-5_8.

[70] A. Hyvärinen and E. Oja, “Independent component analysis: Algo-
rithms and applications,” Neural Networks, vol. 13, no. 4-5, pp. 411–
430, 2000, Elsevier. doi: 10.1016/S0893-6080(00)00026-5.

132

https://doi.org/10.1007/s43681-020-00026-z
https://doi.org/10.21105/joss.02173
https://doi.org/10.1038/nchembio.180
https://doi.org/10.1038/nchembio.180
https://doi.org/10.1215/S0012-7094-48-01568-3
https://doi.org/10.1215/S0012-7094-48-01568-3
https://doi.org/10.3389/fenvs.2015.00085
https://doi.org/10.1007/978-3-030-58536-5_8
https://doi.org/10.1016/S0893-6080(00)00026-5

[71] G. Idakwo, S. Thangapandian, J. Luttrell, Y. Li, N. Wang, Z. Zhou,
H. Hong, B. Yang, C. Zhang, and P. Gong, “Structure–activity
relationship-based chemical classification of highly imbalanced Tox21
datasets,” Journal of Cheminformatics, vol. 12, no. 66, pp. 1–19,
2020, Springer International. doi: 10.1186/s13321-020-00468-x.

[72] S. Jaeger, S. Fulle, and S. Turk, “Mol2vec: Unsupervised machine
learning approach with chemical intuition,” Journal of Chemical In-
formation and Modeling, vol. 58, no. 1, pp. 27–35, 2018, ACS. doi:
10.1021/acs.jcim.7b00616.

[73] X. Jia, A. Lynch, Y. Huang, M. Danielson, I. Lang’at, A. Milder,
A. E. Ruby, H. Wang, S. A. Friedler, A. J. Norquist, and J. Schrier,
“Anthropogenic biases in chemical reaction data hinder exploratory
inorganic synthesis,” Nature, vol. 573, no. 7773, pp. 251–255, 2019,
Springer USA. doi: 10.1038/s41586-019-1540-5.

[74] I. T. Jolliffe and J. Cadima, “Principal component analysis: A re-
view and recent developments,” Philosophical transactions. Series A:
Mathematical, physical, and engineering sciences, vol. 374, no. 2065,
2016, Royal Society. doi: 10.1098/rsta.2015.0202.

[75] F. Kamiran and T. Calders, “Data preprocessing techniques for clas-
sification without discrimination,” vol. 33, pp. 1–33, 2012, Springer
Berlin Heidelberg. doi: 10.1007/s10115-011-0463-8.

[76] S. G. Kang, J. A. Morrone, J. K. Weber, and W. D. Cornell, “Anal-
ysis of Training and Seed Bias in Small Molecules Generated with
a Conditional Graph-Based Variational Autoencoder – Insights for
Practical AI-Driven Molecule Generation,” Journal of Chemical In-
formation and Modeling, vol. 62, no. 4, pp. 801–816, 2022, ACS. doi:
10.1021/acs.jcim.1c01545.

[77] H. Kaur, H. S. Pannu, and A. K. Malhi, “A systematic review on
imbalanced data challenges in machine learning: Applications and
solutions,” ACM Computing Surveys, vol. 52, no. 4, 2019, ACM. doi:
10.1145/3343440.

133

https://doi.org/10.1186/s13321-020-00468-x
https://doi.org/10.1021/acs.jcim.7b00616
https://doi.org/10.1038/s41586-019-1540-5
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1007/s10115-011-0463-8
https://doi.org/10.1021/acs.jcim.1c01545
https://doi.org/10.1145/3343440

[78] M. Kearns, S. Neel, A. Roth, and Z. S. Wu, “Preventing fairness ger-
rymandering: Auditing and learning for subgroup fairness,” in Pro-
ceedings of the 35th International Conference on Machine Learning
(ICML ’35), J. Dy and A. Krause, Eds., vol. 6, IMLS, 2018, pp. 4008–
4016.

[79] ——, “An empirical study of rich subgroup fairness for machine
learning,” in Proceedings of the Conference on Fairness, Account-
ability, and Transparency (FAT* ’19), ACM, 2019, pp. 100–109. doi:
10.1145/3287560.3287592.

[80] A. Kerstjens and H. De Winter, “LEADD: Lamarckian evolutionary
algorithm for de novo drug design,” Journal of Cheminformatics,
vol. 14, no. 3, pp. 1–20, 2022, Springer International. doi: 10.1186/
s13321-022-00582-y.

[81] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A.
Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, and E. E.
Bolton, “PubChem in 2021: new data content and improved web in-
terfaces,” Nucleic Acids Research, vol. 49, no. D1, pp. D1388–D1395,
2020, Oxford University Press. doi: 10.1093/nar/gkaa971.

[82] W. M. Kouw and M. Loog, “A review of domain adaptation without
target labels,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 43, no. 3, pp. 766–785, 2021, IEEE. doi: 10.1109/
TPAMI.2019.2945942.

[83] M. J. Kusner, J. Loftus, C. Russell, and R. Silva, “Counterfactual
fairness,” in Advances in Neural Information Processing Systems, I.
Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, Eds., vol. 30, Curran Associates, Inc.,
2017.

[84] H. Kuwahara and X. Gao, “Analysis of the effects of related finger-
prints on molecular similarity using an eigenvalue entropy approach,”
Journal of Cheminformatics, vol. 13, no. 27, pp. 1–12, 2021, Springer
International. doi: 10.1186/s13321-021-00506-2.

134

https://doi.org/10.1145/3287560.3287592
https://doi.org/10.1186/s13321-022-00582-y
https://doi.org/10.1186/s13321-022-00582-y
https://doi.org/10.1093/nar/gkaa971
https://doi.org/10.1109/TPAMI.2019.2945942
https://doi.org/10.1109/TPAMI.2019.2945942
https://doi.org/10.1186/s13321-021-00506-2

[85] Y. Kwon and J. Lee, “MolFinder: an evolutionary algorithm for the
global optimization of molecular properties and the extensive explo-
ration of chemical space using SMILES,” Journal of Cheminformat-
ics, vol. 13, no. 24, 2021, Springer International. doi: 10 . 1186 /
s13321-021-00501-7.

[86] R. La, Y. Zhang, K. Dost, and J. Wicker, “Quantifying reliability us-
ing adversarial regions,” Summer Project Report, University of Auck-
land, New Zealand, 2021.

[87] D. Latino, J. Wicker, M. Gütlein, E. Schmid, S. Kramer, and K. Fen-
ner, “Eawag-soil in envipath: A new resource for exploring regulatory
pesticide soil biodegradation pathways and half-life data,” Environ-
mental Science: Process & Impact, vol. 19, no. 3, pp. 449–464, 2017,
The Royal Society of Chemistry. doi: 10.1039/C6EM00697C.

[88] A. Lavalle, A. Maté, and J. Trujillo, “An approach to automatically
detect and visualize bias in data analytics,” in CEUR Workshop Pro-
ceedings, ser. 22nd International Workshop On Design, Optimization,
Languages and Analytical Processing of Big Data, vol. 2572, CEUR,
2020.

[89] Y. Lin, Y. Lee, and G. Wahba, “Support vector machines for classifi-
cation in nonstandard situations,” Machine Learning, vol. 46, no. 1–3,
pp. 191–202, 2002, Kluwer Academic Publishers. doi: 10.1023/A:
1012406528296.

[90] Z. C. Lipton, Y. Wang, and A. J. Smola, “Detecting and correcting for
label shift with black box predictors,” in Proceedings of the 35th Inter-
national Conference on Machine Learning (ICML ’18), ser. Proceed-
ings of Machine Learning Research, vol. 80, PMLR, 2018, pp. 3128–
3136.

[91] R. J. A. Little and D. B. Rubin, Statistical analysis with missing data.
Wiley, 2019. doi: 10.1002/9781119482260.

[92] A. Liu and B. D. Ziebart, “Robust classification under sample se-
lection bias,” in Proceedings of the 27th International Conference on
Neural Information Processing Systems (NIPS ’14), Curran Asso-
ciates Inc., 2014, pp. 37–45.

135

https://doi.org/10.1186/s13321-021-00501-7
https://doi.org/10.1186/s13321-021-00501-7
https://doi.org/10.1039/C6EM00697C
https://doi.org/10.1023/A:1012406528296
https://doi.org/10.1023/A:1012406528296
https://doi.org/10.1002/9781119482260

[93] M. Long, Z. Cao, J. Wang, and P. S. Yu, “Learning multiple tasks
with multilinear relationship networks,” in Proceedings of the 31st
International Conference on Neural Information Processing Systems
(NIPS ’17), Curran Associates Inc., 2017, pp. 1593–1602.

[94] A. Lyon, “Why are Normal Distributions Normal?” British Journal
for the Philosophy of Science, vol. 65, no. 3, pp. 621–649, 2014, BJPS.
doi: 10.1093/bjps/axs046.

[95] A. Mayr, G. Klambauer, T. Unterthiner, and S. Hochreiter, “Deep-
tox: Toxicity prediction using deep learning,” Frontiers in Environ-
mental Science, vol. 3, 2016, Frontiers Media S.A. doi: 10.3389/
fenvs.2015.00080.

[96] G. McGaughey, W. Walters, and B. Goldman, “Understanding co-
variate shift in model performance,” F1000Research, vol. 5, p. 597,
2016, Taylor & Francis. doi: 10.12688/f1000research.8317.1.

[97] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan,
“A Survey on Bias and Fairness in Machine Learning,” ACM Com-
puting Surveys, vol. 54, no. 6, 2021, ACM. doi: 10.1145/3457607.
eprint: 1908.09635.

[98] Y.-Q. Miao, A. K. Farahat, and M. S. Kamel, “Ensemble kernel mean
matching,” in 2015 IEEE International Conference on Data Mining
(ICDM ’15), IEEE, 2015, pp. 330–338. doi: 10.1109/ICDM.2015.
127.

[99] J. J. Moré, “The Levenberg-Marquardt Algorithm: Implementation
and Theory,” in Numerical Analysis, Springer Berlin Heidelberg,
1978, pp. 105–116. doi: 10.1007/bfb0067700.

[100] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodríguez, N. V. Chawla,
and F. Herrera, “A unifying view on dataset shift in classification,”
Pattern Recognition, vol. 45, no. 1, pp. 521–530, 2012, Elsevier. doi:
10.1016/j.patcog.2011.06.019.

136

https://doi.org/10.1093/bjps/axs046
https://doi.org/10.3389/fenvs.2015.00080
https://doi.org/10.3389/fenvs.2015.00080
https://doi.org/10.12688/f1000research.8317.1
https://doi.org/10.1145/3457607
1908.09635
https://doi.org/10.1109/ICDM.2015.127
https://doi.org/10.1109/ICDM.2015.127
https://doi.org/10.1007/bfb0067700
https://doi.org/10.1016/j.patcog.2011.06.019

[101] V. D. Mouchlis, A. Afantitis, A. Serra, M. Fratello, A. G. Papa-
diamantis, V. Aidinis, I. Lynch, D. Greco, and G. Melagraki, “Ad-
vances in de novo drug design: From conventional to machine learning
methods,” International Journal of Molecular Sciences, vol. 22, no. 4,
2021, MDPI. doi: 10.3390/ijms22041676.

[102] K. Muandet, D. Balduzzi, and B. Schölkopf, “Domain generalization
via invariant feature representation,” Proceedings of the 30th Interna-
tional Conference on Machine Learning (ICML ’13), vol. 28, pp. 10–
18, 2013, JMLR.

[103] H. Al-Mubaid and S. Umair, “A new text categorization technique
using distributional clustering and learning logic,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 18, no. 9, pp. 1156–
1165, 2006, IEEE. doi: 10.1109/TKDE.2006.135.

[104] S. Niu, Y. Liu, J. Wang, and H. Song, “A Decade Survey of Transfer
Learning (2010–2020),” IEEE Transactions on Artificial Intelligence,
vol. 1, no. 2, pp. 151–166, 2021, IEEE. doi: 10.1109/tai.2021.
3054609.

[105] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. V.
Dillon, B. Lakshminarayanan, and J. Snoek, “Can you trust your
model’s uncertainty? Evaluating predictive uncertainty under dataset
shift,” in Proceedings of the 33rd International Conference on Neural
Information Processing Systems (NIPS ’19), Curran Associates Inc.,
2019.

[106] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 10,
pp. 1345–1359, 2010, IEEE. doi: 10.1109/TKDE.2009.191.

[107] T. Panch, H. Mattie, and R. Atun, “Artificial intelligence and al-
gorithmic bias: Implications for health systems,” Journal of Global
Health, vol. 9, 2019. doi: 10.7189/jogh.09.020318.

[108] S. Panigrahi, A. Nanda, and T. Swarnkar, “A Survey on Transfer
Learning,” Smart Innovation, Systems and Technologies, vol. 194,
no. 10, pp. 781–789, 2021, IEEE. doi: 10.1007/978-981-15-5971-
6_83.

137

https://doi.org/10.3390/ijms22041676
https://doi.org/10.1109/TKDE.2006.135
https://doi.org/10.1109/tai.2021.3054609
https://doi.org/10.1109/tai.2021.3054609
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.7189/jogh.09.020318
https://doi.org/10.1007/978-981-15-5971-6_83
https://doi.org/10.1007/978-981-15-5971-6_83

[109] Y. Pathak, P. Shukla, A. Tiwari, S. Stalin, and S. Singh, “Deep trans-
fer learning based classification model for covid-19 disease,” IRBM,
vol. 43, no. 2, pp. 87–92, 2022, Elsevier. doi: 10.1016/j.irbm.2020.
05.003.

[110] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
and et al., “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011, JMLR.

[111] T. Pereira, M. Abbasi, B. Ribeiro, and J. P. Arrais, “Diversity ori-
ented Deep Reinforcement Learning for targeted molecule genera-
tion,” Journal of Cheminformatics, vol. 13, no. 21, pp. 1–17, 2021,
Springer International. doi: 10.1186/s13321-021-00498-z.

[112] D. N. Perkins and G. Salomon, “Transfer of learning,” in Interna-
tional Encyclopedia of Education, 2nd ed., Pergamon, 1992, pp. 6452–
6457.

[113] P. E. Pfeiffer and D. A. Schum, Introduction to applied probability.
Academic Press, 1973. doi: 10.1016/C2013-0-11306-2.

[114] J. Poulos and R. Valle, “Missing data imputation for supervised learn-
ing,” Applied Artificial Intelligence, vol. 32, no. 2, pp. 186–196, 2016,
Taylor & Francis. doi: 10.1080/08839514.2018.1448143.

[115] A. Pyae, Fish market dataset, kaggle.com/datasets/aungpyaeap/fish-
market, pre-processed and exported from SAS OnDemand for Aca-
demics, kaggle, 2019, accessed: 2022-11-26.

[116] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D.
Lawrence, Dataset Shift in Machine Learning. MIT Press, 2009.

[117] S. Rabanser, S. Günnemann, and Z. Lipton, “Failing loudly: An em-
pirical study of methods for detecting dataset shift,” in Advances in
Neural Information Processing Systems 32 (NIPS ’19), Curran As-
sociates Inc., 2019, pp. 1396–1408.

[118] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught
learning: Transfer learning from unlabeled data,” in Proceedings of
the 24th International Conference on Machine Learning (ICML ’07),
ACM, 2007, pp. 759–766. doi: 10.1145/1273496.1273592.

138

https://doi.org/10.1016/j.irbm.2020.05.003
https://doi.org/10.1016/j.irbm.2020.05.003
https://doi.org/10.1186/s13321-021-00498-z
https://doi.org/10.1016/C2013-0-11306-2
https://doi.org/10.1080/08839514.2018.1448143
https://www.kaggle.com/datasets/aungpyaeap/fish-market
https://www.kaggle.com/datasets/aungpyaeap/fish-market
https://doi.org/10.1145/1273496.1273592

[119] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” Machine Language, vol. 85, no. 3,
pp. 333–359, 2011. doi: 10.1007/s10994-011-5256-5.

[120] D. Reker and G. Schneider, “Active-learning strategies in computer-
assisted drug discovery,” en, Drug Discovery Today, vol. 20, no. 4,
pp. 458–465, 2015, Elsevier. doi: 10.1016/j.drudis.2014.12.004.

[121] D. Reker, P. Schneider, G. Schneider, and J. Brown, “Active learn-
ing for computational chemogenomics,” Future Medicinal Chemistry,
vol. 9, no. 4, pp. 381–402, 2017, Future Science. doi: 10.4155/fmc-
2016-0197.

[122] F. Sahigara, D. Ballabio, R. Todeschini, and V. Consonni, “Defin-
ing a novel k-nearest neighbours approach to assess the applicability
domain of a qsar model for reliable predictions,” Journal of Chem-
informatics, vol. 5, no. 27, p. 27, 2013, Springer International. doi:
10.1186/1758-2946-5-27.

[123] P. Saleiro, B. Kuester, L. Hinkson, J. London, A. Stevens, A. Anisfeld,
K. T. Rodolfa, and R. Ghani, Aequitas: A bias and fairness audit
toolkit, preprint, 2018. doi: 10.48550/ARXIV.1811.05577.

[124] K. Sarinnapakorn and M. Kubat, “Combining subclassifiers in
text categorization: A dst-based solution and a case study,” IEEE
Transactions on Knowledge and Data Engineering, vol. 19, no. 12,
pp. 1638–1651, 2007, IEEE. doi: 10.1109/TKDE.2007.190663.

[125] G. Schneider and D. E. Clark, “Automated de novo drug design:
Are we nearly there yet?” Angewandte Chemie International Edition,
vol. 58, no. 32, pp. 10 792–10 803, 2019, Wiley. doi: https://doi.
org/10.1002/anie.201814681.

[126] P. Schneider and G. Schneider, “De novo design at the edge of chaos,”
Journal of Medicinal Chemistry, vol. 59, no. 9, pp. 4077–4086, 2016,
ACS. doi: 10.1021/acs.jmedchem.5b01849.

[127] B. Settles, “Active learning,” in Synthesis Lectures on Artificial Intel-
ligence and Machine Learning (SLAIML), 1, vol. 6, Springer, 2012,
pp. 1–114. doi: 10.2200/S00429ED1V01Y201207AIM018.

139

https://doi.org/10.1007/s10994-011-5256-5
https://doi.org/10.1016/j.drudis.2014.12.004
https://doi.org/10.4155/fmc-2016-0197
https://doi.org/10.4155/fmc-2016-0197
https://doi.org/10.1186/1758-2946-5-27
https://doi.org/10.48550/ARXIV.1811.05577
https://doi.org/10.1109/TKDE.2007.190663
https://doi.org/https://doi.org/10.1002/anie.201814681
https://doi.org/https://doi.org/10.1002/anie.201814681
https://doi.org/10.1021/acs.jmedchem.5b01849
https://doi.org/10.2200/S00429ED1V01Y201207AIM018

[128] H. Shimodaira, “Improving predictive inference under covariate shift
by weighting the log-likelihood function,” Journal of Statistical Plan-
ning and Inference, vol. 90, no. 2, pp. 227–244, 2000, Elsevier. doi:
10.1016/S0378-3758(00)00115-4.

[129] J. Sieg, F. Flachsenberg, and M. Rarey, “In Need of Bias Control:
Evaluating Chemical Data for Machine Learning in Structure-Based
Virtual Screening,” Journal of Chemical Information and Modeling,
vol. 59, no. 3, pp. 947–961, 2019, ACS. doi: 10.1021/acs.jcim.
8b00712.

[130] B. Silverman, Density estimation: For statistics and data analysis,
1st ed., ser. Monographs on Statistics and Applied Probability 26.
Chapman & Hall/CRC Press, 1998, pp. 1–175. doi: 10 . 1201 /
9781315140919.

[131] A. T. Smith and C. Elkan, “Making generative classifiers robust to
selection bias,” in Proceedings of the 13th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD
’07), ACM, 2007, pp. 657–666. doi: 10.1145/1281192.1281263.

[132] J. S. Smith, B. Nebgen, N. Lubbers, O. Isayev, and A. E. Roitberg,
“Less is more: Sampling chemical space with active learning,” The
Journal of Chemical Physics, vol. 148, no. 24, p. 241 733, 2018, AIP.
doi: 10.1063/1.5023802.

[133] L. Song, C. Wang, L. Zhang, B. Du, Q. Zhang, C. Huang, and X.
Wang, “Unsupervised domain adaptive re-identification: Theory and
practice,” Pattern Recognition, vol. 102, p. 107 173, 2020, Elsevier.
doi: 10.1016/j.patcog.2019.107173.

[134] R. Srinivasan and A. Chander, “Biases in AI systems,” Communi-
cations of the ACM, vol. 64, no. 8, pp. 44–49, 2021, ACM. doi:
10.1145/3464903.

[135] T. Stepišnik, B. Škrlj, J. Wicker, and D. Kocev, “A comprehensive
comparison of molecular feature representations for use in predictive
modeling,” Computers in Biology and Medicine, vol. 130, p. 104 197,
2021, Elsevier. doi: 10.1016/j.compbiomed.2020.104197.

140

https://doi.org/10.1016/S0378-3758(00)00115-4
https://doi.org/10.1021/acs.jcim.8b00712
https://doi.org/10.1021/acs.jcim.8b00712
https://doi.org/10.1201/9781315140919
https://doi.org/10.1201/9781315140919
https://doi.org/10.1145/1281192.1281263
https://doi.org/10.1063/1.5023802
https://doi.org/10.1016/j.patcog.2019.107173
https://doi.org/10.1145/3464903
https://doi.org/10.1016/j.compbiomed.2020.104197

[136] P. Stojanov, M. Gong, J. Carbonell, and K. Zhang, “Low-dimensional
density ratio estimation for covariate shift correction,” Proceedings of
Machine Learning Research, vol. 89, pp. 3449–3458, 2019, PMLR.

[137] A. Storkey, “When training and test sets are different: Characterizing
learning transfer,” in Dataset Shift in Machine Learning, MIT Press,
2013, pp. 3–28. doi: 10.7551/mitpress/9780262170055.003.0001.

[138] B. Strack, J. Deshazo, C. Gennings, J. L. Olmo Ortiz, S. Ventura,
K. J. Cios, and J. N. Clore, “Impact of hba1c measurement on hos-
pital readmission rates: Analysis of 70,000 clinical database patient
records,” BioMed Research International, vol. 2014, p. 781 670, 2014,
Hindawi. doi: 10.1155/2014/781670.

[139] M. Sugiyama and K.-R. Müller, “Input-dependent estimation of gen-
eralization error under covariate shift,” Statistics & Decisions, vol. 23,
no. 4, pp. 249–279, 2005, De Gruyter. doi: 10.1524/stnd.2005.23.
4.249.

[140] M. Sugiyama and N. Rubens, “A batch ensemble approach to active
learning with model selection,” en, Neural Networks, vol. 21, no. 9,
pp. 1278–1286, 2008, Elsevier. doi: 10.1016/j.neunet.2008.06.
004.

[141] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. Von Bü-
nau, and M. Kawanabe, “Direct importance estimation for covariate
shift adaptation,” Annals of the Institute of Statistical Mathematics,
vol. 60, no. 4, pp. 699–746, 2008, Springer Science & Business. doi:
10.1007/s10463-008-0197-x.

[142] J. Tam, T. Lorsbach, S. Schmidt, and J. Wicker, “Holistic evaluation
of biodegradation pathway prediction: Assessing multi-step reactions
and intermediate products,” Journal of Cheminformatics, vol. 13,
no. 63, 2021, Springer International. doi: 10.1186/s13321- 021-
00543-x.

141

https://doi.org/10.7551/mitpress/9780262170055.003.0001
https://doi.org/10.1155/2014/781670
https://doi.org/10.1524/stnd.2005.23.4.249
https://doi.org/10.1524/stnd.2005.23.4.249
https://doi.org/10.1016/j.neunet.2008.06.004
https://doi.org/10.1016/j.neunet.2008.06.004
https://doi.org/10.1007/s10463-008-0197-x
https://doi.org/10.1186/s13321-021-00543-x
https://doi.org/10.1186/s13321-021-00543-x

[143] F. Tramèr, V. Atlidakis, R. Geambasu, D. Hsu, J. P. Hubaux, M.
Humbert, A. Juels, and H. Lin, “FairTest: Discovering Unwarranted
Associations in Data-Driven Applications,” Proceedings of the 2nd
IEEE European Symposium on Security and Privacy (EuroS&P ’17),
pp. 401–416, 2017. doi: 10.1109/EuroSP.2017.29.

[144] V. T. Tran and A. Aussem, “Correcting a class of complete selection
bias with external data based on importance weight estimation,” in
Neural Information Processing (ICONIP ’15), ser. Lecture Notes in
Computer Science, vol. 9491, Springer Cham, 2015, pp. 111–118. doi:
10.1007/978-3-319-26555-1_13.

[145] N. Tripuraneni, B. Adlam, and J. Pennington, “Overparameterization
improves robustness to covariate shift in high dimensions,” Advances
in Neural Information Processing Systems 34 (NIPS ’21), vol. 34,
pp. 13 883–13 897, 2021.

[146] B. Wang, J. A. Mendez, M. B. Cai, and E. Eaton, “Transfer learning
via minimizing the performance gap between domains,” in Advances
in Neural Information Processing Systems 32 (NIPS ’19), vol. 32,
Curran Associates Inc., 2019, pp. 10 644–10 654.

[147] H. Wang, Z. He, Z. C. Lipton, and E. P. Xing, “Learning robust rep-
resentations by projecting superficial statistics out,” preprint, arXiv,
2019. doi: 10.48550/ARXIV.1903.06256.

[148] X. Wang, L. Li, W. Ye, M. Long, and J. Wang, “Transferable atten-
tion for domain adaptation,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, AAAI, 2019, pp. 5345–5352. doi:
10.1609/aaai.v33i01.33015345.

[149] L. Wen, “An analytic technique to prove borel’s strong law of large
numbers,” The American Mathematical Monthly, vol. 98, no. 2,
pp. 146–148, 1991, Taylor & Francis. doi: 10.2307/2323947.

[150] J. Wicker, K. Fenner, L. Ellis, L. Wackett, and S. Kramer, “Pre-
dicting biodegradation products and pathways: A hybrid knowledge-
and machine learning-based approach,” Bioinformatics, vol. 26,
no. 6, pp. 814–821, 2010, Oxford University Press. doi: 10.1093/
bioinformatics/btq024.

142

https://doi.org/10.1109/EuroSP.2017.29
https://doi.org/10.1007/978-3-319-26555-1_13
https://doi.org/10.48550/ARXIV.1903.06256
https://doi.org/10.1609/aaai.v33i01.33015345
https://doi.org/10.2307/2323947
https://doi.org/10.1093/bioinformatics/btq024
https://doi.org/10.1093/bioinformatics/btq024

[151] J. Wicker, K. Fenner, and S. Kramer, “A hybrid machine learn-
ing and knowledge based approach to limit combinatorial explo-
sion in biodegradation prediction,” in Computational Sustainability,
Springer International, 2016, pp. 75–97. doi: 10.1007/978-3-319-
31858-5_5.

[152] J. Wicker, T. Lorsbach, M. Gütlein, E. Schmid, D. Latino, S. Kramer,
and K. Fenner, “Envipath - the environmental contaminant biotrans-
formation pathway resource,” Nucleic Acid Research, vol. 44, no. D1,
pp. D502–D508, 2016, Oxford University Press. doi: 10.1093/nar/
gkv1229.

[153] R. Winter, F. Montanari, F. Noé, and D.-A. Clevert, “Learning con-
tinuous and data-driven molecular descriptors by translating equiva-
lent chemical representations,” Chemical Science, vol. 10, pp. 1692–
1701, 6 2019, The Royal Society of Chemistry. doi: 10 . 1039 /
C8SC04175J.

[154] R. Xia, Z. Pan, and F. Xu, “Instance weighting for domain adaptation
via trading off sample selection bias and variance,” in 27th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI ’18), ACM,
2018, pp. 4489–4495.

[155] C. W. Yap, “Padel-descriptor: An open source software to calculate
molecular descriptors and fingerprints,” Journal of Computational
Chemistry, vol. 32, no. 7, pp. 1466–1474, 2011, Wiley. doi: 10.1002/
jcc.21707.

[156] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” In 27th International Conference
on Neural Information Processing Systems (NIPS ’14), MIT Press,
2014, pp. 3320–3328.

[157] Y. L. Yu and C. Szepesvári, “Analysis of kernel mean matching under
covariate shift,” in Proceedings of the 29th International Conference
on Machine Learning (ICML ’12), vol. 1, Omnipress, 2012, pp. 607–
614. eprint: 1206.4650.

143

https://doi.org/10.1007/978-3-319-31858-5_5
https://doi.org/10.1007/978-3-319-31858-5_5
https://doi.org/10.1093/nar/gkv1229
https://doi.org/10.1093/nar/gkv1229
https://doi.org/10.1039/C8SC04175J
https://doi.org/10.1039/C8SC04175J
https://doi.org/10.1002/jcc.21707
https://doi.org/10.1002/jcc.21707
1206.4650

[158] B. Zadrozny, “Learning and evaluating classifiers under sample se-
lection bias,” in Twenty-first international conference on Machine
learning (ICML ’04), ACM, 2004, p. 114. doi: 10.1145/1015330.
1015425.

[159] B. Zadrozny and C. Elkan, “Learning and making decisions when
costs and probabilities are both unknown,” in Proceedings of the
7th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD ’01), ACM, 2001, pp. 204–213. doi:
10.1145/502512.502540.

[160] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, “Learning
fair representations,” in 30th International Conference on Machine
Learning (ICML ’13), vol. 28, JMLR, 2013, pp. 1362–1370.

[161] G. Zhang, B. Bai, J. Liang, K. Bai, S. Chang, M. Yu, C. Zhu, and
T. Zhao, “Selection bias explorations and debias methods for natural
language sentence matching datasets,” in 57th Annual Meeting of the
Association for Computational Linguistics (ACL ’19), Association for
Computational Linguistics, 2019, pp. 4418–4429. doi: 10.18653/v1/
p19-1435.

[162] S. Zhong, D. R. Lambeth, T. K. Igou, and Y. Chen, “Enlarging appli-
cability domain of quantitative structure–activity relationship models
through uncertainty-based active learning,” ACS ES&T Engineering,
vol. 2, no. 7, pp. 1211–1220, 2022, American Chemical Society. doi:
10.1021/acsestengg.1c00434.

[163] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain gen-
eralization: A survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–20, 2022, IEEE. doi: 10.1109/TPAMI.
2022.3195549.

[164] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings
of the IEEE, vol. 109, no. 1, pp. 43–76, 2021, IEEE. doi: 10.1109/
JPROC.2020.3004555.

144

https://doi.org/10.1145/1015330.1015425
https://doi.org/10.1145/1015330.1015425
https://doi.org/10.1145/502512.502540
https://doi.org/10.18653/v1/p19-1435
https://doi.org/10.18653/v1/p19-1435
https://doi.org/10.1021/acsestengg.1c00434
https://doi.org/10.1109/TPAMI.2022.3195549
https://doi.org/10.1109/TPAMI.2022.3195549
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/JPROC.2020.3004555

[165] D. Zwillinger, CRC Standard Mathematical Tables and Formulae,
ser. Discrete Mathematics and Its Applications. Baton Rouge: CRC
Press, 2012.

145

	Statements of Contribution
	Introduction
	Research Problem
	Proposed Solution
	Contributions
	Thesis Overview

	Preliminaries
	Probability Theory
	Density Estimation
	Data Transformation
	Curve Fitting

	Related Research
	Transfer Learning
	Domain Adaptation
	Dataset Shift
	Covariate Shift Correction
	Sample Selection Bias
	Imbalanced Data
	Domain Generalization
	Fairness in Machine Learning
	Dataset Shift Detection

	Single-Cluster Selection Bias Identification and Mitigation
	Introduction
	Problem Statement
	Proposed Method
	Transformation
	Density Representations
	Distribution Fitting
	Generation
	Confidence

	Experiments and Discussion
	Synthetic Data
	Real-World Data
	Use-Case: Cardiovascular Disease
	Limitations

	Conclusion

	Multi-Cluster Selection Bias Identification and Mitigation
	Introduction
	Proposed Method
	Initialization
	Identifying Valid Clusters
	Extending Imitate: From Grid to Parameterized Gaussians
	Extending Imitate: Automated Grid Selection
	Growing Clusters
	Merging
	Data Augmentation
	Assumptions and Expectations

	Experiments and Discussion
	Experimental Setup
	Results
	Limitations

	Conclusion

	An Application: Assessing and Preventing Bias in Growing Chemical Databases
	Introduction
	Problem Statement
	Related Research in Chemistry
	Active Learning in Chemistry
	Bias in the Chemical Compound Space

	Proposed Method
	Data Transformation
	Bias Identification
	Extending Imitate: Boundaries
	Identifying Compounds to Fill in the Gap

	Experiments and Discussion
	Experimental Setup
	Results and Discussion

	Conclusion

	Conclusion
	Contributions
	Limitations
	Outlook

	Bibliography

