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Abstract

Cryptography has a rich history, spanning thousands of years and evolving from an-
cient techniques such as the scytale and Caesar’s cipher to modern systems like RSA,
DHKE, and ECDH. However, quantum computing poses a substantial threat to the
security of these modern cryptosystems. To address this challenge, post-quantum crypto-
graphy has emerged, with various branches including hash-based cryptography, code-based
cryptography, multivariate cryptography, lattice-based cryptography, and isogeny-based
cryptography.

Isogeny-based cryptography, a promising and relatively new area of research in post-
quantum cryptography, employs algebraic mappings between elliptic curves to create
cryptographic systems. Despite recent advancements challenging the hardness of the
SIDH problem, an isogeny problem with additional information, several cryptosystems
remain secure and continue to flourish. Isogeny-based cryptography is a vibrant and active
research field.

This thesis delves into the fascinating world of advanced isogeny-based cryptosystems,
discussing their primitives, challenges, and innovative approaches to their development.
Topics covered include oblivious transfers, ring signatures, group signatures, blind sig-
natures, verifiable random functions, and the application of generic proof systems to
isogenies.

Concretely and first, we present the first efficient UC-secure oblivious transfer using
only a constant number of isogeny computations based on the group action inverse problem
(GAIP). To prove this, we propose a new assumption, the reciprocal CDH assumption, and
show the equivalence to the GAIP. Second, we present the first post-quantum accountable
ring signature, which immediately implies the first efficient isogeny-based group signature
with proof size logarithmic in the number of members. Here, we also show how to use the
Katz-Wang method to obtain a tight-secure variant, which is a less explored feature in the
post-quantum group/ring signature literature. Third, we present the first provably secure
blind signatures from isogenies based on the GAIP. Here, we present a novel approach
to optimize the result by proposing a new assumption, the ring-GAIP. We also give a
thorough analysis of it and show the equivalence to the GAIP for a few cases. Fourth, we
present the first provably secure verifiable random functions from isogenies based on the



standard DDH assumption. To prove this, we propose a generalized DDH assumption,
the master DDH assumption, and show the equivalence to the DDH problem. Here, we
also give a new use of the quadratic twist and relax the assumption to optimize the
performance. Finally, we present the first practical application of generic proof systems
to the isogeny construction. Here, we consider the identification scheme for an isogeny
problem with a smooth degree.

All presented constructions have advantages over previously published schemes in
terms of the security notions achieved or the performance or both. By offering a thorough
analysis of these cryptosystems, this thesis lays a solid foundation for those new to the
subject. It equips readers with a comprehensive understanding of the principles and
potential applications of isogeny-based cryptosystems, fostering further research and
development in this exciting area of post-quantum cryptography.
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Chapter 1

Introduction

Military tactics are rooted in guile.

Sun Tzu, “The Art of War”

While the origins of human awareness of privacy remain uncertain, the need for
information security can be traced back thousands of years through historical records.
One of the earliest known ciphers, the scytale, was used by Spartans in ancient Greece
to encrypt military messages. The scytale involved wrapping a parchment strip around
a cylinder of a specific diameter and writing the message lengthwise on the parchment.
When unwrapped, the message appeared scrambled and could only be deciphered by
someone with a cylinder of the same diameter.

In the information age, cryptography has become an indispensable cornerstone due to
the rapid development of the internet and communication technology. Most real-world
cryptosystems are derived from RSA [RSA78], DHKE [DH76], or ECDH [Mil86, Kob87].
Cryptography is used in various applications beyond military use, such as securing online
transactions in our daily lives and protecting sensitive government communications. As
technology becomes increasingly essential in our lives, the need for robust and reliable
cryptographic methods will continue to grow.

These cryptosystems are able to protect our private information effectively because it
is difficult to factorize large numbers or compute logarithm functions in discrete spaces.
However, these mathematical problems can theoretically be efficiently solved by a fully
operational quantum computer [Sho99]. While we are still some distance away from having
a quantum computer powerful enough to break these cryptosystems in practice, the threat
is becoming more tangible with the quantum computing advancements [IBM, Goo23].
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To address the growing threat of quantum computing to information security, new
cryptography studies, known as post-quantum cryptography, are being developed. This
field of study mainly consists of five branches: hash-based cryptography, code-based
cryptography, multivariate cryptography, lattice-based cryptography, and isogeny-based
cryptography. Each branch has its own distinct features and hardness assumptions. One
of the most significant activities in post-quantum cryptography is the request from NIST
for the standardization of post-quantum public key encryption and digital signature
schemes, which began in 2016. After eight years, in 2022, NIST announced four algorithms
that have been chosen for standardization. These algorithms are CRYSTALS-KYBER
[SAB+22], CRYSTALS-DILITHIUM [LDK+22], FALCON [SAB+22] from lattice-based
cryptography, and SPHINCS+ [HBD+22] from hash-based cryptography. Another round
of selection for post-quantum public key encryption is currently ongoing, and there is also
a call for more post-quantum signature schemes due to rapid advancements in the field.

Isogeny-based cryptography is a relatively new and active area of research within
post-quantum cryptography. Isogenies refers to a specific algebraic mapping between
elliptic curves, which was initially introduced in elliptic curve cryptography as a tool
for cryptanalysis [Gal99, GHS02]. However, isogeny has since evolved into a crucial
component of cryptographic systems itself. It was first introduced with the CRS key
exchange [Cou06, RS06] and the CGL hash function [CLG09]. The core assumption
in isogeny-based cryptography is that it is hard to recover an isogeny between two
given isogenous elliptic curves. This is known as the isogeny problem. In fact, the
study of the isogeny problem can be traced back to 1999 [Gal99]. One of the most
well-known isogeny-based cryptosystems is SIDH [JD11], which is a public key encryption
that survived until the fourth round in the NIST standardization program [JAC+22].
Although recent advancements [CD23, Rob23, MMP+23] have falsified the hardness
of the SIDH problem, which is a relaxed isogeny problem, its 11-year longevity and
iconic status have spurred significant research into isogeny-based cryptography [CLM+18,
DG19, BKV19, DG19, MCR19, Pei20, BS20, DKL+20, EKP20, DM20, LGD21, BDK+22,
AEK+22, Ler22, BKL+22, DLLW23, DFK+23, CLL23, Lai23]. As the field continues to
evolve, it is expected that more advancements and innovations will emerge.

Despite the vulnerability of SIDH, the original isogeny problem is still considered
hard, and several cryptosystems continue to be based on the original assumption [CLG09,
DKL+20, CLL23]. There is also a group action version of isogeny-based cryptography,
called CSIDH, proposed by [CLM+18]. While it offers limited operations as the evaluation
of the action is restricted to generating sets with small cardinality, it still resulted
in the first secure and practical post-quantum non-interactive key exchange. With
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optimization advancements [BKV19, DFK+23], the CSIDH group action is becoming
more flexible. Despite a known subexponential vulnerability [Reg04, Kup05, Kup11,
Pei20, BS20], recent research continues to demonstrate the competitiveness of isogeny-
based cryptography as a post-quantum branch, including signature schemes [BKV19,
EKP20, DG19], UC-secure oblivious transfers [LGD21, BMM+22], threshold signatures
[DM20], (linkable/accountable) ring and group signatures [BKP20, BDK+22], and PAKE
[AEK+22].

In this thesis, we present six advanced isogeny-based cryptosystems: oblivious transfers,
ring signatures, group signatures, blind signatures, verifiable random functions, and proof
of isogeny knowledge. By providing an in-depth analysis of these cryptosystems, this
thesis establishes a strong foundation for beginners in the subject. It offers readers a
comprehensive understanding of the principles and potential applications of isogeny-based
cryptosystems, paving the way for further research and development in this exciting area
of post-quantum cryptography.
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Chapter 2

Mathematical Preliminaries

Notation.

We let N represent the set of natural numbers, Z be the ring of integer and ZN := Z/NZ.
Let O be the point at infinity of an elliptic curve. Let Fp denote a finite field of order p.
For a finite field F, F̄ represents its algebraic closure. We let [N ] denote {1, 2, · · · , N} ⊂ N.
For a set S, s← S means uniformly sampling an element, s, from S. When displaying
pseudocodes, we will mark the sampling as $← to distinguish the use of ← of a subroutine
or assigning values.

Let λ be the security parameter. Two probability ensembles Xλ, Yλ are said to
be computationally indistinguishable, denoted by Xλ ≈c Yλ, if for every probabilistic
polynomial-time (PPT) adversary A there exists a negligible function negl(λ) such
|Pr[A(Xλ) = 1]− Pr[A(Yλ) = 1]| ≤ negl(λ). Also, Xλ, Yλ, defined over the same set, are
said to be statistically indistinguishable, denoted by Xλ ≈s Yλ, if there exists a negligible
function negl(λ) such ∑a |Pr[Xλ = a]− Pr[Yλ = a]| ≤ negl(λ).

2.1 Elliptic Curves over Finite Field and Isogenies

An elliptic curve defined a finite field F, denoted by E/F, is given by a non-singular
(i.e. with non-zero discriminant) affine Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where a1, a2, a3, a4, a6 ∈ F.
When char(F) ̸= 2, 3, we can always transform it as the short Weierstrass equation

y2 = x3 + a′
4x + a′

6 through a linear transform where a′
4, a′

6 ∈ F and 4a′3
4 + 27a′2

6 ̸= 0.
Throughout this thesis, we consider only non-singular curves.
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Let E defined over a field F. (E, O) has an additive group structure where O represents
the point at infinity and is the identity element of the group. Let F′ be a field containing
F, E(F′) is the set of point of E over F′. For every N ∈ Z, there is an endomorphism
[N ] : E → E defined by P 7→ NP . For every N ∈ N, the N -torsion subgroup of E is
defined to be E[N ] = {P ∈ E(F̄)|[N ]P = O}.

Theorem 2.1.1 (III.6. [Sil09]). Given an elliptic curve E/F and N ∈ N, we have the
following results.

1. If N ̸= 0 over F, then E[N ] ∼= ZN × ZN .

2. If char(F) = p > 0, then one of the following is true:

• E[pi] = {O} for all i ∈ N.

• E[pi] ∼= Zi
p for all i ∈ N.

Definition 2.1.2 (Supersingularity). Let E/F be an elliptic curve and char(F) = p > 0.
E is said to be supersingular if E[pi] = {O} for all i ∈ N.

Definition 2.1.3 (j-invariant). Suppose char(F) ̸= 2, 3 and let a4, a6 ∈ F be such that
4a3

4 + 27a2
6 ̸= 0. The j-invariant of a short Weierstrass equation E : y2 = x3 + a4x + a6 is

j(E) = 1728 4a3
4

4a3
4+27a2

6
.

Theorem 2.1.4 (Chapter V.3. [Sil09]). Let E be an elliptic curve defined over a finite
field F and char(F) = p. The following are equivalent.

1. E is supersingular.

2. The map [p] : E → E is purely inseparable and j(E) ∈ Fp2.

3. The endomorphism ring End(E) is an order in a quaternion algebra.

4. |E(F)| = |F|+ 1− t where p | t.

Theorem 2.1.5 (Chapter III.1. [Sil09]). Let F be a field and E1, E2 be non-singular
elliptic curves defined over F. There is an F̄-isomorphism from E1 to E2 if and only if
j(E1) = j(E2).

We know y2 = x3 + 1 and y2 = x3 + x are of j-invariant 0 and 1728 respectively. For
every J ∈ F with J ̸= 0, 1728,

y2 = x3 + 3J

1728− J
x + 2J

1728− J

is an elliptic curve defined F of j-invariant J .
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Definition 2.1.6 (Isogeny). Let E1, E2 be elliptic curves defined over F. An isogeny over
F is a morphism ϕ : E1 → E2 defined over F preserving the point at infinity.

For an isogeny defined over F, ϕ : E1 → E2, we may write ϕ(x, y) =
(

f1(x)
f2(x) , y f3(x)

f4(x)

)
for some f1, f2, f3, f4 ∈ F[x] and f1, f2 have no common factors (see Sec. 2.9 [Was08]). We
define the degree of ϕ, denoted by deg(ϕ), to be the maximal degree among f1(x), f2(x).
That is, deg(ϕ) = max (deg(f1(x)), deg(f2(x))). If N = deg(ϕ), then we say E1 and E2

are N-isogenous. There exists the dual isogeny, denoted by ϕ̂ : E2 → E1, of degree N

such that ϕ̂ ◦ ϕ = [N ], which represents the multiplication by N over E1. Hence, E2 and
E1 are also N -isogenous.

Theorem 2.1.7 (Hasse’s Bound). Let E be an elliptic curve defined over a finite field Fq.
Then ||E(Fq)| − q − 1| ≤ 2√q.

Proposition 2.1.8 (Supersingularity over a prime field). Let E be an elliptic curve
defined over a prime field Fp. Then, E is supersingular if and only if |E(Fp)| = p + 1.

Theorem 2.1.9 (Chapter V. [Sil09]). Let E, E ′ be elliptic curves defined over a finite
field F. Then, E and E ′ are isogenous over F if and only if |E(F)| = |E ′(F)|.

Theorem 2.1.10 (Modular Polynomial (Sec 10.3.[Was08])). For every positive integer
N ∈ N, there exists a polynomial ΦN(X, Y ) ∈ Z[X, Y ] of univariate-degree at most
N + 1 such that Φ(j1, j2) = 0 if any only if the elliptic curves of j-invariants j1, j2 are
N-isogenous.

Examples.

Φ2(X, Y ) =−X2Y 2 + X3 + Y 3 + 24 · 3 · 31XY (X + Y )
+ 34 · 53 · 4027XY − 24 · 34 · 53(X2 + Y 2)
+ 28 · 37 · 56(X + Y )− 212 · 39 · 59,

Φ3(X, Y ) = X4 −X3Y 3 + 2232X3Y 2 − 1069956X3Y + 36864000X3

+ 2232X2Y 3 + 2587918086X2Y 2 + 8900222976000X2Y

+ 452984832000000X2 − 1069956XY 3 + 8900222976000XY 2

− 770845966336000000XY + 1855425871872000000000X + Y 4

+ 36864000Y 3 + 452984832000000Y 2 + 1855425871872000000000Y

2.2 CSIDH: Commutative Supersingular Isogeny Diffie-
Hellman

This section is a brief overview of the isogeny group action CSIDH based on [CLM+18].
For a given prime p and a supersingular elliptic curve E defined over Fp, Endp(E) is the
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subring of the endomorphism ring End(E) consisting of the endomorphisms defined over
Fp. We say two elliptic curves are in the same Fp-isomorphism class if there exists an
isogeny defined over Fp between them. Let O be an order in an imaginary quadratic field
and γ ∈ O an element of norm p. Define the set of Fp-isomorphism classes of elliptic
curves Eℓℓp(O, π) where E defined over Fp, Endp(E) ∼= O, and π is the Fp-Frobenius
map of E corresponding to γ ∈ O. For an ideal a ∈ O and E ∈ Eℓℓp(O, π), an action
can be defined by a ⋆ E = E ′ such that there exists an isogeny ϕ : E → E ′ with
ker(ϕ) = ∩α∈a{P ∈ E(F̄p) | α(P ) = 0}. The image curve of a ⋆ E is well-defined up to
Fp-isomorphism. Moreover, the ideal class group Cl(O) acts freely and transitively on
Eℓℓp(O, π). Castryck et al. [CLM+18] chose the prime to be p = 4× ℓ1×· · ·× ℓn−1 where
ℓi are small odd primes. For a more comprehensive exploration of isogeny-based group
actions, we direct readers to [Onu21]. It is also important to highlight the pioneering
contributions by Couveignes, Rostovtsev, and Stolbunov [Cou06, RS06], who introduced
isogeny-based key exchange methods using ordinary curves.

In the case of p = 3 mod 8, for every supersingular elliptic curve E defined over Fp, we
have Endp(E) = Z[π] ∼= Z[√−p] if and only if E is Fp-isomorphic to EA : y2 = x3 +Ax2 +x

for some unique A ∈ Fp. The quadratic twist of a given elliptic curve E : y2 = f(x) is
Et : dy2 = f(x) where d ∈ Fp has Legendre symbol −1. When p = 3 mod 4 let E0 be
such that j(E0) = 1728, then E0 and Et

0 are Fp-isomorphic. The quadratic twist can
be efficiently computed in the CSIDH setting [CLM+18]. Since the prime p = 3 mod 4,
E ′ : −y2 = x3 + Ax2 + x is the quadratic twist of EA : y2 = x3 + Ax2 + x and E ′ is
Fp-isomorphic to E−A by (x, y) 7→ (−x, y). Further, (a ⋆ E0)t=a−1 ⋆ E0. Therefore, for
every curve E ∈ Eℓℓp(O, π), we have, by the transitivity of the action,

(a ⋆ E)t = a−1 ⋆ Et.

In general, computing a ⋆ E for a random element a ∈ Cℓ(O) can be computationally
infeasible due to the difficulty of computing the kernel. However, the special form of the
prime p = 4× ℓ1 × · · · × ℓn − 1 is advantageous for evaluation. For each prime ℓi, we can
factorize the ideal ℓiO = (ℓi, π− 1)(ℓi, π + 1) because x2 + p = (x + 1)(x− 1) (mod ℓi) and
we can restrict the factorization from the ring of integers to O (Prop 7.20 [Cox22]). The
ideal (ℓi, π − 1) induces a kernel by collecting the ℓi-torsion points E(Fp) since π(P ) = P

if and only if P ∈ E(Fp). Therefore, evaluating the action with (ℓi, π − 1) is feasible.
Similarly, the ideal (ℓi, π + 1) induces a kernel by collecting the point at infinity and

the ℓi-torsion points over E(Fp2) − E(Fp) with x-coordinates defined over Fp. This is
because for a point P ≠ O, we have π(P ) = −P if and only if P ∈ E(Fp2)− E(Fp) and
the x-coordinate is defined over Fp. Therefore, both the actions of li = (ℓi, π − 1) and
l−1
i = (ℓi, π + 1) are feasible. For any small range of j, we can evaluate the action of lji .
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Under appropriate assumptions as made in [CLM+18], we can sample elements from
Cℓ(O) uniformly and heuristically at random and evaluate the action using the generating
set l1, . . . , ln for Cℓ(O).

In [BKV19], Beullens et al. determined the structure of Cℓ(O) (under the parameter
CSIDH-512) as a direct sum of cyclic groups, i.e., Cℓ(O) = ⊕

i Zmi
. They also found a

generator g for the entire group, which is cyclic in their case. Moreover, they computed
the reduced relation lattices between {l1, · · · , ln}, which enables us to efficiently evaluate
the action of a random element using the generator g. Specifically, we can uniformly
sample a random element by selecting small coefficients ji and computing g = lj1

1 · · · ljn
n .

This way, we can make the evaluation feasible using the reduced relation lattice.
Throughout this thesis, we concentrate on supersingular curves defined over Fp. Denote

the ideal class group Cl(Endp(E)) by Cl and the set of elliptic curves Eℓℓp(O, π) by E .

2.3 Group Action Models

To ensure that the cryptosystems presented in this thesis are easily understandable, we
have modified the abstract models by emphasizing the properties of isogeny group actions.
This approach enables us to provide clear and intuitive explanations of the protocols we
propose. In this section, we provide a concise introduction to the primary ingredient that
underpins most of our protocols – group actions. Specifically, we focus on abelian, free,
transitive, and effective group actions throughout our work.

These properties play a crucial role in the design and analysis of our cryptographic
schemes. By adopting this approach, we aim to make our research accessible to a broad
audience and to inspire new innovations in the field of cryptography.

Definition 2.3.1 (Group Action). Let (G,⊙) be a group and ⋆ be a map ⋆ : G× E → E .
We denote ⋆(g, x) as g ⋆ x. (G, ⋆) is said to act on a set E if it satisfies the following
requirements.

1. Identity: if e is the identity element of G, then for every E ∈ E , we have e ⋆ E = E.

2. Compatibility: for every g, h ∈ G and every E ∈ E , we have (g⊙h) ⋆ E = g ⋆ (h ⋆ E).

We say (G, E , ⋆) is a group action if (G, ⋆) acts on E . We may denote the group
operation to be the additive notation (g1 + g2) or the multiplication notation (g1g2)
depending on the nature of the chapter, which we will state in each chapter.

Definition 2.3.2. A group action (G, E , ⋆) is said to be

1. transitive if for every x1, x2 ∈ E there exists g ∈ G such that x2 = g ⋆ x1, or
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2. free if for any g ∈ G, g is the identity element if and only if there exists some x ∈ E
such that x = g ⋆ x.

A group action is said to be regular if it is both transitive and free. To construct
efficient and practical schemes, we need to rely on efficient algorithms for various tasks.
To this end, we make use of the effective group action framework proposed in [ADMP20]
with a slight modification.

Definition 2.3.3 ((Modified) Effective Group Action). Let (G, E , ⋆) group action (G, E , E0, ⋆)
is effective if the following properties are satisfied:

1. The abelian group G is finite and there exist PPT algorithms for (i.) membership test-
ing, (ii.) equality testing, (iii.) group operations, (iv.) element inversions (v.) unique
string representation, and (vi.) a sampling method over G. The sampling method is
required to be statistically indistinguishable from the uniform distribution over G.

2. The set E is finite, and there exist PPT algorithms for membership testing and
generating a unique bit-string representation for every element in E.

3. E0 ∈ E is a distinguished element and the bit-string representation is publicly known.

4. There exists a PPT algorithm that, given any (g, x) ∈ G× E, outputs g ⋆ x.

We modify the definition of an effective group action of [ADMP20] by requiring every
group element to have a unique representation (v.). A weaker model (restricted effective
group action) restricts the feasible evaluation of the action to a generating set of small
cardinality, which captures the original setting CSIDH where the action relies upon a
generating set of several small-norm ideals. To keep this thesis accessible, we use the
(modified) effective group action model for the presentations of these cryptosystems. We
stress that group-action-based constructions in Chapters 4, 5 and 7 can be translated to the
restricted group action setting by using Fiat-Shamir with aborts technique [Lyu09, DG19].
Remark that the translation of the results in EGA to REGA is not always clear in general
[GPSV21, MZ22], which should be investigated case by case.

A more convenient and stronger model is the known-order effective group action model
by assuming the group structure and the lattice relation of the action are known. Formally,

Definition 2.3.4 (Known-order Effective Group Action (KO-EGA)). An EGA (G, E , E0, ⋆)
is a known-order effective group action if the following properties are satisfied:

1. The abelian group G is finite and the structure of G ∼= ⊕d
i=1Zmi

and a minimal
generating set ⟨gi⟩di=1 = G are known with an effective isomorphism (e1, · · · , ed) ∈
⊕d

i=1Zmi
7→ Πd

i=1g
ei
i ∈ G. Hence, ⊕d

i=1Zmi
can serve as a standard representation

for G.
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2. The set E is finite and there exist PPT algorithms for the membership testing and
generating a unique bit-string representation for every element in E.

3. E0 ∈ E is a distinguished element and its bit-string representation is publicly known.

The isogeny-based threshold signature scheme [DM20] is based on this model. We will
only use this structure to build the blind signature Chapter 6. While CSIDH-512 serves as
an instantiation for the known-order effective group action, we present a potential concern
in Sec. 2.5 regarding the feasibility of using larger parameter sets derived from isogenies.

Quadratic Twists. Aside from the abovementioned PPT algorithms, the last operation
to remark is the quadratic twist with the property (a⋆E0)t = a−1 ⋆E0 when the underlying
prime is p = 3 (mod 4). The quadratic twist has been shown to be a useful tool in some
cryptosystems [BKV19, EKP20, LGD21, AEK+22, Lai23]. We will use quadratic twists
in Chapters 4 and 6 and Sec. 7.6 and the twist is not required in the rest of the sections.

2.4 Standard Assumptions

This section introduces the standard computational and decisional assumptions in the
literature. We start with the core hard problem in isogeny-based cryptography – the
isogeny problem.

Problem 1 (Isogeny Problem). Given two isogenous supersingular elliptic curves, recover
an isogeny between them.

Generic Attacks on The Isogeny Problem.

To begin, let us first review the state-of-art classical and quantum algorithms that have
been developed to tackle the isogeny problem. The most efficient classical algorithm is a
meet-in-the-middle-type attack with time and space complexities of Õ(√p) [DG16] based
on Galbraith’s work [Gal99] on the ordinary case. The size of the graph in this algorithm
is approximately p/12, which roughly explains the complexity bound. In contrast, the
best quantum algorithm against the isogeny problem is a combination of [DG16] with
the Grover’s algorithm, resulting in a complexity of Õ(p1/4) [BJS14]. This has not been
changed for nearly ten years. We also refer [GHS02, GS13] for the ordinary case. Note
that the complexity of the problem can vary based on the degree of the isogeny, and may
be either easier or harder to solve. Specifically, the complexity of the SIDH problem,
a specific instance of the isogeny problem, is Θ(p1/4) using the claw-finding algorithm
(accelerated by the Grover’s algorithm or quantum random walks) [Tan07, JS19], but this
may change for different degrees.
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We can translate the isogeny problem to the group action setting, known as the group
action inverse problem, as follows where we use the multiplication notation for the group
G.

Problem 2 (Group Action Inverse Problem (GAIP)). Let (G, E , ⋆, E0) be a group action
with a distinguished element E0 ∈ E . Given E sampled from the uniform distribution over
E, the GAIP problem consists in finding an element g ∈ G such that g ⋆ E0 = E.

The advantage of A is defined as AdvGAIP
(G,E,E0,⋆)(A) = Pr[A wins] where the probability

is also taken over the randomness used in the experiment.
At first glance, the GAIP problem may seem identical to the original isogeny problem.

However, the nuance lies in the structure of the space where isogenies are determined and
sampled. It is worth noting that the best known algorithms against the classical security
of both the isogeny problem and GAIP are the Pollard-rho-type algorithms [GHS02, GS13]
where GAIP has a smaller isogeny graph due to the restriction to Fp. However, the
situation changes when we consider quantum cryptoanalysis.

Generic Quantum Attacks on GAIP.

The best quantum algorithm against GAIP is Kuperberg’s algorithm [Kup05, Reg04,
Kup11, Pei20, BS20]. Roughly speaking, say in the known-order effective group action
model, there is a generator for the cyclic group ⟨g⟩ = G and given a challenge E to find
a ∈ Z such that E0 = [ga] ⋆ E, we have a hidden shift problem by defining f(x) = [gx] ⋆ E0

and g(x) = [gx] ⋆ E, the permutations f, g over E are hidden shifted by a. By applying
Kuperberg’s algorithm, one can solve GAIP in time complexity 2O(

√
log(|G|)).

We remark that there exist weak instances of the group for GAIP [FIM+14, BN18,
CDEL21] conditioned on the structure of the group having a high rank cyclic subgroup. In
general, this structure is unlikely to occur when the group is sampled from the imaginary
ideal class group.

For efficient and versatile cryptosystems, we may require a few different assumptions.
As the GAIP is an analogue of the classical discrete logarithm problem, so we have the
standard CDH and DDH assumptions for group actions translated from the classical
setting.

Problem 3 (Computational Diffie-Hellman (CDH) Problem). Let (G, E , ⋆, E0) be an
effective group action. The computational Diffie-Hellman problem is that given a tuple
(g1 ⋆ E0, g2 ⋆ E0) where g1, g2 are sampled uniformly from G, to compute (g1g2) ⋆ E0.

Notably, CDH is quantum equivalent to the GAIP problem [GPSV21]. A full quantum
equivalence is given in [MZ22].

12



Problem 4 (Decisional Diffie-Hellman (DDH) Problem). Let (G, E , ⋆, E0) be an effective
group action. The decisional Diffie-Hellman problem is that the adversary A is given
one instance of Tb = (g1 ⋆ E0, g2 ⋆ E0, hb ⋆ E0) where h0 = g1g2, h1 = g3 and g1, g2, g3, b←
G3 × {0, 1} to output b.

We denote the advantage of the decisional problem adversary A by

AdvDDH(A) = |Pr[A(T0)→ 1]− Pr[A(T1)→ 1]| ,

where b is the randomness in the experiment, and the probability is taken over the
randomness used by A and the randomness used in the experiment. The group action
(G, E , ⋆, E0) is implicitly parameterized in the experiment. We say the DDH problem
is hard, if for any PPT adversary A, there exists a negligible function negl such that
AdvDDH(A) ≤ negl(λ).

Note that when using CSIDH as an instance, we require p = 3 (mod 4) to avoid the
attacks presented in [CSV20, CHVW22], exploiting distinct pairings. Both attacks rely on
the existence of the nontrivial characters derived from the nontrivial 2-torsion subgroup
in the ideal class group. Hence, when p = 3 (mod 4), the group size is odd so the attacks
are not applicable. Also, it is not clear when p = 1 (mod 4) if the attack is still applicable
to the case where 2-isogenies are not used in the experiment. Therefore, when CSIDH
instantiated with p = 3 (mod 4), DDH is believed to be hard.

Naturally, we can relax the standard DDH, which only gives one instance, to give
multiple instances.

Problem 5 (Multi-Challenge Decisional Diffie-Hellman (mcDDH) Problem). Let (G, E , ⋆,

E0) be a group action and b ∈ {0, 1}. The multi-challenge decisional Diffie-Hellman
experiment ExpmcDDH(b) on input b proceeds as follows. The adversary A is given (g1 ⋆ E0)
where g1 ← G together with access to the oracle OmcDDH

b defined as follows:

1. OmcDDH
0 : (g2 ⋆ E0, (g1g2) ⋆ E0) where g2 are sampled uniformly from G,

2. OmcDDH
1 : (g2 ⋆ E0, g3 ⋆ E0) where g2, g3 are sampled uniformly from G,

to output b ∈ {0, 1}.

We denote the advantage of a multi-challenge decisional Diffie-Hellman problem
adversary A problem by

AdvmcDDH(A) =
∣∣∣Pr[A(ExpmcDDH(b = 0))→ 1]− Pr[A(ExpmcDDH(b = 1))→ 1]

∣∣∣ ,
where b is the randomness in the experiment, and the probability is taken over the
randomness used by A and the randomness used in the experiment. The group action
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(G, E , ⋆, E0) is implicitly parameterized in the experiment. We say the mcDDH problem
is hard, if for any PPT adversary A, there exists a negligible function negl such that
AdvmcDDH(A) ≤ negl(λ). One can use a standard hybrid argument and give a reduction
from the DDH problem to the mcDDH problem.

A standard hybrid argument can lead to a reduction looseness that is proportional
to the number of queries made. The equivalence is tight in the classical setting (i.e. the
group setting) due to the randomizer introduced [Sta96] which can keep regenerating
a DH instance or a random instance depending on the input instance. Achieving a
tight equivalence for the decisional problem in the group action setting remains an open
problem.

Looking ahead, our oblivious transfer (Chapter 4), the unforgeability of our accountable
ring signature and group signature (Chapter 5), and one of our blind signature constructions
are based on GAIP. The anonymity of the accountable ring signature and group signature
and one of our verifiable random functions (Chapter 7) are based on DDH. Chapter 8
presents an identification scheme for the isogeny problem of a given smooth degree (2k, to
be more precise).

2.5 Discussion about Having Larger Known-Order
Effective Group Actions

Despite the appealing cryptographic properties provided by the known-order effective
group (Def. 2.3.4), one of the well-known technical bottlenecks in CSIDH-based action is
that the largest known instantiation is CSIDH-512 [BKV19]. According to [CSCJR22],
achieving NIST security level 1 and 2 require the underlying prime to be approximately
22048, 26144 respectively.

In fact, the ideal class group of CSIDH-512 also holds the record for the largest known
class number of a quadratic number field. A belief in the isogeny community is that finding
such an instantiation of a known-order effective group action is theoretically feasible using
a quantum computer, which is called post-post-quantum cryptography [DF19]. Here, we
express a concern regarding this belief, based on an argument using the rule-of-thumb in
lattice reduction [GN08] and the model of [Laa15].

First, we formalize the concept of employing quantum algorithms to instantiate
a larger known-order effective group action based on a given CSIDH parameter p =
4× p1 × · · · × pd − 1 as follows:

1. Use the quantum algorithm [Hal02, Hal05] to compute the class number N .
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2. Use the quantum algorithm [Sho99] or [Kit95] to collect the relation lattice L modulo
N of dimension d for the representatives l1, · · · , ld.

3. Apply lattice reduction, potentially quantum-optimized, to reduce the lattice L with
small coefficients.

4. Solve for the approximate closest vector problem (CVP) for a targeted vector
(e1, · · · , ed) over the lattice L to evaluate the action le1

1 · · · led
d .

It is worth noting that in the second step described above, Shor’s algorithm (or its
generalization [Kit95]) is sufficient to recover the relation vectors in the lattice. There
is a unique representation for ideal classes in imaginary quadratic fields, and it can be
efficiently computed using existing classical algorithms [Cox22, Chapter 7].

When the parameter is small, instantiation is possible. Indeed, [BKV19] presents an
example for CSIDH-512, where the prime is p ≈ 2512 and the lattice dimension is 74.
The size is so modest that the task of collecting very short vectors becomes attainable.
Also, they deployed the approximate Voronoi cell to solve the approximate closest vector
problem and find short coefficients in a very fast way. Overall, the group action evaluation
only slows down by a factor of 1.15 compared to the original CSIDH. However, as the
underlying prime grows larger, the method’s complexity increases significantly. Specifically,
the preprocessing time required to reduce the lattice basis or generating set, as outlined
in Item 3 above, impacts the length of the vector (e1, · · · , ed) along with the time needed
for evaluating group actions. From a theoretical standpoint, this length tends to grow
exponentially with the dimension of the lattice [GN08, Laa15], as pointed out in the
concurrent work [Pan23]. Nonetheless, it is crucial to emphasize that the practicality of
obtaining KO-EGA using the method described above is not necessarily ruled out. Actual
performance depends on specific implementation details, aligning with the spirit of lattice
reduction.

Unfortunately, due to the lack of the corresponding ideal class group instances, we
are not able to implement the lattice reduction at the current stage. Here, we provide an
estimate of the factor slowdown that can be expected for CSIDH-6144 when employing
the method described above to generate KO-EGA. Our approach involves utilizing the
BKZ algorithm to find the reduced generating set for the lattice in Item 3.

To simplify our analysis, we introduce the following assumptions, acknowledging that
these assumptions may not hold in all cases but are adopted for ease of analysis:

1. Limited SVP Subroutine Executions: Recall that the BKZ algorithm will
iteratively invoke an SVP subroutine for sub-lattices of dimension β, called the
block size, as the main approach to reduce the input lattice. We assume that the
SVP subroutine within the BKZ algorithm is executed only ⌈d/β⌉ times, where d

represents the dimension of the lattice, and β denotes the block size.
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2. Sufficient Generating Set in One Execution: We assume that a single execution
of the BKZ algorithm in Item 3 yields a generating set that is sufficient for the
purposes of running Item 4. Furthermore, we assume that the vectors within this
resulting set have approximately the same length as the shortest vector in the
resulting set.

3. Expected Length of Output Vector in Approximate CVP Algorithm: We
assume that the expected length of the vector produced by the approximate CVP
algorithm used in Item 4 is of average length of the vectors within the generating
set.

We emphasize that these assumptions, while simplifying our analysis, should be
recognized as idealized scenarios for the user and may not always reflect the complexity
of practical implementations.

For an underlying prime of p ≈ 26144, it takes at most 590 distinct odd prime factors
for p− 1 (i.e., p = 4× p1 × · · · × p590 − 1 and d = 590). (We remark that one can opt for
larger prime factors in p− 1 to reduce the dimension. However, this approach doesn not
yield efficiency benefits. This is due to the fact that when the group size (approximately
√

p) is fixed, reducing the number of dimensions results in longer average vector lengths
and slower evaluation times.) The coefficient interval for each generator li is assumed to
be of length 37 (e.g., {−18, · · · , 18}), such that 37590 > 23072. We may take the volume of
the lattices to be vol(L) ≈ 23072.

Given the block size β in the BKZ reduction, we use the root Hermite factor δ ≈(
(πβ)

1
β β

2πe

) 1
2β−2

to estimate the length of the shortest vector in the BKZ reduced basis by

δdvol(L)1/d. We adopt the quantum-optimized cost model from [Laa15] to estimate the
precomputation cost in the lattice reduction part. The estimation is presented in Tab. 2.1.
Due to the ideal scenarios we assume for the user, the numbers can be viewed as lower
bound estimations for the precomputation cost and the isogeny evaluation cost using
the folklore method described above. The slowdown factor is given by calculating the
expected length in ℓ1-norm (by dividing d/

√
d) and divide it bythe expected ℓ1-length of

the vector in the REGA model, which is approximately 9.2 ∗ 590.
We also give the same estimation for CSIDH-2048 by taking p ≈ 22048, d ≈ 235, and

each vector is taken from {−10, · · · , 10} in the REGA model such that 21235 > 21024 in
Tab. 2.2

We look forward to further investigations into the study of instantiating isogeny-based
known-order effective group actions or of giving a more rigorous estimation and analysis.

16



Root Hermite Block Size Preprocessing Length Slowdown
Factor Cost in ℓ2-norm Factor (Estimated)
1.0091 100 6 ∗ 229 8040 36.0
1.0080 130 5 ∗ 237 4104 18.4
1.0076 140 5 ∗ 240 3407 15.2
1.0074 160 4 ∗ 246 2454 11.0

Table 2.1: An estimation cost of the lattice reduction part for finding the known-order
effective group action of CSIDH-6144 using the folklore method describe above and an
estimated slowdown factor of evaluation compared to REGA.

Root Hermite Block Size Preprocessing Length Slowdown
Factor Cost in ℓ2-norm Factor (Estimated)
1.0091 100 3 ∗ 229 174.9 8.04
1.0080 130 2 ∗ 237 133.8 5.71
1.0076 140 2 ∗ 240 124.3 5.33
1.0074 160 2 ∗ 246 109.1 5.01

Table 2.2: An estimation cost of the lattice reduction part for finding the known-order
effective group action of CSIDH-2048 using the folklore method describe above and an
estimated slowdown factor of evaluation compared to REGA.
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Chapter 3

Cryptographic Preliminaries

3.1 Secret Key Encryption

A symmetric encryption scheme is a tuple of algorithms (SKE.Setup, KeyGen, Enc, Dec)
with message spaceM, ciphertext space C and key space K. We assume |K| ≥ 2λ to have
large enough key space. We recall the standard IND-CPA security notion for a symmetric
key encryption scheme.

Definition 3.1.1 (IND-CPA Security). A symmetric encryption scheme ΠSKE = (Setup,

KeyGen, Enc, Dec) is IND-CPA secure if, for any λ ∈ N, any PPT adversary A has at
most a negligible advantage in the following game played against a challenger.

(i) The challenger runs pp ← SKE.Setup(1λ), k ← KeyGen(pp) and samples a bit
b ∈ {0, 1}. The challenger provides pp to A.

(ii) A sends a pair of messages (M0, M1) ∈ M2 to the challenger, and the challenger
returns cb ← Enck(Mb) to A.

(iv) A outputs a bit b∗ ∈ {0, 1}. We say A wins if b∗ = b.

The advantage of A is defined as AdvIND-CPA
(Enc,Dec)(A) = |Pr[A wins]− 1/2|.

In this work, we may assume KeyGen simply draws a key uniformly at random from
K and abuse the notation (Enc, Dec) to represent a symmetric encryption scheme for
simplicity.

3.2 Public Key Encryption

We recall the standard multi-challenge IND-CPA security of a public-key encryption (PKE)
scheme.
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Definition 3.2.1 (Public-Key Encryption). A public-key encryption ΠPKE over a message
space M consists of four algorithms ΠPKE = (Setup, KeyGen, Enc, Dec):

• Setup(1λ)→ pp : On input the security parameter 1λ, it outputs a public parameter
pp.

• KeyGen(pp)→ (pk, sk) : On input a public parameter pp, it outputs a public key and
a secret key (pk, sk).

• Enc(pk, M) → ct: On input a public key pki and a message M ∈ M, it outputs a
ciphertext ct.

• Dec(sk, ct) → M or ⊥ : On input a secret key sk and a ciphertext ct, it outputs
either M ∈M or a special symbol ⊥ ̸∈ M.

We will denote by R the set containing the randomness used by the encryption algorithm
Enc.

Below, we define the standard IND-CPA security extended to the multi-challenge setting.
By using a textbook hybrid argument, it is clear that the multi-challenge definition can
be reduced to the standard single-challenge definition with a tightness loss linear in the
number of instances. The motivation for introducing the multi-challenge variant is because
in some cases, we can show that the two definitions are equally difficult without incurring
any reduction loss. Looking ahead, the notion will imply anonymity in our ring and group
signature in Chapter 5.

Definition 3.2.2 (Multi-Challenge IND-CPA Security). A PKE scheme ΠPKE = (Setup,

KeyGen, Enc, Dec) is multi-challenge IND-CPA secure against Q challenges if, for any
λ ∈ N, any PPT adversary A has at most a negligible advantage in the following game
played against a challenger.

(i) The challenger runs pp ← Setup(1λ), (pk, sk) ← KeyGen(pp) and samples a bit
b ∈ {0, 1}. The challenger provides (pp, pk) to A.

(ii) A can adaptively query the challenge oracle at most Q times. In each query, A sends
a pair of messages (M0, M1) ∈M2, and the challenger returns ctb ← Enc(pk, Mb) to
A.

(iv) A outputs a bit b∗ ∈ {0, 1}. We say A wins if b∗ = b.

The advantage of A is defined as AdvMulti-CPA
ΠPKE,Q (A) = |Pr[A wins]− 1/2|.
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3.3 Sigma Protocols

Definition 3.3.1 (Sigma Protocol). A sigma protocol ΠΣ is a three-move proof system for
a relation R that consists of oracle-calling PPT algorithms (P = (P1, P2), V = (V1, V2)),
where V2 is deterministic. We assume P1 and P2 share states and so do V1 and V2. Let
ChSet denote the challenge space. Then, ΠΣ proceeds as follows.

• The prover, on input (st, wt) ∈ R, runs com← P O
1 (st, wt) and sends a commitment

com to the verifier.

• The verifier runs ch← V O
1 (1λ), drawing a random challenge from ChSet, and sends

it to the prover.

• The prover, given ch, runs resp← P O
2 (st, wt, ch) and returns a response resp to the

verifier.

• The verifier runs V O
2 (st, com, ch, resp) and outputs ⊤ (accept) or ⊥ (reject).

Here, O is modeled as a random oracle. For simplicity, we often drop O from the
superscript when it is clear from context. We assume the statement st is always given as
input to both the prover and the verifier. The protocol transcript (com, ch, resp) is said to
be valid in case V2(com, ch, resp) outputs ⊤.

Definition 3.3.2 (Correctness). A sigma protocol ΠΣ is said to be correct if for all λ ∈ N,
(st, wt) ∈ R and the prover and the verifier both follow the protocol specification, the
verifier always outputs ⊤.

Definition 3.3.3 (High Min-Entropy). We say a sigma protocol ΠΣ has α(λ) min-entropy
if for any λ ∈ N, (st, wt) ∈ R, and a possibly computationally-unbounded adversary A, we
have

Pr
[
com = com′

∣∣∣com← P O
1 (st, wt), com′ ← AO(st, wt)

]
≤ 2−α,

where the probability is taken over the randomness used by P1 and by the random oracle.
We say ΠΣ has high min-entropy if 2−α is negligible in λ.

Definition 3.3.4 (Honest Verifier Zero-Knowledge (HVZK)). We say ΠΣ is honest-
verifier-zero-knowledge for relation R if there exists a PPT simulator SimO with access to
a random oracle O such that any statement-witness pair (st, wt) ∈ R, ch ∈ ChSet, λ ∈ N
and any computationally-unbounded adversary A that makes at most a polynomial number
of queries to O, we have

AdvHVZK
ΠΣ

(A) :=
∣∣∣Pr[AO(P O(st, wt, ch)) = 1]− Pr[AO(SimO(st, ch)) = 1]

∣∣∣ = negl(λ),
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where P = (P1, P2) is a prover running on (st, wt) with a challenge fixed to ch and the
probability is taken over the randomness used by (P, V ) and by the random oracle.

Remark 3.3.5. Roughly speaking, HVZK requires that there exists a PPT simulator
Sim such that given any statement st (in the language) and challenge ch ∈ ChSet, it
outputs a valid transcript (com, ch, resp) that is indistinguishable from a real transcript.
Witness indistinguishability is a weaker notion compared with HVZK, where we require the
interactions between a prover using a witness wt1 or wt2 satisfying (st, wt1), (st, wt2) ∈ R

are indistinguishable. Namely, the interaction does not leak which witness is being used.
We will use this property in the blind signature construction Chapter 6.

Definition 3.3.6 (Special Soundness). We say a sigma protocol ΠΣ has special soundness
if there exists a polynomial-time extraction algorithm Extract such that, given a statement
st and any two valid transcripts (com, ch, resp) and (com, ch′, resp′) relative to st and such
that ch ̸= ch′, outputs a witness wt satisfying (st, wt) ∈ R.

In some circumstances, we can relax the relation for special soundness to R′ where
R ⊆ R′. That is, we allow the extractor outputs wt such that (st, wt) ∈ R′ but (st, wt) /∈ R.
As long as given st to find wt such that (st, wt) ∈ R′, the sigma protocol can still serve as
a proof system for some applications.

3.4 Proof Systems

We consider non-interactive zero-knowledge proof of knowledge protocols (or simply NIZK
(proof system)) in the ROM. Below, we define a variant where the proof is generated with
respect to a label. Although syntactically different, such NIZK is analogous to the notion
of signature of knowledge [CL06].

Definition 3.4.1 (NIZK Proof System). Let L denote a label space, where checking
membership can be done efficiently. A non-interactive zero-knowledge (NIZK) proof system
ΠNIZK for the relations R and R̃ such that R ⊆ R̃ (which are implicitly parameterized by
λ) consists of oracle-calling PPT algorithms (Prove, Verify) defined as follows:

ProveO(lbl, X, W)→ π/⊥ : On input a label lbl ∈ L, a statement and witness pair (X, W) ∈
R, it outputs a proof π or a special symbol ⊥ denoting abort.

VerifyO(lbl, X, π)→ ⊤/⊥ : On input a label lbl ∈ L, a statement X, and a proof π, it
outputs either ⊤ (accept) or ⊥ (reject).
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Definition 3.4.2 (Correctness). A NIZK proof system ΠNIZK is correct if for all λ ∈ N,
lbl ∈ L, (X, W) ∈ R, we have

Pr
 VerifyO(lbl, X, π) = ⊤

∣∣∣∣∣∣ π ← ProveO(lbl, X, W),
π ̸= ⊥.

 = 1,

where the probability is taken over the randomness used by (Prove, Verify) and by the
random oracle.

Definition 3.4.3 (Zero-Knowledge). Let O be a random oracle, ΠNIZK a NIZK proof
system, and Sim = (Sim0, Sim1) a zero-knowledge simulator for ΠNIZK, consisting of two
algorithms Sim0 and Sim1 with a shared state. We say the advantage of an adversary A
against Sim is

AdvZK
ΠNIZK

(A) =
∣∣∣Pr

[
AO,Prove(1λ) = 1

]
− Pr

[
ASim0,S(1λ) = 1

]∣∣∣ ,

where Prove and S are prover oracles that on input (lbl, X, W) return ⊥ if lbl ̸∈ L∨(X, W) ̸∈
R and otherwise return ProveO(lbl, X, W) or Sim1(lbl, X), respectively. Moreover, the
probability is taken also over the randomness of sampling O.

We say ΠNIZK for R and R̃ is zero-knowledge if there exists a PPT simulator Sim such
that for any (possibly computationally-unbounded) adversary A making at most polyno-
mially many queries to the random oracle and the prover oracle, we have AdvZK

ΠNIZK
(A) ≤

negl(λ).

Statistical soundness, the most widely-used notion for a proof system, guarantees that
any adversary cannot generate a proof for an invalid statement except with a negligible
probability.

Definition 3.4.4 (Statistical Soundness). Let O be a random oracle and ΠNIZK a NIZK
proof system. We say the advantage of an adversary A against soundness is

Advsoundness
ΠNIZK

(A) = Pr
 ∄W : (X, W) ∈ R̃ ∧

VerifyO(lbl, X, π) = ⊤

∣∣∣∣∣∣ (lbl, X, π)← AO(1λ))
 ,

where the probability is taken also over the randomness of sampling O.
We say the NIZK proof system ΠNIZK for R and R̃ has (relaxed) statistical soundness

if for any (possibly computationally-unbounded) adversary A making at most polynomially
many queries to the random oracle, we have Advsoundness

ΠNIZK
(A) ≤ negl(λ).

We introduce two stronger notions, multi-proof online extractability and online ex-
tractability, which will be a useful tool in a security proof. Roughly speaking, online
extractability requires the existence of an extraction algorithm which, on input a valid
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proof π and the list or random-oracle queries made by an adversary, always output a
(relaxed) witness except with a negligible probability. It is worth noting that the extraction
process does not involve rewinding the adversary.

Conceptually, extractability (not online) is sufficient for certain applications, such as
digital signature schemes. Usually, in the chosen-message unforgeability experiment of a
digital signature scheme, a reduction outputs the witness by rewinding the adversary one
time on distinct hash values to respond to the hash query. Employing the forking lemma,
one can argue that the extraction is successful with a non-negligible probability.

However, rewinding arguments typically result in a loose reduction loss (quadratic)
and complex proof arguments in some scenarios. For instance, certain blind signature
schemes exhibit subtle issues when employing the rewinding method, issues that have
been overlooked by numerous follow-up works and were only identified and rectified after
20 years [AO00, KLX22a]. Thus, we strive to avoid using an extractor that relies on
rewinding. More specifically, we will utilize extractors in Chapter 7 twice in a single
proof and in Chapter 5 an arbitrary number polynomial in λ in a proof. An extractor
that employs rewinding would incur either a convoluted proof or exponential loss in the
reduction. An online extractor offers a solution to these issues.

Definition 3.4.5 (Multi-Proof Online Extractability (mpOE)). A NIZK proof system
ΠNIZK is (multi-proof) online extractable if there exists a PPT extractor OnlineExtract
such that for any (possibly computationally-unbounded) adversary A making at most
polynomially-many queries has at most a negligible advantage in the following game played
against a challenger (with access to a random oracle O).

(i) The challenger prepares empty lists LO and LP , and sets flag to 0.

(ii) A can make random-oracle, prove, and extract queries an arbitrary polynomial
number of times:

• (hash, x): The challenger updates LO ← LO ∪ {(x,O(x))} and returns O(x).
We assume below that A runs the verification algorithm after receiving a proof
from the prover oracle and before submitting a proof to the extract oracle.1

• (prove, lbl, X, W): The challenger returns ⊥ if lbl ̸∈ L or (X, W) ̸∈ R. Otherwise,
it returns π ← ProveO(lbl, X, W) and updates LP ← LP ∪ {lbl, X, π}.

• (extract, lbl, X, π): The challenger checks if VerifyO(lbl, X, π) = ⊤ and (lbl, X, π)
̸∈ LP , and returns ⊥ if not. Otherwise, it runs
W← OnlineExtractO(lbl, X, π, LO) and checks if (X, W) ̸∈ R̃, and returns ⊥ if
yes and sets flag = 1. Otherwise, if all checks pass, it returns W.

1This is w.l.o.g., and guarantees that the list LO is updated with the input/output required to verify
the proof A receives or sends.
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(iii) At some point A outputs 1 to indicate that it is finished with the game. We say A
wins if flag = 1. The advantage of A is defined as AdvmpOE

ΠNIZK
(A) = Pr[A wins] where

the probability is also taken over the randomness used by the random oracle.

We introduce the stronger notion multi-proof online-extractability mainly for our
ring/group signatures constructions in Chapter 5. Note, importantly, that the mpOE
experiment is not given access to the queries ProveO makes directly to O. Thus, mpOE is
not guaranteed to return a valid witness W when called with any output of the Prove oracle.
The requirement that (lbl, X, π) /∈ LP ensures that this does not allow the adversary to
trivially win the game, and in particular by extension ensures that modifying the label lbl
should invalidate any proof obtained from the Prove oracle.

The mpOE notion provides a strong guarantee that an adversary cannot break the
extractability of the proof, even with access to a proving oracle. However, in certain
circumstances, online-extractability (OE) alone is sufficient. This notion is somewhat
weaker since it removes the proving oracle but relies only on the extractability of the
random oracle, rather than the programmability used in mpOE.

Definition 3.4.6 (Online Extractability (OE)). Let ΠNIZK be a NIZK proof system. We say
ΠNIZK has online-extractability if for any (possibly computationally-unbounded) adversary
A, there exists a PPT extractor OnlineExtract with only extractability access to O such
that A wins the following game with a negligible advantage:

(i) A can make polynomial number of queries of the random oracle.

(ii) A outputs st and π.

We say A wins if VerifyO(st, π) = ⊤ and (st, wt) /∈ R̃ where wt ← OnlineExtract(st, π).
The advantage of A is defined as AdvOE

ΠNIZK
(A) = Pr[A wins] where the probability is taken

over the randomness used by the random oracle.

Remark 3.4.7 (OE, mpOE implies statistical soundness.). If a NIZK proof system ΠNIZK

is (multi-proof) online extractable, it is statistically sound—that is, online extractability
implies statistical soundness. This is clear, because if an adversary is able to generate an
accepting tuple (lbl, X, π) for which ∄W : (X, W) ∈ R̃ in the soundness game, then clearly
(extract, lbl, X, π) will allow the adversary to win the online extractability game.

Remark 3.4.8 (NIZKs with Labels). If the label space of the NIZK is L = {⊥}, we say
the NIZK is without labels (or a plain/unlabelled NIZK). In this case, we omit the lbl
argument from the Prove and Verify functions for clarity.
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Chapter 4

UC-Secure Oblivious Transfers

This chapter presents the work carried out in [LGD21], which the author of the thesis co-authored.
The author contributed to the work by proposing the project and contributing the most ideas
(designing, hardness reductions, security proofs etc). The chapter is almost verbatim of the
original work. The work were mostly done in 2020. We give a brief overview of the recent
advancements in Sec. 4.6.

Abstract. In this chapter, we present the first efficient (using only a constant number isogeny
compuation) UC-secure OT from isogenies in record. This scheme builds on the group action
inverse problem and leverages quadratic twists in a clever way to achieve efficiency. To demon-
strate the security of our protocol, we introduce the computational reciprocal CSDIH problem
and establish its equivalence to the group action inverse problem (GAIP).

4.1 Introduction
Oblivious transfer (OT) was first introduced by Rabin [Rab81] in 1981 to establish an exchange
of secrets protocol based on the factoring problem. Say the sender has two messages, oblivious
transfer allows the receiver to know one of them and keeps the sender oblivious to which message
has been received. Meanwhile, the receiver learns no information about the unchosen message.

It has been shown that oblivious transfer can serve as an important and powerful cryptographic
building block. Oblivious transfer can be used as one of the components to realize any crypto-
graphic functionality [GMW87, CvdGT95, Ode09]. Several oblivious transfer protocols based
on Diffie-Hellman-related problems were proposed [BM89, NP01, PVW08, CO15, BDD+17].

Even though oblivious transfer protocols exist for various hardness assumptions, a crypto-
graphic protocol subordinate to either the discrete logarithm problem or the factoring problem
will suffer a polynomial-time quantum attack from Shor’s algorithm [Sho99]. Given the fact,
several post-quantum OTs have been proposed, including from lattices [PVW08] and from codes
[DvdGMN08, DNMQ12, BDD+17]. Notably, a few isogeny-based OTs have been proposed
[DOPS20, Vit19], some of which are based on SIDH is no longer secure.
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There are various notions of security for OT. Traditional notions guarantee privacy for both
parties, including one-sided simulation or the view-based definition for a two-message protocol
[NP01, DvdGMN08, HL10]. These notions ensure privacy for both parties in a standalone
setting. However, in most cases, these notions guarantee nothing in real-world deployment
where OT is executed, as a subroutine, concurrently with others in an enormous and complex
construction. To ensure the entire system’s security, a powerful notion – universally-composable
security (UC security) – introduced by Canetti [Can01] is precisely the one capturing the feature.
The notion ensures the security of any system composed arbitrarily of UC-secure components.

Essentially, the adversaries in UC security come with two flavors: semi-honest or malicious
ones. The former will follow the protocol specification while the latter does not. To thwart the
real-world threats, a cryptosystem being UC secure against malicious adversaries is undoubtedly
the best guarantee.

Given the prior works in the isogeny literature, at the time this research was done in 2020,
a UC-secure OT against malicious adversaries appears to be elusive. In fact, a few schemes
[DOPS20, Vit19] achieve UC-security against an semi-honest adversary. Using folk wisdom in
the MPC literature, these schemes can be upgraded to be secure against the malicious ones via
applying zero-knowledge proofs. Though subjects vary, the main idea remains the same – restrict
the behaviour of the corrupted parties using zero-knowledge proofs. For instance, one can apply
the ZKP to the random tape, or to the crucial message to be transmitted [GMW87, Pas03].
By using the trapdoor of the proof system, a simulator extracts the secret input from the
malicious adversary. Aside from the ZKP technique, some transformations can also help for
specific functionalities (e.g. [DGH+20] for OTs). Using any of these techniques (together with
ZKP for the isogeny languages [FG19, BKV19]), we obtain UC-secure isogeny-based OT against
malicious adversaries immediately. However, all result in one consequence: they are inefficient.
The efficiency is bounded below by λ times isogeny evaluations for the security parameter λ.

It is natural to ask:

Can we have an efficient oblivious OT from isogenies UC-secure against malicious adversaries?

4.2 Preliminaries
Notation.

We use multiplication notation for an effective group action (EGA) (G, E , E0, ⋆).

4.2.1 Assumptions
The section starts with a new introduced assumption for our UC-secure construction – the
reciprocal CSIDH (rCDH) problem. To show the hardness of the problem, we start from the
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square and the inverse CDH problem. We will show classical reductions to prove the equivalence
of the square CDH problem, the inverse CDH problem and the reciprocal CSIDH problem. This
gives a strong guarantee for the hardness of the reciprocal problem because both the square and
inverse problems are known to be as hard as GAIP (Dlog).

Problem 6 (Compuational Square CSIDH Problem, sCDH). Given an EGA (G, E , E0, ⋆)
and curves E, s ⋆ E in E where s ∈ G, to find E′ ∈ E such that E′ = s2 ⋆ E.

Problem 7 (Computational Inverse CSIDH Problem, iCDH). Given an EGA (G, E , E0, ⋆)
and curves E, s ⋆ E in E where s ∈ G, to find E′ ∈ E such that E′ = s−1 ⋆ E.

The advantage of an adversaryA against the inverse CSIDH problem is defined as AdviCDH(A) =
Pr[A wins]. The equivalence between these two problems is not hard to see. Let (E, s ⋆ E) be
an “undetermined” instance. With the instance (s ⋆ E, E) the answer to the inverse problem
is exactly s2 ⋆ E. Similarly, with the instance (s ⋆ E, E) the answer to the square problem is
exactly s−1 ⋆ E. This proves the equivalence of sCDH and iCDH.

For each of the two problems, a conditional reduction of CDH was given in [Fel19]. The
condition for the second reduction is that the group order is given and odd. Therefore, we can
say that there is a quantum reduction [Sho99, Hal02] to the computational CSIDH problem
when p = 3 mod 4. In fact, there is also an efficient quantum reduction for the case of p = 1
mod 4, see Appendix A.1. Note that the quantum computation is only to compute the group
structure of G, and so can be considered as a precomputation; the remainder of the reduction is
classical.

Also, it has been shown in [GPSV21, MZ22] that CDH is quantum equivalent to GAIP. In
fact, we can have a reduction to prove the equivalence to GAIP where the reduction is as tight
as that of CDH. The proof is based on the strategy of [GPSV21] and skips the proof of [Fel19].

Proposition 4.2.1. Let (G, E , E0, ⋆) be an EGA where G is of order N and cyclic and generated
by a public g ∈ G. Given (perfect) access (correct on all inputs) to the sCDH oracle, there exists
a quantum algorithm to solve GAIP problem in polynomial time. The result remains the same if
it is given access to the iCDH oracle.

Proof. Given the instance E, to find s ∈ G such that s ⋆ E0 = E. Say gk = s. To find s ∈ G

such that s ⋆ E0 = E for a given instance E, we can use the following approach. Firstly, we can
compute sn ⋆ E0 for any n ∈ N using the oracle. We can achieve this by making two types of
queries to the oracle: for input (E, si ⋆E), the oracle returns s2i ⋆E, and for input (s−1 ⋆E, si ⋆E),
the oracle returns s2i+1 ⋆ E. Using this, we can compute sn ⋆ E0 with only log(n) + 1 oracle
queries.

Next, consider the function f : ZN × ZN → E defined as (m, n) 7→ (gmsn) ⋆ E. The function
f hides the abelian group ⟨(−k, 1)⟩, and therefore we can apply the quantum period-finding
algorithm to f to find a generator (m′, n′) for ⟨(−k, 1)⟩. Since (m′, n′) is a generator for ⟨(−k, 1)⟩,
we have n′ is invertible modulo N . Then, we know that g−m′/n′ = s.

The result holds true when the access is to the iCDH oracle because, as described above, the
oracle outputs the same as the sCDH oracle by reversing the order of the input entries.
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As Castryck et al. [CLM+18] pointed out both problems contain exceptional cases when E0

takes part in the problems due to the symmetric structure. That is, (a ⋆ E0)t = a−1 ⋆ E0, and so
Problem 7 is easy in the special case E = E0. The issue can be circumvented if the public curve
is generated by a trusted third party.

Problem 8 (Reciprocal CSIDH Problem, rCDH). Let (G, E , E0, ⋆) be an EGA and E in E
be given by the challenger. Firstly, the adversary chooses and commits to X ∈ E, then receives
the challenge s ⋆ E where s← G from the challenger. The adversary wins if it outputs the pair
(s ⋆ X, s−1 ⋆ X) with respect to the committed X.

The advantage of A against the reciprocal CSIDH problem is defined as AdvrCDH(A) =
Pr[A wins]. Let AdvrCDH(A(E; X)) denote A wins conditioned on committed X.

Intuitively, rCDH is a hybrid and relaxed version of the square problem or the inverse problem
(Probs. 6 and 7). To see this, if one can solve the inverse problem, then, by taking X = E, we
have (s ⋆ X, s−1 ⋆ X) = (s ⋆ E, s−1 ⋆ E). Then, one can solve rCDH by invoking the iCDH oracle.
Conversely, if an attacker knows the isogeny between X and E, or Et, then this can be used to
solve iCDH. That is, say X = r ⋆ E, one can obtain s−1 ⋆ E by computing r−1 ⋆ (s−1 ⋆ X) with
the given r. On the other hand, if X = r ⋆ Et, one can obtain s−1 ⋆ E by computing r ⋆ (s ⋆ X)t

with the given r. Note that the attacker is not required to know the isogeny between X and E

or Et in the problem.
The reciprocal CSIDH problem appears to be non-standard at first sight but, in fact, it is

equivalent to the inverse CSIDH problem.

Proposition 4.2.2. The reciprocal CSIDH problem is equivalent to the computational inverse
CSIDH problem.

Proof. Given a rCDH adversary A and an iCDH challenge (E, E1), we can construct an iCDH
algorithm B as follows.

1. Invoke A with E.

2. Receive X ∈ E from A. Send the challenge t1 ⋆ E1 to the adversary where t1
$← G.

3. Receive (X0, X1) from A. Rewind A to the time when it outputs X.

4. Send t2(t1)−1 ⋆ X0 as the new challenge with respect to committed X where t2
$← G.

5. After receiving (X ′
0, X ′

1) from the adversary, B outputs t2 ⋆ X ′
1.

By the heavy row lemma ([PS00], Lemma 1), with 1/2 chance with respect to X ← A, we
have

AdvrCDH(A) ≤ 2AdvrCDH(A(E; X)).

Say A answers correctly twice. Claim t2 ⋆ X ′
1 = s−1 ⋆ E. Write E1 = s ⋆ E and X = b ⋆ E

for some b ∈ G. We have X0 = st1 ⋆ X = sbt1 ⋆ E. Thereby, t2(t1)−1 ⋆ X0 = sbt2 ⋆ E. The
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correctness of the second response from A implies t2 ⋆ X ′
1 = t2 ⋆ (sbt−1

2 ⋆ X) = s−1 ⋆ E. Hence,
the result follows.

Precisely, we have
(AdvrCDH(A))2 ≤ 8AdviCDH(B).

In the proof above, the reduction B firstly extracts the first curve from the first response,
and rewinds the adversary with a new challenge with respect to the extracted curve. Then, B
extracts the second curve from the second response, which will be the solution for the inverse
CSIDH problem.

Looking ahead, Prob. 8 depicts a core idea of our protocol. If the receiver commits to a
curve X, then s ⋆ X and s−1 ⋆ X are two decryption keys, and the receiver can get only one
decryption key unless the receiver can solve a hard problem. Furthermore, after committing to
X, the receiver can only get the i-th decryption for some i ∈ {0, 1}. This captures the main idea
of our “proof of ability to decrypt mechanism”, which allows us to extract corrupted receiver’s
input by reading random oracle’s queries.

Problem 9 (Tweaked Reciprocal CSIDH problem, tReGA). Given E in E. The adversary
A chooses and commits to a curve X ∈ E.

(i) A receives the first challenge s ⋆ E where s← G from the challenger. A outputs a C ∈ E.

(ii) The challenger sends s and another challenge s′ ⋆ E to A where s′ ← G.

(iii) A outputs C ′ ∈ E.

Write (C0, C1) = (s ⋆ X, s−1 ⋆ X) and (C ′
0, C ′

1) = (s′ ⋆ X, s′−1 ⋆ X). We say A wins if (C, C ′) =
(Ci, C ′

1−i) for some i ∈ {0, 1}.

The advantage of an adversary A against the tweaked reciprocal CSIDH problem is defined
as AdvtReGA(A) = Pr[A wins]. Let AdvtReGA(A(E; X)) denote the probability that A wins when
the parameter is E and A returns X. By using the same approach above, one can show the
tweaked reciprocal CSIDH problem is as hard as the inverse CSIDH problem.

Proposition 4.2.3. The tweaked reciprocal CSIDH problem is equivalent to the computational
inverse CSIDH problem.

Due to the similarity, we leave the proof in Appendix A.2.
We end the subsection with the following problem relations. (A full reduction is provided in

Appendix A.1.)

GAIP =quantum Computational Inverse CDH

=classical Computational Square CDH

=classical Computational Reciprocal CDH

=classical Tweaked Reciprocal CDH
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4.2.2 Functionalities
In this subsection, we define the functionalities we need as well as the related security definitions.
We refer to [HL10] for more detailed explanations and intuitions.

FRO-Functionality of Random Oracle

The functionality is a function with the domain D and the codomain R. It
keeps a list L of pairs in D ×R where the initial state is empty. It works as
follows:

1. Upon receiving a query C ∈ D, check whether (C, k′) ∈ L for some
k′ ∈ R. If so, set k = k′; if not, generate k ← R and store the pair
(C, k) in the list L.

2. Output k.

The functionality of a random oracle FRO internally contains an initially empty list. Upon
receiving the query from the domain, it will check whether it is a repetition. If so, return the
value assigned before; otherwise, it randomly assigns a value from the codomain, stores the pair,
and returns the value. Formally speaking, an input of a random oracle can be an arbitrary
binary string. For simplicity, we restrict the domain to E . This can be easily and compatibly
extend to {0, 1}∗, since supersingularity can be efficiently verified [CLM+18].

FTSC-Functionality of a trusted setup curve

The functionality is to output an element of E . It generates an ideal class
t← G and outputs the curve t ∗ E0.

The functionality of trusted setup curves FT SC serves as a setup for generating a curve for
the protocol. This setup hides the relation t between the public curve and the curve E0. In
practice, this can be replaced with a key exchange protocol [BD21]. That is, two parties do a
key exchange first and obtain a curve such that the isogeny relation to E0 remains unknown if
the two parties do not share their ideal classes or collude.

Here we define the functionality of oblivious transfer in a simple and classic way. The
two-party functionality of the oblivious transfer is characterized by FOT = (f1, f2) where
f1 : {0, 1}∗ × {0, 1}∗ → {⊥} and f2 : {0, 1} → {0, 1}∗. Looking ahead, f1, f2 are the algorithms
executed by the sender and the receiver respectively. The functionality FOT : {0, 1}∗ × {0, 1}∗ ×
{0, 1} → {⊥}× {0, 1}∗ takes in a message pair x = (M0, M1) of equal length from one party and
a bit y = i ∈ {0, 1} from the other party, and returns FOT(x, y) = (f1(x, y), f2(x, y)) = (⊥, Mi)
where ⊥ represents an empty string.

We briefly define the security of OT. We refer [HL10, Lin17] for more details. Intuitively,
we say a protocol realizes the functionality securely in the simulation-based definition, if the
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protocol realizes the function and also whatever the adversary can learn from a real execution of
the protocol can be indistinguishably generated by a simulator. Thus, we have to formalize the
“view" of a corrupted party and compare the output of the protocol with the ideal functionality.
Let π be a protocol computing FOT. We denote by viewπ

i (x, y) the transcript that records
whatever the ith party sees during an execution of the protocol π taking input (x, y). Precisely,
viewπ

i (x, y) is the tuple (input, ri, mi
1, ..., mi

n) where input is the input of the party, ri is its
internal random tape, and mi

j is the jth received message. We also write outputπ
i (x, y) as the

output received by the ith party after the execution of the protocol π with the input (x, y), and
write outputπ(x, y) = (outputπ

1 (x, y), outputπ
2 (x, y)). In particular, if the protocol π completely

realizes the functionality FOT, then outputπ(x, y) = FOT(x, y).

Definition 4.2.4. (OT security against semi-honest adversary) We say a protocol π securely
(privately) computes FOT in the presence of static semi-honest adversaries if there exist probabil-
istic polynomial-time algorithms S1, S2 such that

outputπ(x, y) = FOT(x, y)

{S1(x, f1(x, y))}x,y=c{viewπ
1 (x, y)}x,y

and
{S2(y, f2(x, y))}x,y=c{viewπ

2 (x, y)}x,y.

The notion implies that whatever the semi-honest adversary can learn from running the
protocol, it could be generated by themself without the execution. In other words, the semi-
honest adversary can learn nothing more than allowed. The idea of ideal execution is implicit
here. Since anything apart from the output of the functionality can be self-generated in an
indistinguishable manner, the real protocol ideally realizes the functionality as long as the two
parties follow the protocol specification (see Section 7.2 of [Ode09] for more details).

However, the semi-honest adversary model is not sufficient. It is inevitable in the real world
that malicious users depart from the protocol specification with arbitrary strategies. A relaxation
for oblivious transfer protocols or single-output functionalities is one-sided simulation. One-sided
simulation requires the indistinguishability for the sender and the simulation for the receiver.
Since the sender has no outputs, the notion ensures privacy for both parties in the presence of
malicious adversaries. It is also a plausible choice for an efficient construction in the stand-alone
model. Here, we consider full-simulation in the presence of malicious adversaries.

Roughly speaking, the standard real/ideal paradigm demonstrates that for any adversary in
the real world, there exists a corresponding simulator in the ideal world such that the outputs
from the two worlds are indistinguishable. The notion provides an ultimate guarantee that
whatever the adversary can do in the real execution is simulatable in the ideal world. Since the
execution in the ideal world is secure, the real execution is secure as well. To see this, we need
to clarify the definitions of the real and ideal executions.
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Ideal Execution. The ideal execution captures a world where a trusted third party exists.
The parties do not communicate with each other but instead hand their inputs to the trusted
party. Then, the trusted party honestly returns the outcomes to each party, corresponding to the
defined functionality. Nevertheless, the ideal execution in the presence of malicious adversaries is
slightly different from the previous consideration of the semi-honest adversary. Due to losing the
honest majority, fairness is not taken into consideration. Moreover, rational rebelling behaviors
of the malicious adversaries, including refusing to participate, aborting the running sessions, or
replacing the inputs, are taken into account. These strategies will be taken into account in the
definition of the modified ideal functionality.

We define the modified ideal execution before going to the security definition. For more
detailed exposition, also see [HL10, Lin17]. The ideal execution in consideration of a malicious
adversary of a two-party functionality F = (f1, f2) consists of six phases: initial inputs, inputs
to the trusted party, early abortion, output to the adversary, instruction of continuing or halting,
outputs. Let Pi denote the corrupted party controlled by S, Pj be the honest party where
{i, j} = {1, 2}, T be the trusted third party.

First of all, in the phase of initial inputs, like the ordinary setup, P1 has the input x, P2 has
the input y and the adversary S has an auxiliary input z. Secondly, in the phase of inputs to
the trusted party, honest Pj hands the initial input (x or y) to T . What corrupted Pi sends is
controlled by S. The decision made by S including the early abortion option aborti is based
on the initial input of Pi and the auxiliary input z. Let (x′, y′) be the inputs to F . Thirdly,
early abortion is an intermediate phase, if aborti is sent within the second phase by S. Then
the trusted party returns aborti to both parties, and the execution terminates; otherwise, the
execution continues. Fourthly, in the phase of output to the adversary, T computes f1(x′, y′)
and f2(x′, y′) and returns fi(x′, y′) to the corrupted party Pi first. Next, in the fifth phase,
the adversary replies continue or aborti to T . This instructs T to continue or terminate by
returning fj(x′, y′) or aborti to Pj , respectively. Last but not least, in the final phase outputs,
the honest party outputs fj(x′, y′). The adversary S in place of Pi outputs something based on
the knowledge of the initial input (x or y), auxiliary input z, and fi(x′, y′).

The output pair of the honest party and the adversary from the ideal execution of the
functionality F described above is denoted by IDEALF ,S(z),i(x, y). Note that even though in
oblivious transfer the sender receives no outputs from the trusted party, the adversary can still
output something in place of the sender if the sender is the corrupted party. For readability, we
will write in the protocol description abortS, abortR representing aborts made by the receiver
and the sender to replace abort1, abort2, respectively.

Real Execution. The real execution is the execution of a real protocol. Let the protocol π

compute the functionality F where Pi is the corrupted party controlled by the adversary A. The
initial inputs are x for P1, y for P2 and the auxiliary input z for A. During the execution of π, A
will usurp Pi, interact with Pj , and finally output something. The messages and output provided
by the adversary may deviate from the specification of π by a polynomial-time strategy. In
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contrast, the honest party Pj interacts with Pi and returns outputs as specified by the protocol.
Let REALπ,A(z),i(x, y) denote the output pair by Pj and A.

The aim of the standard real/ideal paradigm is to show that the ensemble produced by the
simulator through the ideal execution is indistinguishable from the ensemble produced by the
adversary via the real execution. This provides strong assurance of the security irrespective
of the strategies the adversary adopts since any real adversary can be simulated in the ideal
world. This also permits modular constructions for larger protocols by the composition theorems
[Can00, Can01]. As a corollary, a relaxed but equivalent version of the security model is the
simulation in the hybrid model.

Hybrid Model. The hybrid model contains real messages communicated between participants
and oracle access to functionality G (ideal messages). The two-party protocol π with input (x, y)
in a hybrid model with the functionality G is called the G-hybrid model. In the presence of
adversary A who controls the ith party with the auxiliary input z, we denote the output of all
parties by HY BRIDG

π,A(z),i(x, y).
We remark that this model is a prerequisite for constructing UC-secure oblivious transfer

due to the impossibility results given in [CKL03]. In the G-hybrid model, the simulator in
the simulation process is able to exert control over the functionality G. For example, in the
common reference string (CRS) hybrid model, two parties are given a shared string in the
protocol execution, while in the simulation process, the simulator can invoke the adversary with
a trapdoor string to cheat [PVW08].

To match the security definition presented in [Can01], assume there exists an environment
machine Z serving as an interactive distinguisher between the real execution and the ideal
execution. When interacting with the machine, the environment Z can decide all inputs of the
parties and the auxiliary input for the adversary/simulator. After the execution, Z outputs
a single bit to judge whether it interacts with a real machine or an ideal machine. Also,
the environment Z can interact with the adversary/simulator with any queries at any time
throughout the execution in order to distinguish. Here, we denote the ensemble consisting of the
output of the ideal execution of the functionality F involving the adversary S, the environment
Z by IDEALF ,S,Z and the ensemble consisting of the outputs in the hybrid model involving
the adversary A and the environment Z by HY BRIDG

π,A,Z .

Definition 4.2.5. (UC-realize) A protocol π is said to UC-realize an ideal functionality F in
the presence of malicious adversaries and static corruption in the hybrid model with functionality
G if for any adversary A there exists a simulator S such that for every interactive distinguisher
environment Z we have

IDEALF ,S,Z=cHY BRIDG
π,A,Z .

The advantage of an environment machine Z is defined as

Adv(Z) = |Pr[Z wins]− 1/2| .
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Sender Receiver

Input: (M0, M1) Input: i ∈ {0, 1}
Output: N/A Output: Mi

s $← Z r $← Z∗
p

A = gs

if i = 0 :B ← gr

if i = 1 :B ← Agr

B

k0 ← H(Bs) ki ← H(Ar)
k1 ← H((B/A)s)
(c0, c1)← (Enck0(M0), Enck1(M1))

c0, c1

Mi ← Decki
(ci)

Figure 4.1: Chou and Orlandi’s OT scheme in a nutshell [CO15]

4.3 Construction
This section first presents the idea behind our tweaked key exchange by introducing the core of
Chou and Orlandi’s OT scheme [CO15]; we then derive a novel compact protocol as a prototype.
Following this, we compress the three-round scheme to an optimal two rounds by using the
quadratic twist technique. Finally, building on the round-optimal structure, we add a “proof of
decryption” mechanism, based on the idea of the Fujisaki-Okamoto transform [FO99], which
requires two extra rounds, in order to achieve security against malicious adversaries.

4.3.1 Passively Secure Schemes

Tweaked Key Exchange

Figure 4.1 presents the Chou–Orlandi OT scheme [CO15] which is based on Diffie–Hellman key
exchange. In Diffie–Hellman, the sender and the receiver first share their public “keys”, gs and
gr, with each other, after which both of them can secretly obtain a shared secret grs. To adapt
this for the purpose of OT, the receiver can use the second round to hide his secret bit i. In the
third round, the sender can communicate an encryption of the two OT messages by deriving
two keys, one which cancels out the obfuscation, and one which does not. Because of this key
derivation, the receiver can then only decrypt the message corresponding to his input bit.

Proposals by de Saint Guilhem et al. and Vitse rely on a similar idea to use a fixed key from
the key exchange to decrypt the chosen ciphertext [DOPS20, Vit19]. In the first OT construction
of [DOPS20], two public curves are required as a trusted setup, which serve the same role as
two fixed keys from the perspective of key exchange. In [Vit19], one more pe2

2 -torsion subgroup
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Trusted Setup: random E ∈ E

Sender Receiver

Input: (M0, M1) Input: i ∈ {0, 1}
Output: N/A Output: Mi

s $← G r $← G

A = s ⋆ E

if i = 0 : C ← r ⋆ E

if i = 1 : C ← r ⋆ A

C

k0 ← H(s ⋆ C) ki ← H(r ⋆ (s1−i ⋆ E))
k1 ← H(s−1 ⋆ C)

c0 ← Enck0(M0)
c1 ← Enck1(M1)

Mi ← Decki
(ci)

Figure 4.2: Our base 3-round OT protocol.

generated by the sender is required to obtain two fixed keys (which is based on SIDH and
therefore insecure now).

Our three-round Protocol

We present our three-round protocol in Figure 4.2 using the notation of an EGA (G, E , E0, ⋆)
In this work we approach the change from key exchange to OT with a different strategy. The
essence is that the sender and the receiver can exponentiate by both s and by s−1, and by both
r and r−1 respectively.

Upon receiving gs from the sender, the receiver computes both gr and gsr, and sends one of
them to the sender depending on its choice bit. The sender then exponentiates it by both s and
by s−1 as the encryption keys, which is like doing key exchange twice. One can verify that the
shared secret in each case is grs and gr, respectively.

The other encryption keys are grs−1 and grs2 , respectively. They are intractable to the
honest-but-curious receiver due to the hardness of the inverse and square CSIDH problems,
respectively. Furthermore, the receiver’s input bit remains unknown since the sender only knows
either gr or gsr.

Note that in this isogeny-based setting, it is necessary that the relation between the shared
public curve E ∈ E and a fixed base curve E0 remains unknown. Should the receiver know that
E = t ⋆ E0, then he can always input i = 0 and compute the other key as t2r2 ⋆ (rs ⋆ E)t =
t2r2 ⋆ (trs ⋆ E0)t = trs−1 ⋆ E0 = rs−1 ⋆ E.
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Trusted Setup: E ∈ E

Sender Receiver

Input: (M0, M1) Input: i ∈ {0, 1}
Output: ⊥ Output: Mi

s $← G r $← G

A← s ⋆ E if i = 0: C ← r ⋆ E

if i = 1: C ← (r ⋆ E)t

C

(k0, k1)← (H(s ⋆ C), H(s ⋆ Ct))
(c0, c1)← (Enck0(M0), Enck1(M1))

A, c0, c1

ki ← H(r ⋆ A)
Mi ← Decki

(ci)

Figure 4.3: The core of our two-round OT scheme. No analogue exists in the Diffie–
Hellman setting due to the use of the quadratic twist.

Our two-Round Protocol

To address the drawbacks of our three-round protocol, we observe that the quadratic twist
provides additional flexibility for the curve computations.

To first break the dependency of C on A, we let the receiver compute C = (r ⋆ E)t in the
case i = 1, instead of r ⋆ A. Now that C is independent of A, the receiver can send his message
first, reducing the protocol to only two rounds. Furthermore, this removes the hypothetical
attack of a malicious receiver choosing C in response to A and enables a direct reduction to the
computational CSIDH problem.

We then note that the sender’s second encryption curve can be computed as (s⋆Ct)t, instead
of s−1 ⋆ C, in the three-round version. Here again we can simplify by letting the sender compute
the second curve as s ⋆ Ct, without the additional twisting operation. This then results in a
simplification for key computation too: for i = 0, the encryption curve is s ⋆ (r ⋆ E) = r ⋆ A, and
for i = 1 it is s⋆ ((r ⋆E)t)t = r ⋆A; thus we return to the idea of using a single Diffie–Hellman key
by way of using the twist operation. The modified two-round protocol is described in Figure 4.3.
We give a formal security proof in Section 4.4.1.

In this simplified variant the number of isogeny computations remains the same as in the
three-round variant. We note that taking quadratic twists is an efficient operation via field
negation.

4.3.2 The Full Construction Against Malicious Adversaries
In the previous construction, when the receiver follows the specification, the simulator is able to
extract the input by observing the random oracle queries. However, this scenario changes in
the malicious model, where a corrupted receiver can intentionally delay the query process. This
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subtle difference complicates the analysis because the encrypted messages have already been
sent to the receiver before the extraction. Therefore, we deploy a mechanism based on an idea
similar to the Fujisaki-Okamoto transform, where the receiver has to decrypt a random message
independent of the sender’s input. By deploying the mechanism, we can extract the receiver’s
input prior to the transmission of encrypted messages. For the case of the corrupted sender, we
use a new trick of the quadratic twists in the trusted setup curve to extract the input of the
corrupted sender. The full protocol shown in Figure 4.4 below is based on the following building
blocks:

• CSIDH EGA (G, E , E0, ⋆) where G acts freely and transitively on the set of supersingular
elliptic curves E defined over Fp where p = 3 mod 4. There are an efficient algorithm to
verify whether a given curve is in E and a sampling method over G that is indistinguishable
to the uniform sampling. The group element in G can be encoded into {0, 1}τλ as a τλ-bit
string for some τ ∈ R 1.

• Symmetric encryptions (Enc, Dec) and (Enc′, Dec′) where (Enc, Dec) is IND-CPA and with
key space K and (Enc′, Dec′) is with message space and key space {0, 1}(τ+1)λ defined by
Enc′

k(m) := m⊕ k and Dec′
k(c) := c⊕ k.

• Hash functions HKey : E → K, HEnc : E → {0, 1}(τ+1)λ, which are modeled by a random
oracle FRO as FRO(Key ∥ ·),FRO(Enc ∥ ·), respectively. The former serves as the key
derivation function from the domain E ′ to the key space K for (Enc, Dec). The latter
serves as a PRNG to generate a masking string to encrypt for the encryption scheme
(Enc′, Dec′).

Protocol. (CSIDH-based OT)

• Trusted Setup: Let E = t ⋆ E0 where t $← G is not given to anyone.

• Input: As input, the sender S takes two messages M0, M1 of the same length; the receiver
R takes a bit i ∈ {0, 1}.

• Procedure:

1. S samples independent ideals s0, s1
$← G, a random string str $← {0, 1}λ and computes

A0 = s0 ⋆ E, A1 = s1 ⋆ E.

2. R generates r $← G and computes C = r ⋆ E; if i = 1, overwrites C = Ct; and sends
C to S.

3. S checks whether C ∈ E. If not, S aborts and outputs abortS. Otherwise, S computes
masking keys k1,0 = HEnc(s1 ⋆ C) and k1,1 = HEnc(s1 ⋆ Ct). Then, S computes two
ciphertexts c1,j ← Enc′

k1,j
(s1 ∥ str) for j ∈ {0, 1}. S sends (A1, c1,0, c1,1) to R.

1The size of G is approximately √p [CLM+18]. For instance, one can take τλ = 256 for CSIDH-512.
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4. R runs the proof of ability to decrypt mechanism. Firstly, R checks whether A1 ∈ E.
If not, R aborts and outputs abortR. Otherwise, R computes k′

1,i = HEnc(r ⋆ A1)
and (s′

1 ∥ str′) ← Dec′
k′

1,i
(c1,i). Verify whether s′

1 ⋆ (r ⋆ E) = r ⋆ A1. If not, output
abortR. Otherwise, continue.

5. R computes k′
1,1−i = HEnc(s′

1 ⋆ (r ⋆ E)t). Verify whether Dec′
k′

1,1−i
(c1,1−i) = (s′

1 ∥ str′).
If not, return abortR. Otherwise, send str′ to S.

6. S checks whether str = str′. If not, S aborts and outputs abortS. Otherwise, S
computes keys k0,0 = HKey(s0 ⋆ C) and k0,1 = HKey(s0 ⋆ Ct). Then, S computes
ciphertexts c0,j ← Enck0,j

(Mj) for j ∈ {0, 1}. S sends (A0, c0,0, c0,1) to R and outputs
⊥.

7. R verifies A0 ∈ E. If not, R aborts and outputs abortR. Otherwise, R computes
the decryption key k′

0,i = HKey(r ⋆ A0) and outputs M′
i ← Deck′

0,i
(c0,i).

Intuitively, to simulate a sender controlled by an adversary, we have to show that the receiver’s
message’s distribution with input i = 0 and that with input i = 1 are indistinguishable. Asides
from that, the simulator needs to extract the real input of the message pair since the adversary
can replace the original input. The uniform sampling over G assures the first requirement. We
meet the second condition by setting up a trapdoor of the functionality FTSC, which allows the
simulator to decrypt two ciphertexts by using the trapdoor and extract the real input of the sender.

To simulate a receiver corrupted by an adversary, the simulator should extract the ad-
versary’s input by observing the hash queries. In order to extract the input, the receiver should
demonstrate the ability to decrypt. The reason to do this is that the corrupted receiver who
skips all hash queries makes the input inaccessible to the simulator and gives all information to
the environment machine. The additional “proof of ability to decrypt” requires the corrupted
receiver to show that he can decrypt at least one message to get a random string. The mechanism
also ensure privacy for an honest receiver so that a corrupted sender cannot manipulate the
mechanism to extract any useful information from an honest receiver.

Here the sender will send another curve s1 ⋆ E distinct from s0 ⋆ E for transferring messages.
The sender encrypts the group element s1 and a concatenated random string str by using a key
pair derived from s′ ⋆ E. The receiver decrypts one ciphertext with r, and the other ciphertext
serves as a verification of the equality of encrypted messages to ensure his privacy. By assuming
Problem 9, the mechanism enables the simulator to extract the correct input by observing the
random oracle queries. The difference between the unchosen ciphertexts is not noticeable unless
the environment machine knows the corresponding decryption key. In this case, the environment
machine contains a pair of curves which is exactly the solution for the reciprocal CSIDH problem.
See Section 4.4 for more details.
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Trusted Setup: E ∈ E

Sender Receiver

Input: (M0, M1), Output: ⊥ Input: i ∈ {0, 1}, Output: Mi

s0, s1
$← G r $← G

(A0, A1)← (s0 ⋆ E, s1 ⋆ E) If i = 0: C ← r ⋆ E

str $← {0, 1}λ If i = 1: C ← (r ⋆ E)t

C

If C /∈ E : abortS.
(k1,0, k1,1)← (HEnc(s1 ⋆ C), HEnc(s1 ⋆ Ct))
(c1,0, c1,1)← (Enc′

k1,0(s1 ∥ str), Enc′
k1,1(s1 ∥ str))

A1, c1,0, c1,1

If A1 /∈ E : abortR.
k′

1,i ← HEnc(r ⋆ A1)
(s′

1 ∥ str′)← Dec′
k′

1,i
(c1,i)

If s′
1 ⋆ (r ⋆ E) ̸= r ⋆ A1: abortR.

k′
1,1−i ← HEnc(s′

1 ⋆ (r ⋆ E)t)
If Dec′

k′
1,1−i

(c1,1−i) ̸= (s′
1 ∥ str′): abortR.

str′

If str ̸= str′: abortS.
(k0,0, k0,1)← (HKey(s0 ⋆ C), HKey(s0 ⋆ Ct))
(c0,0, c0,1)← (Enck0,0(M0), Enck0,1(M1))

A0, c0,0, c0,1

Return: ⊥ If A0 /∈ E : abortR.
k′

0,i ← HKey(r ⋆ A0)
Return: M′

i ← Deck′
0,i

(c0,i)

Figure 4.4: Our CSIDH-based oblivious transfer protocol secure against malicious ad-
versaries.

4.4 Security Analysis
In this section, we prove the security of our two schemes from Sections 4.3.1 and 4.3.2 against
semi-honest and malicious adversaries respectively.

4.4.1 Semi-honest security
Eavesdropper. An eavesdropper receives all the communications of parties and does not
intervene in the execution. We assume that such an adversary knows the parties’ inputs while
the simulator tasked with simulating an indistinguishable transcript is given nothing. The reason
for this assumption is to match the definition of UC-security [Can01] where the environment
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machine decides the inputs. In fact, security against such eavesdroppers corresponds exactly to
the honest-honest case discussed in the proof below.

Semi-Honest Adversary. A static semi-honest adversary can choose to corrupt either,
both or neither of the parties and will follow the protocol specification. We will prove that
such an adversary cannot obtain any information from the transcript of our two-round protocol
(Figure 4.3) assuming that the computational inverse CSIDH problem is hard. The property
remains the same for the four-round protocol (Figure 4.4) since the second and the third messages
are simulatable and independent of the input.

Theorem 4.4.1. The protocol π of Figure 4.3 securely computes FOT in the presence of static
semi-honest adversaries if the computational inverse CSIDH problem (Problem 7) is infeasible,
assuming that H(·) is a random oracle and the encryption scheme (Enc, Dec) is IND-CPA.

Proof. (Correctness) Let i ∈ {0, 1} be the input of the receiver R. Say the sender S generates
ideal s ∈ G and R generates r ∈ G. If i = 0, then C = r ⋆ E. S computes the encryption key
k0 as H(s ⋆ C), and sends A = s ⋆ E. R computes k′

0 = H(r ⋆ A) as the decryption key; as we
have r ⋆ A = r ⋆ (s ⋆ E) = s ⋆ (r ⋆ E) = s ⋆ C, we indeed have k′

0 = k0. On the other hand, if
i = 1, then C = (r ⋆ E)t. S computes k1 = H(s ⋆ Ct) while R computes k′

1 = H(r ⋆ A). We have
s ⋆ Ct = s ⋆ ((r ⋆ E)t)t = s · r ⋆ E = r ⋆ A which implies k′

1 = k1 and shows the correctness of the
protocol.

(Corrupt sender S∗) The simulator S1 takes as input (M0, M1,⊥) and is required to
simulate the view viewπ

1 (M0, M1, i) = (M0, M1, rp, C) where rp is a random tape. To generate
this, S1 performs these steps:

1. Uniformly generate a random tape rp for S∗.

2. Generate r′ $← G acting as an honest R and using a private random tape.

3. Output (M0, M1, rp, C ′ = r′ ⋆ E).

In a real execution, the curve C sent by the honest receiver is either r ⋆ E if i = 0, or (r ⋆ E)t if
i = 1. In the first case, the transcript output by S1 is identically distributed to that produced by
a real execution. The second case, due to the uniform sampling, the distribution is also identical
to the real one regardless of i. Thus, any distinguisher (possibly unbounded) that is given a tuple
(M0, M1, i) is not able to distinguish {S1((M0, M1),⊥)}(M0,M1),i from {viewπ

1 (M0, M1, i)}M0,M1,i.

(Corrupt receiver R∗) The simulator S2 takes as input (i, Mi) and is required to simulate
the view viewπ

2 (M0, M1, i) = (i, rp, A, c0, c1) where rp is a random tape. To generate this, S2

performs these steps:

1. Choose a uniform generated random tape rp for R∗.

2. Generate s′ $← G acting as an honest S and using a private random tape, and generate
r′ $← G using rp. Compute the curve C as r′ ⋆ E or (r′ ⋆ E)t depending on i.
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3. Compute the decryption keys k′
i, k′

1−i honestly using s′ and C. Replace k′
1−i with k̃′ $← K

4. Compute ciphertexts ci = Enck′
i
(Mi) and c1−i = Enc

k̃′(M̃) where M̃ is a string of the
same length as Mi sampled at random from the message space M.

5. Output (i, rp, s′ ⋆ E, c0, c1).

We claim that if there exists a successful PPT distinguisher between the simulated view and the
real view, then reductions can be made to solve the computational problems (Problem 6 or the
equivalent Problem 7) or to break the IND-CPA security of the encryption scheme.

To show this, we build a series of hybrid views. Let H0 be the view of the real adversary, and
H2 be the view generated by S2 (i.e., {viewπ

2 (M0, M1, i)}(M0,M1),i and {S2((M0, M1),⊥)}(M0,M1),i,
resp). Let the intermediate H1 be the view produced by running a real execution and replacing
the encryption key k1−i with a random k̃ $← K. The difference between H1 and H2 is then that
the real message M1−i is replaced with a random one M̃ $←M.

Hybrid 1 (H1). We first claim H0 ≈c H1 if the computational inverse CSIDH problem
(Problem 7) is hard. To offer an intuition: let E1−i denote the curve from which the replaced key
k1−i is derived. When i = 0, we have E1−i = s ⋆ Ct = s ⋆ (r ⋆ E)t = r−1 ⋆ (s−1 ⋆ E)t; and when
i = 1, we have E1−i = s ⋆ C = s ⋆ (r ⋆ E)t = r−1 ⋆ (s−1 ⋆ E)t as well. In both cases we see that
the hard-to-compute curve contains s−1 ⋆ E which we use to reduce a successful distinguisher to
the computational inverse CSIDH problem (Problem 7).

Let Z be an environment that can successfully distinguish between H0 and H1, then a solver
B for Problem 7 with the assistance of Z runs as follows:

1. Receive challenge (E′, s′ ⋆ E′) from Problem 7, where s′ ∈ G is unknown.

2. Set E′ to be the public curve used by the protocol π and set s′ ⋆ E′ as the curve A sent to
the receiver.

3. Randomly generate random tape rp for the receiver, use it to sample r, and compute C

according to i.

4. While running, simulate the random oracle by assigning a random value from K whenever
a new query is made and recording a list of past queries during the execution.

5. When deriving the real encryption key ki, compute it as r ⋆ (s′ ⋆ E′) (since s′ from the
challenge is unknown).

6. Replace the other encryption key k1−i with k̃ $← K to simulate the output of H1; abort if
k̃ already appears on the list of answers to random oracle queries.

7. Invoke the distinguisher Z with the produced output of H1.

8. When Z terminates, randomly select a curve Ẽ in the list of past queries of the simulated
random oracle and return (r ⋆ Ẽ)t as the computational inverse CSIDH solution.
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Note that, if B does not abort, the only difference between H0 and H1 is the key for Mi−1, thus
a distinguisher Z which does not query this key must have a zero advantage.

Let A denote the event that B aborts when sampling the replacement key. Denoting by qH

the maximum number of queries made to H during the reduction, we have that Pr[A] ≤ qH
|K| .

Also let E denote the event that the targeted curve E′
1−i = r−1 ⋆ (s−1 ⋆ E′)t is present on the

query list. We see that the reduction B wins with probability 1/qH when E happens, and we
can then write:

AdviCDH(B) = Pr[B wins] = Pr[B wins | ¬A] · Pr[¬A] + Pr[B wins | A] · Pr[A]
≥ Pr[B wins | ¬A] · (1− Pr[A])

≥ Pr[B wins | ¬A] ·
(

1− qH

|K|

)
⇔ 1

1− qH
|K|
· Pr[B wins] ≥ Pr[B wins | ¬A] = 1

qH
· Pr[E]. (4.1)

Looking an arbitrary distinguisher Z, we then have

|Pr[Z(H0) = 1]− Pr[Z(H1) = 1]| = |Pr[Z(H0) = 1|E] · Pr[E]
− Pr[Z(H1) = 1|E] · Pr[E]
+ Pr[Z(H0) = 1|¬E] · Pr[¬E]
− Pr[Z(H1) = 1|¬E] · Pr[¬E]|

≤ Pr[E] (4.2)

since |Pr[Z(H0) = 1|¬E]−Pr[Z(H1) = 1|¬E]| = 0 and |Pr[Z(H0) = 1|E]−Pr[Z(H1) = 1|E]| ≤ 1
by definition. By combining (4.1) and (4.2) we see that if Z distinguishes the two views with non-
negligible advantage ϵ, then B successfully solves Problem 7 with probability at least ϵ·(1− qH

|K|)/qH

which is non-negligible if qH = poly and 1/|K| = negl. This contradicts the assumption
that Problem 7 is intractable and therefore implies that H0 and H1 are computationally
indistinguishable to any PPT environment Z.

Hybrid 2. We now claim H1 ≈c H2 for any PPT distinguisher if the encryption scheme
(Enc, Dec) is IND-CPA secure. The only difference is the encryption Enc

k̃
(M1−i) in H1 and the

encryption Enc
k̃
(M̃) in H2, where k̃ is uniformly sampled from K. A successful distinguisher Z

between the two distributions can be reduced to an adversary against the IND-CPA security of
(Enc, Dec) in a straightforward manner. As this reduction is common in the literature, we only
include a sketch here.

The IND-CPA adversary B has access to a left-right encryption oracle which uses a secret key
randomly sampled from K to encrypt either the left or the right input; this hidden key plays the
role of k̃ in the generation of the view given to Z. After setting up and executing the protocol
honestly, B uses the left-right oracle to encrypt either M1−i or a random M̃ as the ciphertext
c1−i; depending on the hidden bit (left or right) of the oracle, the view viewB generated by B for
Z is distributed identically to either H1 or H2. After the distinguisher terminates, the reduction
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returns its output as the guess of the oracle’s hidden bit. Labelling the oracle’s hidden bit as b,
we then have

AdvIND-CPA
(Enc,Dec)(B) = |Pr[B = 1 | b = 0]− Pr[B = 1 | b = 1]|

= |Pr[Z(viewB) = 1 | b = 0]− Pr[Z(viewB) = 1 | b = 1]|
= |Pr[Z(H1) = 1]− Pr[Z(H2) = 1]|

which immediately shows that if Z is successful with non-negligible advantage, then so is B
which contradicts the assumption that (Enc, Dec) is IND-CPA secure.

(Honest sender and honest receiver) We now claim that there exists a PPT simulator
that can generate a transcript tuple, without knowledge of the parties’ inputs, which is indis-
tinguishable from the view of an eavesdropper Z that knows the parties’ inputs (but not their
random tapes). This simulator is constructed from the following sequence:

1. S0 knows the real inputs (M0, M1) and i of the parties; by sampling random tapes and
acting honestly, it produces a perfect simulation.

2. S1 always uses i = 0; due to the uniform sampling over G, the simulator S1 is identically
distributed to the output of S0.

3. S2 replaces k1 with a randomly sampled key; as above, this is computationally indistin-
guishable from the output of S1 assuming that Problem 7 is intractable.

4. S3 replaces M1 with a randomly sampled message; as above, this is computationally
indistinguishable from the output of S2 assuming that the encryption scheme is IND-CPA
secure.

5. S4 always uses i = 1; as above, the output of S4 is statistically indistinguishable from the
output of S3.

6. S5 and S6 respectively first replace k0 and then M0 with random values; as above, these
changes are computationally indistinguishable assuming the hardness of Problem 7 and
the IND-CPA security of the encryption scheme.

Finally, we observe that the last simulator S6 does not use any of the real inputs to produce
a random transcript. By the sequence above, this simulation is indistinguishable from the
transcript of a real execution.

(Corrupt sender and corrupt receiver) In this case, the simulator knows the inputs of
both corrupt parties; as for S0 in the previous case, it can generate a perfect simulation of the
views of the parties.

The four cases considered above cover all possible corruption strategies; this thus completes
the proof that the protocol π securely computes FOT.
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4.4.2 Malicious Adversary
Malicious Adversary. A malicious adversary with static corruptions can corrupt either,
both or neither of the parties prior to the execution. The environment machine decides the
initial inputs of all parties. The adversary will be in charge of the corrupted party or parties,
and decide all messages to be sent. In particular, the adversary can replace the inputs of the
participants from the environment machine and deviate from the protocol specification. We will
prove that the construction in Figure 4.4 UC-realizes the functionality FOT in the presence of
malicious adversaries with static corruptions.

Theorem 4.4.2. The protocol π of Figure 4.4, where the encryption scheme (Enc, Dec) is
IND-CPA, securely UC-realizes the functionality FOT in the hybrid model with the functionality
FRO and a trusted setup FTSC in the presence of malicious adversaries and static corruption if
the computational reciprocal CSIDH problem is infeasible.

Concretely, for any environment machine Z with the adversary A making at most Q queries
of FRO, there exist an IND-CPA adversary B1, a tweaked reciprocal CSIDH problem adversary
B2, and a reciprocal CSIDH problem adversary B3 such that

Adv(Z) ≤ 1
2λ

+ AdvIND-CPA
(Enc,Dec)(B1) + (Q2 −Q)× AdvtReGA(B2) + Q2 −Q

2 × AdvrCDH(B3).

Proof. (Honest Sender and Honest Receiver) We start with the honest sender and the
honest receiver. The goal is to show that the execution of π is indistinguishable from the ideal
functionality when the parties follow the specification.

By following the same process as the honest-sender-and-honest-receiver case in Theorem
4.4.1, we can construct the simulator that simulates the first and the fourth (final) messages. By
continuing the process of SS or S4 in Theorem 4.4.1, the simulator can simulate the second-half
messages A1, c1,0 and c1,1 by generating s1 and str. Since the second-half part requires no inputs
from either the sender or the receiver, it produces a perfect simulation with respect to the second
and the third messages. Therefore, the simulator outputs a transcript indistinguishable from the
one of a real execution.

(Corrupted Sender and Corrupted Receiver) When two parties are corrupted, the simu-
lator can invoke the adversary on auxiliary input z and the input (x = (M0, M1), y = i) given by
the environment Z to run the whole execution. The simulator outputs whatever the adversary
outputs for both parties to produce a perfect simulation.

(Honest Sender and Corrupted Receiver) Let A be the malicious adversary controlling
the receiver. In order to emulate the adversary, the simulator needs to extract the input of
the adversary, and sends it to the trusted party in the ideal execution. Say the environment
Z generates input (x = (M0, M1), y = i, z) and gives y to the simulator/adversary on auxiliary
input z. The simulator SR passes any query from Z to A and returns the output of A. The
simulator SR on input (y, z) simulates the protocol execution of π with the adversary as follows:
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1. Firstly, the simulator SR simulates a random oracle FRO in an on-the-fly manner. Recall
that we have two prefixes FRO(Key ∥ ·) and FRO(Enc ∥ ·). For FRO(Key ∥ ·), it keeps a
list L, which is empty initially, over {Key} × E × K that records each past query. Upon
receiving a random oracle query of (Key, E′) ∈ {Key} × E , the simulator checks whether
(Key, E′, k′) ∈ L for some k′ ∈ K. If not, generate k′ $← K and add (Key, E′, k′) to L.
Finally, SR returns k′ to the random oracle query of (Key, E′). SR does the same process
for FRO(Enc ∥ ·) where the list is over {Enc} × E × {0, 1}τλ.

2. Generate the public curve E = t ⋆ E0 by sampling t $← G to setup FTSC. Invoke the
adversary A on auxiliary input z with the input y and E for the protocol π. SR simulates
the communication with Z by forwarding the received message from Z to A and forwarding
the response of A back to Z. If A aborts or halts, then SR does the same.

3. SR receives a curve C (probably malformed) from the adversary (receiver) in the execution
of π. Check whether C ∈ E , if not, abort the session and output abort to the trusted
party in the ideal execution and halt. Otherwise, continue.

4. SR, as an honest receiver in this step, generates s1
$← G, computes A1, k1,0, k1,1, c1,0, c1,1

and sends A1, c1,0, c1,1 to the receiver.

5. SR starts to monitor the random oracle queries to see which queries of s1 ⋆ C, s1 ⋆ Ct is
made by the adversary first. Obtain Mi by sending ĩ = 0 to the trusted party in the ideal
execution for the former case and ĩ = 1 for the latter case. If no such queries are made
and the adversary sends the correct string str, then SR aborts and halt.

6. SR follows the protocol specification π except that it replaces the other message by a
random M̃1−i of the same length and outputs whatever A outputs to complete the rest of
the simulation.

We claim that {HY BRIDFRO,FTSC
π,A(z),2 (x, y)}x,y,z ≈c {IDEALFOT,SR(z),2(x, y)}x,y,z.

To see this, we apply a hybrid argument to the UC-security experiment by introducing a
series of Game0, Game1, · · · , Game4. Let Advi(Z) denote Pr[Z(Gamei) wins]. The two differences
from the real execution of π are in the additional abort made in Step 5 and the replacement of one
message made in Step 6. We will show in Game1 the former difference is information-theoretically
hard to distinguish. Also, Game2, Game3 the latter difference implies the environment machine
can solve either the IND-CPA problem for (Enc, Dec) or the tweaked reciprocal CSIDH problem.

• Game0 is the original experiment where the environment machine interacts with the protocol
π and the adversary A or the simulator SR and FOT. By definition, Adv(Z) = Adv0(Z).

• Game1 is the same as Game0 except that the winning condition is changed. Under the
condition that the adversary sends correct string str′ = str, we additionally require the
adversary should make a random oracle query of one of s1 ⋆ C or s1 ⋆ Ct. The game results
in a loss if the adversary is able to decrypt without knowing the decryption key, otherwise,
the winning condition is not changed. Recall that ciphertexts c1,0 = (s1 ∥ str) ⊕ k1,0,
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c1,1 = (s1 ∥ str)⊕k1,1 and keys k1,0, k1,1 are drawn uniformly at random from {0, 1}(τ+1)λ.
The string str is information-theoretically hidden from Z without knowing k1,0, k1,1. The
string str ∈ {0, 1}λ has λ-bit min-entropy. Therefore, we have Adv0(Z) ≤ Adv1(Z) + 1/2λ.

• Game2 is the same as Game1 except that the winning condition is changed. We additionally
require the adversary should make a random oracle query of s0 ⋆ C or s0 ⋆ Ct to obtain
k0,1−i (for the case extracted i = 1 or 0, resp). The game results in a loss if the environment
machine can notice whether the encrypted message of M1−i is replaced without knowing
the corresponding decryption key k0,1−i. We can transform Z to be an IND-CPA adversary.
Concretely, we construct an IND-CPA adversary B1 against (Enc, Dec) that simulates SR

with access to A for the environment machine. We assume B1 can extract the input
x = (M0, M1) of the sender which is decided by Z 2. The adversary B1 is identical to the
one we defined in 4.4.1. Concretely, B1 runs as the same as SR except that B1 generates
a random message M̃ and sends (M1−i, M̃) to the IND-CPA challenger and assigns the
ciphertext to c̃1,1−i. Then, B1 sends c̃1,1−i, c1,i to the receiver (replacing c1,1−i). If Z
returns a bit b, then B1 returns b in the IND-CPA experiment.
When the secret bit of the IND-CPA challenger is b, the simulation of B1 is identical to
the real protocol π with A. When the secret bit of the IND-CPA challenger is 1− b, the
simulation of B1 is identical to SR in the ideal process. Therefore, we have Adv1(Z) ≤
Adv2(Z) + AdvIND-CPA

(Enc,Dec)(B1).

• Game3 is the same as Game2 except that the winning condition is changed. We additionally
require the adversary should make a random oracle query of s0 ⋆ C, s0 ⋆ Ct (up to i) to
obtain k0,i. The game results in a loss if the environment machine can notice the encrypted
message of M1−i is replaced without the decryption key k0,i. We may assume further Z
does not know the corresponding curve. In other words, the extraction of the simulator
SR is false (Step 5) since the environment machine can decrypt c1,̃i first but only able
to decrypt c0,1−̃i. We construct a tweaked reciprocal CSIDH problem adversary B2 that
simulates for Z.

Without loss of generality, we say i = 0 and the tweaked reciprocal CSIDH problem
CSIDH challenge is (E, s1 ⋆ E, s0 ⋆ E). B2 will assign E as the trusted setup curve, s1 ⋆ E

to A1, and s0 ⋆ E to A0 and B2 commits to C in the experiment which is given from
the (corrupted) receiver. Note that B2 does not have s1, so it firstly produces dummy
ciphertexts c̃0,0, c̃0,1

$← {0, 1}(τ+1)λ. Next, B2 guesses and extracts s1 ⋆ C from the queries
of FRO(Enc ∥ ·) and gives s1 ⋆ C to the tweaked reciprocal CSIDH problem challenger
to obtain s1. By sampling s̃tr $← {0, 1}λ, B2 assigns c̃0,0 ⊕ (s1 ∥ s̃tr), c̃0,1 ⊕ (s1 ∥ s̃tr) to
FRO(Enc ∥ s1 ⋆ C),FRO(Enc ∥ s1 ⋆ Ct), respectively.
Again, B2 guesses and extracts s−1

0 ⋆ Ct (= (s0 ⋆ Ct)t) from the queries for FRO(Key ∥ ·)
2Note that the simulator SR does not know x = (M0, M1) but the environment machine does since it

decides the input for the sender. Therefore, we can argue that we can extract x = (M0, M1) from the
machine.
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corresponding to k0,1. Finally, two answers given by B2 are s1 ⋆ C, s−1
0 ⋆ Ct, respectively.

A loss of a factor 2 × Q2−Q
2 follows due to guessing. Therefore, we have Adv2(Z) ≤

Adv3(Z) + (Q2 −Q)× AdvtReGA(B2).

• Game4 is the same as Game3 except that the winning condition is changed. We randomly
pick two distinct numbers I1, I2 from [Q] at the outset of the game. We additionally
require that the game result in a win if the I1, I2-th random oracle queries corresponding
to s0 ⋆ C, s0 ⋆ Ct obtain k0,0, k0,1, respectively. Since I1, I2 are information theoretically
hidden during the execution of the game. The guesses are correct with a chance 2/(Q2−Q).
Therefore, we have Adv3(Z) = Q2−Q

2 × Adv4(Z).

We construct an adversary B3 against the reciprocal CSIDH problem which simulates Game4

for Z. Say the reciprocal CSIDH public curve is E, B3 runs as the same as SR except in Step 1,
Step 2 and Step 6. In Step 1, B3 runs as the same as SR except for two special cases with respect
to the changes made in Step 6. In Step 2, B3 uses E as the trusted setup curve. (For simplicity, we
skip the randomization process here.) Upon receiving C from the corrupted receiver, B3 commits
to C in the reciprocal CSIDH experiment. Say the challenger returns s0 ⋆ E as the challenge. In
Step 6, B3 assigns s0 ⋆ E to A0. Since B3 does not know s0 ⋆ C and s0 ⋆ Ct, it produces two hash
values k0,0, k0,1 uniformly at random from K. From the assumptions made in Game2, Game3,
the queries of s0 ⋆ C, s0 ⋆ Ct for FRO(Key ∥ ·) will be made. From the assumption made in
Game4, B3 can correctly assign k0,0, k0,1 to FRO(Key ∥ s0 ⋆ C),FRO(Key ∥ s0 ⋆ Ct) respectively.
The simulation is therefore indistinguishable. Finally, B3 returns s0 ⋆ C and s−1

0 ⋆ C = (s0 ⋆ Ct)t

in the reciprocal CSIDH experiment. Therefore, we have Adv4(Z) ≤ AdvrCDH(B3).
Hence, in this case we have

Adv(Z) ≤ 1
2λ

+ AdvIND-CPA(B1) + (Q2 −Q)× AdvtReGA(B2) + Q2 −Q

2 × AdvrCDH(B3).

(Corrupted Sender and Honest Receiver) Let A be a malicious adversary controlling
the sender. In order to emulate the adversary, the simulator needs to extract the input of
the adversary, and send it to the trusted party in the ideal execution. The input here is the
message pair which the honest receiver will read. Say the environment machine Z generates
input (x = (M0, M1), y = i, z) and gives x to the simulator/adversary on auxiliary input z. The
simulator SS with input (x, z) proceeds as follows:

1. The simulator SS simulates a random oracle FRO in an on-the-fly manner. Recall that we
have two prefixes FRO(Key∥·) and FRO(Enc∥·). For FRO(Key∥·), it keeps a list L, which is
empty initially, over {Key}×E ×K that records each past query. Upon receiving a random
oracle query of (Key, E′) ∈ {Key} × E , the simulator checks whether (Key, E′, k′) ∈ L for
some k′ ∈ K. If not, generate k′ $← K and add (Key, E′, k′) to L. Finally, SS returns k′ to
the random oracle query of (Key, E′). SS does the same process for FRO(Enc ∥ ·) where
the list is over {Enc} × E × {0, 1}(τ+1)λ.
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2. Generate the public curve E = t ⋆ E0 by sampling t $← G to simulate FT SC . Invoke the
adversary A on auxiliary input z with the input x and E. Keep t as the trapdoor secret.
SS simulates the communication with Z by forwarding the received message from Z to A
and forwarding the response of A back to Z. If A aborts or halts, then SS does the same.

3. Generate r $← G, and compute C = r ⋆ E. Send C to the adversary, and act as an honest
receiver with the input i = 0 throughout the remaining execution. (Note that the simulator
does not know the input of the receiver here.)

4. If the adversary aborts, then send abort to FOT and finish the session. Otherwise, assume
the execution is not aborted. Say it receives (A0, c0,0, c0,1) from the adversary. Compute
k0 = H(r ⋆ A0), k1 = H(r−1t−2 ⋆ A0), and mj = Deckj

(c0,j) for j ∈ {0, 1}.

5. Send (m0, m1) to the trusted third party in the ideal execution, output whatever the
adversary outputs to complete the simulation. (Note that (M0, M1) and (m0, m1) are not
necessarily the same since the adversary can change the original input.)

Claim {HY BRIDFRO,FT SC

π,A(z),1 (x, y)}x,y,z = {IDEALFOT,S(z),1(x, y)}x,y,z. In contrast to the
real execution of π, there are two differences here. Firstly, the simulator possesses the trapdoor
t of the public curve. The process is identical to FT SC , and the simulator acts as an honest
receiver throughout the process. Hence, this difference is unnoticeable to the adversary.

The other difference is the receiver the simulator plays always uses input i = 0. Concretely,
we have to show that the distributions of outputs given by honest receivers are indistinguishable
with respect to the secret input i ∈ {0, 1}.

The first message. Firstly, the distribution of the first message (C) in the protocol as i = 0 is
the same as that generated as i = 1 due to the uniformity. By assuming the existence of the
uniformly sampling over G, the distributions are identical.

The second message. Claim that the second message being str′ or abortR is independent of i.
Concretely, if an honest receiver with secret input i sends C to the receiver, a corrupted sender
cannot produce (A1, c1,0, c1,1) such that the receiver’s output differ with respect to i.

Firstly, we show that if an honest receiver does not output abortR, then the honest receiver
with i = 1 will not output abortR here as well. Assume the receiver with i = 0 does not abort,
then we have the following equations:

c1,0 =(x0 ∥ str0)⊕HEnc(x0 ⋆ C)
c1,1 =(x0 ∥ str0)⊕HEnc(x0 ⋆ Ct)
A1 =x0 ⋆ E,

where x0 ∈ G and distinct str0 ∈ {0, 1}λ.
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The receiver with i = 1 sends the same C to the sender but using r1 ∈ G such that C = (r1⋆E)t.
He computes HEnc(r1 ⋆ A1) to decrypt c1,1. Since r1 ⋆ A1 = r1x0 ⋆ E = x0 ⋆ (r1 ⋆ E) = x0 ⋆ Ct,
the receiver obtains the same message (x0 ∥ str0) after decryption.

Secondly, we show that if the receiver with i = 1 does not output abortR, then the receiver
with i = 0 will not output abortR as well. Assume the receiver with i = 1 does not abort, then
we have the following equations:

c1,0 =(x1 ∥ str1)⊕HEnc(x1 ⋆ C)
c1,1 =(x1 ∥ str1)⊕HEnc(x1 ⋆ Ct

1)
A1 =x1 ⋆ E,

where x1 ∈ G and distinct str1 ∈ {0, 1}λ.
The receiver with i = 0 sends the same C to the sender but using r0 ∈ G such that C = r0 ⋆E.

He computes HEnc(r0 ⋆ A1) to decrypt c1,0. Since r0 ⋆ A1 = r0x1 ⋆ E = x1 ⋆ (r0 ⋆ E) = x0 ⋆ C,
the receiver obtains the same message (x1 ∥ str1) after decryption.

Thirdly, We show that if both receivers do not output abortR, the string given to the sender
will not vary with i. This immediately follows from the proof right above. If the receiver with
secret input i obtains the message (xi ∥ stri), then the receiver with secret input 1− i will obtains
the same message (xi ∥ stri).

The output of the receiver. It suffices to show the correctness of the extraction in Step 4.
If an honest receiver sends C to the sender with the input i = 0, then the decryption key is
k0 = HKey(r⋆A0). The message the receiver will obtain is Deck0(c0,0) = m0. Besides, if an honest
receiver sends C to the sender with the input i = 1, then the private ideal is equivalent to r−1t−2

since (r−1t−2 ⋆E)t = (r−1t−1 ⋆E0)t = (r−1 ⋆Et)t = (r ⋆E) = C. Hence, the receiver will decrypt
c0,1 with HKey(r−1t−2 ⋆ A0). Due to k1 = HKey((tr ⋆ (t−1 ⋆ A0)t)t) = HKey((tr)−1t−1 ⋆ A0) =
HKey(r−1t−2 ⋆ A0), the receiver will therefore get the message m1 = Deck1(c0,1). That is, the
simulator correctly extracts the input of the adversary. Hence, the real execution is perfectly
indistinguishable from the ideal execution.

4.5 Comparison

4.5.1 Efficiency
Table 4.1 illustrates a comparison between our oblivious transfer protocols with [DOPS20, Vit19,
AFMP20] in terms of efficiency, including the number of curves in the domain parameters or
generated by a trusted party, the number of curves in the public keys for the sender and the
receiver, the total number of isogeny computations for the sender and the receiver, and the
number of rounds, respectively. Among the isogeny-based OTs, our 2-round OT proposal is
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the most efficient with respect to every criteria against semi-honest adversaries. It takes two
additional rounds and a constant number of isogeny computations for each participant to achieve
UC-secure against static malicious adversaries.

Proposal DP PKS PKR # IsoS # IsoR # rounds Others
[DOPS20] I 2 1 1 3 2 2
[DOPS20] II 1 3 1 5 2 3
[Vit19] 1 2 1 4 2 3 Insecure in CSIDH
[AFMP20] I 4 2λ 2 4λ λ + 2 2 Group-action-based
[AFMP20] II 1 2λ 5 4λ λ + 5 2 Single Bit Transfer
This work (Fig. 4.3) 1 1 1 3 2 2 CSIDH-based
This work (Fig. 4.4) 1 1 1 6 5 4 CSIDH-based

Table 4.1: Comparison between isogeny-based OTs on efficiency where λ is the security
parameter. We give the costs for both our 2-round protocol from Figure 4.3 and the full
construction from Figure 4.4. DP , PKS, PKR counts the number of curves needed to
be stored in the domain parameter and the communications by the sender and receiver
respectively.

The two frameworks of [DOPS20] includes DH, SIDH, and CSIDH settings. The first
construction is a two-message oblivious transfer and requires one more curve in the trusted setup
phase.

The paper [Vit19] showed a construction based on exponentiation-only Diffie-Hellman. The
construction can fit in the DH, SIDH, and CISDH settings. The SIDH instance is not secure
now. Also, as stated in their work (in the inproceeding version), it will be totally insecure in
the CSIDH setting against a malicious receiver. Specifically, their two-inverse problem is given
curves (E, a ⋆ E, b ⋆ E) to find some curve tuple (X, a−1 ⋆ X, b−1 ⋆ X) where X is isogenous to
E. This can be done in the CSIDH setting by taking quadratic twists of (E, a ⋆ E, b ⋆ E).

In [AFMP20], the UC-secure construction is based on the decisional group action problem
(the decisional CSIDH problem for instance). It requires the number of isogeny computation
linear in λ and it only transfers a bit each time.

4.5.2 Security

Adversary Model Security Definition Model
[DOPS20] I Semi-honest UC-realize ROM+TSC
[DOPS20] II Semi-honest UC-realize ROM+TSC
[Vit19] Semi-honest UC-realize ROM
[AFMP20] Malicious UC-realize TSC
This work (Fig. 4.3) Semi-honest UC-realize ROM+TSC
This work (Fig. 4.4) Malicious UC-realize ROM+TSC

Table 4.2: Comparison between previous isogeny OTs and our constructions. The models
include the random oracle model (ROM) and trusted setup curves (TSC).

52



In [DOPS20, Vit19], the schemes, instantiated using CSIDH, are both universally composable
secure in the semi-honest model.

4.6 Discussion

4.6.1 Results of Using Generic Transforms
In Chapter 7 of [DOPS20], the authors mention that their construction can be compiled into a
UC-secure scheme in the malicious model using the transformation from [DGH+20]. However,
this requires invoking the underlying OT λ times. One can also apply the transformation
from [DGH+20] to our construction presented in Fig. 4.3, which results in a similar outcome of
requiring O(λ) isogeny computations. As the implications of the transformation in [DGH+20]
are easy to overlook within the isogeny community, we provide a brief summary below and the
results of the application in Tab. 4.3.

[DGH+20] comprises a series of transformations (6 in total) that convert a weak OT instance
(referred to as an elementary OT) into a UC-secure OT. The second to last transformation
turns a 2-round sender UC-secure OT (with receiver’s indistinguishability security) into a
binary-challenge zero-knowledge proof (ZKP) in a common reference string (CRS) model,
necessitating λ repetitions for sufficient soundness. Subsequently, the ZKP is utilized in the last
transformation to turn the sender UC-secure OT into a fully UC-secure OT. Importantly, the
resulting scheme remains two-round (i.e., round-optimal). Our two-round construction is sender
UC-secure in the TCS model using the proof of the corrupted-sender-and-honest-receiver case in
Thm. 4.4.2, which does not require the additional rounds as in Fig. 4.4 to achieve. The receiver’s
indistinguishability security holds due to the uniform sampling over the group G. Thus, we can
apply the transformations from Sections 8, and 9 of [DGH+20] to convert both our 2-round
construction and also the first construction of [DOPS20] into UC-secure schemes. The summary
of the performance is given in Tab. 4.3.

# IsoS # IsoR # rounds Assumption Model
[DOPS20] I + [DGH+20] O(3λ) O(2λ) 2 GAIP ROM+TCS

Fig. 4.3 + [DGH+20] O(3λ) O(3λ) 2 GAIP ROM+TCS

Table 4.3: Immediate results by applying the transform [DGH+20] to the two-round
sender UC-secure OTs.

4.6.2 Further Directions
Several directions and open problems in isogeny-based OT research are worth investigating.

First, some relaxed notions of OT have not been considered in this thesis. For example,
semantic security in [Vit19] and statistical sender privacy in [AFMP20]. These notions might
be sufficient for certain applications. Additionally, we believe there is potential for efficiency
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improvements in the latter construction, which currently requires O(λ) isogeny computations
and transfers one bit at a time.

Another interesting direction is the study of a primitive called "OT extension." Combining
public key and private key encryptions can be more cost-effective than using public key encryption
alone. Similarly, an OT extension construction that uses fewer OT executions along with other
inexpensive primitives can be more efficient than using OTs alone. [KOS15] presents an efficient
UC-secure OT extension construction, and [CSW20] demonstrates that the underlying OT
component of [KOS15] can be relaxed. Specifically, the base-OT in their extension construction
only needs to be UC-secure for the sender and indistinguishable against a malicious receiver. This
relaxed notion provides more flexibility when designing an OT scheme, and the OT-extension
scheme achieves the same effect as using UC-secure OT as a component in turn. Conceptually,
this enables a simpler construction, such as a Chou-Orlandi type construction (as seen in
Fig. 4.2), which by itself may not be a UC-secure OT, but serves as a valid component for the
UC-secure OT extension using [KOS15, CSW20]. Recent work [BMM+22] improves efficiency
in this direction, resulting in a scheme that requires only four isogeny computations.

Lastly, achieving an efficient (with a constant number of isogeny computations) and UC-
secure round-optimal or adaptively UC-secure OT remains an open problem. In fact, this
thesis only considers static adversaries, where the party to be corrupted is chosen before the
execution begins. In the adaptive model, the adversary can corrupt parties after the execution
has started. We have not identified any efficient adaptively secure or round-optimal isogeny-based
constructions in the literature, making this an area worth exploring.

While the author is writing this thesis, a work by Orsini and Zanotto [OZ23] was submitted
to eprint. The work claims to provide two UC-secure isogeny-based OTs in an abstract model
called the explicit isogeny model. One is a 3-round construction in the Random Oracle Model
(ROM) with six isogeny computations. The other is a round-optimal isogeny-based OT that
improves upon our construction with only seven isogeny computations in total. The method
appears to be plausible, as in an abstract model, group actions and taking twists are the only
valid operations. Consequently, this constrains the behavior of a malicious adversary and reduces
the overhead needed to defend against such adversaries. We look forward to further investigation
to verify these claims and advancements.

54



Chapter 5

Ring and Group Signatures

This chapter presents the work carried out in [BDK+22], which the author of the thesis co-
authored. The author’s contributions include proposing the project and the idea of constructing
the tightly secure variant. To make the content more accessible, this chapter has been adapted
by removing the lattice instances and the use of rejection sampling without compromising the
essence of the original work.

Abstract. This chapter introduces a novel approach to construct a group signature and an
accountable ring signature from isogenies, which provides strong security guarantees and a
competitive signature size. Our construction achieves the first logarithmic group signature from
isogenies and the first post-quantum accountable ring signature. Additionally, we provide a
tightly secure variant for our construction, which is a less explored feature in the post-quantum
group/ring signature literature.

5.1 Introduction
Group signature schemes, first proposed by Chaum and van Heyst [Cv91], offer a way for
authorized members of a group to sign documents on behalf of the group while keeping their
individual identities anonymous. This property makes group signatures attractive for various
applications where the anonymity of the signer is important. The full anonymity even ensures the
anonymity remains even the signing key is accidentally exposed. In case the situation demands,
a designated entity known as the group manager (or sometimes the tracing authority) can track
the signature to its originator, thereby ensuring that the group members are held accountable
for their signatures. Over the last three decades, group signatures have been an active area of
academic research and have also gained practical attention due to the real-world deployment
of variants such as directed anonymous attestation (DAA) [BCC04] and enhanced privacy ID
(EPID) [BL07].

A variety of versatile constructions of efficient group signatures exist for classical assumptions,
e.g., [BBS04, DP06, Gro07, FI06, BCN+10, LPY15, LMPY16, DS18, BHSB19, CS20]. When
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evaluating the efficiency of a group signature, one of the quintessential metrics is the signature
size. In this chapter, we require the signature size to be smaller than c · log N bits, where N is
the group size (the number of members) and c is an explicit small polynomial in the security
parameter. Bellare, Micciancio, and Warinschi’s seminal work [BMW03] provided a generic
construction of a group signature with a signature size of O(1) from any signature scheme,
IND-CCA public-key encryption scheme, and general non-interactive zero-knowledge (NIZK)
proof system. However, this only yields an asymptotic feasibility result. Therefore, one of the
main focuses of subsequent works, including ours, has been to construct a group signature that
is practically efficient.

In contrast to the classical setting, creating efficient group signatures from any post-quantum
assumptions has proven challenging. Since the introduction of the first lattice-based con-
struction by Gordon, Katz, and Vaikuntanathan [GKV10], there has been an extensive line
of subsequent works on lattice-based (and one code-based) group signatures, including but
not limited to [LLLS13, ELL+15, LLNW16, LNWX18, KY19]. However, these results re-
mained purely asymptotic. Recently, efficient lattice-based group signatures have emerged
[BCN18, dLS18, EZS+19, ESZ22]. In [ESZ22], Esgin et al. report a signature size of 12KB
and 19KB for a group size (the number of the members) of N = 26 and 210, respectively—a
considerable improvement over prior constructions by several orders of magnitude1. The re-
cent advancements in lattice-based NIZK proof systems for useful languages, as evidenced by
the numerous works [YAZ+19, BLS19, ESLL19, ALS20, ENS20, LNS20, LNS21], have led to
significant improvements in the efficiency of lattice-based group signatures. However, these
improvements cannot transfer to the isogeny setting due to the particularly structured lattices.

On top of that, constructing efficient group signatures from isogenies remains essentially
challenging using current techniques. In general, most group signature constructions follow the
sign-encrypt-proof paradigm [BMW03]. The high-level idea is fairly simple:

1. The signer produces a signature of a message by signing via his signing key.

2. The signer produces a ciphertext by encrypting his verification key via the manager’s PKE
public key.

3. The signer provides a proof for the “signature relation” Rsig relations:

• The signature is signed on the message using the signing key corresponding to a
verification key from the ring (a set containing several verification keys of the group).

• The ciphertext encrypts a verification key from the ring via the manager’s PKE
public key.

• The two verification keys described above are the same one.

Typically, this approach requires IND-CCA secure PKE [DP06, Gro07, FI06, LPY15, LMPY16,
dLS18] as a building block and an efficient NIZK that proves validity of the ciphertext to have

1The signature size of [ESZ22] is in logt N for a small constant t > 1 rather than simply by log N .
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full-anonymity for technical reasons2. In the isogeny setting, although we know how to construct
an IND-CCA secure PKE based on the Fujisaki-Okamoto transform [FO99], it seems quite difficult
to offer the encryption verifiability due to the use of a hash function in the construction.

The difficulties raise the central question of our work:

Can we construct an efficient secure group signature from isogenies?

In addition, as we discuss in more detail later, we notice that all works regarding efficient
post-quantum group signatures [BCN18, KKW18, dLS18, EZS+19, ESZ22] do not satisfy the
ideal security properties (which are by now considered standard) formalized by Bootle et
al. [BCC+16a]. Thus, we are also interested in the following question:

Can we construct an efficient group signatures from isogenies satisfying the ideal
security properties formalized by Bootle et al. [BCC+16a]?

To address these questions, in this work we focus on accountable ring signatures [XY04]3.
An accountable ring signature offers the flexibility of choosing the group of users when creating
a signature (like a ring signature [RST01]). At the same time, it enforces accountability by
mandating the inclusion of one of the openers in the group, much like a group signature.
Despite limited research in this area [XY04, BCC+15, LZCS16, KP17, EZS+19], we believe that
accountable ring signatures are as relevant and interesting as group and ring signatures, and can
bridge the gap between the two primitives. As shown by Bootle et al. [BCC+15], accountable
ring signatures imply group and ring signatures by naturally limiting or downgrading their
functionality. Thus, an efficient post-quantum solution to an accountable ring signature also
implies solutions for both secure (dynamic) group signatures [BSZ05] and ring signatures, making
it an attractive target to focus on.

Finally, we are also interested in tightly-secure constructions, which have received less
attention in prior efficient post-quantum group and ring signature schemes. Tightly-secure
constructions have a small reduction loss in the security proof, which means that the adversary’s
advantage in breaking the security property of the signature scheme is almost the same as its
advantage in solving the underlying hard problem. In contrast, most prior schemes are in the
random oracle model and have a very loose reduction loss to the best of our knowledge. In
typical security proofs, given an adversary with advantage ϵ that breaks some security property
of the group signature, we can only construct an adversary with advantage at most (N2Q)−1 · ϵ2

against the underlying hard problem, where Q is the number of random oracle queries and N

is the number of users in the system. If we aim for 128-bit security (i.e., ϵ = 2−128), and set
for example (N, Q) = (210, 250), then we need at least 326-bits of security for the hard problem.
When aiming for a provably-secure construction, the parameters must be set much larger to
compensate for this significant reduction loss, which then leads to a less efficient scheme. As a
summary, we aim to address the following research questions:

2To use the decryption oracle in IND-CCA experiment to answer the opening queries in the anonymity
experiment.

3Note that the original security guarantees in [XY04] is much weaker than those formalized
in [BCC+16a].
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Can we construct an efficient and tightly-secure accountable ring signature from
isogenies realizing ideal security properties formalized in [BCC+16a]?

5.2 Preliminaries

5.2.1 Accountable Ring Signatures
We provide the definition of accountable ring signatures (ARSs), following the formalization
introduced by Bootle et al. [BCC+15].

Definition 5.2.1 (Accountable Ring Signature). An accountable ring signature ΠARS consists
of PPT algorithms (Setup, MKGen, UKGen, Sign, Verify, Open, Judge) defined as follows:

Setup(1λ)→ pp : On input a security parameter 1λ, it returns a public parameter pp (sometimes
implicitly) used by the scheme. We assume pp defines the openers’ public-key space Kmpk

and users’ verification-key space Kvk, with efficient algorithms to decide membership.

MKGen(pp)→ (mpk, msk) : On input a public parameter pp, it outputs a public and a secret key
(mpk, msk) for an opener.

UKGen(pp)→ (vk, sk) : On input a public parameter pp, it outputs a pair of verification and
signing keys (vk, sk) for a user.

Sign(mpk, sk, R, M)→ σ : On input an opener’s public key mpk, a signing key sk, a list of
verification keys, i.e., a ring, R = (vk1, . . . , vkN ), and a message M, it outputs a signature
σ.

Verify(mpk, R, M, σ)→ ⊤/⊥ : On input an opener’s public key mpk, a ring R = (vk1, . . . , vkN ),
a message M, and a signature σ, it (deterministically) outputs either ⊤ (accept) or ⊥
(reject).

Open(msk, R, M, σ)→ (vk, π)/⊥ : On input an opener’s secret key msk, a ring R = (vk1, . . . , vkN ),
a message M, a signature σ, it (deterministically) outputs either a pair of verification key
vk and a proof π that the owner of vk produced the signature, or ⊥.

Judge(mpk, R, vk, M, σ, π)→ ⊤/⊥ : On input an opener’s public key mpk, a ring R = (vk1, . . . , vkN ),
a verification key vk, a message M, a signature σ, and a proof π, it (deterministic-
ally) outputs either ⊤ (accept) or ⊥ (reject). We assume without loss of generality that
Judge(mpk, R, vk, M, σ, π) outputs ⊥ if Verify(mpk, R, M, σ) outputs ⊥.

An accountable ring signature is required to satisfy the following properties: correctness,
anonymity, traceability, unforgeability, and tracing soundness.

First, we require correctness to hold even if the ring contains maliciously-generated user
keys or the signature has been produced for a maliciously-generated opener key. Note that the
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correctness guarantee for the open and judge algorithms are defined implicitly in the subsequent
security definitions.

Definition 5.2.2 (Correctness). An accountable ring signature ΠARS is correct if, for all λ ∈ N,
any PPT adversary A has at most a negligible advantage in λ in the following game played
against a challenger.

(i) The challenger runs pp← Setup(1λ) and generates a user key (vk, sk)← UKGen(pp). It
then provides (pp, vk, sk) to A.

(ii) A outputs an opener’s public key, a ring, and a message tuple (mpk, R, M) to the challenger.

(iii) The challenger runs σ ← Sign(mpk, sk, R, M). We say A wins if

– mpk ∈ Kmpk, R ⊆ Kvk, and vk ∈ R,

– Verify(mpk, R, M, σ) = ⊥.

The advantage of A is defined as AdvCorrect
ΠARS (A) = Pr[A wins].

Anonymity requires that a signature does not leak any information on who signed it. We
consider the standard type of anonymity notion where the adversary gets to choose the signing
key used to generate the signature. Moreover, we allow the adversary to make (non-trivial)
opening queries that reveal who signed the messages. This notion is often called full (CCA)
anonymity [BMW03, BCC+16a] to differentiate between weaker notions of anonymity such as
selfless anonymity that restricts the adversary from exposing the signing key used to sign the
signature or CPA anonymity where the adversary is restricted from querying the open oracle.

Definition 5.2.3 (Anonymity). An accountable ring signature ΠARS is (CCA) anonymous
(against full key exposure) if, for all λ ∈ N, any PPT adversary A has at most a negligible
advantage in the following game played against a challenger.

(i) The challenger runs pp← Setup(1λ) and generates an opener key (mpk, msk)← MKGen(pp).
It also prepares an empty list Qsign and samples a random bit b← {0, 1}.

(ii) The challenger provides (pp, mpk) to A.

(iii) A can make signing and opening queries an arbitrary polynomial number of times:

• (sign, R, M, sk0, sk1): The challenger runs σi ← Sign(mpk, ski, R, M) for i ∈ {0, 1}
and returns ⊥ if Verify(mpk, R, M, σi) = ⊥ for either of i ∈ {0, 1}. Otherwise, it
updates Qsign ← Qsign ∪ {(R, M, σb)} and returns σb.

• (open, R, M, σ): The challenger returns ⊥ if (R, M, σ) ∈ Qsign. Otherwise, it returns
Open(msk, R, M, σ).

(iv) A outputs a guess b∗. We say A wins if b∗ = b.

The advantage of A is defined as AdvAnon
ΠARS(A) = |Pr[A wins]− 1/2|.
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Unforgeability considers two types of forgeries. The first captures the natural notion of
unforgeability where an adversary cannot forge a signature for a ring of honest users, i.e., a ring
of users for which it does not know any of the corresponding secret keys. The second captures
the fact that an adversary cannot accuse an honest user of producing a signature even if the
ring contains malicious users and the opener is malicious.

Definition 5.2.4 (Unforgeability). An accountable ring signature scheme ΠARS is unforgeable
(with respect to insider corruption) if, for all λ ∈ N, any PPT adversary A has at most negligible
advantage in the following game played against a challenger.

(i) The challenger runs pp← Setup(1λ) and initializes an empty keyed dictionary DUKey[·] and
three empty sets QUKey, Qsign and Qcor. It provides pp to A.

(ii) A can make user key generation, signing, and corruption queries an arbitrary polynomial
number of times:

• (ukeygen): The challenger runs (vk, sk) ← UKGen(pp). If DUKey[vk] ̸= ⊥, then it
returns ⊥. Otherwise, it updates DUKey[vk] = sk and QUKey ← QUKey ∪ {vk}, and
returns vk.

• (sign, mpk, vk, R, M): The challenger returns ⊥ if vk ̸∈ QUKey ∩ R. Otherwise, it
runs σ ← Sign(mpk, DUKey[vk], R, M). The challenger updates Qsign ← Qsign ∪
{(mpk, vk, R, M, σ)} and returns σ.

• (corrupt, vk): The challenger returns ⊥ if vk ̸∈ QUKey. Otherwise, it updates
Qcor ← Qcor ∪ {vk} and returns DUKey[vk].

(iv) A outputs (mpk, vk, R, M, σ, π). We say A wins if

– (mpk, ⋆, R, M, σ) ̸∈ Qsign, R ⊆ QUKey\Qcor,

– Verify(mpk, R, M, σ) = ⊤,

or

– (mpk, vk, R, M, σ) ̸∈ Qsign, vk ∈ QUKey\Qcor,

– Judge(mpk, R, vk, M, σ, π) = ⊤.

The advantage of A is defined as AdvUnf
ΠARS(A) = Pr[A wins].

Traceability requires that any opener key pair (mpk, msk) in the range of the opener key-
generation algorithm can open a valid signature σ to some user vk along with a proof valid π. This
ensures that any opener can trace the user and produce a proof for its decision. Below, rather
than assuming an efficient algorithm that checks set membership (mpk, msk) ∈ MKGen(pp), we
simply ask the adversary to output the randomness used to generate (mpk, msk). Note that
this definition contains the prior definitions where mpk was assumed to be uniquely defined and
efficiently computable from msk [BCC+15].
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Definition 5.2.5 (Traceability). An accountable ring signature scheme ΠARS is traceable if, for
all λ ∈ N, any PPT adversary A has at most negligible advantage in the following game played
against a challenger.

(i) The challenger runs pp← Setup(1λ) and provides pp to A.

(ii) A returns a randomness, a ring, a message, and a signature tuple (rr, R, M, σ). We say A
wins if

– Verify(mpk, R, M, σ) = ⊤, where (mpk, msk)← MKGen(pp; rr), and

– Judge(mpk, R, vk, M, σ, π) = ⊥, where (vk, π)← Open(msk, R, M, σ).

The advantage of A is defined as AdvTra
ΠARS(A) = Pr[A wins].

Finally, tracing soundness requires that a signature cannot trace to two different users in the
ring. This must hold even if all the users in the ring and the opener are corrupt.

Definition 5.2.6 (Tracing Soundness). An accountable ring signature scheme ΠARS is traceable
sound if, for all λ ∈ N, any PPT adversary A has at most negligible advantage in the following
game played against a challenger.

(i) The challenger runs pp← Setup(1λ) and provides pp to A.

(ii) A returns an opener’s public key, a ring, a message, a signature, and two verification keys
and proofs (mpk, R, M, σ, {(vkb, πb)}b∈{0,1}). We say A wins if

– vk0 ̸= vk1,

– Judge(mpk, R, vk0, M, σ, π0) = ⊤,

– Judge(mpk, R, vk1, M, σ, π1) = ⊤.

The advantage of A is defined as AdvTraS
ΠARS(A) = Pr[A wins].

5.3 Components

5.3.1 An Elgamal-type PKE
We start with an Elgamal-type PKE from group actions. One feature is the encryption does not
require a hash function, which makes it potentially friendly to construct a proof system for a
relation involving the encryption relation.

An Elgmal-type PKE without Hashes. ΠPKE = (Setup, KeyGen, Enc, Dec),

• Setup(1λ) → pp : On input the security parameter 1λ, it outputs a public parameter
pp = (G, E , E0, ⋆,M) where (G, E , E0, ⋆) is the public parameter specified in Def. 2.3.3,
M is the message space which is a subset of G and |M| ≤ poly(λ).
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• KeyGen(pp) → (pk, sk) : On input a public parameter pp, it outputs a public key and a
secret key (pk = (E0, g ⋆ E0), sk = g) where g ← G.

• Enc(pk, M)→ ct: On input a public key pk = (E0, E) and a message M ∈M, it outputs a
ciphertext ct = (r ⋆ E0, M ⋆ (r ⋆ E)) where r ← G. We let Enc(pk, M; r) the denote the
encryption using the randomness r.

• Dec(sk, ct) → M or ⊥ : On input a secret key sk and a ciphertext ct = (E′
0, E′), it

enumerates M ∈M, tests whether M⋆ (sk⋆E′
0) = E′, and outputs M; otherwise, it outputs

⊥.

The correctness of ΠPKE holds naturally. Due to the commutativity, we have M ⋆ (r ⋆ E) =
M ⋆ (sk ⋆ (r ⋆ E0)). Moreover, the following theorem shows that ΠPKE is IND-CPA.

Theorem 5.3.1. The public key encryption scheme ΠPKE described is IND-CPA if DDH over
(G, E , E0, ⋆) is hard. Concretely, given an IND-CPA adversary A, there exists a polynomial-
time DDH adversary B over (G, E , E0, ⋆) with O(1) queries to A such that AdvDDH(B) =
1
2AdvIND-CPA

ΠPKE (A).

Proof. Say pp = (G, E , E0, ⋆,M) ← Setup. Given the challenge (E0, E1, E2, E3) and access to
the IND-CPA adversary A, a reduction B proceeds as follows.

1. Set pk = (E0, E1) (without knowing sk).

2. Invoke the adversary A with the public key pk.

3. Upon receiving m0, m1 ∈M from A, B replies with (E2, mb ⋆ E3) where b← {0, 1}.

4. Output the truth value (b == b′) where A returns b′.

Write E1 = g1 ⋆ E0 and E2 = g2 ⋆ E0 where g1, g2 ← G. In the case that E3 = (g1 + g2) ⋆ E0,
it is clear that B returns the encryption of mb up to b ∈ {0, 1} following the same encryption
distribution. In the case that E3 ← E , the instance might be malformed (i.e. (E2, E3) is not a
valid ciphertext using pk). The input (E2, mb ⋆ E3) follows the uniform distribution over E2.
The reduction B can only win with negligible advantage in this case. Therefore,

Pr[B wins] = 1/2 Pr[B wins | E3 = (g1 + g2) ⋆ E0] + 1/2 Pr[B wins | E3 ̸= (g1 + g2) ⋆ E0]
= 1/2(1/2 + AdvIND-CPA

ΠPKE (A)) + 1/2× 1/2.

We have
AdvDDH(B) = 1

2AdvIND-CPA
ΠPKE (A).

Remark 5.3.2. Due to the free action, for a public key pk = (E0, E) of ΠPKE, there exists a
unique (M, r) ∈ G2 such that Enc(pk, M; r) = ct for a valid ciphertext ct = (Y0, Y ) by solving the
equations r ⋆ E0 = Y0, (M + r) ⋆ E = Y .
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A Proof System of Decryption.
In Fig. 5.1, we construct a base proof system for the encryption scheme, where the owner

of the decryption key sk corresponding to pk is able to prove correctness of the decryption.
Formally, we consider the relation

Ropen =
{

((pk = (E0, E), ct, I), sk)
∣∣∣∣∣ E = sk ⋆ E0 ∧

I = Dec(sk, ct)

}
.

The idea of the proof system is simple. By writing ct = (Y0, Y ), the secret key sk is the
witness for both (E0, E) and (Y0,−I ⋆ Y ) with respect to the group action inverse relation RGAIP.
That is, ((E0, E), sk), ((Y0,−I ⋆ Y ), sk) ∈ RGAIP. Fig. 5.1 repeats the graph-isomorphism type
proof of knowledge in a parallel manner.

Theorem 5.3.3. The sigma protocol ΠOPbase
Σ described in Fig. 5.1 has correctness and relaxed

special soundness for the relation R̃open, where

R̃open =


((

(pk = (E0, E), ct, I), W
)) ∣∣∣∣∣∣∣∣

W = sk ∈ G ∧
E = sk ⋆ E0 ∧ I = Dec(sk, ct) or

W = (x1, x2) ∈ {0, 1}∗ ∧ x1 ̸= x2 ∧ O(x1) = O(x2)

 .

Here, R̃open relaxes Ropen by taking the hash collision W = (x1, x2) into account.

Theorem 5.3.4. The sigma protocol ΠOPbase
Σ described in Fig. 5.1 has honest-verifier zero-

knowledge. Precisely, there exists a PPT simulator SimO with access to a random oracle O
such that, for any statement-witness pair (X, W) ∈ Ropen, ch ∈ {0, 1}, and any computationally-
unbounded adversary A that makes at most Q queries to the random oracle O, we have

∣∣∣Pr[AO(1λ, P ′O(X, W, ch)) = 1]− Pr[AO(1λ, SimO(X, ch)) = 1]
∣∣∣ ≤ Q

2λ
,

where P ′ = (P ′
1, P ′

2) is a prover run on (X, W) with a challenge fixed to ch.

The proofs are relatively simple and can be easily deduced. As a beneficial learning exercise,
we encourage readers to work through them independently.

5.3.2 The “traceable” OR-Proof
This section presents a traceable OR proof for the OR relation of RGAIP in Fig. 5.2. Concretely,
the prover is able to generate a proof of knowledge of a witness for one of several RGAIP statements.
Moreover, the proof endows a candidate the ability to trace the proof back to the prover. Our
proof system (Σ-protocol-based) is based on an effective group action and the derived PKE
described above.4

4In fact, it is not necessary for these two components be instantiated from the same group action. We
refer [BDK+22] for more details.
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round 1: P ′O
1 ((pk = (E0, E), ct = (Y0, Y ), I), sk)

1: seed $← {0, 1}λ

2: s′ ← O(Expand ∥ seed) ▷ Sample r ∈ G
3: C0 ← O(Com ∥ s′ ⋆ E)
4: C1 ← O(Com ∥ (s′ − I) ⋆ Y )
5: (root, tree)← MerkleTree(C1, C2)
6: Prover sends com← root to Verifier.

round 2: V ′
1(com)

1: c $← {0, 1}
2: Verifier sends ch← c to Prover.

round 3: P ′
2(sk, ch)

1: c← ch
2: if c = 1 then
3: s′′ ← s′ + sk
4: resp← s′′

5: else
6: resp← seed
7: Prover sends resp to Verifier

Verification: V ′O
2 (com, ch, resp)

1: (root, c)← (com, ch)
2: if c = 1 then
3: s′′ ← resp
4: C̃1 ← O(Com ∥ s′′ ⋆ E0)
5: C̃2 ← O(Com ∥ s′′ ⋆ Y0)
6: r̃oot← MerkleTree(C̃1, C̃2)
7: Verifier accepts only if r̃oot = root.
8: else
9: Repeat round 1 with seed← resp.

10: Output accept if the computation res-
ults in root, and reject otherwise.

Figure 5.1: Construction of the base decryption sigma protocol ΠOPbase
Σ = (P ′ =

(P ′
1, P ′

2), V ′ = (V ′
1 , V ′

2)) for the relation Ropen. Informally, O(Expand∥·) and O(Com∥·)
are a PRG and a commitment scheme instantiated by the random oracle, respectively.

Let (G, E , E0, ⋆) forms an effective group action and pp′ = (G, E , E0, ⋆,M) be the PKE
public parameter sharing the same group. Moreover, let (pk = (E0, E), sk) ∈ KeyGen(pp′). The
relation Rsig, conceptually described in Sec. 5.1, can be equivalently rewritten as follows:

Rsig =


(
((Xi)i∈[N ], pk, ct), (I, s, r)

) ∣∣∣∣∣∣∣∣
(I, s, r) ∈ [N ]×G×G

XI = s ⋆ E0 ∧
ct = (Y0, Y ) = Enc(pk, I; r)

 ,

where N represents the number of members this ring/group and Xi indicates the verification
key of each member for each i ∈ [N ]. To clarify, the “OR” relation here is slightly different from
the one considered in [CDS94] where there are N witnesses for the same statement (Xi)i∈[N ].
Instead, the “OR” relation here means the ciphertext ct is encrypted from one of the N messages.

High-level Idea. The high-level idea of the construction is fairly simple. The relation Rsig can
be decomposed as relations R1 and R2 as follows.

R1 =
{(

(Xi)i∈[N ], (I, s)
) ∣∣∣∣∣ (I, s) ∈ [N ]×G

XI = s ⋆ E0

}
,
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R2 =
{

((pk, ct), (I, r))
∣∣∣∣∣ (I, r) ∈ [N ]×G

ct = (Y0, Y ) = Enc(pk, I; r)

}
.

We apply the OR-proof [BKP20] and construct two proof systems for R1 and R2 respectively.
Due to statistical zero-knowledge, even if the verifier knows the message spaceM and the size is
in poly(λ), the proof does not disclose the information of I. Different from the challenge-XOR
method from [CDS94], the logarithm OR-proof of [BKP20] hides the index by shuffling the
commitments of the instances. To ensure the consistency of the index I in the two proofs, the
prover concatenates the commitments in two proofs with respect to the index i ∈ [N ], and
shuffles the concatenated commitments. This leads to our proof system for the relation Rsig

with the “traceable” feature. That is, the owner of the public key pk can decrypt and obtain the
index. Looking ahead, this is precisely the “traceability” for the ring signature and naturally
gives us a group signature. On top of the traceability, the member who has the decryption key
(i.e. the manager) generates another proof for the correctness of the decryption wrt the public
key using Fig. 5.1.

Sigma Protocol for Rsig. We now sketch the base traceable OR sigma protocol ΠARSbase
Σ . A

prover with witness (I, s, r) ∈ [N ]×G×G first samples (s′, r′) $← G×G, and ({bitsi}i∈[N ])←
{0, 1}λN . Then, it computes commitments

Ci = O(Com ∥ s′ ⋆ Xi ∥ (r′ ⋆ Y0, (−i + r′) ⋆ Y ) ∥ bitsi) ∀i ∈ [N ],

and builds a (index-hiding) Merkle tree with (C1, . . . , CN ) as its leaves, obtaining root. Here,
notice r′ ⋆ Y0, (−i + r′) ⋆ Y is simply ((r′ + r) ⋆ E0, (r′ + r) ⋆ E) when i = I. Then, the prover
sends com = root to the verifier as the commitment of the sigma protocol. The verifier, in turn,
responds with a uniform challenge ch ∈ {0, 1}.

If the challenge bit ch is 0, then the prover sends (s′, r′) and the commitment randomness
{bitsi}i∈[N ]. That is, all the randomness it generated in the first round. The verifier then can
reconstruct the Merkle tree and verify that the root of the obtained tree is equal to root.

If the challenge bit ch is equal to 1, then the prover computes s′′ = s′ + s, r′′ = r′ + r and
sends to the verifier. The verifier computes C̃I = O(Com ∥ s′′ ⋆ E0 ∥ (r′′ ⋆ Y0, r′′ ⋆ Y ) ∥ bitsI)
and uses the received path to reconstruct r̃oot of the Merkle tree. The verifier checks whether
r̃oot = root.

Optimization. To reduce the communication bandwidth, we use a pseudorandom number
generator (PRNG), denoted by Expand, on input a uniform seed seed ∈ {0, 1}λ to produce all
randomness, including the group elements s′, r′ and all commitment randomness values bits1,

. . . , bitsN (part of the response for ch = 0). As a consequence, if the challenge bit is 0, the prover
responds with seed so that the verifier can generate (s′, r′, bits1, · · · , bitsN ) with Expand. The
response for the challenge bit ch = 1 remains the same. We instantiate the PRNG by a random
oracle O(Expand ∥ ·). Looking ahead, using a PRNG not only provides efficiency, but also proves
to be essential for our cryptosystem by providing the online extractability after compilation into
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a NIZK under the random oracle model. The insight is the seeds, binding with the response for
the challenge bit ch = 0, prevents a malicious prover from forging a response afterward. This
allows an efficient and online extraction in the random oracle model. Finally, we instantiate the
collision-resistant hash function HColl(·) used in our Merkle tree by a random oracle O(Coll ∥ ·).
The resulting scheme is given in Fig. 5.2.

round 1: P ′O
1 (((Xi)i∈[N ], pk = (E0, E), ct = (Y0, Y )), (I, s, r))

1: seed $← {0, 1}λ

2: (s′, r′, bits1, · · · , bitsN)← O(Expand ∥ seed) ▷ Sample (s′, r′) ∈ G×G and
bitsi ∈ {0, 1}λ

3: for i from 1 to N do
4: (Ti, cti)← (s′ ⋆ Xi, (r′ ⋆ Y0, (r′ − i) ⋆ Y ))
5: Ci ← O(Com ∥ Ti ∥ cti ∥ bitsi) ▷ Create commitments Ci ∈ {0, 1}2λ

6: (root, tree)← MerkleTree(C1, · · · , CN)
7: Prover sends com← root to Verifier.

round 2: V ′
1(com)

1: c $← {0, 1}
2: Verifier sends ch← c to Prover.

round 3: P ′
2((I, s, r), ch)

1: c← ch
2: if c = 1 then
3: (s′′, r′′)← (s′ + s, r′ + r)
4: path← getMerklePath(tree, I)
5: resp← (s′′, r′′, path, bitsI)
6: else
7: resp← seed
8: Prover sends resp to Verifier

Verification: V ′O
2 (com, ch, resp)

1: (root, c)← (com, ch)
2: if c = 1 then
3: (s′′, r′′, path, bits)← resp
4: (T̃ , c̃t)← (s′′ ⋆ E0, (r′′ ⋆ E0, r′′ ⋆ E))
5: C̃← O(Com ∥ T̃ ∥ c̃t ∥ bits)
6: r̃oot← ReconstructRoot(C̃, path)
7: Verifier accepts only if r̃oot = root.
8: else
9: Repeat round 1 with seed← resp.

10: Output accept if the computation res-
ults in root, and reject otherwise.

Figure 5.2: Construction of the base traceable OR sigma protocol ΠARSbase
Σ = (P ′ =

(P ′
1, P ′

2), V ′ = (V ′
1 , V ′

2)) for the relation Rsig. Informally, O(Expand∥·) and O(Com∥·) are a
PRG and a commitment scheme instantiated by the random oracle, respectively.

The following Thms. 5.3.5 and 5.3.6 summarize the security of our sigma protocol. It should
be noted that in Thm. 5.3.5, our sigma protocol satisfies special soundness for the relations Rsig

and R̃sig such that Rsig ⊂ R̃sig. The subtle difference is that R̃sig is a relaxation of Rsig capturing
the scenario where the extractor may extract a witness that forms a collision in the random
oracle. This distinction has no real-world implications, as we are capable of converting such a
sigma protocol into a multi-proof online extractable NIZK for both relations Rsig and R̃sig.
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Theorem 5.3.5. The sigma protocol ΠARSbase
Σ has correctness and relaxed special soundness for

the relation R̃sig, where

R̃sig =


((

(Xi)i∈[N ], pk, ct
)
, W
) ∣∣∣∣∣∣∣∣

W = (I, s, r) ∈ [N ]×G×G

∧ XI = s ⋆ X0 ∧ ct = Enc(pk, I; r) or
W = (x1, x2) ∈ {0, 1}∗ ∧ x1 ̸= x2 ∧ O(x1) = O(x2)

 .

Here, R̃sig relaxes Rsig by taking the hash collision W = (x1, x2) into account.

Proof. Correctness. Say the prover honestly runs ΠARSbase
Σ on an input (I, s, r) satisfying

XI = s ⋆ X0 and ct = Enc(pk, I; r). If ch = 0, then the verifier repeats the computation in
the commitment phase (i.e. Round 1 in Fig. 5.2) and therefore obtains the same output. If
ch = 1, then the verifier computes T̃ = s′′ ⋆ X0 and c̃t = (r′′ ⋆ E0, r′′ ⋆ E) where s′′ = s′ + s and
r′′ = r′ + r. Besides, since T̃ is equal to TI = s′ ⋆ XI , c̃t is equal to ctI = (r′ ⋆ Y0, (r′− I) ⋆ Y ) and
C̃ = O(Com ∥ T̃ ∥ c̃t ∥ bits) is equal to the leaf C̃ = CI ∈ {C1, · · · , CN}, the verifier reconstructs
the root r̃oot which results in the same root. Hence, the protocol has correctness.

Relaxed Special Soundness. Given two valid transcripts for the same statement and on the same
commitment, (com, 0, seed) and (com, 1, (s′′, r′′, path, bits)) where com = root, an extraction
algorithm Extract for a witness for the relation R̃sig proceeds as follows.

1. Generate (s′, r′, bits1, · · · , bitsN )← O(Expand ∥ seed).

2. Construct C1, · · · , CN such that the Merkle Tree with leaves (C1, · · · , CN ) has the root
equal to root. Remark that running V ′

2(com, 1, (s′′, r′′, path, bits)) will result in the same
root via ReconstructRoot.

3. In the two procedures of computing the root using MerkleTree, if there exists x1 ̸= x2 such
that O(Coll ∥ x1) = O(Coll ∥ x2), output W = (Coll ∥ x1, Coll ∥ x2) and stop. Otherwise,
continue.

4. In the two procedures of computing the root using O(Com ∥ ·), if there exists x1 ̸= x2 such
that O(Com ∥ x1) = O(Com ∥ x2), output W = (Com ∥ x1, Com ∥ x2) and stop. Otherwise,
find and set Ĩ ∈ [N ] such that bits = bits

Ĩ
and continue.

5. Output (Ĩ ,−s′ + s′′,−r′ + r′′).

If the condition of Step 3. fails, we have C̃ = O(Com ∥ s′′ ⋆ X0 ∥ r′′ ⋆pk E0, ⋆E ∥ bits) is equal to
C

Ĩ
∈ {C1, · · · , CN} for some Ĩ ∈ [N ]. If the condition of Step 4. fails, due to C̃ = C

Ĩ
, we have

s′ ⋆ X
Ĩ

= s′′ ⋆ X0, (r′ ⋆ Y0, (r′ − Ĩ) ⋆ Y ) = (r′′ ⋆ E0, r′′ ⋆ E), and bits = bits
Ĩ
.

Write s̃ = −s′ + s′′ and r̃ = −r′ + r′′ where W = (Ĩ , s̃, r̃) is the final output of Extract, if no
collisions occur. Here, the equalities s̃ ⋆ X0 = X

Ĩ
and (r̃ ⋆ E0, (r̃ + Ĩ) ⋆ E) = ct follow directly

from the relations s′ ⋆ X
Ĩ

= s′′ ⋆ X0 and (r′ ⋆ Y0, (r′ − Ĩ) ⋆ Y ) = (r′′ ⋆ E0, r′′ ⋆ E), respectively.
Therefore, the extractor outputs W ∈ R̃sig.
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Theorem 5.3.6. The sigma protocol ΠARSbase
Σ has honest-verifier zero-knowledge. Precisely,

there exists a PPT simulator SimO with access to a random oracle O such that, for any statement-
witness pair (X, W) ∈ Rsig, ch ∈ {0, 1}, and any computationally-unbounded adversary A that
makes at most Q queries to the random oracle O, we have

∣∣∣Pr[AO(1λ, P ′O(X, W, ch)) = 1]− Pr[AO(1λ, SimO(X, ch)) = 1]
∣∣∣ ≤ Q

2λ
,

where P ′ = (P ′
1, P ′

2) is a prover run on (X, W) with a challenge fixed to ch.

Proof. Assume the adversary makes QExpand and QCom queries to the random oracles of the form
O(Expand ∥ ·) and O(Com ∥ ·), respectively. We have QExpand + QCom ≤ Q. The PPT simulator
SimO, on input (X, ch), proceeds as follows.

• If ch = 0, the simulator executes as P
′O(X,⊥, ch), where notice P ′ does not require the

witness when ch = 0. Concretely, the simulator outputs (com = root, ch = 0, resp = seed)
where root, seed are honestly generated as in the execution of P

′O
1 .

• If ch = 1, the simulator uniformly samples (s′′, r′′) from G × G, and bits from {0, 1}λ.
It computes C1 = O(Com ∥ s′′ ⋆ X0 ∥ (r′′ ⋆ E0, r′′ ⋆ E) ∥ bits). It then uniformly samples
dummy commitments Ci for i ∈ {2, . . . , N} from {0, 1}2λ, and computes the (index-hiding)
Merkle tree (root, tree)← MerkleTree(C1, . . . , CN ). After that, it extracts the path path←
getMerklePath(tree, 1) in the tree and sets com = root, and resp = (s′′, r′′, path, bits).
Finally, the simulator returns (com, ch = 1, resp).

In the first case, the procedure of Sim is identical to a real honest prover, the transcripts are
following the same distribution. Hence transcripts generated by P ′O and SimO are indistinguish-
able to the adversary A. Therefore, we have∣∣∣Pr[AO(1λ, P ′O(X, W, ch = 0)) = 1]| = |Pr[AO(1λ, SimO(X, ch = 0)) = 1]

∣∣∣ .
To conclude the proof, it suffices to show that the statistical difference between the output

produced by adversary A and the output of a real prover is bounded by Q
2λ .

We use a hybrid argument by introducing a series of simulators Sim0 = P ′, . . . , Sim4 = Sim,
gradually changing from the honest prover P ′ to Sim, to show that they are indistinguishable with
overwhelming probability. We fix an adversary A, (X, W) ∈ Rsig, and for each i ∈ {0, 1, . . . , 4},
we denote by Ei the event that AO(1λ, SimO

i (X, ch = 1)) = 1.

• Sim1 is identical to Sim0 except that instead of using Expand to generate s′, r′, {bitsi}i∈[N ],
the simulator generates these by sampling uniformly at random from the corresponding
domains. This does not change the view of A, unless the adversary queries O on input
(Expand ∥ seed). Since seed has λ bits of min-entropy and because it is information-
theoretically hidden from A, the probability that A queries O on this input is bounded by
QExpand/2λ. That is, |Pr[E1]− Pr[E0]| ≤ QExpand

2λ .
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• Sim2 is identical to Sim2 except that all the commitments Ci for i ∈ [N ] \ {I} are
generated uniformly at random. This does not change the view of A, unless the adversary
queries O on input (Com ∥ Ti ∥ cti ∥ bitsi) for any i ∈ [N ] \ {I}, where Ti = s′ ⋆ Xi and
cti = (r′ ⋆ Y0, (r′ − i) ⋆ Y ). Since for any i ∈ [N ] \ {I} the string bitsi has λ bits of
min-entropy and because it is information-theoretically hidden from A, the probability
that A queries O on input (Com ∥ Ti ∥ cti ∥ bitsi) is bounded by QCom/2λ. That is,
|Pr[E2]− Pr[E1]| ≤ QCom

2λ .

• Sim3 is identical to Sim3 except that instead of computing s′′, r′′ as s′ + s, r′ + r, the
simulator generates these two values by sampling uniformly at random from G instead.
Both the distributions are uniform over G. Therefore, we have |Pr[E3]− Pr[E2]| = 0.

• Sim4 = Sim is identical to Sim4 except that the simulator uses I = 1 instead of the value
I in the witness W. These two simulators are indistinguishable because the Merkle tree is
index-hiding by Lemma 2.10 of [BKP20]. Formally, we have |Pr[E4]− Pr[E3]| = 0.

Collecting the bounds, the result follows.

Repetitions and Adding Salts. Next, we use a standard parallel repetition approach to reduce
the soundness error to be negligible. Also, we add salts to the random oracle. Concretely, we prefix
a salt (a random string) and the session identifier (i.e. (salt ∥ i)) to the random oracle when used
within the i-th parallel execution of the base sigma protocol (e.g. ΠARSbase

Σ , ΠΣ). In particular,
throughout each such execution, the participants use the random oracle Oi(·) = O(salt ∥ i ∥ ·).
The salt is used as a prefix also within the construction of Merkle trees. Salt benefits the protocol
in having a tighter reduction and resisting multi-target attacks, such as those in [DN19]. At a
glance, adding a salt makes no difference in a sigma protocol but it’s quite beneficial to a group
(ring) signature scheme after we apply Fiat-Shamir transform. Roughly, in the anonymity game
(Def. 5.2.3) each oracle O query made by the adversary will only give useful information to at
most one challenge signature due to the distinct prefix salt. In contrast, without salts an oracle
query of O can give useful information to each challenge signature. We refer to Thm. 5.3.13 to
see how salts mitigate the quadratic looseness in the reduction.

Theorem 5.3.7. The sigma protocol ΠtOR
Σ , compiled from ΠARSbase

Σ in Fig. 5.2 via the compiler
in Fig. 5.3, has correctness, high min-entropy, and relaxed special soundness for the relations
R̃sig, where the relations are identical to those used in Thm. 5.3.5.
Similarly, the result holds the same for compiled Fig. 5.1 for the relation R̃open.

Proof. Correctness. The correctness follows straightforwardly from Thm. 5.3.5.
High Min-Entropy. Containing a random salt of length 2λ, the commitment com has at least
2λ bits of min-entropy.

Relaxed Special Soundness. The proof is similar to the one for the relaxed special soundness
of ΠARSbase

Σ . Given (com, ch = c, resp) (com, ch′ = c′, resp′) be two accepting transcripts for the
same statement, a extractor proceeds as follows.
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round 1: P O
1 (X, W)

1: salt $← {0, 1}2λ

2: for j ∈ [λ] do
3: Oj(·) := O(salt ∥ j ∥ ·)
4: comj ← P

′Oj

1 (X, W; seedj)
5: Prover sends com← (salt, com1, · · · , comλ) to Verifier.

round 2: V1(com)
1: c $← {0, 1}λ

2: Verifier sends ch← c to Prover.

round 3: P O
2 (X, ch)

1: c = (c1, · · · , cλ)← ch
2: for j ∈ [λ] do
3: if cj = 1 then
4: respj ← P

′Oj

2 (X, cj; seedj) ▷ Execute P ′
2 on state seedj

5: else
6: respj ← seedj

7: Prover sends resp← (resp1, · · · , respλ) to Verifier

Verification: V O
2 (com, ch, resp)

1: ((salt, com1, · · · , comλ), c = (c1, · · · , cλ))← (com, ch)
2: resp← (resp1, · · · , respλ)
3: for j ∈ [λ] do
4: Oj(·) := O(salt ∥ j ∥ ·)
5: Verifier outputs reject if V

′Oj

2 (comj, cj, respj) outputs reject.
6: Verifier outputs accept.

Figure 5.3: The main sigma protocol ΠΣ = (P = (P1, P2), V = (V1, V2)) compiler using
λ-repetitions and adding salts for a base sigma protocol (e.g. ΠARSbase

Σ , ΠOPbase
Σ in Figs. 5.1

and 5.2). The base sigma protocol here is given access to salted random oracles derived
from O. We denote two derived protocols ΠtOR

Σ and ΠOP
Σ respectively.
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1. Find j ∈ [λ] such that cj = 0, c′
j = 1.

2. Obtain (comj , 0, respj) and (comj , 1, resp′
j) where respj , resp′

j are the j-th entries extracted
from resp, resp′ respectively.

3. Invoke the extractor (Extract) of ΠARSbase
Σ (Fig. 5.2) in Thm. 5.3.5, we can output a witness

for the relation R̃sig.

Remark that in Step 2., (comj , 0, respj) and (comj , 1, resp′
j) are the valid transcripts for ΠARSbase

Σ ,
which justify the application of the extractor in Step 3. Therefore, by Thm. 5.3.5, the result
follows.

Theorem 5.3.8. The sigma protocol ΠtOR
Σ , compiled ΠARSbase

Σ in Fig. 5.2 via the compiler in
Fig. 5.3, has honest-verifier zero-knowledge. Precisely, there exists a PPT simulator SimO with
access to a random oracle O such that, for any statement-witness pair (X, W) ∈ Rsig, ch ∈ {0, 1}λ

and any computationally-unbounded adversary A that makes at most Q queries of the form
(salt ∥ ·) to the random oracle O, where salt is the salt value included in the transcript returned
by P̃ or Sim, we have

∣∣∣Pr[AO(1λ, P O(X, W, ch)) = 1]− Pr[AO(1λ, SimO(X, ch)) = 1]
∣∣∣ ≤ Q

2λ
,

where P = (P1, P2) is an honest prover running on (X, W) with a challenge fixed to ch. Similarly,
the result holds the same for the base sigma protocol in Fig. 5.1 transformed via Fig. 5.3 for the
relation Ropen.

Proof. The PPT simulator SimO(X, ch) for the main sigma protocol ΠtOR
Σ proceeds as in Fig. 5.4

where the simulator, used in the base sigma protocol ΠARSbase
Σ in Thm. 5.3.6, is denoted by

Sim′ as a subroutine. Say the adversary makes Qi queries to the random oracle of the form
O(salt ∥ i ∥ ·) for i ∈ [λ]. We have Σλ

1Qi ≤ Q.

SimO(X, ch)
1: c = (c1, · · · , cλ)← ch
2: salt← {0, 1}2λ

3: for j ∈ [λ] do
4: Oj(·) := O(salt ∥ j ∥ ·)
5: (comj, cj, respj)← Sim′Oi(X, ci)
6: com← (salt, com1, · · · , comλ)
7: resp← (resp1, · · · , respλ)
8: return (com, ch, resp)

Figure 5.4: Zero-knowledge simulator Sim for the main sigma protocol ΠtOR
Σ
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The simulator Sim is identical to P except that the simulator uses the base simulator
subroutine Sim′ of Fig. 5.2 in Thm. 5.3.6 to generate the transcripts (comj , cj , respj) for each
j ∈ [λ]. By Theorem 5.3.6, the distinguishing advantage of the adversary is bounded by Qi

2λ for
each j ∈ [λ] such that cj = 1. Therefore,

∣∣∣Pr[AO(1λ, P O(X, W, ch)) = 1]− Pr[AO(1λ, SimO(X, ch)) = 1]
∣∣∣ ≤ Σλ

1Qi

2λ
≤ Q

2λ
.

Collecting the bounds, we obtain the bound in the statement.

5.3.3 Non-interactive Zero Knowledge
In this subsection, we make the protocol non-interactive using the Fiat-Shamir transform. Then
we prove the multi-proof online-extractability as a NIZK of the resulting scheme.

ProveO(lbl, ((Xi)i∈[N ], pk, ct), (I, sI , r))
1: resp := ⊥
2: while resp = ⊥ do
3: com← P O

1 (((Xi)i∈[N ], pk, ct), (I, sI , r))
4: ch← O(FS ∥ lbl ∥ ((Xi)i∈[N ], pk, ct) ∥ com)
5: resp← P O

2 ((I, sI , r), ch)
6: return π ← (com, ch, resp)

VerifyO(lbl, ((Xi)i∈[N ], pk, ct), π)
1: (com, ch, resp)← π
2: if accept← V O

2 (com, ch, resp) ∧ ch = O(FS ∥ lbl ∥ ((Xi)i∈[N ], pk, ct) ∥ com) then
3: return ⊤
4: else
5: return ⊥

Figure 5.5: A multi-proof online extractable NIZK with labels ΠNIZK,lbl for the relation
Rsig obtained by applying the Fiat-Shamir transform to the traceable OR sigma protocol
ΠtOR

Σ = (P = (P1, P2), V = (V1, V2)) in Fig. 5.3 where O(FS ∥ ·) outputs a binary string of
length λ.

The following theorem shows that our construction in Fig. 5.5 is multi-proof online extractable.
The proof is an adaptation of the proof of the original work [BDK+22] on removal of the uses of
the seed trees and the unbalanced challenge space.

Theorem 5.3.9. The NIZK with labels ΠNIZK,lbl in Fig. 5.5 is multi-proof online extractable for
the family of relations Rsig and R̃sig considered in Thm. 5.3.5,

R̃sig =


((

(Xi)i∈[N ], pk, ct
)
, W
) ∣∣∣∣∣∣∣∣

W = (I, s, r) ∈ [N ]×G×G

∧ XI = s ⋆ X0 ∧ ct = Enc(pk, I; r) or
W = (x1, x2) ∈ {0, 1}∗ ∧ x1 ̸= x2 ∧ O(x1) = O(x2)

 .
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More precisely, for any (possibly computationally-unbounded) adversary A making at most Q

queries to the random oracle and T queries to the extract oracle, we have

AdvmpOE
ΠNIZK,lbl

(A) ≤ T ·
(
Q/22λ−1 + (λ ·Q)/2λ + 1/2λ).

Proof. We begin the proof by providing the description of the online extractor OnlineExtract.
Below, it is given as input (lbl, X, π, LO), where π is guaranteed to be valid by definition and LO

is the oracle query list.

1. Parses ((Xi)i∈[N ], pk, ct)← X, (com, chall, resp)← π, ((salt, com1, · · · , comλ), c = (c1, · · · ,

cλ))← (com, chall), (resp1, · · · , respλ)← resp, and rootj ← comj for j ∈ [λ].5

2. For j ∈ [λ] such that cj = 1, it proceeds as follows:

(a) Parse (s′′
j , r′′

j , pathj)← respj .

(b) For every
(
(salt∥j∥Expand∥seed), (s′, r′, bits1, · · · , bitsN )

)
∈ LO, where salt∥j∥Expand

is fixed, it proceeds as follows:

i. Invoke the extractor in Thm. 5.3.5 on input (comj , 0, seed), (comj , 1, respj) and
obtain W.

ii. Output W.

3. If it finds no witness W of the above form, then it returns W = ⊥.

We analyze the probability of A winning the multi-proof online extractability game with the
above online extractor OnlineExtract. Below, P ′ and V ′ are the prover and verifier of the base
traceable OR sigma protocol ΠARSbase

Σ in Fig. 5.2.

• We say a tuple inputbase = (X, salt, j, comj , cj , respj) is valid if the following three properties
hold:

– cj = 1;

– V
′O(salt∥j∥·)

2 (comj , cj , respj) outputs accept (i.e. it is a valid transcript for ΠARSbase
Σ

with challenge 1);

– there exists (seed, s′, r′, bits1, · · · , bitsN ) such that
(
(salt∥j∥Expand∥seed), (s′, r′, bits1,

· · · , bitsN )
)
∈ LO, and if we execute P

′O(salt∥j∥·)
1 with randomness seed, it produces

com. (Here, we use the fact that P
′O(salt∥j∥·)
1 can be executed without the witness.)

By correctness of ΠARSbase
Σ , this implies that (comj , 0, seedj) is a valid transcript.

• We say a tuple inputbase = (X, salt, j, comj , cj , respj) is invalid if ch = 1, V
′O(salt∥j∥·)

2 (comj ,

cj , respj) outputs accept, but it is not valid. Roughly speaking, the root comj is generated
without known valid response for the challenge 0 from the oracle query.

5Throughout the proof, we use overlines for (com, chall, resp) to indicate that it is a transcript of ΠtOR
Σ .

We use respi without overlines to indicate elements of resp.
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Observe that if inputbase is valid, then the online extractor can recover a valid transcript
(comj , 0, seedj) from inputbase. Then, it can (informally) extract a witness by combining it with
(comj , 1, respj) and using the extractor from ΠARSbase

Σ constructed in Thm. 5.3.5.
In contrast, if inputbase is invalid, then intuitively, no adversary (even an unbounded one)

would be able to prepare a valid response respj = seedj for the challenge ch = 0 since the list
random oracle list LO does not contain a valid response. To make this claim formal, we need
to also take into account the fact that the adversary may learn non-trivial information about
respj = seedj from the proof via the prove query P O instead of directly from the random oracle.
In this case, even though no useful information is stored in LO, the adversary may still be able
to forge a proof. We will show this is not feasible except for a negligible chance.

Lemma 5.3.10. Assume an adversary A submits a total of T extract queries in the experiment of
the form {(lblk, Xk, πk)}k∈[T ], where every πk is a valid proof including the same salt and satisfies
(lblk, Xk, πk) ̸∈ LP . Let {(comk,j , chk,j , respk,j)}j∈[λ] be the transcript of the base traceable OR
sigma protocol ΠARSbase

Σ that the verification algorithm reconstructs when verifying πk. Then,
with probability at least 1− T ·

(
Qsalt/22λ−1 + (λ ·Qsalt)/2λ + 1/2λ

)
, for all k ∈ T there exists

at least one j ∈ [λ] such that inputbase = (Xk, salt, j, comk,j , chk,j = 1, respk,j) is valid where Qsalt

represents the number of the random oracle queries of form O(salt ∥ ·) made in the experiment.

Proof. For any k ∈ [T ], let us redefine πk = (com, chall, resp), and (com, chall) = ((salt, com1, · · · ,

comλ), c = (c1, · · · , cλ)), and resp = (resp1, · · · , respλ) where c = O(FS∥lbl∥X∥com). Namely, we
omit the subscript k for better readability. We consider two cases: (1) there exists (lbl, X, π′) ∈ LP

such that π′ = (com, chall, resp′) and resp′ ̸= resp and (2) no such entry in LP exists.
We consider the first case (1). This corresponds to the case where A reuses the proof π′ from

the prove query to generate π by simply modifying the response. We claim that this cannot
happen with overwhelming probability.

Let resp′ = (resp′
1, · · · , resp′

λ). Due to the regular action and Rem. 5.3.2, the event occurs
only if there is a collision of O(·). Concretely, consider resp′

j ̸= respj for some j ∈ [λ] such that
cj = 1. Then, it either finds a collision for O(Coll ∥ ·) (used by the Merkle tree) or for O(Com ∥ ·)
(to generate the leaf). Therefore, case (1) occurs with probability at most Qsalt/22λ−1.

We next consider the second case (2): there exists no π′ in LP that contains the same com as
π. This, in particular, implies that the output chall← O(FS∥lbl∥X ∥ com) is distributed uniform
random from the view of A before it makes the hash query.

Now, we suppose, for the purpose of contradiction, that inputbase,j = (X, salt, j, comj , cj , respj)
is invalid for all j ∈ [λ] such that cj = 1. Let LOP

be a list that contains all the inputs/outputs
of the random oracle queries ProveO makes when the challenger answers the prove query made
by A. We prove the following sub-lemma.

Lemma 5.3.11. For any j∗ ∈ [λ], if inputbase,j∗ is invalid, then either of the following holds:

• there exists no tuple (s′, r′, bits1, · · · , bitsN , seed) and j′ ∈ [λ] such that
(
(salt∥ j′ ∥Expand∥

seed), (s′, r′, bits1, · · · , bitsN )
)
∈ LOP

, but if we execute P
′O(salt∥j′∥·)
1 with randomness seed,

it produces comj∗;
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• there exists such a tuple but seed retains λ-bits of min-entropy from the view of A except
with probability at most (MQsalt)/2λ.

Proof. Assume such an entry is found in LOP
. This corresponds to the case A is reusing comj∗

that was included in a proof π obtained through the prove query. Let {(com′
j , c′

j , resp′
j)}j∈[λ] be

the transcript of the base traceable OR sigma protocol ΠARSbase
Σ that the verification algorithm

reconstructs from such π (see Line 5 of Verification V O
2 in Fig. 5.2) such that com′

j′ = comj∗

for some j′ ∈ [λ]. Claim that c′
j′ = 1 (i.e. seed was not used as a response). Since com′

j′ and
comj∗ are roots of a Merkle tree and the indices j′ and j∗ are used as prefix to the hash when
constructing the roots, respectively, the equality implies a collision of O(Coll ∥ ·). Hence, the
probability of A outputting comj∗ such that j′ ̸= j∗ is upper bounded by ((λ− 1)Qsalt)/2λ.

We may thereby assume j′ = j∗. Recall by definition of the online extractability game (see
Def. 3.4.5), A runs the verification algorithm to check if π is valid. Therefore, if inputbase,j∗ is
invalid, then we have c′

j′ = 1. Otherwise, there must already exist an entry
(
(salt ∥ j∗ ∥ Expand ∥

seed), (s′, r′, bits1, · · · , bitsN )
)
∈ LO (to run the verification algorithm), which contradicts that

inputbase,j∗ is invalid. This further implies that resp′
j′ does not include seed. Therefore, seed

that was used to construct comj′ = comj∗ is statistically hidden to the adversary with all but
probability Qsalt/2λ. By collecting all the bounds, the result of Lem. 5.3.11 follows.

By Lem. 5.3.11, if inputbase,j is invalid, then A cannot prepare a valid response for the
challenge cj = 0 with all but probability at most (λQsalt)/2λ. This is because such response is
either not recorded in both LO and LOP

, or it is recorded in LOP
but the seed retains λ-bits of

min-entropy from the view of A except with probability (λQsalt)/2λ. Moreover, since chall is
statistically hidden to A before it queries the random oracle, the probability that chall coincides
with challenges for which A can open to is at most 1− 1/2λ.

Taking the union bound and collecting all the bounds together, at least one of the inputbase

must be valid with the probability stated in the statement. This completes the proof of
Lem. 5.3.10.

We are now prepared to analyze the probability that A wins the multi-proof online extract-
ability game with the aforementioned online extractor OnlineExtract. By Lem. 5.3.10, if A makes
at most T extract queries, then by a simple union bound and using the inequality ∑i Qsalti

≤ Q

where Qsalti
represents the number of random oracle queries made by A of form O(salti ∥ ·).

With probability at least 1− T ·
(
(2Q)/22λ + (λ ·Q)/2λ + 1/2λ

)
, all the inputbase included in the

queried proof are valid. By collecting the bounds, we complete the proof of Thm. 5.3.9.

Remark 5.3.12 (mpOE for non-relaxed Rsig). In fact, one can also modify the proof above to
extract the witness for Rsig instead of the relaxed one R̃sig (i.e. a collision in O(salt ∥ j ∥ Coll ∥ ·)
or O(salt ∥ j ∥Com ∥ ·) for some j ∈ [λ]). Concretely, we can modify Item 2b in the proof above to
extract for a witness for Rsig only. The only change in the analysis is to exclude the probability
of having a collision among the random oracle queries. That is, with all but probability Q2/22λ,
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OnlineExtract succeeds in extracting a witness W = (I, s, r) as desired, conditioned on all the
inputbase included in the queried proof are valid. The bound will be

AdvmpOE
ΠNIZK,lbl

(A) ≤ T ·
(
Q2/22λ−2 + (λ ·Q)/2λ + 1/2λ).

Theorem 5.3.13. The NIZK with labels ΠNIZK,lbl in Fig. 5.5 is zero-knowledge. Precisely,
there exists a PPT simulator Sim = (Sim0, Sim1) such that, for any statement-witness pair
(X, W) ∈ Rsig and any computationally-unbounded adversary A that makes at most Q1 queries
to O or Sim0, and Q2 queries to Prove or S, we have

AdvZK
ΠNIZK,lbl(A) =

∣∣∣Pr
[
AO,Prove(1λ) = 1

]
− Pr

[
ASim0,S(1λ) = 1

]∣∣∣ ≤ Q2 · (Q1 + Q2)
22λ

+ Q1
2λ

.

Proof. A zero-knowledge simulator Sim = (Sim0, Sim1)6 proceeds as in Fig. 5.6, where Sim0 and
Sim1 share states, including a list L which is initially empty. At a high level, the first subroutine
Sim0 simulates the random oracle O in an on-the-fly manner except for specific queries for the
purpose of consistency with Sim1. On the other hand, Sim1 simulates the prover oracle using
the simulator from abovementioned sigma protocol (Fig. 5.3) in which the simlator is denoted
here by SimΣ (see Thm. 5.3.8) as a subroutine.

Specifically, Sim1 is given a valid statement X = ((Xi)i∈[N ], pk, ct), and samples a random
challenge ch from the challenge space {0, 1}λ, which is also the domain of the Fiat-Shamir
transform O(FS ∥ ·). Then, Sim1 executes SimΣ on challenge ch using simulated oracle access
to Sim0, and updates the list L accordingly. In Fig. 5.6, we denote by Dx the distribution of
O(x), where the probability is taken over the random choice of the random oracle O. We may
therefore assume Dx to be efficiently sampleable.

Sim0(x)
1: if x ∈ L then
2: return L[x]
3: y ← Dx

4: L[x] := y
5: return y

Sim1(lbl, X)
1: ch← {0, 1}λ

2: (com, ch, resp)← SimSim0
Σ (X, ch)

3: if (FS ∥ lbl ∥ X ∥ com) ∈ L then
4: return ⊥
5: L[(FS ∥ lbl ∥ X ∥ com)] := ch
6: return π ← (com, ch, resp)

Figure 5.6: Zero-knowledge simulator Sim = (Sim0, Sim1) for ΠNIZK,lbl

To show the indistinguishability of (O, Prove) and (Sim0,S), we use a hybrid argument by
introducing an intermediate pair of simulators (Sim0, Simint), where Simint is defined in Fig. 5.7.
Intuitively, Sint is a real prover with access to the simulated oracle Sim0.

Suppose Amakes Q1 queries to the oracles O or Sim0, and Q2 queries to the oracles Prove,Sint,
or S. For each i ∈ {1, 2, 3}, we denote by Ei the event that A returns 1 respectively. We analyze
the differences by defining three games as follows:

6Remark that the notations (Sim0, Sim1) and (Sim0,S) are not typos. The former is the simulator we
need to construct. Meanwhile, the latter is the interface corresponding to (O, Prove). See Def. 3.4.3.
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Simint(lbl, X, W)
1: com← P Sim0

1 (X, W)
2: ch← {0, 1}λ

3: if (FS ∥ lbl ∥ X ∥ com) ∈ L then
4: return ⊥
5: L[(FS ∥ lbl ∥ X ∥ com)] := ch
6: resp← P Sim0

2 (X, ch)
7: return π ← (com, ch, resp)

Figure 5.7: Intermediate simulator Simint, where P = (P1, P2) is the prover of the traceable
OR sigma protocol ΠtOR

Σ in Fig. 5.3.

Game1 : This is the real zero-knowledge game where A is given access to O and Prove.

Game2 : The game is modified to provide A access to Sim0 and Sint instead. The view of A is
identical to the previous game unless Simint outputs ⊥ in Line 4. Roughly, this occurs
when the reprogramming of the random oracle fails due to the input being already defined.
By Thm. 5.3.7, com has 2λ bits of min-entropy. Since at most Q1 + Q2 queries of the
form (FS∥lbl∥X∥com) are made in this game, we have |Pr[E1]− Pr[E2]| ≤ Q2·(Q1+Q2)

22λ .

Game3 : The game is modified to provide A access to Sim0 and S instead. The only difference
is that rather than computing honestly via (P1, P2) from the underlying sigma protocol
ΠtOR

Σ (Fig. 5.3), the simulator Sim1 simulates these using the simulator SimΣ provided by
ΠtOR

Σ .

Let salti represent the salt that Simint or Sim1 samples on its i-th invocation. For i ∈ [Q2],
let Q′

i be the number of queries the adversary makes to oracle Sim0 of the form (salti∥·).
By Thm. 5.3.8, the advantage of the adversary in distinguishing Simint or Sim1 is bounded
by Q′

i

2λ for each i ∈ [Q2]. Therefore, |Pr[E2]− Pr[E3]| ≤
∑Q2

1 Q′
i

2λ ≤ Q1
2λ

By collecting the bounds, the result follows.

Remark 5.3.14 (NIZK for R̃open). By applying the same transform (Fig. 5.5) to the base
sigma protocol Fig. 5.1 for the opening relations Ropen and R̃open, we can have a complete, zero-
knowledge, and multi-proof online-extractable (therefore statistical sound Rems. 3.4.7 and 3.4.8).
We can therefore skip the proofs here.

5.4 Construction

5.4.1 Accountable Ring Signature
We are now ready to construct an accountable ring signature based on the abovedmentioned
components:
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• A public parameter pp = (G, E , E0, ⋆,M), as in Sec. 5.3.1, where (G, E , E0, ⋆) is the public
parameter specified in Def. 2.3.3, M is the message space which is a subset of G and
|M| ≤ poly(λ).

• A group-action-based IND-CPA public key encryption ΠPKE = (Setup, KeyGen, Enc, Dec)
described in Sec. 5.3.1, which can be derived from (G, E , E0, ⋆).

• Sound NIZK ΠNIZK = (NIZK.Prove, NIZK.Verify) without labels for Ropen and R̃open in
(based on ΠOPbase

Σ in Fig. 5.1) where

Ropen =
{

((pk = (E0, E), ct, I) , sk)
∣∣∣∣∣ E = sk ⋆ E0 ∧

I = Dec(sk, ct)

}
,

R̃open =


((

(pk = (E0, E), ct, I), W
))
∣∣∣∣∣∣∣∣∣∣∣

W = sk ∈ G ∧
E = sk ⋆ E0 ∧ I = Dec(sk, ct) or

W = (x1, x2) ∈ {0, 1}∗ ∧
x1 ̸= x2 ∧ O(x1) = O(x2)


.

• Online-extractable NIZK ΠNIZK,lbl = (NIZK.Provelbl, NIZK.Verifylbl) with labels for Rsig

and R̃sig in Fig. 5.5 (based on ΠARSbase
Σ in Fig. 5.2).

Rsig =


((

(Xi)i∈[N ], pk, ct
)

, (I, s, r)
) ∣∣∣∣∣∣∣∣

(I, s, r) ∈ [N ]×G×G

XI = s ⋆ E0 ∧
ct = (Y0, Y ) = Enc(pk, I; r)



R̃sig =


((

(Xi)i∈[N ], pk, ct
)
, W
)
∣∣∣∣∣∣∣∣∣∣∣

W = (I, s, r) ∈ [N ]×G×G

∧ XI = s ⋆ X0 ∧ ct = Enc(pk, I; r) or
W = (x1, x2) ∈ {0, 1}∗ ∧
x1 ̸= x2 ∧ O(x1) = O(x2)


.

Accountable Ring Signature. The high-level idea of an accountable ring signature based
on the above ingredients is as follows. First, each member generates a signing-and-verification
key pair, a RGAIP instance. Also, an opener generates an encryption-and-decryption key pair
from ΠPKE, also a RGAIP instance. Collecting key pairs forms a ring of members, which can be
updated dynamically after adding an identifier. Next, each member of the ring can specify an
opener’s public key and signs a message using ΠNIZK,lbl. Recall that the signature is derived
from a “traceable” OR proof, which allows the encryption key’s owner (called the opener) to
decrypt and open the signature. After obtaining the result, the opener uses ΠNIZK to prove the
correctness of the opening result.

Throughout the following theorems, we let AdvColl
O (B) denote the advantage of an adversary

B producing a collision of the random oracle O.

Theorem 5.4.1. The accountable ring signature scheme ΠARS in Fig. 5.8 is correct.

Proof. Due to the completeness of ΠNIZK,lbl, any signature output by ARS.Sign will be accepted
by ARS.Verify with probability 1.
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ARS.UKGen(1λ)
1: sk← G
2: vk = sk ⋆ E0
3: return (vk, sk)

ARS.MKGen(1λ)
1: msk← G
2: mpk← msk ⋆ E0
3: return (mpk, msk)

ARS.Sign(mpk, sk, R, M)
1: (vki)i∈[N ] ← R
2: if ∄I : (vkI , sk) ∈ RGAIP then
3: return ⊥.
4: r $← G
5: ct = Enc(mpk, I; r)
6: πsign ← NIZK.Provelbl(M, (R, mpk, ct),

(I, sk, r))
7: return σ := (ct, πsign)

ARS.Verify(mpk, R, M, σ)
1: (ct, πsign)← σ
2: return NIZK.Verifylbl(M, (R, mpk, ct), πsign)

ARS.Judge(mpk, R, vk, M, σ, πopen)
1: (ct, πsign)← σ
2: if ∄I : vk = RI then
3: return ⊥.
4: b0 ← ARS.Verify(mpk, R, M, σ)
5: b1 ← NIZK.Verify((mpk, ct, I), πopen)
6: return b0 ∧ b1

ARS.Open(msk, R, M, σ)
1: if ARS.Verify(mpk, R, M, σ) = ⊥ then
2: return ⊥
3: (ct, πsign)← σ
4: I ← Dec(msk, ct)
5: πopen ← NIZK.Prove((mpk, ct, I), msk)
6: return π := (RI , πopen)

Figure 5.8: Our construction of an accountable ring signature ΠARS. The public parameter
pp = (G, E , E0, ⋆,M) as in Sec. 5.3.1, is used in every algorithm, where (G, E , E0, ⋆) is
the public parameter specified in Def. 2.3.3, M is the message space which is a subset
of G and |M| ≤ poly(λ). The construction consists of a group action-based public-key
encryption algorithm (KeyGen, Enc, Dec) using pp, a NIZK with labels ΠNIZK,lbl for the
relation Rsig, R̃sig, and a NIZK without labels ΠNIZK for the opening relation Ropen. The
openers’ public-key space and users’ verification-key space Kmpk = Kvk = E .

Theorem 5.4.2. The accountable ring signature scheme ΠARS in Fig. 5.8 is (CCA) anonymous
(against full key exposure) in the random oracle model, assuming ΠPKE is multi-challenge
IND-CPA secure, ΠNIZK,lbl is zero-knowledge, multi-challenge online-extractable, and ΠNIZK is
zero-knowledge. Precisely, for an adversary A, running in time T , there exist PPT adversaries
B1,B′

1,B2,B3,B4, with running time poly(λ)T such that

AdvAnon
ΠARS(A) ≤ AdvmpOE

ΠNIZK,lbl
(B1) + AdvColl

O (B′
1) + AdvZK

ΠNIZK(B2) + AdvZK
ΠNIZK,lbl(B3) + AdvMulti-CPA

ΠPKE (B4) .

Proof. We prove anonymity using a hybrid argument by introducing a series of games Game1, · · · ,

Game5 and turning an anonymity adversary into an IND-CPA adversary in the last game. Let
the advantage of the adversary A in Gamei be denoted by Advi(A).

Game1 : This is the original anonymity experiment defined in Def. 5.2.3. The adversary’s
advantage in this game is Adv1(A) = AdvAnon

ΠARS(A) by definition.
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Game2 : This is the same as Game1, except that the way the challenger answers opening queries
is modified. Rather than using the secret key msk to decrypt the ciphertext ct and identify
the index I of the real signing key (i.e. following ARS.Open), the challenger instead runs the
online extractor OnlineExtract for ΠNIZK,lbl to extract the witness (I, sk, r) from (ct, πsign),
and then returns the user RI . (The challenger still uses msk to generate the opening
proof.)

The modified game is identical to Game2 for A unless the extraction changes the adversary’s
view. Write the corresponding statement (to be signed) to be X. Remark that whenever
the extractor outputs W such that (X, W) ∈ Rsig, the modification does not change the
view due to the uniqueness of the encryption Rem. 5.3.2.

That is, the modification changes the view of A only if the extractor outputs W such that
either (X, W) is not in R̃sig or W in R̃sig−Rsig (i.e. a collision of O, recall Thm. 5.3.5). We
can therefore turn A into an adversary B1 against the multi-challenge online-extractability
game of ΠNIZK (Def. 3.4.5) with a subroutine B′

1 finding a collision of the random oracle.

Concretely, B1 simulates Game2 for A on input mpk where mpk← MKGen such that

• random-oracle queries from A are answered by querying (hash, ·) (see Def. 3.4.5);

• the ring in the relation R̃sig of the multi-proof online extractability experiment is
determined by the ring R chosen by A on the signing queries (sign, R,−,−,−),

• instead of computing πsign, B1 makes a query (prove, M, pk, w) for the signing queries
(sign, R, M, sk0, sk1), where (pk, w) = ((R, mpk, ct), (I, sk, r)), sk is randomly chosen
from sk0, sk1, and I is determined thereby, and

• instead of running OnlineExtract, B1 makes a query (extract, M, pk, πsign) for the
open queries;

• the subroutine B′
1 only collects the output of the extraction oracle forwarded from

B1;

• B1 outputs 1 to the online-extractability challenger to represent the termination of
the experiment when A terminates;

• If there exists a collision of the random oracle (i.e. an element in R̃sig −Rsig) output
by the extraction oracle, B′

1 outputs the collision. Otherwise, B′
1 outputs ⊥.

Note that extract for proofs originating from prove queries are answered with ⊥, which is
compatible with the fact that the challenger outputs ⊥ for opening queries that correspond
to signatures originating from the signing oracle in Game2. If B1 loses the game (i.e., B1

did not cause the extractor to fail) and B′
1 outputs ⊥, then the view of A remains the

same. Therefore, we have Adv1(A) ≤ Adv2(A) + AdvmpOE
ΠNIZK,lbl

(B1) + AdvColl
O (B′

1).

Game3 : This is the same as Game2, except that we change the way the challenger responds
to the random oracle queries and generate the proof for the opening queries from the
adversary, which are replaced by the simulator NIZK.Sim = (NIZK.Sim0, NIZK.Sim1) for

80



ΠNIZK. Concretely, upon receiving a random oracle query from A, the challenger forwards
the query to the simulator NIZK.Sim0, records the query-answer pair, and forwards the
answer to A. Similarly, upon receiving a signing query from A, the challenger does not
compute πopen using NIZK.Prove and msk. Instead, the challenger executes NIZK.Sim1 and
forwards the output to A.

The modification results in a negligible loss for A unless the adversary A can distinguish
the simulation of ΠNIZK with a non-negligible chance. Concretely, we can turn A into
an adversary B2 against the zero-knowledge experiment of ΠNIZK (Def. 3.4.3) where
B2 simulates Game2 or Game3 for A and outputs whatever A returns. Precisely, B2

forwards either the real prover response or the simulated response (from NIZK.Sim =
(NIZK.Sim0, NIZK.Sim1)) from the ZK experiment to A for the random-oracle or signing
queries. The adversary B2 simulates Game2 or Game3 for A for the former or the latter
case respectively. Therefore, we have Adv2(A) ≤ Adv3(A) + AdvZK

ΠNIZK(B2).

Game4 : This is the same as Game3, except that we change the way the challenger responds
to the signing queries from the adversary. Instead of using NIZK.Provelbl in ARS.Sign,
the challenger generates ct as in Game3, but uses the zero-knowledge simulator Sim for
ΠNIZK,lbl to generate the proof πsign. It then outputs (ct, πsign) as the signature. Similar
to the previous transition, we can define an adversary B3 against the zero-knowledge
property of ΠNIZK,lbl such that Adv3(A) ≤ Adv4(A) + AdvZK

ΠNIZK,lbl(B3).

Game5 : This is the same as Game4, except we change the way the challenger responds to
the signing queries further: Instead of encrypting the correct index I to obtain ct, the
challenger encrypts a random index I ′.

Observe that the secret bit b of the anonymity experiment is not used in Game5, which
leads to Adv5(A) = 0. The modification results in a loss for the adversary if A can
distinguish the ciphertexts of different messages of ΠPKE. Concretely, we turn A into B4

against multi-challenge IND-CPA for ΠPKE where B4 simulates either Game4 or Game5 for
A. Instead of generating a key pair from KeyGen, the adversary B4 receives mpk from the
multi-challenge IND-CPA challenger. Also, instead of producing the ciphertexts ct itself
B4 makes encryption queries (I, I ′), where I is the correct index, and I ′ is a random index.
Remark that B4 does not use msk to simulate Game4 or Game5 due to the removal of the
use of msk made in Game1 to Game3.

If the hidden bit b in the IND-CPA game is 0, then the experiment is identical to Game4,
and if the bit is 1, then the experiment is equal to Game5. Therefore, we have that
Adv4(A) ≤ Adv5(A) + AdvMulti-CPA

ΠPKE (B4).

By collecting the bounds, the result follows.

Remark 5.4.3. In the previous proof we really relied on the online extractability property
(without rewinding). This is because, even if we allow for a non-tight reduction, we cannot resort
to rewinding (i.e., the forking lemma) since there can be polynomially many open queries and
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the reduction loss will be exponential if we try to extract from all of them. Here, keep in mind
that the online extractor must succeed with (roughly) 1− negl(λ) rather than any non-negligible
function 1/poly(λ) since there can be polynomially many open queries. Namely, even a success
probability of 1/2 will not be good enough. Most, if not all, prior works circumvent this issue by
using an IND-CCA PKE as building block rather than a (possibly inefficient) online extractable
NIZK to simulate the decryption of ct.

Theorem 5.4.4. The accountable ring signature scheme ΠARS in Fig. 5.8 is unforgeable in the
random oracle model. More precisely, for any adversary A that runs in time T and makes Qu

queries to the ukeygen oracle, there exist adversaries B1,B′
1,B2,B3, running in time poly(λ)T ,

such that

AdvUnf
ΠARS(A) ≤ AdvmpOE

ΠNIZK,lbl
(B1) + AdvColl

O (B′
1) + AdvZK

ΠNIZK,lbl(B2) +QuAdvGAIP(B3)

Proof. We prove unforgeability using a hybrid argument with the following Game1, · · · , Game4

and then turn the adversary into a GAIP adversary. Let the advantage of the adversary A in
Gamei be denoted by Advi(A).

Game1 : This is the original unforgeability game defined in Def. 5.2.4. The adversary’s advantage
in this game is Adv1(A) = AdvUnf

ΠARS(A) by definition.

Game2 : This is the same as Game1, but the winning condition is changed. We let the challenger
maintain a list LO of all the random oracle queries that A makes. After A finishes the
game by outputting (mpk, vk, R, M, σ = (ct, πsign), π), we additionally require A wins if

1. The original condition holds.

2. The challenger runs OnlineExtract(M, (R, mpk, ct), πsign, LO), and the output is not
a collision of O, which justifies denoting the output to be (I, sk, r).

3. ((R, mpk, ct), (I, sk, r)) ̸∈ R̃sig.

The advantage of A noticeably changes due to the modification if A can break online-
extractability or find a collision of O. Concretely, we construct an online-extractability
adversary B1 with a collision-finding subroutine B′

1 for ΠNIZK,lbl that simulates Game2 for
A such that

1. B1 answers random oracle queries by querying (hash, ·) (see Def. 3.4.5).

2. B1 answers signing queries by making an oracle call (prove, M, (R, mpk, ct), (I, sk, r))
instead of computing πsign itself.

3. B1 answers the opening queries by making the oracle call (extract, M, (R, mpk, ct),
πsign) instead of running OnlineExtract.

4. The subroutine B′
1 only collects the output of the extraction oracle forwarded from

B1.
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5. B1 outputs 1 to represent the end of the online-extractability experiment after A
terminates and outputs a signature.

6. If there exists a collision of the random oracle output by the extraction oracle (i.e. an
element in R̃sig −Rsig), B′

1 outputs the collision. Otherwise, B′
1 outputs ⊥.

Say B′
1 outputs ⊥, A wins in Game1 but loses in Game2. The win of Game1 im-

plies that (ct, πsign) was not the output of a query (sign, mpk, vk′, R, M) for any vk′

and NIZK.VerifyO
lbl(M, (R, mpk, ct), πsign) = ⊤. Also, the loss in Game2 implies that

((R, mpk, ct), (I, sk, r)) ̸∈ R̃sig. These meet the requirements for B1 to win the online
extractability game. Therefore, we have Adv1(A) ≤ Adv2(A)+AdvmpOE

ΠNIZK,lbl
(B1)+AdvColl

O (B′
1).

Game3 : This is the same as Game2 except that we change the way the challenger answers
signing queries from A. Specifically, the challenger generates ct as in Game2 but uses the
zero-knowledge simulator Sim = (Sim0, Sim1) for ΠNIZK,lbl to create the proof πsign. That
is, it forwards the random-oracle queries to Sim0, and runs Sim1 to get πsign. It then
outputs (ct, πsign) as the signature.

The modification results in a negligible loss for A in its advantage unless the adversary
A can distinguish the simulation of ΠNIZK,lbl with a non-negligible chance. Concretely,
we can turn A into an adversary B2 against the zero-knowledge experiment of ΠNIZK,lbl

(Def. 3.4.3) where B2 simulates Game2 or Game3 for A and outputs whatever A returns.
Precisely, B2 forwards either the real prover response or the simulated response (from
NIZK.Sim = (NIZK.Sim0, NIZK.Sim1)) from the ZK experiment to A for the random-oracle
or signing queries. The adversary B2 simulates Game2 or Game3 for A for the former or
the latter case respectively. Therefore, we have Adv2(A) ≤ Adv3(A) + AdvZK

ΠNIZK,lbl(B2).

Game4 : This is the same as Game3 except that we change the winning condition again: the
challenger guesses a random index Ĩ ∈ {1, . . . ,Qu} at the outset of the game. If A makes
a corruption query to corrupt the verification key returned in the Ĩ-th user key generation
query, then Game4 aborts. The game results in a win if the winning condition of Game3 is
met and if Ĩ = I. Since Ĩ is information-theoretically hidden during the execution of the
game, we have Ĩ = I with probability 1/Qu. Therefore, we have Adv3(A) = QuAdv4(A).

Let B3 be a GAIP adversary, which simulates Game4 for A. Given a GAIP challenge (E0, E′),
the adversary B3 simulates an execution of Game4 such that

• instead of running ARS.UKGen to answer the Ĩ-th ukeygen query, B3 assigns vk
Ĩ

= (E0, E′)
and then sends it to the adversary;

• instead of running ARS.Sign to answer the signing query of the verification key vk
Ĩ
, B3

uses the simulator of ΠNIZK,lbl to generate the signature;

• B3 aborts the simulation if A makes a corruption query of vk
Ĩ
.
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The view of A during B3’s simulation is the same as the execution of Game4, so OnlineExtract
outputs a valid witness (Ĩ , sk, r) with probability at least Adv4(A). Therefore, we have Adv4(A) ≤
AdvGAIP(B3). By collecting the bounds, the result follows.

Theorem 5.4.5. The accountable ring signature scheme ΠARS in Fig. 5.8 is traceable and
tracing sound in the random oracle model. More precisely, for any adversary A that runs in
time T , we have adversaries B1,B2,B3 that run in time poly(λ)T , such that

AdvTra
ΠARS(A) ≤ Advsoundness

ΠNIZK,lbl (B1)

and
AdvTraS

ΠARS(A) ≤ Advsoundness
ΠNIZK,lbl (B2) + 2Advsoundness

ΠNIZK (B3)

Proof. We prove the two properties separately as follows:

Traceability. Traceability follows from the statistical soundness of ΠNIZK,lbl, the uniqueness
encryption ΠPKE (Rem. 5.3.2), and the correctness of ΠNIZK. Suppose for the purpose of a
contradiction that A outputs (rr, R, M, (ct, πsign)) such that the following two conditions are
satisfied.

1. Verify(mpk, R, M, (ct, πsign)) = ⊤, where (mpk, msk)← MKGen(pp; rr).

2. Judge(mpk, R, vk, M, (ct, πsign), πopen) = ⊥, where (vk, πopen)← Open(msk, R, M, (ct, πsign)).

It follows from the first condition that NIZK.Verifylbl(M, X = (R, mpk, ct), πsign) = ⊤. Let st =
(R, mpk, ct). Suppose for the purpose of a contradiction that there exists a witness wt = (I, sk, r)
such that (st, wt) ∈ R̃sig. Note that the witness here will not be a hash collision; otherwise,
Open will not output a verification key. It follows from the second condition that Dec(msk, ct =
Enc(mpk, I; r)) = I, which implies that ((mpk, ct, I), msk) ∈ Ropen. The correctness of ΠNIZK

implies that NIZK.Verify((mpk, ct, I), πopen) = ⊤. This leads to a contradiction that Judge
outputs ⊥.

Therefore, A produces valid proofs for statements not in R̃sig with probability at least
AdvTra

ΠARS(A). We can therefore turn A into a statistical soundness adversary B1 against ΠNIZK,lbl

as follows.

1. Generate pp← ARS.Setup(1λ) for a security parameter λ.

2. Invoke A with pp and obtain (rr, R, M, σ) from A where σ = (ct, πsign).

3. Run (msk, mpk)← ARS.MKGen(pp; rr).

4. Output (M, pk := (R, mpk, ct), πsign)

If A wins, B1 succeeds. Therefore, AdvTra
ΠARS(A) ≤ Advsoundness

ΠNIZK,lbl (B1).
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Tracing soundness. Similarly, tracing soundness follows from the statistical soundness
of ΠNIZK and ΠNIZK,lbl, and the unique encryption of the ΠPKE (Rem. 5.3.2). Recall that if
A wins the tracing soundness game, A outputs three valid proofs πsign, π0, π1 together with
mpk, R, M, σ = (ct, πsign). Similarly, suppose for the purpose of a contradiction that three
witnesses of the proofs for the corresponding relations exist. That is, there exist witnesses
(I, sk, r), msk0 and msk1 such that

((R, mpk, ct), (I, sk, r)) ∈ R̃sig

((mpk, ct, I0), msk0) ∈ R̃open

((mpk, ct, I1), msk1) ∈ R̃open,

with I0 ̸= I1.
However, it follows from the unique encryption of ΠPKE and the first two equations that

I = I0. Similarly, we have I = I1 from the first and the last equations. This contradicts that
I0 ̸= I1. Therefore, at least one of πsign, π0, π1 is a valid proof of an invalid statement, i.e.
a X for which does not exist W such that (X, W) ∈ R̃sig (or (v) ∈ R̃open), with probability
at least AdvTraS

ΠARS(A). We can thereby turn A into statistical-soundness adversaries B2 and B3

for ΠNIZK,lbl and ΠNIZK, respectively, that simulate the tracing soundness game and output
πsign, π0 or π1, respectively. The procedure is the same as B1 described above. Then we have
AdvTraS

ΠARS(A) ≤ Advsoundness
ΠNIZK,lbl (B2) + 2Advsoundness

ΠNIZK (B3).

5.5 Tightly Secure Variant
Observe the only source of lossiness in the previous section, among Thms. 5.4.2, 5.4.4 and 5.4.5,
was in the unforgeability proof where the loss depends on the number of members in the
ring/group. In this section, we apply the Katz-Wang technique [KW03] to modify our construc-
tion in Fig. 5.8 to obtain a variant with a tight reduction.

We start by giving an intuition of the method. Recall that in the proof of Thm. 5.4.4, the
reduction is given a challenge instance st = E1 ∈ E , guesses which member’s signature the
adversary will forge, and assigns E1 to be the verification key vk of the selected user. If the
adversary queries the corruption oracle on the key vk, the reduction fails and aborts due to the
unknown corresponding secret key for vk. If the guess is correct and the adversary successfully
forges the signature, then the reduction can recover a witness wt such that (st, wt) ∈ R̃sig, which
is either a collision of the hash function or containing s ∈ G such that (E1, s) ∈ RGAIP. Therefore,
if the adversary with an advantage ϵ makes Qu user key generation queries, then the reduction
can extract a witness with probability roughly ϵ/Qu.

A high-level viewpoint of the Katz-Wang method is that each user is given a pair of state-
ments (E(1), E(2)) as the verification key vk, with only one witness s as the secret signing
key, such that either (E(1), s) or (E(2), s) is in the relation RGAIP. Now, given a GAIP chal-
lenge E1 and Qu key generation queries, the reduction uses the self-reducibility to generate

85



vki = (r(1)
i ⋆Ebi

, r
(2)
i ⋆E1−bi

) where r
(1)
i , r

(2)
i ← G, bi ← {0, 1}, and then records (i, vki, bi, r

(1)
i , r

(2)
i )

for i ∈ [Qu]. Upon receiving the corruption query of the i-th verification key, it returns r
(bi+1)
i

satisfying (r(bi+1)
i ⋆ E0, r

(bi+1)
i ) ∈ RGAIP. It follows that the guessing step above is not required

anymore. As long as the adversary wins the unforgeability game by forging a signature, the
reduction can extract a witness for one of the {r(2−bi)

i ⋆ E1}i∈[Qu] with probability 1/2. Roughly
speaking, if the success rate of the adversary is ϵ, then by adding the witness by −r

(2−bi)
i for

some i ∈ [Qu] the reduction can return the answer for the challenge E1 with probability around
ϵ/2.

Formally, we build a tightly secure accountable ring signature scheme ΠTight
ARS = (ARS.Setup,

ARS.MKGen, ARS.UKGen, ARS.Sign, ARS.Verify, ARS.Open, ARS.Judge) based on the following
tools. In the NIZK for the signing relation RTight

sig lies the only difference between the tools used
in Sec. 5.4.

• An effective group action (G, E0, ⋆).

• A group-action-based IND-CPA public key encryption ΠPKE = (Setup, KeyGen, Enc, Dec)
described in Sec. 5.3.1, which can be derived from (G, E0, ⋆).

• Sound NIZK ΠNIZK = (NIZK.Prove, NIZK.Verify) without labels for Ropen and R̃open in
(based on ΠOPbase

Σ in Fig. 5.1) where

Ropen =
{

((pk = (E0, E), ct, I), sk)
∣∣∣∣∣ E = sk ⋆ E0 ∧

ct = Dec(sk, I)

}
,

R̃open =


((

(pk = (E0, E), ct, I), W
))
∣∣∣∣∣∣∣∣∣∣∣

W = sk ∈ G ∧
E = sk ⋆ E0 ∧ ct = Dec(sk, I) or

W = (x1, x2) ∈ {0, 1}∗ ∧
x1 ̸= x2 ∧ O(x1) = O(x2)


.

• Online-extractable NIZK ΠNIZK,lbl = (NIZK.Provelbl, NIZK.Verifylbl) with labels for RTight
sig

and R̃Tight
sig in Fig. 5.5 (based on ΠARSbase

Σ in Fig. 5.2).

RTight
sig =


(
((X(j)

i )(i,j)∈[N ]×[2], pk, ct), (I, b, s, r)
) ∣∣∣∣∣∣∣∣

(I, b, s, r) ∈ [N ]× [2]×G×G

X
(b)
I = s ⋆ E0 ∧

ct = (Y0, Y ) = Enc(pk, I; r)



R̃Tight
sig =


((

(X(j)
i )(i,j)∈[N ]×[2], pk, ct

)
, W
)
∣∣∣∣∣∣∣∣∣∣∣

W = (I, b, s, r) ∈ [N ]×G×G

X
(b)
I = s ⋆ X0 ∧ ct = Enc(pk, I; r) or

W = (x1, x2) ∈ {0, 1}∗ ∧
x1 ̸= x2 ∧ O(x1) = O(x2)


,

where the differences compared to Rsig, R̃sig are highlighted in red.
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Bootstrapping NIZK for R̃Tight
sig . At a glance, to build an NIZK for R̃Tight

sig based on the NIZK
for R̃sig in the previous section using [CDS94]. It is clear that applying an OR-proof R̃sig to the
NIZK for R̃sig immediately gives an NIZK for R̃sig as desired. However, the method will result
in a larger signature size by a factor of two.

Here, we present a novel technique by bootstrapping the NIZK for R̃sig based on Fig. 5.2.
The high-level idea is fairly simple. By encoding both (I, 1) and (I, 2) into the same message
(e.g. I) in G to be encrypted by Enc, the decryption of the ciphertext is I while the auxiliary
input b ∈ {1, 2} remains hidden. Also, the special soundness of ΠARSbase

Σ (Thm. 5.3.5) can also
be extended to recover b by testing from the verification key (X(1)

I , X
(2)
I ). The zero-knowledge

property of the scheme (the same as Thm. 5.3.6) and the fact that the auxiliary input b ∈ {1, 2}
remains hidden are essential to show the indistinguishability of the X

(1)
i and X

(2)
i in the reduction

and result in a reduction loss of only 2. We give a concrete base construction in Fig. 5.9 for
RTight

sig and R̃Tight
sig . The proofs for the essential properties as a sigma protocol are identical to

Thms. 5.3.5 and 5.3.6 and the differences are highlighted in red. We hence skip the proofs.

The building blocks listed above are combined similarly to Fig. 5.8. We detail the resulting
protocol in Fig. 5.10. Regarding the security notions, we only focus on unforgeability. The
others are a direct consequence of the proofs given for the non-tight construction in Fig. 5.8.

Theorem 5.5.1. The accountable ring signature scheme ΠTight
ARS in Fig. 5.10 is unforgeable in

the random oracle model. More precisely, for any adversary A that runs in time T and makes
Qu queries to the ukeygen oracle, there exist adversaries B1,B2,B3, running in time poly(λ)T ,
such that

AdvUnf
ΠARS(A) ≤ AdvmpOE

ΠNIZK,lbl
(B1) + AdvZK

ΠNIZK,lbl(B2) + 2AdvGAIP(B3).

Proof. We prove unforgeability using a hybrid argument with the following series of games. Let
the advantage of an adversary A in Gamei be denoted by Advi(A).

• The first game, Game1, is the original unforgeability game defined in Def. 5.2.4. The
adversary’s advantage in this game is Adv1(A) = AdvUnf

ARS(A) by definition.

• Game2 is the same as Game1, but with a modified winning condition. We let the chal-
lenger maintain a list LO of all the random-oracle queries that A makes. When A
finishes the game by outputting (mpk, vk, R, M, σ = (ct, πsign), π), the challenger runs
(I, b, sk, r) ← OnlineExtract(M, (pp1, R, mpk, ct), πsign, LO). The game results in a loss if
((pp1, R, mpk, ct), (I, , b, sk, r)) ̸∈ R̃Tight

sig , otherwise, the winning condition is not changed.
As we have shown in the proof of Thm. 5.4.4, there exists an online-extractability adversary
B1 for ΠNIZK,lbl running in time poly(λ)T with a collision-finding subroutine B′

1 such that
Adv1(A) ≤ Adv2(A) + AdvmpOE

ΠNIZK,lbl
(B1) + AdvColl

O (B′
1).

• The third game, Game3, is the same as Game2 except that we change the way the challenger
answers signing queries from A. Specifically, the challenger generates ct as in Game2 but
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round 1: P ′O
1 (((X(j)

i )(i,j)∈[N ]×[2], pk = (E0, E), ct = (Y0, Y )), (I, b, s, r))
1: seed $← {0, 1}λ

2: (s′, r′, bits1, · · · , bitsN , bitsN+1, · · · , bits2N)← O(Expand ∥ seed) ▷ Sample
(s′, r′) ∈ G×G and bitsi ∈ {0, 1}λ

3: for i from 1 to N do
4: cti ← (r′ ⋆ Y0, (r′ − i) ⋆ Y )
5: for j ∈ {1, 2} do
6: T2(i−1)+j ← s′ ⋆ X

(j)
i

7: C2(i−1)+j ← O(Com ∥ T2(i−1)+j ∥ cti ∥ bits2(i−1)+j) ▷ Create commitments
Ci ∈ {0, 1}2λ

8: (root, tree)← MerkleTree(C1, · · · , CN , CN+1, · · · , C2N)
9: Prover sends com← root to Verifier.

round 2: V ′
1(com)

1: c $← {0, 1}
2: Verifier sends ch← c to Prover.

round 3: P ′
2((I, s, r), ch)

1: c← ch
2: if c = 1 then
3: (s′′, r′′)← (s′ + s, r′ + r)
4: path ←

getMerklePath(tree, 2(I − 1) + b)
5: resp← (s′′, r′′, path, bitsI)
6: else
7: resp← seed
8: Prover sends resp to Verifier

Verification: V ′O
2 (com, ch, resp)

1: (root, c)← (com, ch)
2: if c = 1 then
3: (s′′, r′′, path, bits)← resp
4: (T̃ , c̃t)← (s′′ ⋆ E0, (r′′ ⋆ E0, r′′ ⋆ E))
5: C̃← O(Com ∥ T̃ ∥ c̃t ∥ bits)
6: r̃oot← ReconstructRoot(C̃, path)
7: Verifier accepts only if r̃oot = root.
8: else
9: Repeat round 1 with seed← resp.

10: Output accept if the computation res-
ults in root, and reject otherwise.

Figure 5.9: The base tightly-secure traceable OR sigma protocol (P ′ = (P ′
1, P ′

2), V ′ =
(V ′

1 , V ′
2)) for the relations Rsig and R̃Tight

sig . The changes compared to Fig. 5.2 are highlighted
in red. Informally, O(Expand∥·) and O(Com∥·) are a PRG and a commitment scheme
instantiated by the random oracle, respectively.

uses the ΠNIZK,lbl zero-knowledge simulator Sim = (Sim0, Sim1) to create the proof πsign.
As we have shown in the proof of Thm. 5.4.4, there exists a zero-knowledge adversary B2

for ΠNIZK,lbl running in time poly(λ)T and such that Adv2(A) ≤ Adv3(A) + AdvZK
ΠNIZK,lbl(B2).

• Finally, we consider an adversary B3 against GAIP which simulates Game3 for A. At the
beginning of the game, the adversary B3 is given the challenge E1 over pp = (G, E , E0, ⋆).
The adversary B3 invokes A with pp, and simulates an execution of Game3 with one
difference. When answering the i-th ukeygen query, B3 computes vki = (r(1)

i ⋆ Ebi
, r

(2)
i ⋆

E1−bi
) where r

(1)
i , r

(2)
i ← G, bi ← {0, 1}, and then records (i, vki, bi, r

(1)
i , r

(2)
i ) for i ∈ [Qu].

Note that now B3 is able to respond to any valid corruption query corrupt. Upon
receiving the corruption query of the i-th verification key, B3 returns r

(bi+1)
i satisfying
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(r(bi+1)
i ⋆ E0, r

(bi+1)
i ) ∈ RGAIP. The view of A during B3’s simulation is the same as

its view during a real execution of Game3, so OnlineExtract outputs a valid witness
(Ĩ , sk = (b′, sk′), r) with probability at least Adv3(A). Since the simulated process of
the key generation follows the same distribution determined by ARS.UKGen in the real
execution, there is an 1/2 chance that b′ = (2− b

Ĩ
). That is, (E1, sk′ − r

(2−bi)
i ) ∈ RGAIP.

Therefore, we have Adv3(A)/2 ≤ AdvGAIP(B3).

ARS.UKGen(1λ)
1: sk(1), sk(2) ← G
2: b $← {1, 2}
3: vk← (sk(1) ⋆ E0, sk(2) ⋆ E0)
4: return vk, sk := (b, sk(b))

ARS.MKGen(1λ)
1: msk← G
2: mpk← msk ⋆ E0
3: return (mpk, msk)

ARS.Sign(mpk, sk, R, M)
1: {(vk(1)

i , vk(2)
i )}i∈[N ] ← R

2: if ∄(I, b) : (pk(b)
I , sk) ∈ RGAIP then

3: return ⊥.
4: r $← G
5: ct = Enc(mpk, I; r)
6: πsign ← NIZK.Provelbl(M, (R, mpk, ct),

(I, b, sk, r))
7: return σ := (ct, πsign)

ARS.Verify(mpk, R, M, σ)
1: (ct, πsign)← σ
2: return NIZK.Verifylbl(M, (R, mpk, ct), πsign)

ARS.Judge(mpk, R, vk, M, σ, πopen)
1: (ct, πsign)← σ
2: if ∄I : vk = RI then
3: return ⊥.
4: b0 ← ARS.Verify(mpk, R, M, σ)
5: b1 ← NIZK.Verify((mpk, ct, I), πopen)
6: return b0 ∧ b1

ARS.Open(msk, R, M, σ)
1: if ARS.Verify(mpk, R, M, σ) = ⊥ then
2: return ⊥
3: (ct, πsign)← σ
4: I ← Dec(msk, ct)
5: πopen ← NIZK.Prove((mpk, ct, I), msk)
6: return π := (RI , πopen)

Figure 5.10: Modified tightly-secure construction of an accountable ring signature ΠTight
ARS

using Katz-Wang method and self-reducibility of the group action inverse problem, a
public-key encryption algorithm ΠPKE = (Setup, KeyGen, Enc, Dec) described in Sec. 5.3.1
where Setup is assume to generate (G, E0, ⋆) and KeyGen is implicitly used in ARS.MKGen.
ΠNIZK,lbl is an NIZK proof system with labels for RTight

sig , and ΠNIZK is a NIZK proof system
without labels for Ropen.

5.6 Further Optimization and Performance
We can ameliorate the signature size by utilizing the two techniques presented in [BKP20]. We
briefly summarise the techniques.
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N Hardness Security Anonymity Manager
2 25 26 210 221 Assumption Level Account.

Ours 3.6 6.0 6.6 9.0 15.5 GAIP ⋆ CCA Yes
[ESZ22] / 12 / 19 / MSIS/MLWE NIST 2 CPA No
[KKW18] / / 280 418 / LowMC NIST 5 selfless-CCA No

Table 5.1: Comparison of the signature size (KB) of some concretely efficient post-quantum
group signature schemes. The number N in the table represent the number of users
(i.e. the group size). The first row is our scheme. Manager accountability states whether
the (possibly malicious) group manager is accountable when opening a signature to some
user. Namely, it is “Yes” when even a malicious group manager cannot falsely accuse an
honest user of signing a signature that it hasn’t signed.
⋆ 128 bits of classical security and 60 bits of quantum security [Pei20].

Unbalanced Challenge Space. One can observe the response of a prover in the proof system
Fig. 7.2 for the challenge 0 is much shorter than the one for challenge one. The former is a single
seed, while the latter is a bunch of group elements. To do this we introduce the unbalanced
challenge space CM,K = {ch ∈ {0, 1}M | |ch| = K}, where | · | is the ℓ1-norm and 2λ ≤ M !

K!(M−K)! .
Concretely, we chose the challenge space as string of length M = 855 with Hamming weight
K = 19 and we thereby obtain a much smaller proof size while the online-extractability and
zero-knowledge remain the same.

Seed Trees. The seed tree technique allows the prover to produce a large amount of the seeds
using PRNG and iteratively generating binary subtrees (see Sec 2.7 of [BKP20]). The leaves of
the tree are the seeds to be used. The prover can later reveal the generating nodes while not
disclosing the information of those unrevealed leaves. The method reduces the size of responses
for the challenge 0 in our case.

Our performance is given in Tab. 5.1 using CSIDH-512 [BKV19] together with a comparison
with the state-of-art from different branches [KKW18, ESZ22]. Our accountable ring signature
(also the group signature) gives the strongest security guarantees with a comparable signature
size. Regarding the anonymity, the CPA anonymity given in [ESZ22] does not give an opening
oracle to the adversary. While the selfless-CCA of [KKW18] gives an opening oracle to the
adversary, the anonymity is not guaranteed if a member’s signing key is exposed.

5.7 Discussion
We would like to suggest two potential directions for future work in this area. Firstly, it
remains an open problem to construct a QROM secure variant of our construction or a different
construction from isogenies. To our knowledge, there are no efficient (logarithmic) group
signatures proven secure in the QROM. One possible approach to achieve this would be to
utilize the online-extractability property established in [DFMS22] through the commit-and-open
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technique, also known as the Pass transform [Pas03], though this will come with additional
overhead. Further investigation is required to determine the feasibility of this approach.

Secondly, we note that there is room for improvement in terms of the signature size for our
ring/group signature scheme, as well as the ring signature scheme proposed in [BKP20]. One
possible approach would be to develop a base sigma protocol for the Rsig relation that uses
a ternary or larger challenge space. However, this approach may not be straightforward due
to several issues. Firstly, it is unclear how to expand the challenge space for a simpler ring
signature relation such as the one considered in [BKP20]. Secondly, to increase the challenge
space, we typically require a structural challenge space 7. However, the current construction
relies on a shorter string (seed) to sample a group element using a PRNG, where the response in
each iteration is either a seed or group elements along with a Merkle path. The string can be
shorter than a group element representation due to the subexponential cryptoanalysis [Kup05].
A larger challenge space may require an additional group element as a response because a
random string might not support a structural challenge space, which could lead to an overhead.
Therefore, a structural challenge space may benefit the signature size by reducing the number of
repetitions, but could result in an overhead from the response. We leave these two questions as
open problems for future research.

7For example, we introduce a cyclic structure of the signing key in the generalization technique in
Sec. 6.4.1 for our blind signature to extend the challenge space in each repetition.
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Chapter 6

Blind Signatures

This chapter presents the work carried out in [KLLQ23], which the author of the thesis co-
authored. The author contributed to the ideas of the generalization of the base scheme of the
project (see Generalization of Sec. 6.4.1), proposes the ring group action inverse problem along
with its structural analysis, and has a partial contribution of compiling the interface for the
OMUF proof (Sec. 6.3). This chapter has been adapted by removing the partial blind signature
construction without compromising the essence of the original work.

Abstract. In this chapter, we present a new technique for constructing blind signatures from
isogenies that cleverly utilizes the quadratic twist base on the group action inverse problem.
With our approach, we have accomplished the first provably secure blind signature – CSI-Otters1

– from isogenies based on the group action inverse problem. Then, we generalize the result into a
framework – Otters – for the known-order abelian group actions without twists and develop a
potential tradeoff between the efficiency and the signature size.

6.1 Introduction
Blind signatures, which were first proposed by Chaum [Cha82], enable a user to receive a
signature on a message from a signer, without revealing the content of the message to the signer.
The signer remains unaware of the message they have signed, hence the term "blind". Meanwhile,
the signature can also be publicly verifiable by using the signer’s public key. In practice, it
is sometimes necessary to consider the extension of partially blind signatures, introduced by
Abe and Fujisaki [AF96], that further allow embedding a message agreed by both the signer
and the user into the signature. Unlike a blind signature, where the entire message is blinded,
in a partial blind signature scheme, only a part of the message is blinded, while the other
parts are left unblinded, where the public part can include, for instance, the expiration date
of the signature. Blind signatures2 were initially utilized to construct various cryptographic

1CSI-fish with Or-proof Twisted ThreE-Round Signature.
2For readability, we focus on blind signatures below when the distinction between the partial and

non-partial difference is insignificant.

93



protocols such as e-cash [Cha82, CFN90, OO92], anonymous credentials [Bra94, CL01], and
e-voting [Cha88, FOO93]. However, these concepts have recently experienced a surge in interest,
primarily due to their potential and applicability in blockchain technology [YL19, BDE+23],
and privacy-preserving authentication tokens [VPN22, HIP+22].

Blind signature schemes based on lattices are currently considered the most promising and
efficient class of schemes that can resist attacks by quantum computers. Recent research has
made significant progress in lattice-based blind signatures, as demonstrated in [HKLN20, LNP22,
AKSY22, dK22], where the signature size ranges from 50 KB to 10 MB. However, these signature
sizes are still an order of magnitude larger than their classical counterparts, which typically
range from a few hundred bytes to 1 KB. As the demand for post-quantum security and user
privacy grows, our objective is to investigate the possibility of developing a post-quantum blind
signature scheme that offers a more compact signature size.

Isogeny-based constructions offer a potential avenue for developing a post-quantum blind
signature scheme with a compact signature size. Although their signing and verification times
are generally less efficient, standard isogeny-based signature schemes [DG19, BKV19, DKL+20]
are known to produce comparable or smaller signatures than those produced by lattice-based
schemes. Furthermore, for more advanced forms of signature schemes, such as ring signatures and
group signatures, isogenies can produce much shorter signatures than their lattice-based coun-
terparts [BKP20, BDK+22] and provide stronger cryptographic guarantees (e.g. full anonymity
and tight reductions) in contrast to others in the literature.

However, this approach seems challenging to pursue. Generally, there are two methods for
constructing a blind signature. The first one is based on the Schnorr blind signature [CP93].
This approach builds on a sigma (or an identification) protocol with a “nice” algebraic property
and boosts it into a blind signature by appropriately randomizing the interaction. This nice
algebraic property has recently been stated informally as modules [HKL19, HKLN20]. However,
this property is not known to be available when using group actions such as CSIDH. The second
approach is based on the generic round-optimal construction (possibly based in a common
reference string model) proposed by Fischlin [Fis06]. It requires proving, at the minimum,
possession of a valid signature of a standard signature scheme using a non-interactive zero-
knowledge proof (NIZK) for a sophisticated relation involving the commitment and encryption
schemes. While del Pino and Katsumata [dK22] and Agrawal et al. [AKSY22] (and a very
recent work [BLNS23]) recently used this approach to construct more efficient lattice-based blind
signatures than previously known, this seems impractical to translate to the isogeny setting due
to the lack of efficient NIZKs for such complex relations.

In summary, while isogenies have the potential to produce the shortest post-quantum blind
signatures, it is unclear how we can leverage known approaches to build them. This brings us to
the main question of this work:

Can we construct an efficient post-quantum (partially) blind signature from isogenies
or even abelian group actions in general?
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6.2 Preliminaries
Notations.

We summarize some notations unique to this chapter. First, we use multiplication notation for
the known-order effective group action (G, E , E0, ⋆). We assume the group G is cyclic of order
N with a public generator g. Since several subroutines and samplings are used in this chapter,
for a set S, we let s $← S represent uniformly sampling from S to distinguish the use of ← of a
subroutine.

We use Zd to denote the set {0, . . . , d − 1}. Moreover, any vector is indexed from 0, e.g.,
a ∈ Zκ

d is expressed as (a0, . . . , aκ−1). With an overload of notations, for any integer j, we define
the bold font j as the length-κ vector (j, . . . , j). For any positive integer d and a ∈ Z or Zd, we
use [a]d to denote (a mod d) ∈ Zd. For an element g and vector a = (a1, . . . , an), we use ga

as a shorthand for (ga1 , . . . , gan). Moreover, for any operation ⋆ defined between two elements
g and h and vectors a = (a1, . . . , an) and b = (b1, . . . , bn), we use ga ⋆ hb as a shorthand for
(ga1 ⋆ hb1 , . . . , gan ⋆ hb1).

6.2.1 Blind Signatures
We define blind signatures consisting of three moves, e.g., [AO00, KLX22b, KLX22a] by ignoring
the tag info for a partial blind signature.

Definition 6.2.1 (Blind Signature Scheme). A three-move blind signature BS = (BS.KGen,

BS.S, BS.U, BS.V) with an efficiently decidable public key space PK consists of the following
PPT algorithms:

BS.KGen(1λ)→ (pk, sk) : On input the security parameter 1λ, the key generation algorithm
outputs a public and a secret key (pk, sk).

BS.S = (BS.S1, BS.S2) : The interactive signer algorithm consists of two phases:

BS.S1(sk)→ (stS, ρS,1) : On input a secret key sk, it outputs an internal signer state stS

and a first-sender message ρS,1.3

BS.S2(stS, ρU))→ ρS,2 : On input a signer state stS and a user message ρU, it outputs a
second-sender message ρS,2.

BS.U = (BS.U1, BS.U2) : The interactive user algorithm consists of two phases:

BS.U1(pk, M, ρS,1)→ (stU, ρU) : On input a public key pk ∈ PK, a message M, and a
first-sender message ρS,1, it outputs an internal user state stU and a user message
ρU.

BS.U2(stU, ρS,2))→ σ : On input a user state stU and a second-signer message ρS,2, it
outputs a signature σ.

3We assume without loss of generality that sk includes pk and stS includes (pk, sk) and omit it when
the context is clear. Therefore, we may assume that stU includes M.
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BS.V(pk, M, σ)→ 1 or 0 : On input a public key pk, a message M, and a signature σ, the
verification algorithm outputs 1 to indicate the signature is valid, and 0 otherwise.

We require a blind signature to be complete, blind against malicious signer, and one-more
unforgeable. We first define correctness.

Definition 6.2.2 (Perfect Correctness). A three-move blind signature scheme BS is perfectly
correct if for all public and secret key pairs (pk, sk) ∈ BS.KGen(1λ) and every message M, we
have

Pr

BS.V(pk, M, σ) = 1

∣∣∣∣∣∣∣∣∣∣∣

(stS, ρS,1) ← BS.S1(sk)
(stU, ρU) ← BS.U1(pk, M, ρS,1)

ρS,2 ← BS.S2(stS, ρU)
σ ← BS.U2(stU, ρS,2)

 = 1

The following definitions are taken from [KLX22b, KLX22a]. The blindness roughly requires
the transcript to be independent of the signature even if the signer choses the keys maliciously.

Definition 6.2.3 (Blindness Under Chosen Keys). We define blindness of a three-move blind
signature scheme BS via the following game between a challenger and an adversary A:

Setup. The challenger samples coin ∈ {0, 1} and runs A on input 1λ.

Online Phase. When A outputs messages M̃0 and M̃1, and a public key pk ∈ PK, it assigns
(M0, M1) := (M̃coin, M̃1−coin). A is then given access to oracles U1, U2, which behave as
follows.

Oracle U1. On input b ∈ {0, 1}, and a first-signer message ρS,1,b, if the session b

is not yet open, the oracle marks session b as opened and runs (stU,b, ρU,b) ←
BS.U1 (pk, Mb, ρS,1,b). It returns ρU,b to A.

Oracle U2. On input b ∈ {0, 1} and a second-signer message ρS,2,b, if the session b is
opened, the oracle creates a signature σb ← BS.U2 (stU,b, ρS,2,b). It marks session b

as closed. Oracle U2 does not output anything.

Output Determination. When both sessions are closed and BS.V (pk, Mb, σb) = 1 for b ∈
{0, 1}, the oracle returns the two signatures (σcoin, σ1−coin) to A, where note that σcoin

(resp. σ1−coin) is a valid signature for M̃0 (resp. M̃1) regardless of the choice of coin. A
outputs a guess coin∗ for coin. We say A wins if coin∗ = coin.

We say BS is blind under chosen keys if the advantage of A defined as Pr[A wins] is negligible.

One-more unforgeability roughly ensures that at most one valid signature is generated after
each execution of BS.Sign. Formally, we have the following.

Definition 6.2.4 (One-More-Unforgeability). We define ℓ-one-more unforgeability (ℓ-OMUF)
for any ℓ ∈ N of a three-move blind signature scheme BS via the following game between a
challenger and an adversary A:
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Setup. The challenger samples (pk, sk) ← BS.KGen(1λ) and runs A on input pk. It further
initializes ℓclosed = 0 and openedsid = false for all sid ∈ N.

Online Phase. A is given access to oracles S1 and S2, which behave as follows.

Oracle S1: The oracle samples a fresh session identifier sid. It sets openedsid ← true and
generates (stS,sid, ρS,1)← BS.S1(sk). Then it returns sid and the first-sender message
ρS,1 to A.

Oracle S2: On input a user message ρU and a session identifier sid, if ℓclosed ≥ ℓ or
openedsid = false, then it returns ⊥. Otherwise, it sets ℓclosed + + and openedsid =
false. It then computes the second-signer message ρS,2 ← BS.S2(stS,sid, ρU) and
returns ρS,2 to A.

Output Determination. When A outputs distinct tuples (M1, σ1), . . . , (Mk, σk), we say A
wins if k ≥ ℓclosed + 1 and for all i ∈ [k], BS.V (pk, Mi, σi) = 1.

We say BS is ℓ-one-more unforgeable if the advantage of A defined as Pr[A wins] is negligible.

6.2.2 Assumption: Ring Group Action Inverse Problem
Recall that G ∼= ZN and ZN is a ring. We introduce a generalized version of the group action
inverse problem by considering a d-th primitive root of unity, denoted by ζd, over ZN such that
ζd

d = 1 and ζj
d ̸= 1 for any j ∈ [d− 1].

Such a ζd exists if d is a divisor of the Carmichael function λ(N). Concretely, if N = Πpei
i

where pi are distinct primes, we have λ(N) = lcmi(λ(pei
i )) where

λ(pei
i ) =


1
2φ(pei

i ) if pi = 2 ∧ ei ≥ 3
φ(pei

i ) otherwise

where φ is the Euler phi-function.
We define the ring group action inverse problem (analogue to the ring variant of a lattice

assumption with a cyclotomic structure) 4 with respect to ζd as follows.

Definition 6.2.5 (ζd-Ring Group Action Inverse Problem (rGAIP)). Given (E0, S) ∈ Ed+1

where S = ([gsζj
d ] ⋆ E0)j∈Zd

, s← [N ] and d|λ(N) (here λ is the Carmichael function), the ζd-ring
group action inversion problem (ζd-rGAIP) is to recover s.

The advantage of A is defined as Advζd-rGAIP
(G,E,E0,⋆)(A) = Pr[A wins] where the probability is also

taken over the randomness used in the experiment.
When the context is clear, we may remove d from the subscript or remove ζd entirely and

call it rGAIP for simplicity. This problem is a generalized version of GAIP, which is a ζ2-rGAIP
with ζ2 = −1 (when the prime p = 3 (mod 4)). To see this, by taking the quadratic twist of

4Roughly, in the ring LWE setting, the polynomial ring is taken modulo a cyclotomic polynomial
xd − 1 for some parameter d.
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a GAIP instance E′ = [gs] ⋆ E0, we have (E′, E′−1) = ([gs] ⋆ E0, [g−s] ⋆ E0). Similar to GAIP
[FIM+14, BN18, CDEL21] having polynomial-time hidden shift problem (HSP) algorithms for
insecure group structures, the hardness of an ζd-rGAIP also relies on the underlying algebraic
structure and the specific choice of ζd. In Sec. 6.5.2, we provide a structural analysis on the
ζd-rGAIP for CSIDH-512 and display a few weak and hard instances depending on ζd. We show
that for some carefully-chosen d (depending on N), ζd-rGAIP is as essentially as hard as the
original GAIP.

Finally, when constructing our optimized blind signatures in Sec. 6.4, we require d to
satisfy a further requirement other than ζd-rGAIP being hard. Informally, we require ηd =
lcmi∈[d−1](gcd(ζi

d − 1, N)) to be small for the extractor of the underlying sigma protocol to be
efficient. More details can be found in Sec. 6.4.

6.3 Generic OMUF Proofs for Blind Schnorr-Type
Signatures

This section is taken almost verbatim from [KLLQ23]. This section is essential to have a simpler
and rigorous one more unforgeability proof for our blind signature scheme.

In this section, we review the recent work of Kastner, Loss, and Xu [KLX22a] that provided
a proof of the Abe-Okamoto (partially) blind signature [AO00]. The original security proof of
the one-more unforgeability in [AO00] contained a leap of logic in the security proof (i.e., the
scheme was correct but the security proof was not), and Kastner et al. provided a somewhat
generic proof that works for many of the blind Schnorr-type signatures [CP93].5

While their focus was on the scheme by Abe and Okamoto, the proof is generic enough to
capture other similar schemes (see for instance [KLX22a, Appendix F] that provides a proof
sketch of [Abe01]). Indeed, the constructions we propose fall under their generic proofs as well.
To this end, we extract the minimal definitions and prerequisite lemmas from [KLX22a] for
the OMUF proof. Then, we turn the lemmas, derived from the setting of [AO00], into the
requirements to argue the security for the blind Schnorr-type signatures. Here, we note that it
is likely that one can rewrite [KLX22a] in a more generic fashion by borrowing the tools from
[HKL19]. However, we chose not to for better readability and since isogenies do not naturally
endow a linear identification scheme as required by [HKL19]. In conclusion, we want to stress
that we are not claiming any technical originality in this section. Instead, we have compiled the
ideas presented in [KLX22a] into an interface that is both accessible and practical. We hope the
interface will prove useful for future work in this area.

Below, we provide a brief overview of the proof by Kastner et al. and then introduce the key
lemmas that need to be proven in this thesis to apply their proof.

5Note that the proof in [KLX22a] relies on the fact that there are two possible signing keys per public
key. Therefore, their proof does not work for the original Schnorr blind signature [CP93], which is known
to be secure if we further rely on the algebraic group model [KLX22b].
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6.3.1 Proof Overview
Loosely speaking, a blind Schnorr-type signature is a type of blind signature that builds on top
of a Schnorr-type sigma protocol [Sch90]. The signer of the blind signature is identical to the
prover in a sigma protocol, while the user of the blind signature modifies the verifier in the sigma
protocol by appropriately adding blindness factors. In the proof of one-more unforgeability,
the adversary (i.e., a malicious user) does not care if its forgeries are blind, and thus, how the
blindness is achieved can be ignored for now.

At a high level, to argue one-more unforgeability, we would like the reduction to embed a
hard problem into the public key of the blind signature and appeal to the special soundness
of the underlying sigma protocol to extract a solution from the forgeries. However, unlike
standard Fiat-Shamir based signatures, the reduction cannot rely on HVZK to simulate the
signatures since the challenge is under the adversary’s control. To simulate the interaction
between the adversary, we thus allow the public key to have two valid secret keys, e.g., (vk =
(E0, [ga0 ] ⋆ E0, [ga1 ] ⋆ E0), sk = (δ, aδ)) with δ ∈ {0, 1}. The reduction embeds a hard problem
into one of the secret keys while simulating with the other secret key.

What makes the security proof of blind Schnorr-type signatures tricky is that even if the
adversary’s view is independent of the secret key being used, this alone does not complete the
proof. This is because to argue that the secret key extracted via the special soundness of the
underlying sigma protocol is unbiased, we need to argue that the algorithm (i.e., reduction)
executing the extractor of the special soundness is unbiased. While this holds for standard
Fiat-Shamir based signature schemes since the reduction can invoke HVZK, this is not the case for
blind signatures. As we discussed above, since the adversary chooses the challenge, the reduction
can only try to invoke witness indistinguishability. However, witness indistinguishability breaks
when the reduction rewinds the adversary since the reduction needs to simulate two transcripts
using the same first commitment of the sigma protocol. Thus, the reduction is not compatible
with the definition of witness indistinguishability.

That being said since the view of the adversary (in each run) is independent of the secret key
being used, intuition tells us that the extraction works: the only thing that’s not working is the
security proof. To overcome this issue, Kastner et al. [KLX22a] provides a detailed analysis of
the probability of the reduction succeeding while implicitly relying on witness indistinguishability.
We note that Abe and Okamoto [AO00] also rely on the same proof approach but included a
subtle but non-trivially fixable flaw to compute the probability.

6.3.2 Key Definitions, Lemmas, and Theorems
We extract the minimal definitions and lemmas from [KLX22a] in a self-contained manner so
that the security of our blind signatures is established through several easy-to-state lemmas. For
a more full exposition, we refer the readers to [KLX22a].
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Preparation.

Assume the adversary against the one-more unforgeability game is restricted to make only ℓ + 1
distinct hash queries to the random oracle, where ℓ + 1 is the number of forgeries the adversary
outputs6. Moreover, as with any blind Schnorr-type signature, we assume each signature in the
forgery is associated with a distinct hash query. We also assume the public key of the blind
signature has exactly two corresponding secret keys. More specifically, we assume the underlying
sigma protocol is for the NP OR-relation R defined with respect to another NP relation R′.
That is, (X := (X′

0, X′
1), W := (δ, W′

δ) ∈ R, where (X′
0, W′

0), (X′
1, W′

1)) ∈ R′, X is the public key
and W is the secret key. Finally, we assume the adversary’s user-message ρU queried to the
signing algorithm BS.S2 satisfies ρU ∈ C, where C is the challenge space of the underlying sigma
protocol for relation R (and R′).

We first define the notion of instances. Roughly, an instance defines the signer’s key and
randomness. We present a variant of the definition of instances in [KLX22a, Definition 4] that
is agnostic to the underlying sigma protocol. We provide an explicit description of instances,
analogous to [KLX22a, Definition 4], when we detail our construction of blind signatures.

Definition 6.3.1 (Instances). Assume the public key of a blind Schnorr-type signature has
exactly two corresponding secret keys sk0 = (0, W′

0) and sk1 = (1, W′
1). We define two types of

instances I: A 0-side (resp. 1-side) instance consists of sk0 (resp. sk1) and the randomness used
by the honest signer algorithm when the secret key is fixed to sk0 (resp. sk1), i.e., randomness
excluding those used by the key generation algorithm.

The main argument of Kastner et al. boils down to arguing that the output of the extraction
algorithm (i.e., forking algorithm) explained above is independent of the instances.

Let −→h be the vector of responses returned by the random oracle, where
∣∣∣−→h ∣∣∣ = ℓ + 1, and

let rand be the randomness used by the one-more unforgeability adversary. For a vector −→h , its
i-th entry is denoted by hi, and the vector of its first i entries is denoted by −→h [i]. We define a
deterministic wrapper algorithm W that simulates the interaction between the signer and the
adversary given input (I, rand,

−→
h ). W invokes the signer and the adversary on inputs I and rand,

respectively, and uses −→h to answer the random oracle queries made by the adversary. We define
W(I, rand,

−→
h ) to output ⊥ if the adversary aborts prematurely or fails to win the one-more

unforgeability game, and otherwise, output what the adversary outputs. We then define the
notion of successful tuples as follows.

Definition 6.3.2 (Successful Tuples). We define the set of successful tuples as follows:

Succ := {(I, rand,
−→
h ) | W(I, rand,

−→
h ) ̸= ⊥}.

6ℓ + 1 distinct hash queries are assumed in [KLX22a]. Their Lemma 1 shows how to turn a general
adversary into one with ℓ + 1 queries. Similarly, by using a standard hybrid argument, it is clear that one
can also turnurn an adversary with repeated queries into one with distinct queries.
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We next define a sufficient condition to invoke the extraction algorithm of the underlying
sigma protocol. This is a standard definition (often implicitly) used even for Fiat-Shamir based
signatures.

Definition 6.3.3 (Successful Forking. [KLX22a, Definition 7]). We say two successful input tuples
(I, rand,

−→
h ), (I, rand,

−→
h ′) ∈ Succ fork from each other at index i ∈ [ℓ + 1] if

−→
h [i−1] = −→h ′

[i−1] but
hi ≠ h′

i. We denote the set of hash vector pairs (hi, h′
i) such that (I, rand,

−→
h ), (I, rand,

−→
h ′) ∈ Succ

fork at index i as Fi(I, rand).

We next define the notion of transcripts. A query transcript denotes the user messages
queried to the signer. A full transcript denotes the entire transcript produced by the signer and
the adversary, including the final forgery.

Definition 6.3.4 (Query Transcript. [KLX22a, Definition 5]). Consider the wrapper W running
on input (I, rand,

−→
h ). The query transcript, denoted −→e (I, rand,

−→
h ), is the vector of user message

(ρU ) queries made to the signing algorithm BS.S2 (simulated by W) by the adversary, ordered by
sid.

Definition 6.3.5 (Full Transcript. [KLX22a, Definition 6]). Consider the wrapper W running
on input (I, rand,

−→
h ). The full transcript, denoted trans(I, rand,

−→
h ), is the transcript produced

between the signer and the adversary, i.e., all messages sent between the signer and user played
by the adversary, including the forgeries.

We now define partners, which plays a key role in the analysis of [AO00, KLX22a]. Informally,
two tuples (I, rand,

−→
h ), (I, rand,

−→
h ′) ∈ Succ are partners at i if they fork at this index i and

produce the same query transcript. Note that this does not necessarily imply that each tuple
results in the same full transcript.

Definition 6.3.6 (Partners. [KLX22a, Definition 8]). We say two successful tuples (I, rand,
−→
h ),

(I, rand,
−→
h ′) are partners at index i ∈ [ℓ + 1] if the following hold:

• (I, rand,
−→
h ) and (I, rand,

−→
h ′) fork at index i.

• −→e (I, rand,
−→
h ) = −→e (I, rand,

−→
h ′)

We denote the set of (−→h ,
−→
h ′) such that (I, rand,

−→
h ) and (I, rand,

−→
h ′) are partners at index i by

prti(I, rand).

A triangle is another key tool introduced in [AO00, KLX22a] in order to enhance the standard
forking tuples with the nice properties of partners. A triangle consists of three vectors −→h ,

−→
h ′,
−→
h ′′

such that each two vectors fork at the same index, and additionally, (−→h ,
−→
h ′) are partners.

Definition 6.3.7 (Triangles. [KLX22a, Definition 9]). A triangle at index i ∈ [ℓ + 1] with respect
to I, rand is a tuple of three successful tuples in the following set:

△i(I, rand) =


((I, rand,

−→
h ), (−→h ,

−→
h ′) ∈ prti(I, rand)

(I, rand
−→
h ′), (−→h ,

−→
h ′′) ∈ Fi(I, rand))

(I, rand
−→
h ′′)) (−→h ′,

−→
h ′′) ∈ Fi(I, rand)
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For a triangle ((I, rand,
−→
h ), (I, rand,

−→
h ′), (I, rand,

−→
h ′′)) ∈ △i(I, rand), we call the pair of tuples

((I, rand,
−→
h ), (I, rand,

−→
h ′)) the base, and ((I, rand,

−→
h ), (I, rand,

−→
h ′′)) and ((I, rand,

−→
h ′), (I, rand,

−→
h ′′)) the sides.

We next define a map that transforms a b-side instance into a (1 − b)-side instance for
b ∈ {0, 1}. Roughly, the map allows us to relate the number of triangles with a 0-side instance
to those with a 1-side instance. We present a variant of the definition of instances in [KLX22a,
Definition 12] that is agnostic to the underlying sigma protocol. We provide an explicit description
of the map, analogous to [KLX22a, Definition 12], when we detail our construction of blind
signatures.

Definition 6.3.8 (Mapping Instances via Transcript). For (I, rand,
−→
h ) ∈ Succ, we define

Φrand,
−→
h

(I) as a function that maps a 0-side instance I (resp. 1-side instance I) to a 1-side
instance I′ (resp. 0-side instance I′).

In [KLX22a], the mapping is crucial to the counting argument as it maps an instance to the
other branch for an adversary to create transcripts using the same hash values and randomness.
One of the branches involves using a self-generated secret key while the other utilizes a hard
instance as the public key. The purpose of the mapping is to determine the likelihood of
the extractor being able to extract the witness for the hard instance (see the explanation of
Requirement 1 below for a precise use). Note that the map does not need to be computationally
feasible since it is only used in the counting argument rather than in the extraction procedure.

Finally, we formally define the witness extractor used by the reduction. We present a variant
of the definition of witness extractor in [KLX22a, Definition 13] that is agnostic to the underlying
sigma protocol. This is because the witness extractor’s concrete description is defined using the
special soundness extractor of the underlying sigma protocol, which we will do when we detail
our construction of blind signatures.

Definition 6.3.9 (Witness Extraction). Fix I, rand and let
−→
h ,
−→
h ′ ∈ Fi(I, rand) for some

i ∈ [ℓ + 1]. Moreover, denote σi, σ′
i the signatures that correspond to hi, h′

i, respectively. We
say deterministic algorithms (Ext0, Ext1) are witness extractors if (Ext0(σi, σ′

i), Ext1(σi, σ′
i)) ∈

{(sk0,⊥), (⊥, sk1), (sk0, sk1)}.For b ∈ {0, 1}, we say that the b-side witness can be extracted from
(I, rand,

−→
h ) and (I, rand,

−→
h ′) at index i if Extb(σi, σ′

i) outputs skb.

Sufficient Conditions for One-More Unforgeability.

We are now prepared to formally present the main result of Kastner et al. [KLX22a]. First of all,
if the map Φrand,

−→
h

is a bijection that preserves transcripts for any rand and −→h , then a partner
tuple with a b-side instance maps to another partner tuple with a (1− b)-side instance for the
same rand and −→h (see [KLX22a, Corollary 1 and Lemma 3]). This implies that the extracted
witness from a partner tuple is independent of b and the secret key generated in the reduction.
However, it is not clear if the reduction is able to obtain a partner tuple by rewinding. To
this end, we use the sides of the triangle rather than the base (i.e., partner tuple) to extract a
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witness, where the main observation is that if a b-side witness can be extracted from the base of
a triangle, then a b-side witness can be extracted from at least one of the sides. Then, we argue
that the reduction having a b-side witness hits one corner of the base of a triangle in the first
run, and then hits the top of the triangle such that it creates side with a (1− b)-side witness
with a probability of roughly 1/2.

The main contribution of Kastner et al. [KLX22a] was to make the above high-level argument
precise. Their result is mostly purely statistical and it suffices to only prove that our blind
signature satisfies the following two lemmas to invoke their main theorem concerning one-
more unforgeability. The first lemma shows that the blind signature is perfectly witness
indistinguishable. This is used to establish the extracted witness from a partner tuple is
independent of the reduction’s secret key.

Requirement 1 ([KLX22a, Lemma 2]). Fix rand,
−→
h . For all tuples (I, rand,

−→
h ) ∈ Succ, Φrand,

−→
h

is a self-inverse bijection and trans(I, rand,
−→
h ) = trans(Φrand,

−→
h

(I), rand,
−→
h ).

The second lemma states that if a witness can be extracted from a base of a triangle, then
the same witness can be extracted from at least one of its sides.

Requirement 2 ([KLX22a, Corollary 3]). Fix I, rand and let (−→h ,
−→
h ′,
−→
h ′′) ∈ △i(I, rand), for

some i ∈ [ℓ+1]. If the 0-side (1-side) witness can be extracted from the base (I, rand,
−→
h ), (I, rand,

−→
h ′)

of the triangle at index i, then one can also extract the 0-side (1-side) witness from at least one
of the sides (I, rand,

−→
h ), (I, rand,

−→
h ′′) or (I, rand,

−→
h ), (I, rand,

−→
h ′′) at index i.

The following is the main theorem of Kastner et al. [KLX22a, Theorem 1] written slightly
generally to be agnostic to the underlying hardness assumption.

Theorem 6.3.10. Let the blind Schnorr-type signature (P)BS be as defined in the preparation
of Sec. 6.3.2. In particular, assume the public key consists of two instances of the NP relation
R′ generated by a corresponding hard instance generator IG and the underlying sigma protocol
has challenge space C.

If Requirements 1 and 2 hold, then for all ℓ ∈ N, if there exists an adversary A that makes
Q hash queries to the random oracle and breaks the ℓ-one more unforgeability of (P)BS with
advantage ϵA ≥ C1

|C| ·
( Q

ℓ+1
)
, then there exists an algorithm B that breaks the hard instance generator

with advantage ϵB ≥ C2 ·
ϵ2

A

( Q
ℓ+1)

2·(ℓ+1)3
for some universal positive constants C1 and C2.

6.4 Our Construction Using Roots of Unity
In this section, we present a novel framework for a known-order EGA to construct blind signatures
based on the ring group action inverse problem (rGAIP), which is a generalized version of the
group action inverse problem (GAIP). When we instantiate it with CSIDH and the prime p = 3
(mod 4), −1-rGAIP is exactly GAIP, which leads to an isogeny-based blind signature basing on
the standard assumption.
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In Secs. 6.4.5 to 6.4.7, we provide the proofs of the correctness, blindness, and OMUF of the
construction under the assumption that rGAIP is hard. In Sec. 6.5, we provide analysis on the
hardness of the rGAIP for the CISHD-512 parameter set and show that not all rGAIP instances
are equally difficult.

6.4.1 Overview

Reviewing the Schnorr Blind Signature.

We first recall the Schnorr sigma/identification protocol between a prover with (pk, sk) = (h =
ga, a) ∈ G × Zp and a verifier with pk. The prover samples y $← Zp and sends Y = gy to the
verifier. The verifier sends a random challenge c $← Zp to the prover, where the prover replies
with r = y−a ·c. The verifier is convinced that it was communicating with a prover in possession
of sk = a if gr · hc = Y . Here, if the verifier sets the challenge as c = H(Y ∥M) for a message M
and a hash function H modeled as a random oracle, then σ = (c, r) serves as a signature based
on the Fiat-Shamir transform [FS87], where the prover is the signer and the verifier is the user
with M.

The interactive signing protocol described does not meet the requirement of blindness, which
implies that a signature cannot be linked to a particular signing session. When the user produces
the pair (M, σ), the signer can identify the session during which it signed σ. Specifically, the
signature σ can be linked back to the user by inspecting the hash value c included in σ which
indicates when it was used.

The Schnorr blind signature [CP93] allows the user to randomize the interaction, making the
session transcript independent of the final signature. This is achieved by introducing randomness
to the signature such that σ′ = (c + d, r + z), where (d, z) is uniformly sampled from Zp with
respect to the signer’s view.

To accomplish this, when the user receives Y as the first-sender message, it generates
(d, z) $← Z2

p and sets Y ′ := gz · Y · hd. It then computes c′ = H(Y ′ ∥M) and sends c := c′ − d to
the signer, who replies with r = y− a · c as before. Since we have gr · hc = Y , the user multiplies
gz and hd on each side to obtain gr+z · hc+d = Y ′. Thus, σ′ = (c′, r′) := (c + d, r + z) is a valid
signature for the message M. Moreover, it can be verified that this scheme satisfies perfect
blindness since any signature σ′ = (c′, r′) can be generated from a transcript (Y, c, r) with equal
probability, where the probability is taken over the randomness sampled by the user.

Difficulty with Group Actions.

In the above, the user is implicitly using a specific structure of the underlying Schnorr sigma
protocol to randomize the interaction. Specifically, it is using the fact that G is a Zp-module.
This allows the user to randomize the first-signer message Y ∈ G by multiplying it with the
generator g ∈ G raised to the power of z ∈ Zp and the public key h = ga ∈ G lifted to the
power of d ∈ Zp. This property has been more formally abstracted as a linear identification
protocol [HKL19, HKLN20]. The linear identification protocol covers schemes based on classical
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groups and lattices, and it provides a systematic way to construct and analyze identification
schemes by leveraging the underlying algebraic structure.

Unfortunately, this does not extend to the isogeny setting since isogenies are only a group
action. Concretely, the CSIDH group action is defined as ⋆ : G× E → E , where G is an ideal
class group and E is a set of elliptic curves, and we further assume the structure of G is known
and can be expressed as G = ⟨[g]⟩ ∼= ZN for some N ∈ N, where g is the generator [BKV19].

First, we give a naive attempt to construct an isogeny-based Schnorr-style blind signature
with a public key pk = A = [ga] ⋆ E0 ∈ E , where a is a random element sampled from ZN ,
and E0 is a fixed curve. However, unlike the traditional Schnorr blind signature scheme, we
face limitations when randomizing the first-signer message Y = [gy] ⋆ E0 for y ∈ ZN . While
computing [gz] ⋆ Y for a random z ∈ G is possible, combining Y with [gd] ⋆ A is not feasible, as
they are both set elements. This is in contrast to the Schnorr blind signature, where one can
randomize the first-signer message Y twice; once with a randomness d to conceal the challenge c

and again with a randomness z to hide the second-signer message r. As a result, it is unclear
how to use isogenies to construct a blind signature while only having one way to randomize Y .
In summary, although we can randomize the first-signer message in one way, we need to explore
alternative methods to construct a blind signature scheme.

Novel Use of the Quadratic Twist.

Our main observation to overcome this problem is to rely on the property that isogenies are
slightly more expressive than a group action due to the quadratic twist. Given any A = [ga] ⋆ E0

for an unknown a ∈ ZN , we can efficiently compute its quadratic twist [g−a] ⋆ E0, which we
denote by A−1.

We first explain the underlying isogeny-based sigma protocol, where we assume for now that
the challenge space is C = {−1, 1}. Identically to the above, the prover sends Y = [gy] ⋆ E0

for y $← ZN . The verifier then sends a random challenge c $← {−1, 1}, and the prover replies
with r = y − a · c. The verifier then verifies the “signature” σ = (c, r) by checking whether
[gr]⋆Ac = Y , where note that Ac is well-defined for c ∈ {−1, 1} even though A comes from the set
of elliptic curves. For an honest execution of the protocol, we have [gr] ⋆ Ac = [gr] ⋆ ([ga·c] ⋆ E0) =
[gr+a·c] ⋆ E0 = Y as desired.7

Our idea is to randomize this sigma protocol so that the signature σ = (c, r) becomes
σ′ = (c · d, r · d + z), where (d, z) is uniform over {−1, 1} × ZN from the view of the signer.
Concretely, given the first-sender message Y , the user randomizes Y by sampling random
(d, z) $← {−1, 1} × ZN and sets Y ′ := [gz] ⋆ Y d. It then computes c′ = H(Y ′∥M) and sends
c := c′ · d. The signer replies with r = y − a · c as before. Since we have [gr] ⋆ Ac = Y , the user
can first compute [gr·d] ⋆ Ac·d = Y d. Namely, it performs nothing if d = 1, and computes the
quadratic twist of both sides if d = −1. It then acts by [gz] to obtain [gr·d+z] ⋆ Ac·d = [gz] ⋆ Y d.
Since the right-hand side is Y ′, σ′ = (c′, r′) := (c · d, r · d + z) is a valid signature for the message

7Note that this is a standard (optimized variant of an) isogeny-based sigma protocol where 0 is removed
from the challenge space (see for instance [BKV19]).
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M as desired. Moreover, it can be checked that we have perfect blindness since c and r are
both randomized; the (multiplicative) randomness d ∈ {−1, 1} hides the challenge c and the
(additive) randomness z ∈ ZN hides the response r. Put differently, any signature σ′ = (c′, r′)
has an equal chance of being generated from a transcript (Y, c, r), where the probability is taken
over the randomness sampled by the user.

Finally, to turn this basic idea into a secure blind signature, we enlarge the challenge space
to be exponentially large, i.e., C = {−1, 1}λ where λ is the security parameter. All the above
arguments naturally extend to this enlarged challenge space by running the protocol λ-times in
parallel.

Generalization.

After discussing the preliminary results, it is reasonable to inquire about the following two issues:

1. Is it feasible to apply the approach described above to other group actions that lack twists?

2. Can we increase the challenge space to reduce the need for repetition?

Fortunately, the generalization technique presented in this section provides solutions to both of
the questions.

It is a natural attempt to reduce the signature size by considering a larger public key space.
Indeed, as shown in [BKV19], such an optimization is possible for standard signature schemes by
relaxing GAIP to the multi-target GAIP. As a result, the soundness error of the underlying sigma
protocol in a single round decreases to 1

2S−1 from 1
3 for a public key size S. Since the number of

repetitions is decreased to λ
log2(2S−1) , this technique makes it possible to decrease the signature

size, signing, and verification time at the cost of increased public key size. For isogeny-based
protocols—which are generally slow but offer small key sizes—this is a very favorable tradeoff.

Unfortunately, a natural adaptation of the same relaxation will not apply to our case because
the multi-target GAIP does not offer the particular structure that our blind signature requires.
Roughly speaking, a main component of our blind signature requires a user/verifier to compute
[gz+y∗d] ⋆ E0 while only given [gy∗ ] ⋆ E0 ∈ E , z ∈ ZN and d. This is only feasible by using the
quadratic twist, which is when d ∈ {−1, 1}. An unstructured random public key not only fails
to benefit the user but also breaches the group structure of the challenge space since d is no
longer restricted in {−1, 1}.

To this end, we present a novel technique that allows us to trade off efficiency and the
signature size using a structured public key. The high-level idea is fairly simple: to generalize
the concept of the quadratic twist in the sense of the group action relation. In the previous
section, both parties compute the action of [gr] on a curve E0 or E−1

0 with respect to the
challenge c ∈ Z×

3 = {−1, 1}. Recall that ([gr] ⋆ E0)−1 = [g−r] ⋆ E0. In other words, the challenge
c ∈ Z×

3 = {−1, 1} is encoded into gc. Since −1 is a second primitive root of unity over ZN , the
challenge space, as a (multiplicative) group, induces an action on E by computing the twist.
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We generalize the concept by expanding the challenge space to ⟨ζ⟩ = {1, ζ, ζ2, . . . , ζd−1},
where d ∈ N and ζ is a d-th primitive root of unity over Z×

N ; that is, ζ satisfies ζd = 1 and
ζj ̸= 1 for any j ∈ [d − 1]. Note that ⟨ζ⟩ is naturally a multiplicative (sub)group, which
provides an algebraic operation on the challenge space. The action (r, c) ∈ ZN × Zd on a
curve E0 ∈ E is defined to be [grζc ] ⋆ E0. When k = 2 and ζ can be taken to be −1, this is
identical to the scheme described above (the previous subsubsection). However, unlike the case
d = 2 where we have the formula derived from the quadratic twist, when d ≥ 3 the signer
is required to compute [gy∗

b,jζ ]⋆E0 for each (b, j) ∈ [2]× [κ] in BS.S1 to aid the user’s computation.

6.4.2 Preparation
Our construction requires one more property from the d-th primitive root of unity ζ to be useful.

Looking ahead, when we construct a sigma protocol for the rGAIP relation, the special
soundness extractor must solve the secret exponent a ∈ ZN , given distinct c1, c2 ∈ Z2

N and
r1 = y + aζc1 , r2 = y + aζc2 (mod N) for an unknown a and y. If ZN was a finite field, then
this is trivial. However, in general when ZN is a ring, such a may not be efficiently computable
because the equation may not be uniquely solvable. One sufficient condition would be to only
use a d ∈ ZN such that (ζc1 − ζc2) is invertible over ZN for all distinct (c1, c2) ∈ Z2

N . However,
this is an overly restrictive requirement and we thus make the following relaxed requirement.

Requirement 3. We require ηd = lcmi∈[d−1](gcd(ζi − 1, N)) = poly.

The requirement is equivalent to finding a d such that d divides many Euler-phi values of
maximal prime power divisors of the group order N (see Sec. 6.5.1 about the existence and
finding a root). Informally, when ηd is polynomial in the security parameter n, then we can
brute force all a ∈ ZN such that a · (ζc1 − ζc2) = z for a given (c1, c2, z) ∈ Z3

N . Formally, we
have the following.

Lemma 6.4.1. Let (N, d, ζ) be a public parameter where the factorization of N is known and let
ηd = lcmi∈[d−1](gcd(ζi−1, N)). Then, there exists an extractor Ext′ that takes as input the public
parameter and (r1, r2, c1, c2) ∈ Z2

N × Z2
d where c1, c2 are distinct with relations r1 = y + aζc1

d ,
r2 = y + aζc2

d (mod N), and outputs a list containing a ∈ ZN of size not greater than ηd in time
poly(ηd).

Proof. By calculating (r1 − r2)ζ−c2
d = a(ζc1−c2

d − 1), the extractor solves a by solving the linear
equation reduced modulo the prime power factors of N , then using the Chinese remainder
theorem to obtain a list of candidates of a. The size of the list is the number of solutions for the
linear equation, which is at most ηd.

6.4.3 Base Sigma Protocol with a Large Challenge Space
We first introduce the base sigma protocol with a larger challenge space assuming Requirement 3.
This is depicted in Fig. 6.1 without the boxes. We will show the correctness, HVZK, and,
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importantly, special soundness of this sigma protocol.

P:
X = ((Aj

0)j∈Zd
, (Aj

1)j∈Zd
)

= (([ga0ζj ] ∗ E0)j∈Zd
, ([ga1ζj ] ∗ E0)j∈Zd

)
W = (δ, aδ) ∈ {0, 1} × ZN

V: X = ((Aj
0)j∈Zd

, (Aj
1)j∈Zd

)

yδ
$← Zκ

N

Yδ = [gyδ ] ∗ E0

(Yj
δ = [gyδζj ] ∗ E0)j∈Zd

(c1−δ, r1−δ) $← Zκ
d × Zκ

N

Y1−δ = [gr1−δ ] ∗ A
c1−δ

1−δ

(Yj
1−δ = [gr1−δζj ] ∗ A

[c1−δ+j]d
1−δ )j∈Zd

(Y0, Y1)
(Yj

0, Yj
1)j∈Zd

−−−−−−−−−−−−→

c
←−−−−−−−−−−−−

c $← Zκ
d

cδ = c− c1−δ

rδ = yδ − aδζ
cδ

(r0, r1, c0, c1)
−−−−−−−−−−−−→

Accept if c = c0 + c1 and
∀ b ∈ {0, 1}, ∀j ∈ Zd ,
[grb ] ⋆ Acb

b = Yb

[grbζj ] ⋆ A
[cb+j]d
b = Yj

b

Figure 6.1: The base sigma protocol with a large challenge space, where the box is to be
ignored. Recall Zd = {0, 1, . . . , d− 1}. Aj

b denotes [gabζj ] ⋆ E0 for j ∈ Zd and the vector
A

[c]d
b denotes (A[c0]d

b , . . . , A
[cκ−1]d
b ) where c = (c0, . . . , cκ−1) ∈ Zκ. If c ∈ Zκ

d , then A
[c]d
b is

simply Ac
b . Other notations are explained at the beginning of Sec. 6.2. The base sigma

protocol can be made compatible with blind signatures by running the boxed lines instead
of the preceding non-boxed lines.

Correctness.

It suffices to show the equation.
[grb ] ⋆ Acb

b = Yb (6.1)

for b ∈ {0, 1}. For the case b = 1− δ, the equation holds naturally. For the case b = δ, we have

[grδ ] ⋆ Acδ
δ = [gyδ−aδζcδ ] ⋆ Acδ

δ

= [gyδ−aδζcδ ] ⋆
(
[gaδζcδ ] ⋆ E0

)
= Yδ,

where we use the fact that Ac
δ = [gaδζc ] ⋆ E0 for any c ∈ Zd.
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HVZK.

Given a challenge c ∈ Zκ
d and the instance X = ((Aj

0)j∈Zd
, (Aj

1)j∈Zd
), a zero-knowledge simulator

Sim samples random (c0, c1) $← Zκ
d conditioned on c0 + c1 = c. Then, for each b ∈ {0, 1}, the

simulator generates rb
$← Zκ

N and Yb = [grb ] ⋆ Acb
b , and outputs ((Y0, Y1), c, (r0, r1, c0, c1)).

Since there is a bijection between rb and Yb once cb is fixed, this produces a transcript identically
distributed as a real transcript.

Witness Indistinguishable.

This is a direct consequence of the above since perfect HVZK implies perfect witness indistin-
guishability as explained in Rem. 3.3.5.

Special Soundness.

It suffices to show that special soundness holds for κ = 1. Let ((Y0, Y1), c, (r0, r1, c0, c1)), and
((Y0, Y1), c′, (r′

0, r′
1, c′

0, c′
1)) be the two valid transcripts. Since c = c0 + c1, c = c′

0 + c′
1 and c ̸= c′,

we assume c0 ̸= c′
0 without loss of generality. We have r0, r′

0 ∈ ZN , and distinct c0, c′
0 ∈ Zd with

relations r0 = y + a0ζc0
d , r′

0 = y + a0ζ
c′

0
d (mod N) where y, a0 are unknown. Since we assume

Requirement 3 holds, we can use the extractor Ext′(r0, r′
0, c0, c′

0) in Lem. 6.4.1 to obtain a list
of size η = lcmi∈[d−1](gcd(ζi − 1, N)) = poly containing a0 ∈ ZN in polynomial time. We can
find a0 from the list by running through each element in the list and checking if it maps to the
statement (Aj

0)j∈Zd
or (Aj

1)j∈Zd
.

Here, we implicitly assume the statement is honestly generated and that this check always
terminates.

6.4.4 Enhancing the Base Sigma Protocol for Blind Signatures
Before explaining our blind signature, we make a subtle but important modification to our base
sigma protocol. Looking ahead, this modification enables us to prove perfect blindness for our
blind signature (refer to Rem. 6.4.4 for more precise use of this modification). To understand
this modification, notice that if we tried to use a similar idea as in the prior sections to blind
Yb = [gyb ] ⋆ E0 for b ∈ {0, 1}, the user must randomize it to a value [gzb ] ⋆

(
[gybζdb ] ⋆ E0

)
, where

(zb, db) $← Zκ
N × Zκ

d . This was doable when d = 2, since ζ = −1 and [gybζdb ] ⋆ E0 is simply the
quadratic twist of Yb. However, in general, such a computation cannot be performed. To this
end, we let the prover include components that will later help the user in the blind signature.
This extension to our basic sigma protocol is illustrated in Fig. 6.1, where the box represents the
modification. The prover sends [gybζj ] ⋆ E0 for all j ∈ Zd so that the user in the blind signature
can choose whichever one based on the dd it samples. We also modify the verifier of the base
sigma protocol to check that [gybζdb ] ⋆ E0 were generated correctly.
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Below, we show that the extended sigma protocol satisfies correctness and HVZK. Since the
extended sigma protocol includes the transcript of the base sigma protocol, special soundness is
inherited.

Correctness.

It suffices to show that
[grbζj ] ⋆ A

[cb+j]d
b = Yj

b

for any (b, j) ∈ {0, 1} × Zd. For the case b = 1 − δ, the equation holds by definition. For the
case b = δ, we have

[grδζj ] ⋆ A
[cδ+j]d
δ = [gyδζj−aδζcδ+j ] ⋆ A

[cδ+j]d
δ

= [gyδζj−aδζcδ+j ] ⋆
(
[gaδζcδ+j ] ⋆ E0

)
= Yj

δ,

where we use the fact that A
[c]d
δ = [gaδζc ] ⋆ E0 for any c ∈ Z.

HVZK.

Given a challenge c ∈ Zκ
d and the instance X = ((Aj

0)j∈Zd
, (Aj

1)j∈Zd
), a zero-knowledge sim-

ulator Sim samples random (c0, c1) $← Zκ
d conditioned on c0 + c1 = c. Then, for each

(b, j) ∈ {0, 1} × Zd, the simulator generates rb
$← Zκ

N and Yj
b = [grbζj ] ⋆ A

[cb+j]d
b , and out-

puts ((Yj
0, Yj

1)j∈Zd
, c, (r0, r1, c0, c1)) Since for every j ∈ Zd, there is a bijection between rb and

Yj
b once cb is fixed, this produces a transcript identically distributed as a real transcript.

6.4.5 Description of Our Blind Signature
We present our isogeny-based/group-action-based blind signature – Otters 8 – building on top of
the enhanced base sigma protocol in Sec. 6.4.3. Let (G, E , E0, ⋆) be the public parameter as the
known-order effective group Def. 2.3.4 where G is cyclic of order N with a public generator g.
Let ζ to be a d-th root of unity. We assume these parameters are provided to all algorithms. The
parameter κ ∈ N indicates the number of repetitions of the underlying sigma protocol such that
dκ ≥ 2λ. Let H : {0, 1}∗ → Zκ

d be a hash function modeled as a random oracle in the security
proof.

The following algorithms are summarized in Fig. 6.2.

BS.KGen
(
1λ
)
: On input the security parameter 1λ, it samples a bit δ $← {0, 1}, (a0, a1) $← Z2

N ,
and outputs a public key pk = ((Aj

0)j∈Zd
, (Aj

1)j∈Zd
) ⊆ PK = E2d where Aj

b = [gabζj ] ∗ E0

for (b, j) ∈ {0, 1} × Zd, and secret key sk = (δ, aδ).
8Or-proof Twisted ThreE-Round Signature.
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BS.S1(sk) : The signer first samples y∗
δ

$← Zκ
N and sets Yj∗

δ = [gy∗
δζj ] ⋆ E0 for j ∈ Zd. It

then samples (c∗
1−δ, r∗

1−δ) $← Zκ
d × Zκ

N and sets Yj∗
1−δ = [gr∗

1−δζj

] ⋆ A
c∗

1−δ+j
1−δ for j ∈ Zd. It

then outputs the signer state stS = (y∗
δ , c∗

1−δ, r∗
1−δ) and the first-sender message ρS,1 =

(Yj∗
0 , Yj∗

1 )j∈Zd
.

BS.U1(pk, M, ρS,1) : The user parses (Yj∗
0 , Yj∗

1 )j∈Zd
← ρS,1, samples (db, zb) $← Zκ

d × Zκ
N , and

computes Zb = [gzb ] ⋆
(
Y ∗db,0

b,0 , . . . , Y ∗db,κ−1
b,κ−1

)
for b ∈ {0, 1}. Here, note that Y

db,j∗
b,j denotes

the j-th (j ∈ Zd) element of Ydb,j∗
b ∈ Eκ and db,j is the j-th element of db ∈ Zκ

d . It then
computes c = H(Z0∥Z1∥M) ∈ Zκ

d and outputs the user state stU = (d0, d1, z0, z1) and user
message ρU = c∗ = c− d0 − d1.

BS.S2(stS, ρU) : The signer parses (y∗
δ , c∗

1−δ, r∗
1−δ) ← stS, c∗ ← ρU, sets c∗

δ = c∗ + c∗
1−δ ∈ Zκ

d ,
and computes r∗

δ = y∗
δ − aδζc∗

δ ∈ Zκ
N .It then outputs the second-signer message ρS,2 =

(c∗
0, c∗

1, r∗
0, r∗

1).

BS.U2(stU, ρS,2) : The user parses (d0, d1, z0, z1) ← stU, (c∗
0, c∗

1, r∗
0, r∗

1) ← ρS,2 and checks if
[gr∗

b ζj ] ⋆ A
[c∗

b +j]d
b = Yj∗

b holds for all (b, j) ∈ {0, 1} × Zd. If not, it outputs ⊥. Otherwise,
it sets (cb, rb) = (c∗

b + db, zb + r∗
bζdb) ∈ Zκ

d × Zκ
N for b ∈ {0, 1}. It then checks if

c0 + c1 = H
(
[gr0 ] ⋆ Ac0

0 ∥[gr1 ] ⋆ Ac1
1 ∥M

)
. (6.2)

If it holds, it outputs a signature σ = (c0, c1, r0, r1) ∈ (Zκ
d)2 × (Zκ

N )2, and otherwise ⊥.

BS.V (pk, M, σ): The verifier outputs 1 if Eq. (6.2) holds, and otherwise 0.

6.4.6 Proof of Correctness and Blindness
The subsection shows that our blind signature presented in Sec. 6.4.5 has (perfect) correctness
and blindness.

Theorem 6.4.2. The blind signature scheme in Figure 6.2 is (perfectly) correct.

Proof. To show correctness, it suffices to show the equation

c0 + c1 = H ([gr0 ] ⋆ Ac0
0 ∥ [gr1 ] ⋆ Ac1

1 ∥ M)

holds when both the signer and user follow the protocol.
From the description of BS.U1, BS.S2 and BS.U2, we have c = c∗ + d0 + d1, c∗ = c∗

1 + c∗
2,

and cb = c∗
b + db for b ∈ {0, 1}. Therefore, we have c = c0 + c1, which shows the l.h.r. equation.

It remains to show Zb = [grb ] ⋆ Acb
b for each b ∈ {0, 1}. Following the definition of Zb computed
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BS.KGen(1λ)
101 : (a0, a1, δ) $← Z2

N × {0, 1}

102 : (Aj
0)j∈Zd

← ([ga0ζj ] ∗ E0)j∈Zd

103 : (Aj
1)j∈Zd

← ([ga1ζj ] ∗ E0)j∈Zd

104 : pk← ((Aj
0)∈Zd

, (Aj
1)j∈Zd

)
105 : return (pk, sk = (δ, aδ))

BS.S1(sk)
201 : parse (δ, aδ)← sk

202 : y∗
δ

$← Zκ
N

203 : (c∗
1−δ, r∗

1−δ) $← Zκ
d × Zκ

N

204 : for j ∈ Zd

205 : Yj∗
δ = [gy∗

δζj ] ⋆ E0

206 : Yj∗
1−δ = [gr∗

1−δζj

] ∗A
c∗

1−δ+j
1−δ

207 : stS = (y∗
δ , c∗

1−δ, r∗
1−δ)

208 : ρS,1 = (Yj∗
0 , Yj∗

1 )j∈Zd

209 : return (stS, ρS,1)

BS.U1(pk, M, ρS,1)
301 : parse (Yj∗

0 , Yj∗
1 )j∈Zd

← ρS,1

302 : for b ∈ {0, 1} do

303 : (db, zb) $← Zκ
d × Zκ

N

304 : Zb = [gzb ] ⋆
(
Y ∗db,0

b,0 , . . . , Y ∗db,κ−1
b,κ−1

)
305 : c = H(Z0||Z1||M)
306 : c∗ = c− d0 − d1 ∈ Zκ

d

307 : stU ← (d0, d1, z0, z1)
308 : return (stU, ρU = c∗)

BS.S2(stS, ρU)
401 : parse (y∗

δ , c∗
1−δ, r∗

1−δ)← stS

402 : parse c∗ ← ρU

403 : c∗
δ ← c∗ − c∗

1−δ

404 : r∗
δ ← y∗

δ − aδζc∗
δ

405 : return ρS,2 = (c∗
0, c∗

1, r∗
0, r∗

1)

BS.U2(stU, ρS,2)
501 : parse (d0, d1, z0, z1)← stU

502 : parse (c∗
0, c∗

1, r∗
0, r∗

1)← ρS,2

503 : for (b, j) ∈ {0, 1} × Zd

504 : if [gr∗
b ζj ] ⋆ A

[c∗
b +j]d

b ̸= Yj∗
b

505 : return σ =⊥
506 : for b ∈ {0, 1}
507 : cb ← c∗

b + db

508 : rb ← zb + r∗
bζdb

509 : c′ = H ([gr0 ] ⋆ Ac0
0 ∥ [gr1 ] ⋆ Ac1

1 ∥ M)
510 : if c0 + c1 = c′

511 : return σ = (c0, c1, r0, r1)
512 : return σ =⊥

BS.V(pk, M, σ)
601 : parse (c0, c1, r0, r1)← σ

602 : c′ = H ([gr0 ] ⋆ Ac0
0 ∥ [gr1 ] ⋆ Ac1

1 ∥ M)
603 : if c0 + c1 = c′

604 : return 1
605 : return 0

Figure 6.2: Our blind signature, Otters, where H is a hash function and ζ is a d-th
primitive root of unity. Recall Zd = {0, 1, . . . , d − 1} and that we use the notations
d = (d0, . . . , dκ−1) ∈ Zκ

d and Yj = (Y j
0 , . . . , Y j

κ−1) ∈ Eκ. Moreover, if c ∈ Zκ
d , then A

[c]d
b

is simply Ac
b for b ∈ {0, 1}. See the caption of Fig. 6.1 for further explanation on the

notations.
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by BS.U1, we have

Zb = [gzb ] ⋆
(
Y ∗db,0

b,0 , . . . , Y ∗db,κ−1
b,κ−1

)
= [gzb ] ⋆

(
[gr∗

b,0ζ
db,0 ] ⋆ A

[c∗
b,0+db,0]d

b , . . . , [gr∗
b,κ−1ζ

db,κ−1 ] ⋆ A
[c∗

b,κ−1+db,κ−1]d
b

)
(6.3)

=
(
[gzb,0+r∗

b,0ζ
db,0 ] ⋆ A

[c∗
b,0+db,0]d

b , . . . , [gzb,κ−1+r∗
b,κ−1ζ

db,κ−1 ] ⋆ A
[c∗

b,κ−1+db,κ−1]d
b

)
= [grb ] ⋆ Acb

b , (6.4)

where Eq. (6.3) follows from the check performed by BS.U2 and the correcntess of the underlying
sigma protocol shown in Sec. 6.4.4, and Eq. (6.4) follows from the definition of (cb, rb).

Next, we will show the generalized blind signature has perfect blindness. Notably, blindness
holds even under chosen keys. This is a strong property since if a malicious signer uses malformed
supersingular curves in E without the ring structure as the public key, the user cannot detect this.
The main reason why we can argue perfect blindness is that if the public key is malformed, then
the pair of curves in the first message (Yj∗

0 , Yj∗
1 )j∈Zd

is also malformed in a controlled manner.
If there exists one user state that leads to a valid signature, then we can argue that the first
message must be in a specific (but possibly incorrect) form regardless of the user state. Using
this, we are able to establish a bijection between an arbitrary user state and a valid signature
conditioning on a fixed first and second signature messages and a user message. Namely, any
valid signature could have been produced with an equal probability.

Theorem 6.4.3. The blind signature scheme in Figure 6.2 is (perfectly) blind under chosen
keys.

Proof. Let (ρS,1,0, ρS,2,0) and (ρS,1,1, ρS,2,1) be the two sets of first and second-signer message
pairs the adversary A queries to oracles U1 and U2. Moreover, let ρU,b be the user message
returned by oracle U1 when A queries with ρS,1,b for b ∈ {0, 1}, and let (σcoin, σ1−coin) be the two
signatures A sees at the end, where note that these two corresponds to M̃0 and M̃1, respectively,
regardless of the choice of coin ∈ {0, 1}. We call (ρS,1,b, ρU,b, ρS,2,b)b∈{0,1} the view of A. To
prove perfect blindness, it suffices to prove that the view is independent of coin ∈ {0, 1}. In
other words, since the randomness used by oracle U1 is defined by (stU,b)b∈{0,1} and oracle U2

is deterministic, we prove that there exist two sets of states (st(0)
U,b)b∈{0,1} and (st(1)

U,b)b∈{0,1} that
can be sampled by oracle U1 with an equal probability such that they generate the same view
to A but produce a different pair of signatures (σ0, σ1) and (σ1, σ0), respectively. Considering
that the set of valid signature space and user randomness/state space is identical, we prove a
stronger statement that for any non-aborting (partial) view (ρS,1,0, ρU,0, ρS,2,0) of A, there is a
bijection between a valid signature σ0 on message M0 and a state stU,0 of the oracle U1. Below,
we drop the subscript 0 for readability.

Let us denote the first and second-signer message as ρS,1 = (Yj∗
0 , Yj∗

1 )j∈Zd
, ρS,2 = (c∗

0, c∗
1, r∗

0, r∗
1),

a user message as ρU = c∗, and a valid signature for message M as σ = (c0, c1, r0, r1) ∈
(Zκ

d)2× (Zκ
N )2. Here, note that any public key pk = ((Aj

0)j∈Zd
, (Aj

1)j∈Zd
) output by the adversary
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(i.e., malicious signer) A can be efficiently checked to be valid elliptic curves (i.e., supersingularity)
but cannot be checked if it has the correct cyclic structure.

We define a map between the signature σ = (c0, c1, r0, r1) and user state stU = (d0, d1, z0, z1)
by db = cb − c∗

b and zb = rb − r∗
b · ζdb for b ∈ {0, 1}. It is easy to check that once the view (or

ρS,2 = (c∗
0, c∗

1, r∗
0, r∗

1)) is fixed, then this mapping is indeed a bijection. It remains to prove that
this stU is a state that produces σ.

Observe that when BS.U1(pk, M, ρS,1) runs with the state stU, it computes Zb = [gzb ] ⋆(
Y ∗db,0

b,0 , . . . , Y ∗db,κ−1
b,κ−1

)
for b ∈ {0, 1} using ρS,1. It then sets c′ = H(Z0||Z1||M) and defines

ρ′
U = c′∗ = c′ − d0 − d1. Moreover, due to restrictions on the blindness game, the view is

non-aborting for at least one state stU. Combining this with the fact that the first check
performed by BS.U2(stU, ρS,2) only depends on ρS,2, and in particular is independent of stU, we
have [gr∗

b ζj ] ⋆ A
[c∗

b +j]d
b = Yj∗

b for j ∈ Zd and any state stU. Therefore, BS.U2 always outputs σ as
desired since the signature σ is assumed to be valid.

It remains to check that ρ′
U = c′∗ generated by BS.U1 is the desired ρU = c∗ to complete

the proof. Since σ is valid and due to the definition of stU, we have c∗
0 + c∗

1 + d0 + d1 =
H ([gr0 ] ⋆ Ac0

0 ∥ [gr1 ] ⋆ Ac1
1 ∥ M). Moreover, since the view is non-aborting, we are guaranteed

that c∗ = c∗
0 + c∗

1. Therefore, if Zb = [grb ] ⋆ Acb
b for b ∈ {0, 1}, then we can conclude that c∗ = c′∗

as desired. This can be checked as follows, where we use the fact that [gr∗
b ζj ] ⋆ A

[c∗
b +j]d

b = Yj∗

b for
j ∈ Zd in the second equality:

Zb = [gzb ] ⋆
(
Y ∗db,0

b,0 , . . . , Y ∗db,κ−1
b,κ−1

)
= [gzb ] ⋆

(
[gr∗

b,0ζ
db,0 ] ⋆ A

[c∗
b,0+db,0]d

b , . . . , [gr∗
b,κ−1ζ

db,κ−1 ] ⋆ A
[c∗

b,κ−1+db,κ−1]d
b

)
=
(
[gzb,0+r∗

b,0ζ
db,0 ] ⋆ A

[c∗
b,0+db,0]d

b , . . . , [gzb,κ−1+r∗
b,κ−1ζ

db,κ−1 ] ⋆ A
[c∗

b,κ−1+db,κ−1]d
b

)
= [grb ] ⋆ Acb

b .

This completes the proof.

Remark 6.4.4. As can be observed from the second equation right above, the verification of
the base sigma protocol (indicated by the boxed lines in Fig. 6.1) is crucial for achieving perfect
blindness. Without this additional verification step, perfect blindness would not be guaranteed.

6.4.7 Proof of One-More Unforgeability
Our proof of OMUF consists of preparing the necessary tools present in Sec. 6.3 to in-
voke Thm. 6.3.10. Specifically, we define instances I0, I1 (see Def. 6.3.1), the map Φrand,

−→
h

(see Def. 6.3.8), the witness extractors (Ext0, Ext1) (see Def. 6.3.9) and prove that Requirements 1
and 2 hold.
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Preparation: Instances.

Let us first define the 0-side instance I0 and the 1-side instance I1. Below, we assume the
adversary against the one-more unforgeability game makes ℓ-signing queries in total.

A 0-side instance I0 = (0, a0, A1,
−→
y∗

0,
−→
r∗

1 ,
−→
c∗

1) is defined as follows:

• (0, a0) : The secret key sk when δ = 0.

• A1 : The part of the public key pk = (A0 = (Aj
0)j∈Zd

, A1 = (Aj
1)j∈Zd

) whose secret key
(i.e. the rGAIP solution) is unknown.

• y∗(k)
0 : The exponent of the commitment (Yj∗(k)

0 )j∈Zd
in the k-th (k ∈ [ℓ]) first-sender

message when δ = 0 such that Yj∗(k)
0 = [gy∗(k)

0 ζj ] ⋆ E0 for each j ∈ Zd.

• c∗(k)
1 : The simulated challenge (i.e. c∗

1 in Fig. 6.2) in the k-th (k ∈ [ℓ]) first-sender message
when δ = 0.

• r∗(k)
1 : The exponent of the commitment Yj∗(k)

1 in the k-th (k ∈ [ℓ]) first-sender message
when δ = 0 such that Yj∗(k)

1 = [gr∗(k)
1 ζj ] ⋆ A

[c∗(k)
1 +j]d

1 for each j ∈ Zd.

A 1-side instance I1 = (1, a1, A0,
−→
y∗

1,
−→
r∗

0 ,
−→
c∗

0) is defined as follows:

• (1, a1) : The secret key sk when δ = 1.

• A0 : The part of the public key pk = (A0 = (Aj
0)j∈Zd

, A1 = (Aj
1)j∈Zd

) whose secret key
(i.e. the rGAIP solution) is unknown.

• y∗(k)
1 : The exponent of the commitment (Yj∗(k)

1 )j∈Zd
in the k-th (k ∈ [ℓ]) first-sender

message when δ = 1 such that (Yj∗(k)
1 )j∈Zd

= [gy∗(k)
1 ζj ] ⋆ E0 for each j ∈ Zd.

• c∗(k)
0 : The simulated challenge (i.e. c∗

0 in Fig. 6.2) in the k-th (k ∈ [ℓ]) first-sender message
when δ = 1.

• r∗(k)
0 : The exponent of the commitment Yj∗(k)

0 in the k-th (k ∈ [ℓ]) first-sender message
when δ = 1 such that Yj∗(k)

0 = [gr∗(k)
0 ζj ] ⋆ A

[c∗(k)
0 +j]d

0 for each j ∈ Zd.

Preparation: Map Φrand,
−→
h

.

We next define the map Φrand,
−→
h

that maps a 0-side instance I0 into a 1-side instance I1 and
vice versa. Concretely, a 0-side instance I0 = (0, a0, A1,

−→
y∗

0,
−→
r∗

1 ,
−→
c∗

1) maps to a 1-side instance I1

such that

I1 = ( 1, a1, A0 = (Aj
0)j∈Zd

= ([ga0ζj ] ∗ E0)j∈Zd
,

−→
y∗

1 =
−→
r∗

1 + a1ζ
−→
c∗

1 ,
−→
c∗

0 =
−→
c∗ −

−→
c∗

1,
−→
r∗

0 =
−→
y∗

0 − a0ζ
−→
c∗

0),

where a1 ∈ ZN is such that A0
1 = [ga1 ] ⋆ E0 and recall that −→c∗ = −→e (I0, rand,

−→
h ). On the other

hand, a 1-side instance I1 = (1, a1, A0,
−→
y∗

1,
−→
r∗

0 ,
−→
c∗

0) maps to a 0-side instance I0 such that

I0 = ( 0, a0, A1 = (Aj
1)j∈Zd

= ([ga1ζj ] ∗ E0)j∈Zd
,

−→
y∗

0 =
−→
r∗

0 + a0ζ
−→
c∗

0 ,
−→
c∗

1 =
−→
c∗ −

−→
c∗

0,
−→
r∗

1 =
−→
y∗

1 − a1ζ
−→
c∗

1)
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Ext0(σ, σ′)
101 : if ∃t ∈ [κ] s.t. c0,t ̸= c′

0,t

102 : L← Ext′(r0,t, r′
0,t, c′

0,t, c0,t)
103 : for a′ ∈ L

104 : if [ga′ ] ⋆ E0 = A0
0

105 : return a′

106 : return ⊥

Ext1(σ, σ′)
101 : if ∃t ∈ [λ] s.t. c1,t ̸= c′

1,t

102 : L← Ext′(r1,t, r′
1,t, c′

1,t, c1,t)
103 : for a′ ∈ L

104 : if [ga′ ] ⋆ E0 = A0
1

105 : return a′

106 : return ⊥

Figure 6.3: Witness extractors for our generalized blind signature for σ, σ′. In the above,
σ = (c0, c1, r0, r1) and σ′ = (c′

0, c′
1, r′

0, r′
1), where c0, c1, c′

0, c′
1 live in Zκ

d and r0, r1, r′
0, r′

1
live in Zκ

N . Ext′ is the extractor in Lem. 6.4.1. Non-bold font indicates the entries of a
vector.

where a0 ∈ ZN is such that A0
0 = [ga0 ] ⋆ E0 and recall that −→c∗ = −→e (I1, rand,

−→
h ).

Preparation: Witness Extractors (Ext0, Ext1).

Fix I, rand and let (−→h ,
−→
h ′) ∈ Fi(I, rand) for some i ∈ [ℓ + 1]. Let σ = (c0, c1, r0, r1), σ′ =

(c′
0, c′

1, r′
0, r′

1) be the signatures that correspond to c(i) and c′(i), respectively, where recall c(i)

(resp. c′(i)) is the i-th entry of −→h (resp. −→h ′) and the hash value of form H(· ∥ · ∥M) (i.e., c
in Fig. 6.2). In particular, we have c0 + c1 = c(i) and c′

0 + c′
1 = c′(i). We define the witness

extractors (Ext0, Ext1) as in Fig. 6.3.
The following lemma establishes the correctness of the witness extractors.

Lemma 6.4.5. (Ext0, Ext1) in Fig. 6.3 satisfy the definition of witness extractors in Def. 6.3.9.

Proof. By the definition of Fi(I, rand) (see Def. 6.3.3), we have (I, rand,
−→
h ), (I, rand,

−→
h ′) ∈ Succ

and c(i) ̸= c′(i). The former implies that the two signatures σ and σ′ are valid. Concretely, we
have

c(i) = c0 + c1 = H
(
[gr0 ] ⋆ Ac0

0 ∥ [gr1 ] ⋆ Ac1
1 ∥ M

)
c′(i) = c′

0 + c′
1 = H

(
[gr′

0 ] ⋆ A
c′

0
0 ∥ [gr′

1 ] ⋆ A
c′

1
1 ∥ M′

)
.

Moreover, since −→h and −→h ′ agree up to the i-th entry and the challenger and adversary’s
randomness are fixed, the input to the hash functions agree. Namely, we have

[gr0 ] ⋆ Ac0
0 = [gr′

0 ] ⋆ A
c′

0
0 ∧ [gr1 ] ⋆ Ac1

1 = [gr′
1 ] ⋆ A

c′
1

1 ∧ M = M′

Since c(i) ≠ c′(i), we must have c0 ̸= c′
0 or c1 ̸= c′

1. Thus, due to the special soundness of the
underlying sigma protocol (see Sec. 6.4.3) one of Ext0 or Ext1 always outputs a valid secret key.
This completes the proof.
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Proof of One-More Unforgeability.

We have the following two lemmas required to invoke the main theorem Thm. 6.4.8.

Lemma 6.4.6. Requirement 1 holds for our definition of the map Φrand,
−→
h

above.

Proof. Since the proof for the 0-side and 1-side instances I0 and I1 are analogous, we only consider
the 0-side instance. For any rand,

−→
h , let us consider the query transcript −→e (I0, rand,

−→
h ) = −→c∗,

i.e., the vector of user message ρU queries made by the adversary to the signing algorithm BS.S2.
Since the underlying sigma protocol is perfectly witness indistinguishable due to perfect HVZK
(see Rem. 3.3.5), for each i ∈ [ℓ] and c∗(i), there is a set of randomness that the signer with a
secret key (1, a1) (i.e., a 1-side witness) could have used to produce the same view (i.e., first
and second-signer messages) to the adversary. Concretely, this set of randomness is exactly
those defined by Φrand,

−→
h

(I0). Hence, we have trans(I0, rand,
−→
h ) = trans(Φrand,

−→
h

(I0), rand,
−→
h ) as

desired. Moreover, it is easy to check that Φrand,
−→
h

(Φrand,
−→
h

(I0)) from the definition of Φrand,
−→
h

.
Hence, it is a bijection as desired. This completes the proof.

Lemma 6.4.7. Requirement 2 holds for our definition of the witness extractors (Ext0, Ext1)
Fig. 6.3.

Proof. Since the proof of 0-side and 1-side is analogous, we only consider the 0-side case.
We prove the lemma by contradiction. Suppose the 0-side witness can be extracted from
the base (I, rand,

−→
h ), (I, rand,

−→
h ′) at index i, but cannot be extracted from either of the sides

(I, rand,
−→
h ′), (I, rand,

−→
h ′′) or (I, rand,

−→
h ), (I, rand,

−→
h ′′). By Lem. 6.4.5, the assumption holds if

and only if c0 = c′′
0 and c′

0 = c′′
0. As a result, c0 = c′

0. By Lem. 6.4.5, the 0-side witness cannot
be extracted from (I, rand,

−→
h ), (I, rand,

−→
h ′). However, this contradicts our assumption.

Combining everything together, we obtain the following.

Theorem 6.4.8 (One-more Unforgeability). The partially blind signature scheme in Figure 6.2
is one-more unforgeable. More precisely, for all ℓ ∈ N, if there exists an adversary A that makes
Q hash queries to the random oracle and breaks the ℓ-one more unforgeability of our scheme
with advantage ϵA ≥ C1

dκ ·
( Q

ℓ+1
)
, then there exists an algorithm B that breaks the ζ-rGAIP problem

with advantage ϵB ≥ C2 ·
ϵ2

A

( Q
ℓ+1)

2·(ℓ+1)3
for some universal positive constants C1 and C2. Note

we use a d-th primitive root of unity ζ and κ denotes the number of parallel repetitions of the
underlying sigma protocol.

Proof. Upon receiving an rGAIP instance, the wrapper proceeds as described in Sec. 6.3.2. The
proof follows from the above Lems. 6.4.6 and 6.4.7 and Thm. 6.3.10 (i.e., [KLX22a, Theorem 1])
and the result follows.
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6.5 Analysis of Ring GAIP
This section analyzes the ζd-ring group action inverse problem (ζd-rGAIP) over CSIDH-512.
Sec. 6.5.1 discusses the existence of ζd and the finding method. Sec. 6.5.2 recalls the most
efficient classical and quantum algorithms against GAIP and presents a structural attack on
ζd-rGAIP which effectively reduces ζd-rGAIP for a few choices of d to a GAIP instance with a
smaller group size compared to the original group considered by ζd-rGAIP. In Sec. 6.5.3, we
complement our cryptanalysis by proving that ζd-rGAIP for a few choices of d is as hard as GAIP
defined over the same group. This shows optimality of our structural attack for ζd-rGAIP for
some choices of d. We note that the concrete value of d’s that admit an attack or a reduction
depends on the concrete CSIDH-512 parameter sets.

6.5.1 Finding a Root of Unity Satisfying Requirement 3
We briefly discuss the existence of and a process for finding a primitive d-th root of unity
ζd ∈ Z×

N which satisfies Requirement 3. Firstly, it is a straightforward consequence of the
fundamental theorem of finitely-generated abelian groups and the definition of λ(N) that
Z×

N
∼= Zn1 × Zn2 × · · · × Znr where n1 |n2 | · · · |nr and nr = λ(N), so that a d-th root of unity

exists if and only if d is a divisor of λ(N)—here, λ(·) is the Carmichael function, whose formula
is given in Sec. 6.2.2.

To find such a root for a given valid d, the most intuitive method, perhaps, is to start with
a primitive λ(N)-th root of unity ζλ(N) where λ(·) is the Carmichael function, and compute

ζ = ζ
λ(N)

d

λ(N) , which will have order exactly d. Unfortunately, this may result in a d-th root of unity
that does not meet Requirement 3 (even when one exists which satisfies Requirement 3). In
particular, we have to ensure that ζ is a generator modulo all but small prime power divisors
of N to conclude ηd = lcmi∈[d−1](gcd(ζi − 1, N)) = poly. To this end, in every Sylow subgroup
of Z×

N , we find a generator of a cyclic subgroup of order d (if one exists) and use the Chinese
remainder theorem to obtain a d-th root of unity. If a root meeting Requirement 3 exists, this
method ensures finding such a root.

Concretely, for the CSIDH-512 parameter sets we have

N = 3× 37× 1407181× 51593604295295867744293584889
× 31599414504681995853008278745587832204909,

λ(N) = 23 × 32 × 5× 72 × 47× 71× 499× 43872112495999887537664613
× 111265544030570407933127742061928986637,

and we can construct the following primitive d-th roots of unity with respect to CSIDH-512
following this method for 2 ≤ d ≤ 9, 47 and 499:

118



ζ2 = −1
ζ3 = 247769943790849565037110451253594899400495635540473277008987864733013892490349
ζ4 = 8472499114678701993773553438173395921228936189139636336209864846564687757945
ζ5 = 72453024324688395187181869396509941269039951262689579224914692627674819998175
ζ7 = 72860468942899689738460495171518121784504211848373863183929808636917555788857
ζ8 = 17968081027951002862127994231802972521244754950515032766640065054960810210290
ζ9 = 144532467211328912938314429897930357983622454065276078255242921094258103952704

ζ47 = 6284781180379609583005371256408016347485447032979579744856129688235933726820
ζ499 = 27716990710015300853542735667675665633828171067931279717294182935872148507972.

Remark 6.5.1. In the list above, we only display d that is a prime power. For other composite
divisors of λ(N), one can obtain the corresponding root by multiplication. For instance, we can
obtain ζ23453 = ζ47ζ499.

Concretely, for the CSIDH-512 parameter set, the totients of the small prime divisors of N

have the following (maximal) small prime power divisors:

φ(3) : 2
φ(37) : 22, 32

φ(1407181) : 22, 3, 5, 47, 499
φ(51593604295295867744293584889) : 23, 3, 72

φ(31599414504681995853008278745587832204909) : 22, 71.

This implies that for the CSIDH-512 parameter we can only find a 4th root of unity meeting
Requirement 3 (with η4 = 3) since only Z×

3 has no cyclic subgroups of order 4. For example, for
any 3rd root of unity ζ3, we always have a 134-bit divisor of gcd(ζ3 − 1, N). Therefore, ζ4-rGAIP
over CSIDH-512 is the candidate hardness assumption that can be used for our optimized blind
signature construction.

In the next subsection, we show that the hardness of ζd-rGAIP varies with the choice of
ζd. Since we believe ζd-rGAIP has independent interest outside our optimized blind signature
application, we waive Requirement 3 when considering the cryptanalysis.

6.5.2 Cryptanalysis and Structural Attack on rGAIP
In the previous section, we show how to choose a root ζd according to the decomposition of the
multiplication group of Z×

N . In this section, we show that the underlying structure of ζd in each
component is related to the security of ζd-rGAIP by presenting a concrete cryptanalysis on the
overstretched ζd-rGAIP with respect to the CSIDH-512 parameter.

Generic Attacks on GAIP.

We start from recalling the most efficient classical and quantum algorithms against a GAIP.
The best known classical algorithm against GAIP is the meet-in-the-middle/Pollard-rho attack
[GHS02, GS13] with time complexity O(

√
|G|) = O( 4

√
p) against GAIP.
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The best-known quantum algorithm against GAIP is Kuperberg’s algorithm [Kup05, Reg04,
Kup11, Pei20, BS20]. Typically, given a challenge E to find a ∈ ZN such that E0 = [ga] ⋆ E, we
have a hidden shift problem by defining f(x) = [gx] ⋆ E0 and g(x) = [gx] ⋆ E, the permutations
f, g over E are hidden shifted by a. By applying Kuperberg’s algorithm, one can solve GAIP
in time complexity 2O(

√
log(|G|)). It is not clear whether the additional structure can give an

advantage to the adversary by reducing the group size in general. The subset {1, ζd, . . . , ζd−1
d }

forms a group with multiplication instead of addition. Modifying the group action by restricting
to the multiplication subgroup of Z×

N does not give a feasible g with a hidden shift a. Also, ζ

generates the entire ZN under the addition due to being a unit so that the quotient group does
not help in this case.

Structural Attack on rGAIP.

Let ζd be a d-th primitive root of unity and N be the class number. We show that the underlying
structure of the root in each component of Z×

N is related to security by displaying a structural
attack against ζd-rGAIP and the efficacy of the attack is related to each gcd(ζi

d − 1, N).
The high-level strategy of our structural attack is to break down a ζd-rGAIP instance into

several GAIP instances over smaller subgroups or quotient groups. The idea is to exploit the
differential information of any two curves in the instance and launch a Pohlig-Hellman-type
attack. Recall that the instance is of the form (X0 = [ga] ⋆ E0, X1 = [gaζd ] ⋆ E0, . . . , Xd−1 =
[gaζd−1

d ] ⋆ E0). For any two curves Xi, Xj in the instance, there exists a unique group element
[gij ] = [gaζj

d
−aζi

d ] ∈ G such that [gij ] ⋆ Xi = Xj . Therefore, recovering differential action [gij ]
gives the information of a. Typically, it is difficult to recover such [gij ] due to the size of the
group and considering the GAIP of (Xi, Xj). However, depending on the knowledge of ηd derived
from the public ζd, the hardness of the GAIP of the structural (Xi, Xj) can be reduced. This is
because Gij := {[gn(ζj

d
−ζi

d)] |, n ∈ ZN} possibly constitutes a proper subgroup of G up to i and
j. For any [g′] ∈ G, we have [g′] ⋆ Xi = [gij ] ⋆ Xi = Xj if and only if [g′]Gij = [gij ]Gij . As a
result, recovering [g′]Gij is exactly a GAIP problem of (Xi, Xj) over the quotient group G/Gij .
Then, after obtaining such [g′] ∈ G such that [g′]Gij = [gaζj

d
−aζi

d ]Gij = [ga]Gij , we can recover
[ga] by solving (E0, (g′)−1 ⋆ X0) over Gij for g′−1[ga]. Therefore, the main strength against our
structural attack depends on the GAIP hardness with the group size of max(|Gij |, |G/Gij |).

By extending upon the above idea and choosing a proper subsequence of (i, j), the root ζd

gives the following ascending chain:

{1} = G1 < G2 < . . . < Gk = G,

where for each ℓ ∈ [k], Gℓ = Gij for some distinct i, j ∈ [d]. Using the aforementioned structural
attack, the hardness of ζd-rGAIP is determined by the size of the largest quotient group Gℓ+1/Gℓ

for some ℓ ∈ [k − 1].
We may summarize the attack (reduction) described above as the following theorem.
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Theorem 6.5.2. Let (G, E , E0, ⋆) be KO-EGA. Let ζ be a d-th root of unity for G. Let

{1} = G1 < G2 < . . . < Gk = G

be a chain for G where Gℓ = {[gn(ζj−ζi)] |, n ∈ ZN} for some i, j ∈ {0, · · · , d − 1}. Given a
GAIP adversary A over the KO-EGA model, there exists an ζ-rGAIP adversary B running in
polynomial time with O(k) queries to A such that

Advζ-rGAIP
(G,E,E0,⋆)(B) ≤

k−1∑
ℓ=1

AdvGAIP
(Gℓ+1/Gℓ,E,X′

i,⋆)(A).9

where X ′
i is some element in E choosen in the reduction.

Proof. Given ζ-rGAIP challenge (X0 = [ga] ⋆ E0, X1 = [gaζ ] ⋆ E0, . . . , Xd−1 = [gaζd−1 ] ⋆ E0), the
adversary B with access to A proceeds as follows:

1. Set gk = gak = 1 where ak = 0 and write Gℓ = Gij = {[gn(ζj−ζi)] |, n ∈ ZN} for
some i, j ∈ {0, · · · , d − 1}. For ℓ starting from k − 1 to 1, solve the GAIP instance
(g−aℓ+1ζi

⋆ Xi, g
−aℓ+1ζj

⋆ Xj) over the group Gℓ+1/Gℓ using A, then obtain gℓ = gaℓ for
some aℓ.

2. Output g1 · · · gk.

In the first iteration, we obtain gak−1 ∈ G/Gk−1 such that gak−1 ⋆ Gk−1 = gak−1 ⋆ Gk−1. We
therefore have (gak−1)−1ga ∈ Gk−1. This reduces to finding a ζ-rGAIP solution over Gk−1 where
the instance can be produced by (g−ak−1 ⋆ X0, g−ak−1 ⋆ X1, · · · , g−ak−1ζd−1

⋆ Xd−1).
In the each iteration afterward, we obtain gaℓ ∈ Gℓ+1/Gℓ such that gaℓ ⋆ Gℓ = gaℓ ⋆ Gℓ.

We therefore have (gaℓ)−1ga ∈ Gℓ. This reduces to finding a ζ-rGAIP solution over Gℓ where
the instance can be produced by (g−aℓ ⋆ X0, g−aℓζ ⋆ X1, · · · , g−aℓζd−1

⋆ Xd−1). By using the
mathematical induction, we have g−1

1 · · · g
−1
k ga ∈ {1} in the end and therefore g1 · · · gk = ga.

Remark 6.5.3. We note that gcd(ζi − 1, N) is divisible by a prime divisor p of N if and only
if ζ

d
gcd(i,d) ≡ 1 (mod p). Thus we only need to calculate gcd(ζd′ − 1, N) for every divisor d′ of

d to find ηd. In particular, when d is prime, we need only compute gcd(ζ − 1, N) to find ηd.
Therefore, we only need to consider gcd(ζ − 1, N) for d = 3, 5, 7, 11, 47, 499 for the CSIDH-512
parameter set.

We use the methods of Remark 6.5.3 and Thm. 6.5.2 to analyze the strength of ζd-rGAIP
with respect to d for a few parameters over CSIDH-512 as follows.

9Over KOEGA (G, E , E0, ⋆), the group G can be represented by ⊕d
i=1Zmi . Therefore, it induces the

KO-EGA (Gℓ+1/Gℓ, E , E0, ⋆) for any ℓ in a cananical way by using the operation from (G, E , E0, ⋆).
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gcd(ζ2 − 1, N) = gcd(ζ4 − 1, N) = 1
gcd(ζ3 − 1, N) = 3× 1407181× 51593604295295867744293584889

× 31599414504681995853008278745587832204909
gcd(ζ2

4 − 1, N) = 3
gcd(ζ5 − 1, N) = 3× 37× 51593604295295867744293584889

× 31599414504681995853008278745587832204909
gcd(ζ7 − 1, N) = 3× 37× 1407181× 31599414504681995853008278745587832204909
gcd(ζ8 − 1, N) = 31599414504681995853008278745587832204909
gcd(ζ2

8 − 1, N) = gcd(ζ8 − 1, N)× 3
gcd(ζ4

8 − 1, N) = gcd(ζ2
8 − 1, N)× 37× 1407181

gcd(ζ9 − 1, N) = gcd(ζ2
9 − 1, N) = gcd(ζ3 − 1, N)

gcd(ζ47 − 1, N) = gcd(ζ499 − 1, N) = gcd(ζ5 − 1, N).

As a consequence, we reduce each ζd-rGAIP instance to a GAIP instance with a group size
determined by ζd. This is summarized in Tab. 6.1. For ζ8, we have a chain {1} = G1 < G2 < G3 <

G4 < G5 = G where G2, G3, G4 is of size gcd(ζ8−1, N), gcd(ζ2
8−1, N), gcd(ζ4

8−1, N), respectively,
and the largest quotient group is |G2/G1| ≈ 2134, which demonstrates the invulnerability of
ζ8-rGAIP. For instance, for ζ3 we have a chain {1} = G1 < G2 < G3 = G where G2 is of
size 37 and the largest quotient group is |G3/G2| ≈ 2251. For ζ4, ζ47 and ζ499 we have a
chain {1} = G1 < G2 < G3 = G where G2 is of size 1407181 with the largest quotient group
|G3/G2| ≈ 2236. Our cryptanalysis gives an upper bound of ζd-rGAIP from the perspective of
GAIP. Importantly, ζ4-rGAIP which we use for our optimized blind signature only seems to lose
2 bits of security compared with ζ2-rGAIP, or equivalently, GAIP over CSIDH-512.

ζd-rGAIP ζ2 ζ3 ζ4 ζ5 ζ7 ζ8 ζ9 ζ47 ζ499
GAIP with Group Size in log2 257 251 255 236 161 134 251 236 236

Table 6.1: The upper row denotes ζd-rGAIP over CSIDH-512. Using our cryptanalysis in
Sec. 6.5.2 and Thm. 6.5.2, we reduce each ζd-rGAIP instance into a GAIP instance with a
group size summarized in the lower row. Note that GAIP over CSIDH-512 is equivalent to
ζ2-rGAIP over CSIDH-512.

6.5.3 Equivalence between GAIP and rGAIP
We complement our cryptanalysis by showing that our attack is optimal for some parameters.
Although a few instances of ζd-rGAIP were shown to be significantly weaker than the original
GAIP over CSIDH-512, we present a surprising condition that allows to reduce ζd-rGAIP to the
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original GAIP. This shows that the attack in Tab. 6.1 is optimal for those specific choices of
ζd. We note that although the condition does not cover all cases (including ζ4 which meets
Requirement 3), the result gives us some guidance of the hardness of ζd-rGAIP.

Large gcd(ζd − 1, N) ≈ N .

We begin by noting that in this case we do not know how to have an efficient extractor in our
optimized sigma protocol due to the large value of ηd (see Lem. 6.4.1). In other words, it does
not satisfy Requirement 3.

It is clear that GAIP is never easier than ζd-rGAIP. The key insight of the reverse reduction is
that when gcd(ζd− 1, N) ≈ N (or gcd(ζd− 1, N) = N/poly to be precise), given a GAIP instance
we can generate a ζd-rGAIP instance by trial and error. Additionally, the success rate can also
be amplified by repetitively invoking the GAIP oracle and testing the correctness.

Concretely, given X0 = [ga]⋆E0 and access to an ζd-rGAIP adversaryA for a d-th primitive root
of unity ζd, we can construct a GAIP adversary B which invokes A on input (X0, [a′] ⋆ X0, [a′ζd ] ⋆

X0, . . . , [a′ζd−1
d ] ⋆ X0) where a′ is sampled uniformly at random from the subgroup {rζd−1|r ∈ G}.

Then, B outputs whatever A outputs. Since the subgroup is of size N/gcd(ζd− 1, N) = poly, the
adversary B invokes A on a well-formed instance with probability gcd(ζd − 1, N)/N , which is
non-negligible. This is because the instance is well-formed if and only if [a′] = [ga(ζd−1)], where
⟨gζd−1⟩ is of size N/gcd(ζd − 1, N).

Therefore, the reduction described above leads to the following theorem.

Theorem 6.5.4. Given any ζd-rGAIP adversary A for a known-order effective group action of
the group size N , there exists a GAIP adversary B in time d over the same action such that
Advζd-rGAIP(A) ≤ N

gcd(ζd−1,N) · AdvGAIP(B).

As a consequence, we know that for CSIDH-512 we have ζ3, ζ9, ζ5, ζ47, ζ499-rGAIPs are
as hard as the original GAIP with a reduction loss of factors 37, 37, 1407181, 1407181, 1407181
respectively. Similarly, ζ117265 = ζ5ζ47ζ499 also has a reduction loss of a factor 1407181.

6.6 Performance
We present an overall performance in Tab. 6.2 for our Otters protocol (Fig. 6.2) instantiated
using CSIDH-512 of CSI-FiSh. The group action from CSIDH-512 has been estimated to have
128 bits of classical security and over 60 bits of quantum security [Pei20]. We instantiate
the blind signature schemes with ζ2 and ζ4 chosen in Sec. 6.5, denoted by CSI-Otters and
CSI-Otters-ζ4. When instantiated with ζ2 = −1, the blind signature scheme is based on the
standard group action inverse problem. As explained in Sec. 6.5, ζ4 is the only parameter that
satisfies Requirement 3 while being presumably as hard as GAIP over CSIDH-512.

In CSIDH-512, it takes 512 bits to represent a set element for E and 256 bits to represent a
group element for G. In the context of CSI-Otters, the public key of the signer is one element
of E , and the bandwidth is also 2λ elements of E . On the other hand, the user’s bandwidth
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contains a λ-bit string, and the resulting signature is composed of 2λ group elements along with
2λ bits. In the context of CSI-Otters-ζ4, the number of repetitions is halved. The public key of
the signer is 4 elements of E , and the bandwidth is also 4λ elements of E . On the other hand,
the user’s bandwidth contains a λ-bit string, and the resulting signature is composed of λ group
elements along with 2λ bits.

BW.S BW.U |sk| |pk| |σ| Assumption
CSI-Otters 16 KB 16 B 16 B 128 B 8.2 KB GAIP

CSI-Otters-ζ4 64 KB 16 B 16 B 512 B 4.1 KB ζ4-rGAIP

Table 6.2: The overall performance of our blind signature family regarding the bandwidth
(BW), the secret key size, the public size, and the signature size using CSIDH-512. We
take λ = 128 and sk is generated by a seed of λ bits.

6.7 Discussion
We would like to suggest two interesting questions for this topic. Firstly, an intriguing open
question pertains to whether the ROS (Random inhomogeneities in a Overdetermined Solvable
system) attack, as introduced by [BLL+21], can be applied to our blind signature scheme. In
essence, the ROS problem, originally formulated by Schnorr [Sch01], involves adaptively making
signature queries and computing linear combinations of provided signatures to produce a new
valid signature. However, in general isogeny-based cryptosystems do not appear to offer the
operations (merging curves). Consequently, it raises an intriguing inquiry into whether there
exists a variant of the ROS attack that can be adapted to our scheme.

Secondly, the work conducted by Tessaro and Zhu [TZ22] presents a few blind signature
schemes which are provably concurrently secure. The security can be proven independently of
the ROS problem under the abstract models (GGM and AGM). This prompts the question of
whether it is possible to demonstrate or devise a new blind signature scheme under abstract
models [DHK+23, BGZ23] that can be proven secure against adaptive attacks.
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Chapter 7

Verifiable Random Functions

This chapter presents the work carried out in [Lai23], which the author of the thesis individually
worked on. The chapter is almost verbatim of the original work.

Abstract. In this chapter, we introduce the first provably secure verifiable random functions
(VRFs) based on isogenies and the standard DDH assumption, which offer a competitive proof
size among the post-quantum VRFs. To prove their security, we introduce a generalized variant
called the master DDH problem and demonstrate its equivalence to the standard DDH problem.
Furthermore, we demonstrate a novel application of the quadratic twist to expand the input
space and reduce the size of the verification key and the proof.

7.1 Introduction
Verifiable random functions (VRFs) are a cryptographic primitive that were first introduced by
Micali, Rabin, and Vadhan [MRV99]. They are a more advanced form of pseudorandom functions
(PRFs) that not only generate pseudorandom outputs, but also provide a non-interactive and
publicly verifiable proof to validate the output. The security of VRFs is maintained even when
numerous copies of the input, output, and proof are made public. In particular, the notion of
residual pseudorandomness for VRFs ensures that the pseudorandomness remains for inputs
that have not been evaluated and the unique provability guarantees that it is computationally
infeasible for an attacker to generate distinct outputs for the same input with valid proofs.

The versatility of VRFs has been demonstrated through their applications in DNSSEC
protocols [GNP+15] and, especially, blockchain technology [GHM+17, HMW18, EKS+21]. The
growth of cryptocurrencies such as Bitcoin and Algorand has spurred significant interest in
blockchain technology, which is being fueled by its potential. Early blockchain systems, such
as Bitcoin, utilized the Proof-of-Work (PoW) consensus mechanism, where miners compete to
solve a cryptographic puzzle and the winner is rewarded. In contrast, the Proof-of-Stake (PoS)
consensus protocol provides a more environmentally sustainable solution by allowing validators
to stake their tokens and conducting an online lottery. Due to the cryptographic properties,
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VRFs play a critical role in PoS blockchain applications for their applications in cryptographic
sortition and Byzantine consensus [GHM+17, DGKR18, HMW18].

In practice, most existing VRFs are based on elliptic curve cryptography (ECC), pairing-
based BLS-type signatures or other Diffie-Hellman-type assumptions [BGLS03, BMR10, ACF14,
Jag15, PWH+17]. However, these VRFs are vulnerable to quantum computing attacks, as they
rely on underlying assumptions that can be broken by a quantum adversary in polynomial time
[Sho99]. Despite their versatility and significance, post-quantum VRFs are underdeveloped, with
only five constructions from three works to date [EKS+21, BDE+22, ESLR22]. The preliminary
result of the lattice-based LB-VRF [EKS+21] provides limited residual pseudorandomness and
requires updating the public key after, at most, five evaluations. Though it is sufficient in
some scenarios, it cannot serve for long-term applications or on a large scale. Currently, only
SL-VRF [BDE+22] from LowMC and the lattice-based LaV [ESLR22] offer full VRF capabilities.
Regardless of the existence of Naor–Reingold-type PRFs (pseudorandom synthesizers [NR99])
[BPR12, Mon18] in lattices, the most versatile post-quantum branch, it seems challenging to
push them forward to VRFs from this direction in a practical manner. Therefore, post-quantum
VRFs have limited development, with only two full VRF proposals relying on a well-known
assumption from symmetric primitives and lattices. Further research is necessary to address this
challenge and further advance the capabilities of VRFs.

Despite a known subexponential vulnerability [Reg04, Kup05, Kup11, Pei20, BS20], recent
research continues to demonstrate the competitiveness of isogeny cryptography as a post-
quantum branch, including signature schemes [BKV19, EKP20, DG19], UC-secure oblivious
transfers [LGD21, BMM+22], theshold signatures [DM20], (linkable/accountable) ring and group
signatures [BKP20, BDK+22], and PAKE [AEK+22]. Due to the less rich algebraic structure
offered by the isogenies, translating classical constructions has shown to be a non-trivial task
in general [BKP20, MOT20, LGD21, BDK+22] from the perspective of viable and practical
tools and the reliable and versatile assumptions, both of which very limited. For instance,
the most practical classical counterpart ECVRF [PWH+17], based on a signature scheme with
the unique signature property, requires hashing a string to a supersingular elliptic curve with
unknown endomorphism ring, which is known to be a notorious bottleneck in isogeny-based
cryptography [BBD+22, MMP22]. Additionally, the use of pairings, [BGLS03, BLS01], could
lead to a "partially post-quantum" only result [DMPS19].

Regardless of the prior failure and the difficulties, it is still natural to ask:

Can we have a post-quantum verifiable random functions from isogenies with a competitive
performance and without compromising security notions?

7.1.1 Related Works
To the best of our knowledge, there are only five constructions from three works to date
[EKS+21, BDE+22, ESLR22] related to post-quantum VRFs. Of these, the lattice-based LB-
VRF, X-VRF in [EKS+21, BDE+22] have limited capabilities but with compact proof sizes
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(0.6-7.3KB). They provide only limited residual pseudorandomness, requiring the public key to
be updated after a limited number of evaluations, making it unsuitable for long-term applications
or large-scale use. The SL-VRF and LaV in [BDE+22, ESLR22] provide full VRFs from LowMC
and the hybrid MSIS/MLWR respectively. They have proof sizes of 40KB,12KB, and the secret
key sizes of 24B and 6.4KB respectively.

In the field of isogeny cryptography, various protocols have been proposed that relate to
random functions. For instance, Naor-Reingold type pseudorandom functions (PRF) have been
proposed in [ADMP20, MOT20]. Additionally, there have been proposals for oblivious random
functions using oblivious transfers with a Naor–Reingold-type PRF or one-more type assumptions
[BKW20]. The latter one has been shown insecure [BKM+21]. Currently, a provably secure
isogeny-based VRF has yet to be introduced in the literature.

7.1.2 Contributions
In this study, we present two VRFs, CAPYBARA and TSUBAKI1, which provide an affirmative
solution to the above question through the following three contributions.

1. Inspired and based on the Naor–Reingold pseudorandom function as in [ADMP20, BKW20,
MOT20], we construct a proof system where the prover can demonstrate the knowledge
of the action factorization of a set element based on a distinguished base point (see
Rfac defined below). We use the technique from [BDK+22] to make the proof system
online-extractable, providing tightly-secure unique provability. Additionally, we utilize the
approach in [BKP20] to reduce the proof size. As a result, our VRFs have an exponentially
large input space ({0, 1}λ) and expected proof sizes of 39KB and 34KB using CSIDH-512,
which is comparable to the symmetric-primitive-based VRF [BDE+22]. The secret key
can also be strored (compressed) as a 32B seed and generated efficiently usign PRNG on
input of the seed.

2. We introduce a new decisional assumption, known as the master decisional Diffie-Hellman
problem, which implies a variety of decisional problems. We show that it is as hard as the
original DDH problem.

3. We show a new use of the quadratic twists (see Footnote 2) to expand the input space
to be ternary ({−1, 0, 1}κ). By using a similar method, we prove that this variant is as
secure as the decisional square Diffie-Hellman problem, whose computational version is as
hard as the group action inverse problem.

As a result, we introduce the first group action and isogeny-based VRFs in literature with a
competitive performance. Additionally, our CAPYBARA construction is based on the standard
DDH assumption. Our method of construction and the techniques utilized are versatile and can
be applied to other number-theoretic pseudorandom functions, demonstrating the promising
potential of incorporating group actions and isogeny cryptography in the field of VRF research.

1Compact Action factorization Proofs Yielded By A RAndom function and Twist-SqaUre-BAsed
tweaK from Isogenies.
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7.1.3 Technical Overview
The ideas beneath this work are fairly simple. First, given a transitive and free (effective) group
action (G, E , ⋆, h0) for some distinguished element h0 ∈ E , we start from a Naor–Reingold-type
pseudorandom function on input x = (x1 · · ·xκ) ∈ {0, 1}κ:

f(sk, x) = (c0c1gx1
1 · · · g

xκ
κ ) ⋆ h0

where the secret key sk = (c0, c1, g1, · · · , gκ) with the public key vk = (c0 ⋆ h0, c1 ⋆ h0, g1 ⋆

h0, · · · , gκ ⋆ h0). Remark that without c1, it is a secure pseudorandom random function but not
a secure verifiable random function since the adversary is given vk so that the evaluation at 0 is
known.

Second, the factorization over the group g = Πgi (not necessarily unique) gives the factor-
ization of g ⋆ h0 over the set with respect to h0. We construct an action factorization proof
system to prove the correctness of the evaluation of f(sk, x). Formally, let h← f(sk, x) on input
x ∈ {0, 1}κ. We consider the action factorization relation

Rfac =

((h0, X0, X1, {hi}i∈I , h), (c0, c1, {gi}i∈I))

∣∣∣∣∣∣∣∣∣
Xj = cj ⋆ h0 ∀j ∈ {0, 1}

gi ⋆ h0 = hi ∀i ∈ I

(c0c1Πi∈Igi) ⋆ h0 = h

 ,

where I = {i ∈ [κ]|xi = 1}. Notice that without h in the statement and the constraint, the
proof system is trivial using a standard graph-isomorphism-type proof of knowledge in parallel.
We show that a user with the corresponding witness can prove a set element h ∈ E can be
“factorized” through {hi}i∈I and h0 when the action is over an abelian group.

The three-move public-coin proof system starts from the prover who generates random
r, r0, ri ← G for i ∈ I, computes (r⋆X0, r0⋆X1, {ri⋆hi}i∈I , (rr0Πi∈Iri)⋆h) = (X ′

0, X ′
1, {h′

i}i∈I , h′),
and sends it to the verifier. The verifier returns a random challenge b ∈ {0, 1} to the
prover. Depending on b, the prover reveals (rcb

0, r0cb
1, {gb

i ri}i∈I) to the verifier. Upon receiving
(r′, r′

0, {r′
i}i∈I), if b = 0, the verifier checks whether (r′ ⋆X0, r′

0 ⋆X1, {r′
i ⋆hi}i∈I , (r′r′

0Πi∈Ir′
i)⋆h) =

(X ′
0, X ′

1, {h′
i}i∈I , h′). If b = 1, the verifier checks whether (r′ ⋆h0, r′

0 ⋆h0, {r′
i ⋆h0}i∈I , (r′r′

0Πi∈Ir′
i)⋆

h0) = (X ′
0, X ′

1, {h′
i}i∈I , h′). The verifier accepts if it is the case or rejects otherwise. By λ times

repetitions and applying the Fiat-Shamir transform, one can obtain NIZK for the relation Rfac.
For the sake of clarity, we present the construction by assuming the group structure is known.
We show in Rem. 7.4.1 that the construction is also feasible in the unknown group structure
setting.

Third, instead of resorting to an ad-hoc assumption, we prove the residual pseudorandomness
of our VRF is as hard as the decisional Diffie-Hellman problem. We first introduce a generalized
decisional problem – the master decisional Diffie-Hellman problem. The problem starts with
the challenger giving the adversary an instance (g1 ⋆ h0, · · · , gN ⋆ h0). The adversary can make
queries for an arbitrary combination of (gs1 · · · gsk

) ⋆ h0 for any {s1, · · · , sk} ⊆ [N ], and also
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sends a challenge query, which has not been queried before. The challenger returns as instructed
or a random set element from E , and the adversary’s task is to determine which is the case. The
problem covers a variety of variants of group-action-based decisional problems. Then, we prove
the problem is as hard as the original DDH problem.

Fourth, we make the proof compact and achieve online extractability. The latter notion gives
a tight reduction for the full uniqueness where the adversary cannot forge two valid proofs on
the same input for two distinct evaluations for any malicious generated keys without using a
rewinding argument. To achieve online extractability, one can consider using Unruh’s transform
[Unr15] (or Pass’ transform [Pas03] by hashing both responses and appending them to the
commitment). This, however, will result in costly overhead. Instead, while running the proof
above, the prover uses a seed and a pseudorandom number generator (PRNG) to generate the
group elements r, r0, {ri}i∈I . By employing the proof technique developed in [BDK+22], the
modification leads to an online-extractable proof system with much more compact proofs.

Fifth, as an independent interest in the CSIDH setting, we show a new use of the quadratic
twists (see Footnote 2) and reduce the sizes of the public and secret keys and the computational
cost for the user by relaxing the assumptions. In this way, the public key can be naturally
expanded twice (c0 ⋆ h0, c1 ⋆ h0, g1 ⋆ h0, · · · , gκ ⋆ h0, (g1 ⋆ h0)t, · · · , (gκ ⋆ h0)t).2 The modification
reduces 37% of the key size, 15% the evaluation cost, and 12% the maximal proof size. We prove
that the underlying assumption for the residual pseudorandomness is as hard as the decisional
square Diffie-Hellman problem in the appendix, of which the computational version is as hard as
the group action inverse problem (i.e. Dlog).

Finally, we optimize the proof size again using the unbalanced challenge space and the seed
trees introduced in [BKP20], which reduces the proof sizes of both constructions by a factor
of 3. The proof sizes of our final VRFs are expected to be 39KB and 34KB when using CSIDH-512.

Roadmap. We begin in Sec. 7.2.1 with a brief introduction to VRFs and hardness assumptions
(Secs. 2.3, 7.2.2 and 7.2.3). We then introduce our action factorization proof system in Sec. 7.4.
We present our VRF constructions, CAPYBARA, in Sec. 7.5 and its variant, TSUBAKI, in
Sec. 7.6. We show the underlying assumption of CAPYBARA (resp. TSUBAKI) is as hard as
the DDH problem in Sec. 7.3 (resp. the decisional square DDH problem in Sec. B.1). Finally, we
give the final optimization for both constructions and the performance comparison in Sec. 7.7.

2 Note the reduction of the key size comes in different flavors in contrast to [BKV19, EKP20] where
the twist reduces the public key size by decreasing the soundness error of the sigma protocol. Here, the
twist decreases the key size by expanding a binary input to a ternary input instead of benefiting the proof
system. The proof system is still BINARY challenge in this construction.
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7.2 Preliminaries
Notations.

We summarize some notations unique to this chapter. First, we use multiplication notation for
the effective group action (G, E , E0, ⋆). We give a brief discussion for translating the constructions
in this chapter to a restricted effective group model in Rem. 7.4.1. For v = (a1, · · · , aN ) ∈ GN

and e = (E1, · · · , EN ) ∈ EN , we extend the action to an arbitrary dimension by writing
v⋆e = (a1⋆E1, · · · , aN ⋆EN ) ∈ EN . We also abuse the notation v⋆E = (a1⋆E, · · · , aN ⋆E) ∈ EN

when the context is clear. Also, ei represents the i-th elementary vector where the i-th entry is
1 and the others are zeros. For an array v = (v1, · · · , vN ), we may denote the i-th entry vi as vi.
For a subset I ⊆ [N ], we let vI denote the sub-array (vi)i∈I .

Remark 7.2.1 (Additional Requirement.). We have an additional requirement for our
group actions. For the security parameter λ, we require the group size |G| to be larger than
2λ. The requirement naturally holds due to the known quantum subexponential attacks 2O(

√
|G|)

[Reg04, Kup05, Kup11, Pei20, BS20]. This is necessary to ensure that we have adequate min-
entropy for our proof system in Sec. 7.4.

7.2.1 Verifiable Random Functions
In this subsection, we give a brief introduction to the verifiable random functions, and its notions
[MRV99].

Definition 7.2.2. (Verifiable Random Function) A verifiable random function (VRF) consists
of four probabilistic polynomial-time algorithms ΠVRF = {ParGen, KeyGen, VRFEval, Ver} where:

• ParGen(1λ): On input a security parameter 1λ, this probabilistic algorithm outputs some
global, public parameter pp.

• KeyGen(pp): On input public parameter pp, this probabilistic algorithm outputs two binary
strings, a secret key sk and a public key vk.

• VRFEval(sk, x): On input a secret key sk and an input x ∈ {0, 1}ℓ(λ), this algorithm
outputs (v, π) for the VRF value v ∈ {0, 1}m(λ) and the corresponding proof π proving the
correctness of v.

• Ver(vk, v, x, π): On input (vk, v, x, π), this probabilistic algorithm outputs either 1 or 0.

The residual pseudorandomness guarantees the pseudorandomness of the function even if the
user has revealed many evaluations together with the proofs. In some applications, it is sufficient
to have a few-times relaxed notion where the pseudorandomness is ensured for only limited
copies of evaluations are revealed [EKS+21]. In this work, we consider the original version of
the notion.
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Definition 7.2.3. ((Residual) Pseudorandomness) Let A = (A1,A2) be a PPT adversary. The
pseudorandomness experiment ExpVRFPR

A,ΠVRF(λ) of a VRF scheme ΠVRF proceeds as follows.

1. Q← ∅

2. pp← ParGen(1λ)

3. (vk, sk)← KeyGen(pp)

4. (x̃, st)← AOVRFEval(·)
1 (vk)

5. (v0, π0)← VRFEval(sk, x̃)

6. v1 ← {0, 1}m(λ)

7. b← {0, 1}

8. b′ ← AOVRFEval(·)
2 (vb, st)

9. The output of the experiment is defined to
be 1 if b′ = b and x̃ /∈ Q, and 0 otherwise.

OVRFEval(x) :

1. Q← Q ∪ {x}

2. Return VRFEval(sk, x)

We say A wins if ExpVRFPR
A,ΠVRF(λ) = 1. The advantage of A is defined to be

AdvPR
ΠVRF(A) := |Pr [A wins]− 1/2| ,

where the probability is taken over the randomness used by A and the randomness used in the
experiment. A VRF protocol ΠVRF is said to be pseudorandom if for any PPT adversary A there
exists a negligible function negl such that

AdvA,ΠVRF ≤ negl(λ).

Definition 7.2.4. (Complete Provability) Let ΠVRF = {ParGen, KeyGen, VRFEval, Ver} be a VRF
scheme. ΠVRF is said to have provability if for any pp← ParGen(1λ) and (vk, sk)← KeyGen(pp),
the output (v, π)← VRFEval(sk, x) satisfies

Ver(vk, v, x, π) = 1.

The following notion, unique provability, implies that for any adversary (possibly compu-
tationally unbounded with at most polynomial public coin queries) it is difficult to generate
a malicious public key such that the adversary can produce two valid proofs for two distinct
evaluations of the same input.
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Definition 7.2.5. (Unique Provability) Let ΠVRF = {ParGen, KeyGen, VRFEval, Ver} be a VRF
scheme and A = (A1,A2) be an adversary. A uniqueness provability experiment proceeds as
follows.

1. pp← ParGen(1λ)

2. (vk, sk)← A1(pp)

3. (vk, x, v1, v2, π1, π2)← A2(vk)

We say an adversary A wins if v1 ̸= v2 and Ver(vk, v1, x, π1) = Ver(vk, v2, x, π2) = 1. The
advantage of A is defined to be AdvUP

ΠVRF(A) := Pr[A wins] where the probability is taken over the
randomness used by A and in the experiment.

7.2.2 Hardness Assumptions of Group Actions for CAPYBARA
In this subsection, we introduce a few standard assumptions in group actions. We start from
two computational assumptions, which we will not use in our construction, but it is helpful to
understand the hierarchy of the decisional versions.

The following is the core hardness assumption for our first VRF in Sec. 7.5.
We introduce a generalized version of the decisional problem – the master decisional prob-

lem, analogue to the generalized DDH assumption [BLMW07] and similar to the Uber-family
assumptions [Boy08]. In the master decisional problem, the starting instance consists of several
random set elements, and the adversary can query any combination of them with respect to the
group elements. We will show that the generalized version is as hard as the DDH problem using
a hybrid argument.

Problem 10 (Master Decisional Diffie-Hellman (MDDH) Problem). Let (G, E , ⋆, E0) be a group
action, n ∈ N, and b ∈ {0, 1}. The decisional master Diffie-Hellman problem experiment
ExpMDDH(n, b) on input (n, b) proceeds as follows.

1. The challenger C generates a tuple (g1 ⋆ E0, · · · , gn ⋆ E0) where g1, · · · , gn ← G, and sends
the tuple to the adversary A.

2. A is given access to a Diffie-Hellman (DH) oracle on input (x1, · · · , xn) ∈ {0, 1}n returning∏n
i gxi

i ⋆ E0.

3. A sends a string v = (v1, · · · , vn) ∈ {0, 1}n to
∏n

i gvi
i ⋆ E0 to the challenge oracle C.

4. C ignores if v has been queried before or is of Hamming weight less than 2. Otherwise,
C, depending on the input b, computes X0 = ∏n

i gvi
i ⋆ E0 or X1 = r ⋆ E0 for some r ← G,

and send Xb to A. This process will only output for one time.

5. A outputs b′ ∈ {0, 1} to guess b.
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We denote the advantage of a decisional master Diffie-Hellman problem adversary A by

AdvMDDH(A) =
∣∣∣Pr[A(ExpMDDH(n, b = 0))→ 1]− Pr[A(ExpMDDH(n, b = 1))→ 1]

∣∣∣ ,
where b is the randomness in the experiment, and the probability is taken over the randomness
used by A and the randomness used in the experiment. The group action (G, E , ⋆, E0) is im-
plicitly parameterized in the experiment. We say the MDDH problem is hard, if for any PPT
adversary A, there exists a negligible function negl such that AdvMDDH(A) ≤ negl(λ).

The assumption implies a variety of forms of decisional problems. For instance, given
(a ⋆ x, b ⋆ x, c ⋆ x, ab ⋆ x, bc ⋆ x, cd ⋆ x) to distinguish between abc ⋆ x or a random element in E
is an instance of the problem. The interactivity of the assumption appears to be strange at a
glance. It is, however, very reasonable. Otherwise, when n is linear in λ, giving all combinations
implies revealing almost the entire set E . Looking ahead, we will use this problem to show our
verifiable random function has residual pseudorandomness. Unlike pseudorandomness, where
the adversary has access to either the pseudorandom function or a random function, the MDDH
experiment allows the adversary to learn the evaluations of any combination of the instances
adaptively. We show in Sec. 7.3 the equivalence of the master DDH and the original DDH.

7.2.3 Relaxed Assumptions for TSUBAKI
This section introduces a few relaxed decisional assumptions that allow us to construct a more
efficient verifiable random function variant. We use the quadratic twists in this section, and
for a group action (G, E , ⋆, E0) we let E0 ∈ E denote the element that has the property that
Et

0 = E0. Also, for any (g, E) ∈ G× E , we have (g ⋆ E)t = g−1 ⋆ Et.
Firstly, we relax the DDH problem by introducing the standard square variant problem. The

problem has been used to construct some cryptographic protocols [DM20, AEK+22]. A very
recent work [DHK+23] justifies the hardness of the assumption in a generic model for group
actions.

Definition 7.2.6 (Decisional Square CSIDH (sDDH) Problem). Let (G, E , ⋆, E0) be a group
action. The decisional square CSIDH problem is that the adversary A is given Tb = (g1⋆E0, hb⋆E0)
where h0 = g2

1, h1 = g2 and (g1, g2, b)← G2 × {0, 1} and return b′ ∈ {0, 1}.

We denote the advantage of an sDDH adversary A by

AdvsDDH(A) = |Pr[A(T0)→ 1]− Pr[A(T1)→ 1]| ,

where b is the randomness in the experiment, and the probability is taken over the randomness
used by A and the randomness used in the experiment. The group action (G, E , ⋆, E0) is implicitly
parameterized in the experiment. We say the sDDH problem is hard, if for any PPT adversary
A, there exists a negligible function negl such that AdvsDDH(A) ≤ negl(λ).

133



The computational version of the problem is quantum equivalent to the computational
problem [LGD21], and quantum equivalent to the GAIP problem [GPSV21]. A full quantum
equivalence is given in [MZ22].
One can reduce the sDDH problem to the DDH problem by mapping the instance (g1 ⋆ E0, hb⋆0)
to (g1 ⋆ E0, (gg1) ⋆ E0, (ghb) ⋆ E0) where g ← G. Though the reverse reduction is not known,
sDDH is still believed to be a hard problem.

We introduce the decisional assumptions for our VRF variant where the input is ternary
from {−1, 0, 1}, naturally corresponding to the following queries.

Definition 7.2.7 (Twisted Master Decisional CSIDH (tMDDH) Problem). Let (G, E , ⋆, E0) be a
group action, n ∈ N, and b ∈ {0, 1}. The twisted master DDH problem experiment ExptMDDH(n, b)
on input (n, b) proceeds as follows.

1. The challenger C computes E = g ⋆ E0 where g ← G.

2. C generates a tuple (g1 ⋆ E, · · · , gn ⋆ E) where g1, · · · , gn ← G, and sends the tuple to the
adversary A.

3. A is given access to a Diffie-Hellman (DH) oracle on input (x1, · · · , xn) ∈ {0,±1}n

returning
∏n

i gxi
i ⋆ E.

4. A sends a string v = (v1, · · · , vn) ∈ {0,±1}n to the challenge oracle C.

5. C ignores if v has been queried before or is of Hamming weight less than 2. Otherwise, C,
depending on b, computes X0 = ∏n

i gvi
i ⋆ E or X1 = r ⋆ E for some r ← G, and sends Xb

to A. This process will only output for one time.

6. A outputs b′ ∈ {0, 1} to guess b.

We denote the advantage of the decisional problem adversary A by

AdvtMDDH(A) =
∣∣∣Pr[A(ExptMDDH(n, b = 0))→ 1]− Pr[A(ExptMDDH(n, b = 1))→ 1]

∣∣∣ ,
where b is the randomness in the experiment, and the probability is taken over the randomness
used by A and the randomness used in the experiment. The group action (G, E , ⋆, E0) is im-
plicitly parameterized in the experiment. We say the tMDDH problem is hard, if for any PPT
adversary A, there exists a negligible function negl such that AdvtMDDH(A) ≤ negl(λ).

We show in Sec. B.1 that the twisted decisional master CSIDH problem is not easier than the
decisional square CSIDH problem. To see this, we are introducing a non-standard intermediate
assumption, which will make the proof easier to follow. The assumption coincides with a
decisional version of a problem proposed in [LGD21].

Definition 7.2.8 (Decisional Reciprocal CSIDH (rDDH) Problem). Let (G, E , ⋆, E0) be a group
action. The decisional reciprocal CSIDH problem is that the adversary A is given Tb = (g1 ⋆

E0, g2 ⋆E0, hb ⋆E0, h′
b ⋆E0) where h0 = g1g2, h1 = g3, h′

0 = g1g−1
2 , h′

1 = g4 and (g1, g2, g3, g4, b)←
G4 × {0, 1}, and return b′ ∈ {0, 1}.
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We denote the advantage of an rDDH adversary A by

AdvrDDH(A) = |Pr[A(T0)→ 1]− Pr[A(T1)→ 1]| ,

where b is the randomness in the experiment, and the probability is taken over the randomness
used by A and the randomness used in the experiment. The group action (G, E , ⋆, E0) is implicitly
parameterized in the experiment. We say the rDDH problem is hard, if for any PPT adversary
A, there exists a negligible function negl such that AdvrDDH(A) ≤ negl(λ).

The computational version proposed in [LGD21] has been proven to be equivalent to the
computation square CDH problem, which is equivalent to the GAIP problem. The following
proposition shows that the decisional reciprocal problem is not easier than the decisional square
problem. In the appendix Sec. B.1, we will use the multi-challenge version of the decisional
reciprocal problem to show the hardness of the twisted decisional master problem.

Proposition 7.2.9. Let (G, E , ⋆, E0) be a group action. Given an adversary A against the rDDH
problem, there exist an sDDH adversary B1 and a decisional CSIDH problem B2 such that

AdvrDDH(A) ≤ AdvsDDH(B1) + AdvDDH(B2).

Proof. We prove this by introducing a sereis of hybrid games Game1, Game2, Game3 by gradually
changing the experiment, where Game1 corresponds to the case of b = 0 in the experiment
(Def. 7.2.8) and Game3 corresponds to the case b = 1.

Game2 : the same as Game1 except that the pair (g1 ⋆ E0, g2 ⋆ E0, g1g2 ⋆ E0, g1g−1
2 ⋆ E0) given

to A is modified as (g1 ⋆ E0, g2 ⋆ E0, g1g2 ⋆ E0, g4 ⋆ E0) where g4 ← G. Claim Game1 ≈c Game2

thanks to the sDDH problem. Concretely, we build an sDDH adversary B1 using A. Upon
receiving a square CSIDH challenge (s ⋆ E0, X), the reduction B1 proceeds as follows

1. Generate a← G.

2. Forward (a ⋆ (s ⋆ E0), (s ⋆ E0)t, a ⋆ E0, a ⋆ X) to A.

3. Output whatever A returns.

Note that (s ⋆ E0)t = s−1 ⋆ E0 and a = (as)s−1. Therefore, when the challenge is the second
case in the sDDH experiment (i.e. a random curve), B1 generates Game2. On the other hand,
if the challenge is the first case in the experiment (i.e. X = s2 ⋆ E0), then B1 generates Game1

since a ⋆ X = as2 ⋆ E0 and as2 = as(s−1)−1. Therefore, AdvsDDH(B1) = |Pr[A(Game1) →
1]− Pr[A(Game2)→ 1]|.

Game3 : the same as Game2 except that the pair (g1 ⋆E0, g2 ⋆E0, g1g2 ⋆E0, g4 ⋆E0) given to A
is modified as (g1 ⋆ E0, g2 ⋆ E0, g3 ⋆ E0, g4 ⋆ E0) where g3 ← G. This is exactly the second case in
the rDDH problem. Claim Game2 ≈c Game3 thanks to the DDH problem. Concretely, we build
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an DDH adversary B2 using A. Upon receiving a square CSIDH challenge (g1 ⋆ E0, g2 ⋆ E0, X),
the reduction B2 proceeds as follows

1. Generate g4 ← G.

2. Forward (g1 ⋆ E0, g2 ⋆ E0, X, g4 ⋆ E0) to A.

3. Output whatever A returns.

Note that when the challenge is the second case in the DDH experiment (i.e. a random curve),
B2 generates Game3. On the other hand, if the challenge is the first case in the experiment
(i.e. X = g1g2 ⋆ E0), then B1 generates Game2. Hence, AdvDDH(B2) = |Pr[A(Game2) →
1]− Pr[A(Game3)→ 1]|.

Therefore, we have

AdvrDDH(A) ≤ AdvsDDH(B1) + AdvDDH(B2).

7.3 Hardness of Master Decisional Diffie-Hellman
Problem

The following theorem shows that the MDDH problem is as hard as the DDH problem. It is
worth highlighting the reduction is inspired by the pseudorandomness treatment in the literature
[BMR10, ADMP20, BKW20, MOT20].

Theorem 7.3.1. The MDDH problem is not easier than the mcDDH problem. Concretely, let
(G, E , ⋆, E0) be a group action, A be a MDDH problem adversary with parameter n ∈ N. If at
most qDH = poly(λ) queries are made in the experiment by MDDH A then there exists mcDDH
problem adversaries B2, · · · Bn such that

AdvMDDH(A) ≤
n∑

i=2
AdvmcDDH(Bi).

Proof. We prove the theorem via a hybrid argument by introducing a series of games Game1, · · · ,

Gamen by modifying the responses of the DH oracle and the challenge oracle in the MDDH
experiment gradually. Among the games, Game1 is the original MDDH experiment, We will
modify the response of the challenge oracle and the DH oracle together, which will be explained
later. For i ∈ [n] where b ∈ {0, 1}, let A(Gamei(b)) represent A running the Gamei, the modified
MDDH experiment with the random coin b used in the experiment, and A will return 0 or 1.
Therefore, by definition,

AdvMDDH(A) = |Pr[A(Game1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]|. (7.1)
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Looking ahead, Gamen is the modified MDDH experiment where both the DH oracle and
the challenger reply with random elements in E . Therefore, since b is information theoretically
hidden from A,

|Pr[A(Gamen(b = 1))→ 1]− Pr[A(Gamen(b = 0))→ 1]| = 0. (7.2)

Game1 : the original MDDH experiment starting with a tuple (g1 ⋆ E0, · · · , gn ⋆ E0) where
g1, · · · , gn ← G and the oracle responds as specified.

Game2 to Gamen: for j ∈ {2, · · · , n}, Gamej is the same as Gamej−1 except that the response
of the DH oracle and the challenge oracle is modified as follows. The modification starts with a
list L which is initially

{(0, E0), (e1, g1 ⋆ E0), · · · , (ej , gj ⋆ E0)} ⊆ {0, 1}j × E .

On the query x = (x1, · · · , xn) ∈ {0, 1}n, if ((x1, · · · , xj), X) ∈ L for some X ∈ E , the oracle re-
turns (∏n

i=j+1 gxi
i )⋆X; otherwise, it draws g′ ← G, computes X = g′ ⋆E0, adds ((x1, · · · , xj), X)

to the list L, and returns (∏n
i=j+1 gxi

i ) ⋆ X to A. The reply for the challenge query is modified
in the same way if the random coin b = 0.

Claim that Gamej−1 ≈c Gamej for A for any 2 ≤ j ≤ n. Concretely, a reduction Bj to the
mcDDH problem proceeds as follows

1. Obtain (g′ ⋆ E0, {(Xi, X ′
i)}i∈[qDH+j−1]) from the mcDDH oracle.

2. Then, Bj initializes with a list

L =

 (e1, X1), · · · , (ej−1, Xj−1), (0, E),
(e1 + ej , X ′

1), · · · , (ej−1 + ej , X ′
j−1), (ej , g′ ⋆ E0)

 ⊂ {0, 1}j × E ,

where ei is the i-th elementary vector in {0, 1}j , and set a counter ct = j to record the
number of the pairs (Xi, X ′

i) taken into the list L.

3. Invoke A on input (E, X1, · · · , Xj−1, g′ ⋆ E0, gj+1 ⋆ E0, · · · , gn ⋆ E0) where gj+1, · · · , gn

← G.

4. Upon receiving the oracle query (x1, · · · , xn) ∈ {0, 1}n, check whether ((x1, · · · , xj), X)
∈ L for some X ∈ E . If so, return ∏n

i=j+1 gxi
i ⋆ X. Otherwise, update

L←
{
((x1, · · · , xj−1, 0), Xct), ((x1, · · · , xj−1, 1), X ′

ct)
}
∪ L,

and set ct← ct + 1, and rerun this step again.

5. Output whatever A returns.
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Note that in Step 1. if Bj is in the experiment ExpmcDDH(0) in the mcDDH problem (Prob. 5
Item 1) then Bj generates Gamej−1. In contrast, if it is in the experiment ExpmcDDH(1) in the
mcDDH problem (Prob. 5 Item 2), then Bj generates Gamej . It follows that for b ∈ {0, 1},

AdvmcDDH(Bj) =|Pr[Bj(ExpmcDDH(0))→ 1]− Pr[Bj(ExpmcDDH(1))→ 1]|
=|Pr[A(Gamej−1(b))→ 1]− Pr[A(Gamej(b))→ 1]|. (7.3)

Therefore, we have

AdvMDDH(A) = |Pr[A(Game1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]| (By Eq. (7.1))

≤
n∑

j=2
(|Pr[A(Gamej−1(b = 1))→ 1]− Pr[A(Gamej(b = 0))→ 1]|

+ |Pr[A(Gamej−1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]|)
+ |Pr[A(Gamen(b = 1))→ 1]− Pr[A(Gamej−1(b = 1))→ 1]|

(Union bounds.)

=
n−1∑
j=2

AdvmcDDH(Bj). (By Eqs. (7.2) and (7.3))

The result follows.

7.4 Proof Systems

7.4.1 The Action Factorization Relation and Its Sigma-Protocol
We consider the following action factorization relation Rfac for our verifiable random functions.

Rfac =

st = (E0, {Ei}i∈[N ], E), wt = {si}i∈[N ]

∣∣∣∣∣∣Ei = si ⋆ E0 ∀ i ∈ [N ]
E = (ΠN

i=1si) ⋆ E0

 .

Sigma Protocol for Rfac. We give a basic sigma protocol for Rfac as described in Fig. 7.1. Let
N ∈ N and a statement (st = E0, {Ei}i∈[N ], E). Say the prover has the witness (wt = {si}i∈[N ])
such that Ei = si ⋆ E0 for any i ∈ [N ] and E = (ΠN

i=1si) ⋆ E0.

To prove the knowledge, the prover firstly generates r1, · · · , rN , computes E′
i = ri ⋆ Ei for

all i ∈ [N ] and E′ = (ΠN
i=1ri) ⋆ E, and sends those N + 1 set elements to the verifier. The

verifier returns a random challenge c from {0, 1} and sends it to the prover. If the challenge is 0,
the prover reveals ri for all i ∈ [N ] to the verifier. Otherwise, the prover reveals siri for every
i ∈ [N ]. When c = 0, with received {r′

i}i∈[N ] the verifier checks whether r′
i ⋆ Ei = E′

i for all
i ∈ [N ] and whether E′ = (ΠN

i=1ri) ⋆ E. When c = 1, with received {r′
i}i∈[N ] the verifier checks

whether r′
i ⋆ E0 = E′

i for all i ∈ [N ] and also (ΠN
i=1r′

i) ⋆ E0 = E′.
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In each case, if all equalities hold, the verifier returns 1 to represent the acceptance. Other-
wise, the verifier returns 0 to represent the rejection.

Remark 7.4.1. Constructing the same proof system in a restricted EGA model or the original
CSIDH setting [CLM+18] with an unknown structure group is feasible. In these settings, the
group elements are represented as a linear combination of a given generating set where the
coefficients are chosen from a small interval [−t, t]. In this case, revealing the addition s + r if
both s, r ∈ [−t, t] will leak the information of the secret s. Therefore, using Fiat-Shamir with
aborts [Lyu09, DG19] can circumvent this by sampling r from a larger [−(T + 1)t, (T + 1)t] for
some T ∈ N and, then, aborting the session while required to reveal r + s and r + s /∈ [−Tt, T t].
With a straightforward application to our case of siri and Π(siri) for i ∈ [N ] and T = 2λ2, the
abort rate will be larger than 1/3 (see [DG19, Lemma 2.]). The rejection sampling method can
also be improved using [DPV19].

To reduce the size of the overall response, the prover uses a pseudorandom number generator
to generate r1, · · · , rN ∈ G with a seed, seed0, picked uniformly at random from {0, 1}λ. Also, the
prover uses the Merkle tree to reduce the communication cost of the first message by producing
a root of {{E′

i}i∈[N ], E′} over {0, 1}2λ.

Theorem 7.4.2. The sigma protocol Πbase
Σ described in Fig. 7.1 has correctness.

Proof. When the challenge is c = 0, the prover sends the seed, seed0, to the verifier. The
computation of the verifier will result in the same Merkle root in this case.

When c = 1, the prover sends r′
i = siri for every i ∈ [N ] to the verifier. Recall that for any

i ∈ [N ], we have Ei = si ⋆ E0, E′
i = ri ⋆ Ei, E = (ΠN

i=1si) ⋆ E0, and E′ = (ΠN
i=1ri) ⋆ E. Also,

E′
i = ri ⋆ Ei. Hence, due to commutative G, we have

(E′
1, · · · , E′

N , E′) = (r1s1 ⋆ E0, · · · , rN sN ⋆ E0, (ΠN
i=1risi) ⋆ E0)

= (r′
1 ⋆ E0, r′

N ⋆ EN , (ΠN
i=1r′

i) ⋆ E0).

The Merkle tree will result in the same root and correctness follows.

Theorem 7.4.3. Let |G| ≥ 2λ (see Rem. 7.2.1). The sigma protocol Πbase
Σ described in Fig. 7.1

has 2-special soundness for the relation Rfac if the Merkle tree hash function O(MT ∥ ·) is
collision-resistant. Concretely, for a fixed statement st, there exists an extractor Ext on input two
valid transcripts returning either a valid witness wt or a pair (wt1, wt2) such that (st, wt) ∈ Rfac

or O(MT ∥ wt1) = O(MT ∥ wt2), respectively.

Proof. Let {root, 0, resp0} and {root, 1, resp1} be the two valid transcripts for the same first-
message root. Write r1, · · · , rN ← O(PRNG ∥ resp0) and {r′

1, · · · , r′
N} = resp1, the extractor Ext

proceeds as follows.

1. Compute wt1 = (r1 ⋆ E1, · · · , rN ⋆ EN , (ΠN
i=1ri) ⋆ E).
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round 1: P ′O
1 (st = (E0, {Ei}i∈[N ], E), wt = {si}i∈[N ])

1: seed0
$← {0, 1}λ

2: (r1, · · · , rN)← O(PRNG ∥ seed0) ▷ Generate ri ∈ G
3: E ′ ← E
4: for i from 1 to N do
5: E ′

i ← ri ⋆ Ei

6: E ′ ← ri ⋆ E ′

7: root← O(MT ∥ E ′
1, · · · , E ′

N , E ′) ▷ Produce root ∈ {0, 1}2λ

8: Prover sends com← root to Verifier.

round 2: V ′
1(com)

1: c $← {0, 1}
2: Verifier sends ch ← c to

Prover.

round 3: P ′
2(st, com, ch)

1: c← ch
2: if c = 1 then
3: for i from 1 to N do
4: r′

i ← siri

5: resp← {r′
i}i∈[N ]

6: else
7: resp← seed0

8: Prover sends resp to Verifier

Verification: V ′O
2 (com, ch, resp)

1: (root, c)← (com, ch)
2: if c = 1 then
3: ({r′

i}i∈[N ])← resp
4: Ẽ ′ ← E0
5: for i from 1 to N do
6: Ẽ ′

i ← r′
i ⋆ E0

7: Ẽ ′ ← r′
i ⋆ Ẽ ′

8: r̃oot← O(MT ∥ Ẽ ′
1, · · · , Ẽ ′

N , Ẽ ′)
9: return ⊤ if r̃oot = root; otherwise, return
⊥.

10: else
11: Repeat round 1 with seed0 ← resp.
12: return ⊤ if results in root; otherwise, re-

turn ⊥.

Figure 7.1: Construction of the base sigma protocol Πbase
Σ = (P ′ = (P ′

1, P ′
2), V ′ = (V ′

1 , V ′
2))

for the relation R where O(PRNG∥·) and O(Com∥·) are a PRNG and a commitment
scheme instantiated by the random oracle, respectively.

2. Compute wt2 = (r′
1 ⋆ E0, · · · , r′

N ⋆ E0, (ΠN
i=1r′

i) ⋆ E0).

3. If wt1 ̸= wt2, then return (wt1, wt2).

4. Else, return (r−1
1 r′

1, · · · , r−1
N r′

N ).

Since V ′O
2 ({root, b, respb})→ 1 for i ∈ {0, 1}, we know have

root = O(MT ∥ r1 ⋆ E1, · · · , rN ⋆ EN , (ΠN
i=1ri) ⋆ E),

root = O(MT ∥ r′
1 ⋆ E0, · · · , r′

N ⋆ E0, (ΠN
i=1r′

i) ⋆ E0)

where r1, · · · , rN ← O(PRNG ∥ resp0) and {r′
1, · · · , r′

N} = resp1. If wt1 ̸= wt2, then they form a
collision for the Merkle tree hash function.
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If wt1 = wt2, we have ri ⋆ E1 = r′
i ⋆ E0 for any i ∈ [N ] and (ΠN

i=1ri) ⋆ E = (ΠN
i=1r′

i) ⋆ E0. If
follows that Ei = (r−1

i r′
i) ⋆ E0 for all i ∈ [N ]. Moreover, since the group is commutative and

(ΠN
i=1ri)−1(ΠN

i=1r′
i) ⋆ E0 = E, we have (ΠN

i=1(r−1
i r′

i)) ⋆ E0 = E.

Theorem 7.4.4. The sigma protocol Πbase
Σ described in Fig. 7.1 is statistically HVZK where

the pseudorandom number generator and the Merkle tree hash function are modeled as random
oracles O(PRNG ∥ ·) and O(MT ∥ ·), respectively. Concretely, for any (st, wt) ∈ Rfac and a
computationally-unbounded adversary A with at most qH queries of O(PRNG ∥ ·), there exists a
simulator Sim such that∣∣∣Pr[AO(P O(st, wt, c)) = 1]− Pr[AO(SimO(st, c)) = 1]

∣∣∣ ≤ qH/2λ.

Proof. Let (st = (E0, {Ei}i∈[N ], E), wt = {si}i∈[N ]) ∈ Rfac. Given a st and c ∈ {0, 1}, the
simulator SimO(st, wt, c) proceeds as follows.

1. If c = 0, then execute P ′
1 and generate (root, 0, seed0) where the witness is not required in

this process.

2. If c = 1, then

(1.) Generate r′
1, · · · , r′

N ← G and let resp← {r′
1, · · · , r′

N}.

(2.) Compute E′
i = r′

i ⋆ E0 for every i ∈ [N ].

(3.) Compute E′ = (ΠN
i=1r′

i) ⋆ E0.

(4.) Compute root← O(MT ∥ E′
1, · · · , E′

N , E′).

(5.) Return (root, c, resp).

The simulated transcripts are identical to ones produced by the prover with the witness executing
the protocol Πbase

Σ . For the case c = 0, the procedure is the same since the witness is not involved.
For the case c = 1, one can observe that the simulator returns a valid transcript and each

element in the response follows the uniform distribution over G. The distribution is the same
as the uniform distribution over the coset (si)−1G for any i ∈ [N ] used by the prover, since
O(PRNG ∥ ·) is modeled as a random oracle, except for those queries has been made before.
Concretely, the difference of two distribution is

1/2
∑∣∣∣Pr[(com, ch, resp)← P̃ O(st, wt, c))]− Pr[(com, ch, resp)← SimO(st, c)]

∣∣∣
=1/2

∑∣∣∣Pr[(com, 1, resp)← P̃ O(st, wt, c))]− Pr[(com, 1, resp)← SimO(st, c)]
∣∣∣

=qH

2 (1/2λ − 1/|G|N )

≤qH

2λ
,

so is the advantage of the adversary A.
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Theorem 7.4.5. Let |G| ≥ 2λ (see Rem. 7.2.1). The sigma protocol Πbase
Σ in Fig. 7.1 has λ

min-entropy where O(PRNG ∥ ·) and O(MT ∥ ·) are instantiated by by a random oracle.

Proof. When the challenge ch = 0, the seed is drawn uniformly at random from {0, 1}λ, and then
ri are drawn uniformly at random from G for any i ∈ [N ]. Note that |G| ≥ 2λ. Since the action is
free and transitive, ri⋆Ei follows the uniform distribution over E for every i. Then, com ∈ {0, 1}2λ

is produced by O(MT ∥ ·). Throughout the procedure, every random element is drawn from a
set larger than 2λ. Therefore, we have Pr

[
com = com′

∣∣∣com← P O
1 (st, wt), com′ ← AO(st, wt)

]
≤

2−λ.

7.4.2 Online-extractable NIZK
Repeating λ times and using the Fiat-Shamir transform, we turn the sigma protocol Fig. 7.1
into a proof system for the relation Rfac. The description is displayed in Fig. 7.2.

ProveO(st = (E0, {Ei}i∈[N ], E), wt =
{si}i∈[N ])

1: for i ∈ [λ] do
2: comi ← P ′O

1 (st, wt)
3: com← (com1, · · · , comλ)
4: ch = (c1, · · · , cλ)← O(FS ∥ st ∥ com)
5: for i ∈ [λ] do
6: respi ← P ′O

2 (st, comi, ci)
7: resp← (resp1, · · · , respλ)
8: return π ← (com, ch, resp)

VerifyO(st = (E0, {Ei}i∈[N ], E), π)
1: (com = (com1, · · · , comλ),

ch = (c1, · · · , cλ), resp =
(resp1, · · · , respλ))← π

2: output = 1
3: for i ∈ [λ] do
4: r ← V ′

2(comi, ci, respi)
5: output← output · r
6: output← output · (ch == O(FS ∥ st ∥

com))
7: return output

Figure 7.2: NIZK ΠNIZK for the relation Rfac by applying the Fiat-Shamir transform to
Πbase

Σ = (P ′ = (P ′
1, P ′

2), V ′ = (V ′
1 , V ′

2)) in Fig. 7.1 with λ repetitions.

Theorem 7.4.6 (Completeness). The proof system ΠNIZK for the relation Rfac in Fig. 7.2 is
complete.

Proof. In each iteration of i ∈ [λ] in Fig. 7.2, the prover and the verifier execute P ′ and V ′ in
Πbase

Σ = (P ′, V ′) respectively. By Def. 3.3.2, each execution of Πbase
Σ = (P ′, V ′) has correctness,

and the completeness of ΠNIZK follows.

Theorem 7.4.7 (Zero-knowledge). Let |G| ≥ 2λ (see Rem. 7.2.1). The proof system ΠNIZK

for the relation Rfac in Fig. 7.2 is zero-knowledge in the random oracle model. Concretely, for
any (st, wt) ∈ Rfac and a computationally-unbounded adversary A with at most qPRNG queries of
O(PRNG ∥ ·) and qFS queries of O(FS ∥ ·), there exists a simulator Sim such that∣∣∣Pr

[
AO(P O(st, wt)) = 1

]
− Pr

[
AO(SimO(st)) = 1

]∣∣∣ ≤ qPRNG
2λ

+ qFS
2λN

,

142



Proof. Let Sim′ be the simulator in Thm. 7.4.4. The simulator Sim firstly simulates the oracle of
O(FS ∥ ·), O(FS ∥MT) and O(PRNG ∥ ·) by keeping lists LFS, LMT, and LPRNG respectively using
an on-the-fly method. Sim also keeps a list L to simulate the oracle queries. Take O(FS ∥ ·) for
instance, upon receiving an oracle query as O(FS ∥ x), the Sim simulates the oracle as follows.

1. Check whether there exists a pair (x, y) ∈ LFS for some y. If so, return y.

2. Otherwise draw y ← {0, 1}λ uniformly at random. Add y to the list (x, y) and return y.

Given a statement st in the language of Rfac, the simulator Sim simulates the transcripts as
follows.

1. Generate ch = (c1, · · · , cλ)← {0, 1}λ uniformly at random.

2. For each i ∈ [λ], run (comi, ci, respi)← Sim′(st, ci).

3. Concatenate com← (com1, · · · , comλ), resp← (resp1, · · · , respλ).

4. Add (com, ch) to the list LFS. If com has been queried before, abort and return ⊥.

5. Output the transcript (com, ch, resp).

By Thm. 7.4.5, we know each generation comi has λ min-entropy. Therefore, the abort in
Item 4 occurs with a negligible probability qFS/2λN .

Given such a distinguisher A, one can construct an HVZK adversary B against the sigma-
protocol Πbase

Σ using A. Recall that when the challenge is 0, the simulation of Sim′(·, 0) is perfect.
The reduction B using A proceeds as follows. Upon receiving the statement st and the transcript
ensemble X = {comi, 1, respi}i for the challenge 1, B simulates as what Sim does except that
the transcripts from Sim′(st, 1) in Item 2 is replace by those taken from the ensemble X. B
invokes A with st and the simulated transcripts. When the ensemble is generated by a real
prover, then B generates the transcripts as a real prover in ΠNIZK except for the occurrence of
aborts. When the ensemble is generated by a simulator, then B generates the transcripts as Sim
in ΠNIZK. Hence, AdvZK

ΠNIZK(A) ≤ AdvHVZK
Πbase

Σ
(B) + qFS/2λN .

Therefore, we have∣∣∣Pr
[
AO(P O(st, wt)) = 1

]
− Pr

[
AO(SimO(st)) = 1

]∣∣∣ ≤ qPRNG
2λ

+ qFS
2λN

.

Theorem 7.4.8 (Online-extractable). Assume O(·) is collision resistant, |G| ≥ 2λ (see
Rem. 7.2.1), and N ∈ N. The proof system ΠNIZK in Fig. 7.2 is online-extractable. Con-
cretely, for any adversary A with qFS queries to O(FS ∥ ·) and qPRNG queries to O(PRNG ∥ ·),

AdvOE
ΠVRF(A) ≤ qFS + 1

2λ
+ qFSqPRNG

2Nλ
.
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Proof. With the extractability access to the oracle, the extractor Ext observes the queries to
O of the form (PRNG ∥ ·), and record (x, y) to the list LPRNG where x is the input and y is the
oracle output. Also, Ext does the same for the queries of the form (FS ∥ ·), and keeps a list LFS.
We say x is in the list LPRNG if there exists some y such that (x, y) ∈ LPRNG.

Upon receiving a statement st = (E0, (E1, · · · , EN ), E′), possibly not in the language of Rfac,
and a valid proof (com, ch, resp), the extractor Ext proceeds as follows.

1. Parse ch = (c1, · · · , cλ) where ck ∈ {0, 1} for i ∈ [λ]. Also, parse com = (root1, · · · , rootλ)
and resp = (resp1, · · · , respλ).

2. Collect K ⊆ [λ] where ck = 1 for any k ∈ K.

3. Collect the queries S = {seedj}j∈[qPRNG] recorded in list LPRNG.

4. Find one (k, j) ∈ K × [qPRNG] such that rootk, seedj satisfy rootk = O(MT ∥ (r1, · · · , rN ) ⋆

(E1, · · · , EN )) where (r1, · · · , rN )← O(PRNG ∥ seedj) . If no such pairs found, return ⊥.

5. Execute the extractor Ext′ described in Thm. 7.4.3 on input two valid transcripts
(comk, 0, seedj), (comk, 1, respk) to extract wt ∈ GN and return wt.

We have to argue the pair (k, j) in Item 4 exists with an overwhelming probability.
For simplicity, we say a seed seed can serve as a 0-response for root if (r1, · · · , rN )← O(PRNG ∥
seed) and root = O(MT ∥ (r1, · · · , rN ) ⋆ st, (Πri) ⋆ E0). For example, one can interpret Item 4 as
finding a 0-response for rootk for some k ∈ K.

Case I: O(FS ∥ st ∥ com) has not been queried before the verification. This implies
that A produces com and resp without knowing the challenge. However, it requires ch equals
O(FS∥ st∥ com) in the verification process. This occurs with a probability not greater than 1/2λ.

Analysis. We analyze the advantage of A against Ext by aiming at each FS challenge query
made by the adversary to O(FS ∥ st′ ∥ ·) for some st′. We analyze when A submits a new
com′ = (root′

1, · · · , root′
λ) to the FS oracle, whether there exist 0-responses in the query list

LPRNG.
For K ′ ⊆ [λ], we define the EK′ that when A submitting com to the FS oracle of the form

(FS∥st′∥root1, · · · , rootλ) to the random oracle, there exist no 0-responses in the query list LPRNG

for rootk for any k ∈ [K ′]. We also define event FK′ that the FS oracle returns the challenge
(c′

1, · · · , c′
λ) where c′

k = 1 for all k ∈ K ′ and ck = 0 otherwise. Obviously, Pr[FK′ ] = 1/2λ for
every new FS query. Denote the event that A outputs a transcript containing com′ by Ocom′

(e.g. (com′, ch′, resp′)) and the output is extractable for Ext by Lcom′ . The latter case implies A
fails.
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Note that EK′ forms a partition. Therefore, if A returns (com′, ch′, resp′) we have

Pr[Ocom′ ] =
∑

K′⊆[λ]
Pr[Ocom′ ∩ EK′ ]

= Pr[Ocom′ ∩ EK′ ], for some K ′

= Pr[Ocom′ ∩ EK′ ∩ FK′ ] + Pr[Ocom′ ∩ EK′ ∩ ¬FK′ ]
≤ 1/2λ + Pr[A wins using com′ ∩ EK′ ∩ ¬FK′ ] + Pr[Lcom′ ∩ EK′ ∩ ¬FK′ ],

where Pr[Ocom′ ∩ EK′ ∩ FK′ ] ≤ 1/2λ since Pr[FK′ ] = 1/2λ. We partition the event that
Ocom′ ∩ EK′ ∩ ¬FK′ into two cases: A wins or not (i.e. whether the tuple (com′, ch′, resp′)
is extractable).

Case II: A wins with a tuple using com′∩EK′∩¬FK′. Recall that if there exists k ∈ [λ]−K ′

such that c′
k = 1, then one can invoke Ext to extract the witness using resp′

k and the list of
O(PRNG ∥ ·). Therefore, the case that A wins implies that c′

k = 0 for all k ∈ [λ] − K ′ and
A produces a seed seedk for some c′

k = 0, k ∈ K ′ such that com′
k = (r1, · · · , rN ) ⋆ E0 where

(r1, · · · , rN )← O(PRNG ∥ seedk). Note that such seedk is generated after the FS query. Since
the protocol has the unique response property 3 and the group elements are generated uniformly
from G by O(PRNG ∥ ·), the adversary can generate such a seed with chance not greater than
qPRNG/|G|N .

Therefore,
|Pr[Ocom′ ]− Pr[Lcom′ ]| ≤ 1/2λ + qPRNG/|G|N .

Wrapping up, given an adversary with qFS FS queries and qPRNG PRNG queries, by taking a
union bound over all FS queries we know the advantage of the adversary:

AdvOnlineExtract
ΠVRF (A) ≤ Pr[Case I] +

∑
com in LFS

Pr[Case II wrt com]

≤ 1
2λ

+
∑

com in LFS

|Pr[Ocom′ ]− Pr[Lcom′ ]|

≤ qFS + 1
2λ

+ qFSqPRNG
|G|N

.

3Given E ∈ EN there exist two unique group elements g ∈ GN and g ∈ G′N such that E =
g ⋆ (E1, · · · , EN ) and E = g′ ⋆ E0.
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7.5 Verifiable Random Functions from Effective Group
Actions

In this section, we present our first VRF construction from an effective group action – CAPY-
BARA (Compact Action factorization Proofs Yielded By A RAndom function):

Construction. ΠVRF = {ParGen, KeyGen, VRFEval, Ver} using Πfac
NIZK = (P, V ), H where:

• ParGen(1λ): on input a security parameter 1λ, it returns pp = (G, E , ⋆, E0), which is a
free, transitive and effective group action.

• KeyGen(pp): On input public parameter pp = (G, ⋆, E0, E), it returns a secret key sk =
(c0, c1, s1, · · · , sλ) and a public key vk = (c0 ⋆ E0, c1 ⋆ E0, s1 ⋆ E0, · · · , sλ ⋆ E0).

• VRFEval(sk, x) 4: On input a secret key sk and an input x = (xi) ∈ {0, 1}λ, this algorithm
outputs (v, π) for the VRF value where v = (c0c1Πλ

i=1sxi
i )⋆E0 together with the correspond-

ing proof π where I = {1, 2}∪{i+2|xi = 1∧i ∈ [λ]} and π ← P (st = (E0, vkI , v), wt = skI)
of ΠNIZK.

• Ver(vk, v, x, π): On input (vk, v, x, π), this algorithm computes b← V (st = (E0, vkI , v), π)
using ΠNIZK where I = {1, 2} ∪ {i + 2|xi = 1 ∧ i ∈ [λ]}, and returns b.

Theorem 7.5.1. The VRF construction ΠVRF in Fig. 7.3 has provability.

Proof. Let (E, π) ← VRFEval(sk, x) and v = (c0c1Πλ
i=1sxi

i ) ⋆ E0. The proof π is generated
by P (st = (E0, vkI , v), wt = skI) and I = {1, 2} ∪ {i + 2|xi = 1 ∧ i ∈ [λ]}. Since (st =
(E0, vkI , v), wt = skI) ∈ R and ΠNIZK has correctness, we have VRFVer(vk, v, x, π) = 1.

Theorem 7.5.2. If ΠNIZK is extractable, the VRF construction ΠVRF in Fig. 7.3 has computa-
tional full uniqueness in the random oracle model. Concretely, for any full uniqueness adversary
A against ΠVRF, there exists an extractable adversary B against ΠNIZK such that

AdvUP
ΠVRF(A) ≤ 2AdvOE

ΠNIZK(B).

Proof. Given (vk, x, v1, v2, π1, π2)← A where VRFVer((E0, vkI , v1), π1) = VRFVer((E0, vkI , v2),
π2) = 1 and v1 ̸= v2. where I = {1, 2} ∪ {i + 2|xi = 1 ∧ i ∈ [λ]}.

By invoking the extractor Ext of ΠNIZK in Thm. 7.4.8 twice, we have s1 ← Ext((E0, vkI , v1),
π1), s2 ← Ext((E0, vkI , v2), π2) such that v1 = (Πi(s1)i) ⋆ E0 and v2 = (Πi(s2)i) ⋆ E0. Also,
vkI = s1 ⋆ E0 and vkI = s2 ⋆ E0. Since the action is free and transitive, we have s1 = s2, which
contradicts v1 ̸= v2.

In other words, if A wins, then the extractor E shall fail among two extractions. We can
therefore tranform A into an extractabililty adversary B against ΠNIZK. Concretely, if A returns

4In the formal syntax of VRF, vk is not inclueded in the VRFEval. One can also include vk as part of
the public key. In our case, the user can recover vk from sk. Both justify the notation here.
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ParGen(1λ)
1: Generate pp = (G, ⋆, E0, E)
2: return pp

KeyGen(pp)
1: (G, ⋆, E0, E)← pp
2: sk← Gλ+2

3: vk = sk ⋆ E0
4: return (vk, sk)

VRFEval(sk, x)
1: (G, ⋆, E0, E)← pp
2: v = E0
3: I ← {1, 2}
4: for i ∈ [λ] do
5: if xi = 1 then
6: I ← I ∪ {i + 2}
7: for s ∈ skI do
8: v ← s ⋆ v
9: π ← P (st = (E0, vkI , v), wt = skI)

10: return (v, π)

VRFVer(vk, v, x, π)
1: (G, ⋆, E0, E)← pp
2: for i ∈ [λ] do
3: if xi = 1 then
4: I ← I ∪ {i + 2}
5: return V (st = (E0, vkI , v), π)

Figure 7.3: The verifiable random function scheme ΠVRF based an effective group action
and on the DDH problem where Πfac

NIZK = (P, V ) is an NIZK for the relation Rfac described
in Sec. 7.4.2.

(vk, x, v1, v2, π1, π2), then B randomly outputs one of ((E0, vkI , v1), π1) or ((E0, vkI , v2), π2) where
I = {1, 2} ∪ {i + 2|xi = 1 ∧ i ∈ [λ]}. Therefore, we have

AdvUP
ΠVRF(A) ≤ 2AdvOE

ΠNIZK(B).

Theorem 7.5.3. If the decisional master DDH problem is hard, then the VRF construction
ΠVRF in Fig. 7.3, with a subroutine ΠNIZK = (P, V ) in Fig. 7.2, has (residual) pseudorandomness.
Concretely, for any residual pseudorandomness adversary A against ΠVRF with at most qPRNG

queries of O(PRNG ∥ ·) and qFS queries of O(FS ∥ ·), there exists a MDDH adversary B such that

AdvPR
ΠVRF(A) ≤ qPRNG

2λ
+ qFS

22λ
+ AdvMDDH(B).

Proof. We show by using a hybrid argument that such an adversary A can be transformed into
a MDDH adversary B2. Let Game0 be the original residual pseudorandomness experiment and
Game1 be the modified experiment. For i ∈ {0, 1}, we denote the advantage of A in Gamei by
Advi(A) = |Pr[A(Gamei(b = 1))→ 1]− Pr[A(Gamei(b = 0))→ 1]|, where b ∈ {0, 1} represents
the random coin chosen by the challenger (Def. 7.2.3 Item 7). Since Game0 is the original
experiment, we know Adv0(A) = AdvPR

ΠVRF(A) by definition.

We introduce Game1 which is the same as Game0 except for the way of evaluating x for a
query. Rather than generated via Prove from the subroutine ΠNIZK, the proof is generated using
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the simulator Sim for ΠNIZK in Thm. 7.4.7. Here, we have the parameter N ≥ 2 in Thm. 7.4.7
since the prover uses at least two elements (sk{1,2} is a sub-array of skI) to generate a proof.
By Thm. 7.4.7, since the simulator Sim is statistically indistinguishable from a real prover, the
change in Game1 results in a negligible loss. Concretely, |Adv0(A)− Adv1(A)| ≤ qPRNG

2λ + qFS
22λ .

We now transform an adversary in Game1 into a MDDH problem adversary B. The reduction
B starts the MDDH problem with parameter n = λ ∈ N, receives (E1, · · · , Eλ), and proceeds as
follows.

1. First, B simulates the oracle of O(FS ∥ ·), O(FS ∥MT) and O(PRNG ∥ ·) by keeping lists
LFS, LMT, and LPRNG respectively using the straight-line and on-the-fly method. B also
keeps a list L to simulate the oracle queries. Take O(FS ∥ ·) for instance; upon receiving
an oracle query as O(FS ∥ x), the B simulates the oracle as follows.

(a) Check whether there exists a pair (x, y) ∈ LFS for some y. If so, return y.

(b) Otherwise draw y ← {0, 1}λ uniformly at random. Add y to the list (x, y) and return
y.

2. Generates c0, c1 ← G.

3. Invoke A with vk = (c0 ⋆ E0, c1 ⋆ E0, E1, · · · , Eλ).

4. Upon receiving the evaluation query x ∈ {0, 1}λ, forward the query x to the MDDH
problem oracle and recieve E. Run the simulator in Thm. 7.4.7 to produce a proof
π ← Sim(E0, vkI , (c0c1) ⋆ E) where I = {1, 2} ∪ {i + 2|xi = 1 ∧ i ∈ [λ]}. Return (x, π) to
A.

5. Upon receiving the challenge x̃, forward the challenge to x̃ to the MDDH problem challenger
and obtains vb. Forward vb to A and output whatever A returns.

When the MDDH problem challenger using the random coin b ∈ {0, 1} in the experiment
(Prob. 10 Item 4). B creates Game1 using the same random coin b. Therefore,

Adv1(A) = |Pr[A(Gamei(b = 1))→ 1]− Pr[A(Gamei(b = 0))→ 1]|

=
∣∣∣Pr[B2(ExpMDDH(λ, 1))→ 1]− Pr[B2(ExpMDDH(λ, 0))→ 1]

∣∣∣
= AdvMDDH(B).

Hence,
AdvPR

ΠVRF(A) ≤ qPRNG
2λ

+ qFS
22λ

+ AdvMDDH(B).
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7.6 TSUBAKI - Twist-Square-Based Tweak for Iso-
genies

This section presents the variant using the CSIDH-based action with quadratic twists. Let
(G, E , ⋆, E0) denote the group action where E0 ∈ E denote the element that has the property
that Et

0 = E0. Also, for any (g, E) ∈ G× E , we have (g ⋆ E)t = g−1 ⋆ Et.
A variant of CAPYBARA is described as follows.

Construction.

ParGen(1λ)
1: Generate pp = (G, ⋆, E0, E)
2: return pp

KeyGen(pp)
1: (G, ⋆, E0, E)← pp
2: sk← Gκ+2

3: vk = sk ⋆ E0
4: return (vk, sk)

Expands(sk)
1: (c0, c1, s1, · · · , sκ)← sk
2: return (c0, c1, s1, · · · , sκ,−s1, · · · ,−sκ)

Expandv(vk)
1: (X1, X1, E1, · · · , Eκ)← vk
2: return (X1, X1, E1, · · · , Eκ, Et

1, · · · , Et
κ)

VRFEval(sk, x)
1: (G, ⋆, E0, E)← pp
2: v = E0
3: I ← {1, 2}
4: for i ∈ [κ] do
5: if xi = 1 then
6: I ← I ∪ {i + 2}
7: if xi = −1 then
8: I ← I ∪ {i + κ + 2}
9: sk′, vk′ ← Expands(sk), Expandv(vk)

10: for s ∈ sk′
I do

11: v ← s ⋆ v
12: π ← (P (st = (E0, vk′

I , v), wt = sk′
I))

13: return (v, π)

VRFVer(vk, v, x, π)
1: (G, ⋆, E0, E)← pp
2: for i ∈ [κ] do
3: if xi = 1 then
4: I ← I ∪ {i + 2}
5: if xi = −1 then
6: I ← I ∪ {i + κ + 2}
7: vk′ ← Expandv(vk)
8: return V (st = (E0, vk′

I , v), π)

Figure 7.4: Our verifiable random function scheme ΠVRF⋆ based on the sDDH problem
where Πfac

NIZK = (P, V ) is an NIZK for the relation Rfac described in Sec. 7.4.2. The input
x is ternary of length κ = ⌈λ/ log2(3)⌉.

The complete probability and the unique provability hold naturally by embedding ΠVRF⋆ in
Fig. 7.4 back to ΠVRF in Fig. 7.3. We therefore skip the proofs here. We only show the residual
pseudorandomness of ΠVRF⋆ .

Theorem 7.6.1. The VRF construction ΠVRF in Fig. 7.4 has complete provability.
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Theorem 7.6.2. If ΠNIZK is extractable, the VRF construction ΠVRF in Fig. 7.4 has unique
provability in the random oracle model. Concretely, for any unique provability adversary A
against ΠVRF⋆, there exists an extractable adversary B against ΠNIZK such that

AdvUP
ΠVRF(A) ≤ 2AdvOE

ΠNIZK(B).

Theorem 7.6.3. If the twist decisional master DDH problem is hard, then the VRF construction
ΠVRF⋆ in Fig. 7.4, with a subroutine ΠNIZK = (P, V ) in Fig. 7.2, has (residual) pseudorandomness.
Concretely, for any residual pseudorandomness adversary A against ΠVRF with at most qPRNG

queries of O(PRNG ∥ ·) and qFS queries of O(FS ∥ ·), there exists a tMDDH adversary B such that

AdvPR
ΠVRF(A) ≤ qPRNG

2λ
+ qFS

22κ
+ AdvtMDDH(B).

Proof. We show by using a hybrid argument that such an adversary A can be transformed into
a tMDDH adversary B2. Let Game0 be the original residual pseudorandomness experiment and
Game1 be the modified experiment. For i ∈ {0, 1}, we denote the advantage of A in Gamei by
Advi(A) = |Pr[A(Gamei(b = 1))→ 1]− Pr[A(Gamei(b = 0))→ 1]|, where b ∈ {0, 1} represents
the random coin chosen by the challenger (Def. 7.2.3 Item 7). Since Game0 be the original
experiment, we know Adv0(A) = AdvPR

ΠVRF(A) by definition.

We introduce Game1, which is the same as Game0 except for the way to respond to an
evaluation query. Rather than generated via Prove from the subroutine ΠNIZK, the proof is
generated using the simulator Sim for ΠNIZK in Thm. 7.4.7. Here, we have the parameter N ≥ 2 in
Thm. 7.4.7 since the prover uses at least two elements (sk{1,2} is a sub-array of skI) to generate a
proof. By Thm. 7.4.7, since the simulator Sim is statistically indistinguishable from a real prover,
the change in Game1 results in a negligible loss. Concretely, |Adv0(A)− Adv1(A)| ≤ qPRNG

2λ + qFS
22κ .

We now transform an adversary in Game1 into a tMDDH problem adversary B. The reduction
B starts the tMDDH problem with parameter n = κ ∈ N, receives (E, (E1, · · · , Eκ)), and proceeds
as follows.

1. Firstly, B simulates the oracle of O(FS ∥ ·), O(FS ∥MT) and O(PRNG ∥ ·) by keeping lists
LFS, LMT, and LPRNG respectively using the straight-line and on-the-fly method. B also
keeps a list L to simulate the oracle queries. Take O(FS ∥ ·) for instance; upon receiving
an oracle query as O(FS ∥ x), the B simulates the oracle as follows.

(a) Check whether there exists a pair (x, y) ∈ LFS for some y. If so, return y.

(b) Otherwise draw y ← {0, 1}κ uniformly at random. Add y to the list (x, y) and return
y.

2. Generates c0, c1 ← G.

3. Invoke A with vk = (c0 ⋆ E0, E, E1, · · · , Eκ).
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4. Upon receiving the evaluation query x ∈ {0,±1}κ, forward the query x to the tMDDH
problem oracle and recieve E. Write vk′ = (c0 ⋆ E0, c0 ⋆ E, E1, · · · , Eκ, Et

1, · · · , Et
κ) and

I = {1, 2} ∪ {i + 2|xi = 1 ∧ i ∈ [κ]} ∪ {i + 2 + N |xi = −1 ∧ i ∈ [κ]}. Run the simulator in
Thm. 7.4.7 to produce a proof π ← Sim(E0, vk′

I , c0 ⋆ E). Return (x, π) to A.

5. Upon receiving the challenge x̃, forward the challenge to x̃ to the tMDDH problem
challenger and obtains vb. Forward vb to A and output whatever A returns.

When the tMDDH problem challenger using the random coin b ∈ {0, 1} in the experiment
(Prob. 10 Item 4). B creates Game1 using the same random coin b. Therefore,

Adv1(A) = |Pr[A(Gamei(b = 1))→ 1]− Pr[A(Gamei(b = 0))→ 1]|

=
∣∣∣Pr[B2(ExptMDDH(κ, 1))→ 1]− Pr[B2(ExptMDDH(κ, 0))→ 1]

∣∣∣
= AdvtMDDH(B).

Hence,
AdvPR

ΠVRF∗ (A) ≤ qPRNG
2λ

+ qFS
22κ

+ AdvtMDDH(B).

7.7 Optimization and Performance
We ameliorate the proof size by utilizing the two techniques presented in [BKP20]. We briefly
summarise the results.

Unbalanced Challenge Space. One can observe the response of a prover in the proof system
Fig. 7.2 for the challenge 0 is much shorter than the one for the challenge 1. The former is
a single seed, while the latter is a bunch of group elements. By introducing the unbalanced
challenge space CM,K = {ch ∈ {0, 1}M | |ch| = K}, where | · | is the ℓ1-norm and 2λ ≤ M !

K!(M−K)! .
We thereby obtain a much smaller proof size while the online-extractability and zero-knowledge
remain the same.

Seed Trees. The seed tree technique allows the prover to produce a large amount of the seeds
using PRNG and iteratively generating binary subtrees. The leaves of the tree are the seeds to
be used. The prover can later reveal the generating nodes while not disclosing the information
of those unrevealed leaves. The method reduces the size of responses for the challenge 0 in our
case. Though the proof size regarding this technique is not fixed, we will calculate the worst
case for the proof size estimation.

The performances of CAPYBARA and TSUBAKI are given in Tab. 7.1 for the input space
{0, 1}128. CAPYBARA is based on the standard DDH assumption while TSUBAKI is based on
the stronger square DDH (Def. 7.2.6), of which the computational version is as hard as the group
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action inverse problem (Dlog). A very recent work [DHK+23] justifies the hardness of sDDH in
a generic model for group actions. We use the group action from CSIDH-512, as specified in
[BKV19], with M = 855 and K = 19 as the unbalanced challenge space in our implementation.
Our proof sizes are flexible and depend on the input length, with lengths of approximately
79|x|/128 for CAPYBARA and 51|x|/81 for TSUBAKI. The group action from CSIDH-512
has been estimated to have 128 bits of classical security and over 60 bits of quantum security
[Pei20]. We also compare our VRFs to other existing post-quantum VRFs, including LB-VRF
[EKS+21], X-VRF, SL-VRF [BDE+22], and LaV [ESLR22], all aiming to meet the NIST II
security level. LB-VRF and X-VRF have limited residual pseudorandomness, while SL-VRF,
LaV, and our VRFs are full VRFs. The security of X-VRF and SL-VRF is based on XMSS,
LowMC, respectively, and LB-VRF and LaV rely on a hybrid lattice assumption MSIS/MLWE
and MSIS/MLWR respectively.

|sk| |vk| |v| |π| Assumption Relaxation
CAPYBARA [Fig. 7.3] 32B 8.3KB 64B 39 KB DDH (Prob. 4)

TSUBAKI [Fig. 7.4] 32B 5.3KB 64B 34 KB sDDH (Def. 7.2.6)
LB-VRF I [EKS+21] 3.3KB 84B 4.9KB MSIS/MLWE 1-Time

LB-VRF III [EKS+21] 3.4KB 84B 7.3KB MSIS/MLWE 5-Time
X-VRF[BDE+22] 132B 64B 32B 2.6 KB XMSS 215-Time
SL-VRF[BDE+22] 24B 48B 32B 40 KB LowMC

LaV [ESLR22] 6.4KB 3.4KB 124B 12 KB MSIS/MLWR

Table 7.1: CAPYBARA and TSUBAKI (Figs. 7.3 and 7.4, resp) using the group action
setting CSIDH-512 instantiated in [BKV19]. The unbalanced challenge space CM,K where
M = 855, K = 19 is used in the proof system Fig. 7.2. Note that our original secret
key sizes are 2KB, 1.3KB, respectively, and one can use a 32B seed to generate the
entire secret key sk using a PRNG. Our proof sizes are ≈ 79|x|/128 and ≤ 51|x|/81
respectively and vary with the density |x|/κ of the input x where | · | is the ℓ1-norm.
The notations |sk|, |vk|, |v|, |π| represent the length of the secret key, verification key,
output, and proof, respectively. The security of X-VRF and SL-VRF is based on XMSS
and LowMC, respectively, and LB-VRF and LaV rely on a hybrid lattice assumption
MSIS/MLWE and MSIS/MLWR respectively.
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Chapter 8

Isogeny Path Knowledge

This chapter presents the work carried out in [CLL23], which the author of the thesis co-authored.
It is worth noting that Cong gives the main effort of implementation and changing the setting
of the libiop library. We have an agreement with our coauthors to maintain equal credit
distribution for the remainder of the paper. This chapter has been adapted by removing the
information of Limbo and different forms of prime numbers without compromising the essence
of the original work.

Abstract. This chapter presents the first practical application of a generic proof system to
isogeny cryptography for proving knowledge of an isogeny path as an identification scheme. The
scheme provides proof of an exact relation and offers statistical zero-knowledge, a feature that
has only been achieved by very recent work presented at Eurocrypt’23. The resulting scheme
has a proof size comparable to the state-of-the-art work and faster prover and verification times
by a factor of 3-10.

8.1 Introduction
Identification schemes and proofs of knowledge are essential tools in cryptography. They allow
someone’s identity to be confirmed or a prover to convince any person that they have specific
knowledge without revealing it. In real-world scenarios, identity can be established by presenting
physical credentials like a passport, ID card, or driving license or by providing knowledge-based
information such as a password, date of birth or phone number. However, this information can
be recorded by a malicious listener and later used for impersonation, making zero-knowledge
identification schemes essential. That is, we hope the prover does not “give away the knowledge”
when identifying herself.

For instance, in cryptography there are message authentication codes (MACs) to verify
message authenticity, and trusted authorities issue certificates to authenticate website identities.
One of the most well-known identification schemes is the Schnorr identification scheme which
enables non-interactive and zero-knowledge proof of a discrete logarithm solution. Similarly,
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proving isogeny knowledge is critical in isogeny-based cryptography. In previous sections,
we have demonstrated several cryptosystems together with a variety of proof systems. Ac-
tually, in the realm of group actions in isogeny cryptography, it has been known to prove
an isogeny knowledge is not difficult at all and more sophisticated relations can be made
[DG19, BKV19, DM20, BKP20, BDK+22] thanks to the algebraic structure of the underlying
group actions.

However, this is not the case in general in isogeny cryptography. For instance, in the
case of SIDH, which we assume to be secure in this paragraph, proving the knowledge of the
public key is essential for achieving a secure static-static key exchange protocol. A static-static
protocol enables participants to execute the desired primitives without changing the public
keys from time to time. The main bottleneck for SIDH-family schemes to achieve the static-
static property due to the adaptive attacks [GPST16, GL22] that allow an attacker to extract
secret keys bit by bit. To address this, a zero-knowledge proof can be embedded, as done in
previous works [DFJP14, UJ20], which is thought to be the cheapest method before SIDH got
broken by [CD23, Rob23]. Even though there is a flaw in the soundness proof pointed out in
[DDGZ22, GPV21], it does not impact the NIZK’s applications [UJ20] for SIDH or signature
schemes [YAJ+17].

In addition, there is a compact identification/signature scheme [DKL+20] that proves the
knowledge of two isogenous supersingular curves1. This scheme results in a signature size of only
204 bytes for the NIST-1 level of security. However, none of the aforementioned identification
schemes [DFJP14, YAJ+17, UJ20, DKL+20, DDGZ22] achieve statistical zero-knowledge due to
the underlying structure known as the SIDH square. The SIDH square makes it difficult for the
zero-knowledge simulator to generate a transcript that is guaranteed to be valid. Therefore, all
these schemes require ad-hoc computational assumptions to argue that they are zero-knowledge.
Recently, a state-of-the-art work [BCC+23] resolved this problem by proving the Ramanujan
property of the underlying isogeny graph (with Borel level structure). Put simply, the rapid
mixing property means that after walking a long enough path in the graph randomly, we’ll
have an uniform distribution. The property guarantees that the scheme is zero-knowledge.
The scheme requires proof sizes of 191 to 662 KB and prover time of 18 to 162 seconds on a
single-threaded normal machine for a long2 isogeny walk.

Zero-knowledge isogeny identification schemes have practical applications beyond key ex-
change and signatures. For example, in isogeny-based cryptography, a crucial but notori-
ous problem is sampling a supersingular curve without knowledge of its endomorphism ring
[BBD+22, MMP22], which is essential in some constructions [LGD21, BD21, AEK+22] and
significantly reduces the information available to attackers [PL17, dQKL+21, FMRV22]. To
address this, a recent proposal [BCC+23] suggests a trusted setup ceremony in which each
participant computes an isogeny path from the curve generated by the previous participant and
the initial curve can be any curve (e.g. j-invariant 1728). Then, the participant generates a

1One of the curves is required to have a special extremal order (e.g. j-invariant 0 or 1728).
2The length of the walk is roughly 3-4 times longer than necessary for the applications demonstrated.
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proof of knowledge of the isogeny path between the newly generated curve and the previous
one, passes the new curve to the next participant, makes the proof and the two curves public,
and disposes of the path. Meanwhile, every participant verifies the proof. As long as one party
honestly disposes of the path, it is difficult to recover the final curve’s endomorphism ring, even
if the other participants collude. The scheme provides a practical way to obtain a public curve
with an unknown endomorphism ring and therefore reduces the risk of cryptanalysis. Concretely,
a medium-scale trusted setup ceremony with 300 participants using single-threaded normal
machines would take more than 1.5 hours for λ = 128 and 13.5 hours for λ = 256 to complete,
using the proposed identification scheme.

Can we do better?

Generic proof systems allow a prover to prove or argue the knowledge of any NP relation.
zkSNARK3, as one of them, allows a prover to prove the validity of a solution to a given NP
language. On top of that, zkSNARK enables a prover to produce a publicly-verifiable proof in
a zero-knowledge and non-interactive manner. Moreover, the proof size is succinct (sublinear)
and the verification time is much shorter than producing the proof. The area of zero-knowledge
proof systems has been very active these years [IKOS09, BCC+16b, AHIV17, KKW18, BCR+19,
BFH+20, DOT21] (see [Tha20, Ish20] for surveys). These generic proof systems are very useful
in cryptography and blockchain studies. They also work well with symmetric primitives and
some post-quantum branches [ZCD+20, GMNO18, DDOS19, BDK+21, FJR22, FMRV22].

In contrast, the applications of these proof systems to isogeny cryptography appear to be
elusive. Though there exists a VDF from isogenies using SNARG4 [CSRT22], the result remains
theoretical and it is not easy to evaluate the performance. Indeed, due to the complexity of
computing isogenies and the size and structure of the field, building or using generic proof
systems in isogeny cryptography is always challenging. There is widespread uncertainty in the
isogeny community regarding the plausibility of the answer to the following question:

Can generic proof systems serve as practical tools in isogeny cryptography?

8.2 Preliminaries

8.2.1 zkSNARKs
We give a brief description of zkSNARKs. The definition is an adaptation of the interactive-
oracle-proof (IOP) framework using the BCS transformation [BCS16]. The BCS transformation,
to turn an IOP into a noninteractive proof, differs from the Fiat-Shamir transformation in that
it requires an explicitly programmable random oracle model, which is stronger random oracle
model. For a more detailed explanation, please refer to [BCS16]. Throughout this work, we

3zero-knowledge succinct, non-interactive, argument of knowledge
4succinct, non-interactive argument without zero-knowledgeness guarantee.
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only consider transparent zkSNARKs, which require no trusted setup and can serve as a more
practical tool for the applications. Hence, we will not include the description of a common
reference string and the trapdoor in the definition.

Definition 8.2.1 (Zero-Knowledge Succinct Non-interactive Argument of Knowledge (zk-
SNARK)). Given λ ∈ N, s : {0, 1}∗ → [0, 1], a non-interactive random-oracle proof system for a
relation R with is a tuple (ProveO, VerifyO) such that:

1. (Completeness.) For every (st, wt) ∈ R,

Pr[VerifyO(st, π) = 1 | π ← ProveO(st, wt)] = 1

2. (Soundness.) For every PPT AO, we have the probability

Pr
[
VerifyO(st, π) = ⊤ ∧ st /∈ R

∣∣∣ (st, π)← AO
]

to be negligible.

3. (Argument of Knowledge.) For every PPT adversary AO, st, there exists a PPT extractor
Extract such that the probability∣∣∣Pr

[
(st, wt) ∈ R

∣∣∣ wt← ExtractA(st)
]
− Pr

[
VerifyO(st, π) = ⊤

∣∣∣ π ← AO
]∣∣∣

is be negligible where Extract has access to the entire execution and the random coins of A
and (st, π) is returned by A.

4. (Statistical Zero-Knowledge.) There exists a PPT simulator Sim (in the explicitly program-
mable random oracle model) such that for any unbounded adversary A, (st, wt) ∈ R and
the list L the probability∣∣∣Pr

[
AO|L(π)→ 1

∣∣∣ π ← SimO(st)
]
− Pr

[
AO(π)→ 1

∣∣∣ π ← ProveO((st, wt))
]∣∣∣

is be negligible where L is a list and the restricted O|L on input x returns y if (y, x) ∈ L

or O(x) otherwise.

5. (Succinct.) For any (st, wt) ∈ R the size of the proof produced by Prove grows polylogarith-
mically in the size of wt. Concretely, |π| = poly(λ, |st|, log(|wt|)).

8.2.2 Isogeny Problem and Isogeny Path
We recall the isogeny problem, which is commonly used in isogeny-based constructions with
the additional restriction of smooth degree isogenies. This restriction is used to make isogeny
evaluation more efficient through the use of Vélu formulas. Thus, we can define the restricted
version of the original isogeny problem (Prob. 1) as follows.
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Problem 11. Given k ∈ N, a prime number ℓ and two isogenous supersingular E, E′, the task
is to find an isogeny ϕ : E1 → E2 of degree ℓk.

Equivalently, by Thm. 2.1.10, the problem above is equivalent to find a vector (witness) over
Fk+1

p2 for the statement (E, E′) for the relation

Rℓk-Iso =

(st =
(
E, E′) , wt = (j0, · · · , jk)

) ∣∣∣∣∣∣ j(E) = j0, j(E′) = jk,

Φℓ(ji−1, ji) = 0 for all i ∈ [k]

 . (8.1)

Using zkSNARKs, we can construct an argument system for the relation Rℓk-Iso, which in
turn provides an identification scheme for isogeny path knowledge. In this work, we demonstrate
the efficacy of our method for ℓ = 2, the power of which is the most common choice of the
torsion subgroup size used in isogeny constructions.

Remark 8.2.2. An argument system for Prob. 11 can be constructed using the Vélu formulas.
Specifically, an arithmetic circuit that takes a kernel and E as input, and outputs E′ can be
used with a generic proof system to create an identification scheme for the isogeny knowledge.
However, this approach is inefficient due to the complexity of the Vélu formulas and requires
roughly 20 times more gates compared to our method that uses the modular polynomial.

8.2.3 Rank-1 Constraint System
We recall the definition of rank-1 constraint systems (R1CS), which some zk-SNARKs (e.g. Au-
rora) take as an input. An R1CS is parameterized by n, m ∈ N and a prime power q, and
consists of instance-witness pairs ((A, B, C, v), w) where A, B, C ∈ Fm×(n+1)

q , the vectors v,w
are over Fq with dim(v) + dim(w) = n such that

Az ◦Bz = Cz

for z := (1, v, w) ∈ Fn+1
q , where ◦ denotes coordinate-wise (Hadamard) product. Conceptually,

A, B, C encode constraints on variables v, w which represent public variables and private variables,
respectively. The private variable w could contain intermediate variables. Looking ahead,
(A, B, C, v) will serve as the statement and the w (or z = (1, v, w)) will be the witness.

One way to encode arithmetic circuit satisfiability using R1CS is to encode every addition
and multiplication as a new constraint. However, this approach results in impractical results. In
Section 8.3.1, we present an alternative method for encoding the isogeny path relation Eq. (8.1)
into R1CS with optimizations.

8.3 Construction
In this section, we introduce an efficient method to encode the isogeny relation Eq. (8.1) into an
R1CS representation. We start by encoding it over the quadratic field Fp2 in Sec. 8.3.1 and then
demonstrate how to lift it to Fp in an economical manner in Sec. 8.3.2.
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8.3.1 Optimization for R1CS over Fp2

Let Rℓk-Iso be instantiated by setting k = 1, ℓ = 2 , we obtain the base R1CS matrices:

A =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1


, B =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 c4 c4 0 0 0 0 −1


,

C =



0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
c0 c1 c1 c2 c2 1 1 c3,


where

c0 = −157464000000000 c1 = 8748000000 c2 = −162000
c3 = 40773375 c4 = 1488,

where the ci’s are coefficients from Φ2 in Sec. 2.1. The first 5 rows represent the constraints of
including squaring (j2

0 , j2
1), cubing (j3

0 , j3
1), and the multiplication (j0j1) respectively. The last

row represents the constraint

(−j0j1)(c4j0 + c4j1 − j0j1) = j3
0 + j3

1 + c2(j2
0 + j2

1) + c1(j0 + j1) + c3(j0j1) + c0. (8.2)

We can extend this method to a path of length k > 1 by introducing an additional 4
variables (including input) for each j-invariant ji: ji, j2

i , j3
i , and ji−1ji. It is important to note

that the squaring and cubing constraints for each ji−1 can be reused. Therefore, entire R1CS
representation of Rk,ℓ requires n = 4k + 3 variables and m = 4k + 2 constraints over Fp2 .

8.3.2 Optimization for Lifting to Fp × Fp

This subsection presents several techniques to reduce the overhead to lift arithmetic over a
quadratic field to the underlying prime field. We consider a quadratic field Fp2 ∼= Fp[α] where
α2 = d for some quadratic non-residue d ∈ Fp.

The motivation is that, generally, the j-invariant of an elliptic curve is taken over Fp2 but
some proof systems only support arithmetic over a prime field. Indeed, arithmetic computation
over Fp[α] can be viewed as arithmetic computations over an Fp-vector space natively. That is,
for x1, x2, y1, y2 ∈ Fp to represent x1 +x2α ∈ Fp[α], by mapping x1 +x2α to (x1, x2) the addition
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is (x1 + y1, x2 + y2) and the multiplication is (x1y1 + x2y2d, x1y2 + x2y1). This method results in
4 (variable) Fp-multiplications for one (variable) Fp2-multiplication (i.e. x1x2, y1y2, x1y2, x2y1).
In fact, with a few following tricks (arithmetic folklores), this can be done more efficiently:

Arithmetic. Observe that by letting u1 = x1y1, u2 = y2y2, and u3 = (x1 + x2)(y1 + y2), we
have

• x1y1 + x2y2d = u1 + u2d

• (x1y2 + x2y1) = u3 − u1 − u2.

By using the trick, it only requires 3 (variable) Fp-multiplications now. The saving depends
on the proof system to be used. In many proof systems, it is much more expensive to verifiy a
(variable) multiplication relation than a (variable) linear relation.

Next, we consider variable squaring for x + yα ∈ Fp[α] by letting u1 = xy and u2 =
(x + y)(x + yd). Then, we have

• (x2 + y2α2) = u2 − (d + 1)u1

• 2xy = 2u1.

Therefore, it only requires 2 (variable) Fp-multiplications with this trick.

Application to R1CS Matrices. Now we can apply the abovementioned techniques to
our R1CS matrices. Recall that in Sec. 8.3.1, we have a witness vector z over Fp × F7

p2 . As an
abuse of notation, given an element x := a + bα ∈ Fp[α], we may denote a as Re(x) and b as
Im(x). To lift the witness vector z from Fp × F7

p2 to Fp, we embed it naturally into Fp × F14
p .

We can then build a submatrix for each constraint and introduce intermediate variables as follows:

Square Constraint. Regarding the square constraint, take the subvector (1, Re(x), Im(x),
Re(x2), Im(x2)) for instance, the corresponding submatrices for this constraint are respectively[

0 2 0 0 0
0 1 1 0 0

]
,

[
0 0 1 0 0
0 1 d 0 0

]
,

[
0 0 0 0 1
0 0 0 1 2−1(d + 1)

]
,

where two row represent 2Re(x)Im(x) = Im(x2) and (Re(x) + Im(x))(Re(x) + dIm(x)) =
Re(x2) + 2−1(d + 1)Im(x2), respectively.

Multiplication Constraint. For multiplication relation, we need an additional variable u over
Fp. We take the subvector (1, Re(x), Im(x), Re(y), Im(y), u, Re(xy), Im(xy)) for instance. The
corresponding submatrices for this constraint are respectively

0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0

 ,


0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0

 ,


0 0 0 0 0 1 0 0
0 0 0 0 0 −d 1 0
0 0 0 0 0 1− d 1 1

 ,
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the three rows represent Im(x)Im(y) = u, Re(x)Re(y) = Re(xy)−ud, and (Re(x)+ Im(x))(Re(y)+
Im(y)) = Im(xy) + Re(x)Re(y) + u, respectively.

Constraint Eq. (8.2). We can apply our multiplication technique above to the constraint
Eq. (8.2). Recall that the final constraint from the modular polynomial is (−xy)(c4x+c4y−xy) =
x3 + y3 + c2(x2 + y2) + c1(x + y) + c3xy + c0. The insight is every coefficient ci is over Fp so
Re(·) has the linear property Re(c4x + c4y − xy) = c4Re(x) + c4Re(y)− Re(xy) and so does the
imaginary part Im(·). Therefore, we can use three constraints for the real part and the imaginary
part of x3 + y3 + c2(x2 + y2) + c1(x + y) + c3xy + c0 in terms of Re(X), Im(X), Re(Y ), Im(Y )
where X = −xy and Y = c4x + c4y − xy as the method described above.

Concretely, for a subvector

z′ = ( 1 Re(x) Im(x) Re(y) Im(y) Re(x2) Im(x2) Re(y2) Im(y2) Re(x3) Im(x3) Re(y3) Im(y3) Re(xy) Im(xy) u )T

the corresponding submatrices for this constraint are respectively
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

 ,


0 0 c4 0 c4 0 0 0 0 0 0 0 0 0 −1 0
0 c4 0 c4 0 0 0 0 0 0 0 0 0 −1 0 0
0 c4 c4 c4 c4 0 0 0 0 0 0 0 0 −1 −1 0

 ,


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
c0 c1 0 c1 0 c2 0 c2 0 1 0 1 0 c3 0 −d

c0 c1 c1 c1 c1 c2 c2 c2 c2 1 1 1 1 c3 c3 (1− d)

 ,

which respectively represent

Im(X)Im(Y ) = u

Re(X)Re(Y ) = Re(Z)− ud

(Re(X) + Im(X))(Re(Y ) + Im(Y )) = Im(Z) + Re(Z) + (1− d)u,

where

X = −xy

Y = c4x + c4y − xy

Z = x3 + y3 + c2(x2 + y2) + c1(x + y) + c3xy + c0.

In summary, we can transform any isogeny path over a quadratic field Fp2 of length k into
an R1CS relation over Fp with 11k + 3 variables and 11k + 2 constraints. This is a substantial
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improvement over the naive approach, which would result in 16k + 3 variables and 16k + 2
constraints.

8.4 Implemention
We implemented our scheme using Aurora [BCR+19] and Ligero [AHIV17] on a single-threaded
Intel® Core™ i9-9900 CPU @ 3.10GHz. These proof systems are zkSNARKs that achieve
post-quantum and statistical zero-knowledge without requiring a trusted setup. In contrast,
Virgo and Orion [ZXZS20, XZS22] also have these properties, but they rely on arithmetic circuits
on fields generated by specific Mersenne primes for performance improvements, which is not
compatible with our setting.

The implementation is through a fork of libiop5, modified to support larger prime fields or
quadratic field extensions. While Ligero’s original implementation is closed source, an adaptation
is included in libiop library interfaced with the R1CS language.

8.4.1 Identification Scheme
Our proof system may also serve as an identification scheme to validate a public key (E, E′),
where the prover can use our zkSNARK construction to demonstrate their knowledge of a walk
from E to E′, of sufficient length to resist the most efficient generic algorithm for recovering
the secret isogeny (i.e. the claw finding algorithm) [BJS14]. In this section, we demonstrate the
effectiveness of our proof system in this regard.

We show in Tab. 8.1 the R1CS parameter set (m, n) over Fp (lifted from Fp2 as described in
Sec. 8.3.2) and the isogeny walk length k with respect to the security parameter λ. A concrete
result is given in Tab. 8.2 regarding prover time, verifier time and the proof size for different
forms of the primes.

p k n m Strength
p434 = 22163137 − 1 216 2380 2379 NIST 1
p503 = 22503159 − 1 250 2754 2753 NIST 2
p610 = 23053192 − 1 305 3359 3358 NIST 3
p751 = 23723239 − 1 372 4096 4095 NIST 5

Table 8.1: Our R1CS parameter set (m, n) over Fp and the isogeny walk length k as
described in Secs. 8.3.1 and 8.3.2 with respect to the security parameter λ and the prime
p.

5Original source code available at https://github.com/scipr-lab/libiop. Our fork can be found
at https://github.com/levanin/libiop-other-primes.
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Our Work
Prime Aurora Ligero

p434 = 22163137 − 1
Prove 934ms 587ms
Verify 99ms 847ms
|π| 194kB 1,849kB

p503 = 22503159 − 1
Prove 1,138ms 686ms
Verify 114ms 959ms
|π| 219kB 2,127kB

p610 = 23053192 − 1
Prove 3,175ms 2,488ms
Verify 472ms 2,614ms
|π| 517kB 4,084kB

p751 = 23723239 − 1
Prove 3,882ms 1,951ms
Verify 824ms 6,407ms
|π| 828kB 6,394kB

Table 8.2: Table of results comparing several generic proof systems operating for the
R1CS instantiation of R2k-Iso without relaxations. The parameter is set according to
Tab. 8.1 and Prove, Verify, |π| correspond to the prover time, verification time, and proof
size respectively. Results displayed are for single-threaded performance.

8.4.2 Application to the Isogeny SECUER Project
To generate a supersingular curve with an unknown endomorphism ring, a recent proposal,
called secuer project, [BCC+23] suggests a trusted setup ceremony in which each participant
computes an isogeny path from the curve generated by the previous participant and the initial
curve can be any curve (e.g. j-invariant 1728). Then, the participant generates a proof of
knowledge of the isogeny path between the newly generated curve and the previous one, passes
the new curve to the next participant, makes the proof and the two curves public, and disposes
of the path. Meanwhile, every participant verifies the proof. As long as one party honestly
disposes of the path, it is difficult to recover the final curve’s endomorphism ring, even if the
other participants collude. The scheme provides a practical way to obtain a public curve with
an unknown endomorphism ring, reducing the risk of cryptanalysis.

The proposal in [BCC+23] presents a state-of-the-art isogeny NIZK based on a sigma protocol.
Our scheme applies to this application using the R1CS parameter set presented in Tab. 8.3. A
comparison of the performance of our scheme and that of [BCC+23] is presented in Tab. 8.4 in
terms of prover time, verification time, and proof size. When instantiated with Aurora, our proof
system provides 3 to 10 times faster prover time and verification time than those of [BCC+23]
with similar proof sizes. Both proof systems provide statistical zero-knowledge security but we
note that our proof system requires a stronger random oracle model (EPRO) due to the BCS
transform. Notably, our scheme provides a proof of knowledge for the exact relation R2k-Iso,
whereas the scheme in [BCC+23] requires a relaxed relation R2t-Iso for some k ≤ t ≤ 2k.
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p k n m Strength
p434 = 22163137 − 1 705 7759 7758 NIST 1
p503 = 22503159 − 1 774 8518 8517 NIST 2
p610 = 23053192 − 1 1010 11114 11113 NIST 3
p751 = 23723239 − 1 1280 14084 14083 NIST 5

Table 8.3: Our R1CS parameter set (m, n) over Fp and the isogeny walk length k with
respect to the security parameter λ and the prime p.

8.5 Discussion
Our result represents a meaningful progress in the application of generic proof systems to isogeny
cryptography, and it is comparable to the state-of-the-art work in the isogeny literature. Several
potential improvements or research directions can be explored to further enhance the result
in this direction. Firstly, more advanced proof systems such as Ligero++ [BFH+20] or the
updated version of Ligero [AHIV22] could be used to improve the prover time, verification time,
and the proof size. Additionally, one can construct an identification scheme for an alternative
form of the isogeny problem using different proof systems based on, for example, sumcheck
or supporting batch argument ([CJJ22, WW22]). Furthermore, some special functions of a
proof system can be beneficial for certain applications. For instance, a proof system supporting
recursive proof or proof aggregation (e.g., [ACL+22]) is beneficial to the secuer project by
enabling the public to verify the entire trusted setup ceremony much faster than verifying each
proof in the ceremony individually. In summary, we hope that our work serves as a bridge
between the isogeny community and the zkSNARK community and encourages further research
and applications in this direction.
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Our Work [BCC+23]
Prime Aurora Ligero Secuer PoK

p434 = 22163137 − 1
Prove 4,204ms 1,479ms 12,369ms
Verify 378ms 1,899ms 1,399ms
|π| 277kB 3,281kB 191kB

p503 = 22503159 − 1
Prove 4,944ms 1,722ms 19,296ms
Verify 440ms 2,171ms 2,173ms
|π| 313kB 3,778kB 216kB

p610 = 23053192 − 1
Prove 6,457ms 3,331ms 60,915ms
Verify 888ms 3,102ms 6,646ms
|π| 570kB 4,568kB 404kB

p751 = 23723239 − 1
Prove 12,555ms 5,243ms 141,043ms
Verify 1651ms 13,509ms 15,931ms
|π| 688kB 11,302kB 663kB

Table 8.4: Table of results comparing several generic proof systems operating over Fp2 for
the R1CS instantiation of the relation R2k-Iso, and the isogeny Seceur PoK in [BCC+23].
Security level and walk length is set according to Tab. 8.3 and Prove, Verify, |π| correspond
to proof time, verification time, and proof size respectively. Results displayed are for
single-threaded performance.
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Chapter 9

Conclusion

In this thesis, we demonstrate the versatility of isogeny cryptography in various advanced
cryptosystems and highlight several potential topics for further research, which can be summarized
as follows:

1. We explore the folklore method of finding larger known-order effective group actions
using quantum algorithms and lattice reduction techniques. We provide lower bound
estimations for precomputation and action evaluation costs and show there is still room
for improvement. Further research is needed to enhance the method for instantiating
isogeny-based known-order effective group actions.

2. We present the first efficient UC-secure isogeny-based oblivious transfer (OT) in the
isogeny literature. We employ several reductions to demonstrate that its security relies
on the standard group action inverse problem (GAIP). The development of an efficient
round-optimal or adaptively UC-secure OT from isogenies remains an intriguing topic.

3. We introduce the first post-quantum accountable ring signature, which immediately
implies a dynamic group signature and the first such construction in the isogeny literature.
Additionally, we provide a tightly secure variant for these schemes, a rare feature in
the post-quantum ring/group signature literature. We highlight the potential topics of
constructing secure and efficient schemes in QROM and improving proof size by expanding
the challenge space in each repetition.

4. We present the first provably secure blind signature in the isogeny literature with compet-
itive performance in the post-quantum domain. We also explore the fascinating cyclotomic
structure of the ideal class group and propose ring-GAIP to expand the challenge space
and improve signature size.

5. We introduce the first provably secure verifiable random functions from isogenies with
competitive performance in the post-quantum literature by constructing the proof system
for the action factorization relation. Notably, the security is based on the standard DDH
problem. To prove it, we propose a generalized DDH problem and show the equivalence,
which could serve as a useful tool for other applications.
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6. We present the first practical applications of generic proof systems to isogeny cryptography,
showcasing competitive performance compared to state-of-the-art results in the isogeny lit-
erature for the identification scheme application. There are several potential improvements
and interesting directions to enhance the application of generic proof systems to isogeny
cryptography, such as utilizing more advanced proof systems, constructing identification
schemes for alternative forms of the isogeny problem, and exploring specialized functions
of proof systems for specific applications.

In conclusion, this thesis represents substantial progress in isogeny cryptography by exploring
advanced constructions that are crucial for real-world applications. We hope to contribute to the
growing body of knowledge within isogeny cryptography by offering an in-depth analysis of these
cryptosystems, developing novel tools and methods and highlighting potential avenues for future
research. This thesis aims to be a helpful guide for beginners, offering a clear understanding of
isogeny-based cryptosystems and their uses. We hope to inspire more research and growth in
this new area of post-quantum cryptography.
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Appendix A

Oblivious Transfer

A.1 Equivalence of The Square/Inverse/Reciprocal
CSIDH Problem and The Computational CSIDH
Problem

We will show the computational CSIDH problem is equivalent to the square variant with a
quantum reduction. The order of the ideal class group can be computed with a quantum
algorithm [Sho99, Hal02]. This is the only part of the reduction that is quantum and it can
be viewed as a precomputation; the rest of the reduction is classical. Proposition A.1.1 shows
the equivalence for the case that the order of the class group of the endomorphism ring is odd
which is the case when p = 3 mod 4. The remaining case is that the class number is even which
happens when p = 1 mod 4. In this case, the discriminant is −4p.

Proposition A.1.1. ([Fel19]) The square CSIDH problem is equivalent to the computational
CSIDH problem if the order h of the group Cl is odd and given.

Lemma A.1.2. Given (E, a ∗E). Then for n ∈ N one can compute an ∗E with given access to
the oracle O for the square CSIDH problem with O(log (n)) queries.

Proof. The reduction is based on the double-and-add method. Firstly, generate a−1 ∗ E =
O(a ∗ E, E). Given ai ∗ E, by quering O(E, aiE) and O(a−1 ∗ E, ai ∗ E), one can compute
a2i ∗ E and a2i+1 ∗ E, respectively. Therefore, we can compute an ∗ E within log(n) + 3 oracle
queries.

Note that the direct isogeny computation of ae acting on E where a, E are given and
e = Θ(log(#Cl)) is avoided in the following proof, since these types of isogeny computations may
not be polynomial-time [CLM+18, BFJ16], which would make the reduction non-polynomial-time.
Let (x)−1

y denote the inverse of x mod y.

Proposition A.1.3. The square CSIDH problem is equivalent to the computational CSIDH
problem if the order h of the group Cl is given.
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Proof. Let p = 1 mod 4 so that the order h of the class group is even. Since the discriminant of
the class group is −4p, by Proposition 3.11 of [Cox11], the 2-Sylow subgroup of the class group
is of rank 1. Hence, the class group is isomorphic to Z2t × Zh′ for some t, h′ ∈ N with h′ being
odd. Given the challenge (E, a ∗ E, b ∗ E) and access to the oracle O, the goal is to find the
curve ab ∗ E.

Define the mapping χ : Cl −→ Cl × Cl where χ2t(a) = ah′(h′)−1
2t , χh′(a) = a2t(2t)−1

h′ and
χ(a) = (χ2t(a), χh′(a)). The image of χ is isomorphic to Z2t × Zh′ . The mapping χ satisfies
χ2t(x)χh′(x) = x. Given a ∗ E, the pair (χ2t(a) ∗ E, χh′(a) ∗ E) can be efficiently computed by
Lemma A.1.2 by using the oracle.

Run the following polynomial-time algorithm.

1. Compute a′′ ∗ E and b′′ ∗ E where a′′ = χh′(a) and b′′ = χh′(b) by Lemma A.1.2.

2. From Proposition A.1.1, given a′′ ∗ E, b′′ ∗ E, one can get a′′b′′ ∗ E since a′′, b′′ are of odd
order.

3. Compute (a′′b′′)h′+1
2 ∗ E using Lemma A.1.2. Denote q = (a′′b′′)h′+1

2 ∈ Cl. Note that
q2 = a′′b′′.

4. Generate a curve g ∗ E where g ∈ Cl is of order 2t. (See details below.)

5. Compute a′ ∗ E and b′ ∗ E where a′ = χ2t(a) and b′ = χ2t(b). Write a′ = g
∑

a′
i2

i and
b′ = g

∑
b′

i2
i where a′

i, b′
i ∈ {0, 1}.

6. Obtain a′
0 by computing a′2t′−1 ∗E by Lemma A.1.2. If it is E, then a′

0 = 0. Otherwise,
a′

0 = 1.

7. Iteratively, for j < t − 1, assume a′
0, ..., a′

j−1 are known, then obtain a′
j by computing

a′2t−j−1
∗ E. If, with Lemma A.1.2, the curve equals

g
∑j−1

0 2i+t−j−1a′
i ∗ E,

then a′
j = 0; otherwise, a′

j = 1.

8. Repeat Step 6 and Step 7 for b′ to obtain b′
i ∈ {0, 1}.

9. Compute g−
∑

(a′
i+b′

i)2
i ∗E using Lemma A.1.2. (Note that χ2t((ab)−1)∗E = g−

∑
(a′

i+b′
i)2

i ∗
E.)

10. Compute O(g−
∑

(a′
i+b′

i)2
i ∗ E, q ∗ E) to obtain ab ∗ E.

In Step 4, the curve can be generated by sampling a random element gpre ∈ Cl and raising
gpre to the power of 2t−1h′. If it is the identity element in Cl, then restart. Otherwise, set g ∗E

to be gh′
pre ∗ E by Lemma A.1.2. If the sampling is random enough, then the success rate is 1/2

for each trial.
The relation between a′ ∗ E and g ∗ E is computed in Step 6. Since g is of order 2t, then

a′2t−1 ∗ E = ga′
02t−1 ∗ E. Hence, a′

0 is 0 if and only if the outcome is E.
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In Step 7, the idea of Step 6 is taken one step further to recover a′
j for j = 1, ..., t− 1

iteratively. This idea is known as the Pohlig-Hellman attack [PH78]. If a′
0, ..., a′

j−1 are known,
raising a′ ∗ E to the power of t− j − 1 eliminates aj+1, ..., at−1 in the exponentiation of a′ with
the base g, since the order of g is 2t. We can thereby find out a′

j through comparing. To be
more specific, due to

a′2t−j−1 ∗ E = g
∑j

0 a′
i2

i+t−j−1
∗ E,

we have a′
j = 0 if and only if

g
∑j−1

0 2i+t−j−1a′
i ∗ E = g

∑j

0 2i+t−j−1a′
i ∗ E.

The same reasoning holds for b. Hence, we can compute g−
∑

(a′
i+b′

i)2
i ∗E, which is χ2t((ab)−1)∗E.

In step 10, we invoke the oracle of the square CSIDH problem and get

O
(
g−
∑

(a′
i+b′

i)2
i ∗ E, q ∗ E

)
=
(
g
∑

(a′
i+b′

i)2
i
q2
)
∗ E

=
(
χ2t(ab)(a′′b′′)h′+1

)
∗ E

=
(
χ2t(ab)(a′′b′′)

)
∗ E

= (χ2t(ab)χh′(ab)) ∗ E

= ab ∗ E.

With the reduction in the context (Proposition 4.2.2), we have shown equivalence between
square, inverse, reciprocal variants. Therefore, in a generic CSIDH setting, we have the following
relation

Computational CSIDH =quantum Computational Inverse/Square CSIDH.

A.2 The Hardness of Tweaked Reciprocal CSIDH
Problem

Recall the definition of the tweaked reciprocal CSIDH prolem.

Problem. (Tweaked Reciprocal CSIDH Problem) Given E in E. The adversary A chooses
and commits to a curve X ∈ E.

(i) A receives the first challenge s ⋆ E where s $← Cl from the challenger. A outputs a curve
C.

(ii) The challenger sends s and another challenge s′ ⋆ E to A where s′ $← Cl.

(iii) A outputs another curve C ′.
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Write (C0, C1) = (s ⋆ X, s−1 ⋆ X) and (C ′
0, C ′

1) = (s′ ⋆ X, s′−1 ⋆ X). We say A wins if (C, C ′) =
(Ci, C ′

1−i) for some i ∈ {0, 1}.

The advantage of an adversary A against the tweaked reciprocal CSIDH problem is defined
as AdvtReGA(A) = Pr[A wins] or, to be more specific, AdvtReGA(A(E; X)) = Pr[A commits to X

with the public curve E and wins]. If A wins, we say A solves for i for some i ∈ {0, 1}.

Proposition A.2.1. The tweaked reciprocal CSIDH problem is equivalent to the computational
inverse CSIDH problem.

Proof. Given a computational inverse CSIDH problem oracle O(·, ·), a reduction B1 proceeds
as follows. After obtaining E, B1 commits to X = E and obtains the first challenge s ⋆ E. B1

returns E, ignore the given group element, and obtains the second challenge s′ ⋆ E. B1 obtains
s′−1 ⋆ E by invoking the oracle O(E, s′ ⋆ E). Hence, B1 wins the experiment.

Given a tweaked CSIDH problem adversary A, we will construct two inverse CSIDH ad-
versaries (reductions) B2,B3 dealing with distinct circumstances. Upon receiving an inverse
CSIDH challenge (E, s ⋆ E) to compute s−1 ⋆ E, both B2,B3 invoke A with E. Both B2,B3 will
rewind A later on back to the time when it commits to X to extract s−1 ⋆ E. Say A solves for i

in the first experiment and then, after rewinding, solves for i′. We define an event E that i = i′

and thereby the event ¬E implies i = 1− i′. We have

(AdvtReGA(A(E; X)))2 = Pr[A commits to X and wins | E] Pr[E]
+ Pr[A commits to X and wins | ¬E] Pr[¬E].

B2 continues A conditioned on E. Firstly, B2 sends the first challenge t1s ⋆ E to the ad-
versary where t1

$← Cl for randomizing the challenge. After receiving Ci from the A, we rewind
A to the time when it outputs X. Recall that we say i = 0 if Ci = t1s ⋆ X and i = 1 if
Ci = (t1s)−1 ⋆ X. B2 resends t ⋆ E where t $← Cl as a new first challenge to A. Say A returns
C ′

i′ . Recall that we say i′ = 0 if C ′
i′ = t ⋆ X and i′ = 1 if C ′

i′ = t−1 ⋆ X. If A returns t ⋆ X

or t−1 ⋆X, then B2 sends t to A and asserts the target of A is i = i′ = 0 or i = i′ = 1, respectively.

If i = 0, then, by using t1, the reduction B2 sends t2s ⋆ X as the challenge with respect
to committed X where t2

$← Cl for randomizing the challenge. After receiving C ′
1 from the

adversary, B2 outputs t2 ⋆ C ′
1.

Claim t2 ⋆ X1 = s−1 ⋆ E. Write X = b ⋆ E for some b ∈ Cl due to the transitive action,
so t2s ⋆ X = (t2sb) ⋆ E. Then, since the second challenge is t2s ⋆ X = (t2sb) ⋆ E, we have
t2 ⋆ X1 = (sb)−1 ⋆ X = s−1 ⋆ E.

If i = 1, then, by using t1, the reduction B2 sends ((t2s)−1 ⋆ X)t as the challenge with respect
to committed X where t2

$← Cl for randomizing the challenge. After receiving C ′
0 from the

adversary, B2 outputs t2 ⋆ (C ′
0)t.
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Claim t2 ⋆ (C ′
0)t = s−1 ⋆ E. Write X = b ⋆ E and E = t ⋆ E0 for some b, t ∈ Cl thanks to

the transitive action, so ((t2s)−1 ⋆ X)t = t2sb−1t−2 ⋆ E. Then, we have C ′
0 = t2sb−1t−2 ⋆ X =

t2st−1 ⋆ E0 = t2s ⋆ Et. Therefore, t2 ⋆ (C ′
0)=s−1 ⋆ E.

B3 continues A conditioned on ¬E. Firstly, B3 guesses i ∈ {0, 1}. B3 and sets i = 1− i′. If
i = 0, then B3 executes as the reduction in the first approach of the proof in Prop 4.2.2. If i = 1,
then B3 executes as the reduction in the second approach of the proof in Prop 4.2.2.

Therefore, we have

(AdvtReGA(A(E; X)))2 ≤ AdviCDH(B2) + 2AdviCDH(B3).
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Appendix B

Verifiable Random Functions

B.1 Hardness of Twisted Master Decisional Problem
We start from a quick recap of the assumptions in Sec. 7.2.3.

Definition B.1.1 (Decisional Square CSIDH (sDDH) Problem). Let (G, E , ⋆, E0) be a group
action. The decisional square CSIDH problem is that the adversary A is given Tb = (g1⋆E0, hb⋆E0)
where h0 = g2

1, h1 = g2 and (g1, g2, b)← G2 × {0, 1} and return b′ ∈ {0, 1} to guess b.

Definition B.1.2 (Decisional Reciprocal CSIDH (rDDH) Problem). Let (G, E , ⋆, E0) be a group
action. The decisional reciprocal CSIDH problem is that the adversary A is given Tb = (g1 ⋆

E0, g2 ⋆E0, hb ⋆E0, h′
b ⋆E0) where h0 = g1g2, h1 = g3, h′

0 = g1g−1
2 , h′

1 = g4 and (g1, g2, g3, g4, b)←
G4 × {0, 1}, and return b′ ∈ {0, 1} to guess b.

Definition B.1.3 (Multi-challenge Decisional Reciprocal CSIDH (mcrDDH) Problem). Let
(G, E , ⋆, E0) be a group action and b ∈ {0, 1}. The multi-challenge decisional reciprocal Diffie-
Hellman experiment ExpmcrDDH(b) on input b proceeds as follows. The adversary A is given
(g1 ⋆ E0) where g1 ← G together with access to OmcrDDH

b defined as follows:

1. OmcrDDH
0 : (g2 ⋆ E0, (g1g2) ⋆ E0, (g1g−1

2 ) ⋆ E0) where g2 ← G,

2. OmcrDDH
1 : (g2 ⋆ E0, g3 ⋆ E0, g4 ⋆ E0) where g2, g3, g4 ← G,

and outputs b′ ∈ {0, 1} to guess b.

We denote the advantage of a mcrDDH problem adversary A problem by

AdvmcrDDH(A) =
∣∣∣Pr[A(ExpmcrDDH(b = 0))→ 1]− Pr[A(ExpmcrDDH(b = 1))→ 1]

∣∣∣ ,
where b is the randomness in the experiment, and the probability is taken over the randomness
used by A and the randomness used in the experiment.
The group action (G, E , ⋆, E0) is implicitly parameterized in the experiment. We say the mcrDDH
problem is hard, if for any PPT adversary A, there exists a negligible function negl such that
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AdvmcrDDH(A) ≤ negl(λ). One can use a standard hybrid argument to give a reduction from the
rDDH problem to the mcrDDH problem. We skip the proof here.

Definition B.1.4 (Twisted Master Decisional CSIDH (tMDDH) Problem). Let (G, E , ⋆, E0) be a
group action, n ∈ N, and b ∈ {0, 1}. The twisted master DDH problem experiment ExptMDDH(n, b)
on input (n, b) proceeds as follows.

1. The challenger C computes E = g ⋆ E0 where g ← G.

2. C generates a tuple (g1 ⋆ E, · · · , gn ⋆ E) where g1, · · · , gn ← G, and sends the tuple to the
adversary A.

3. A is given access to a Diffie-Hellman (DH) oracle on input (x1, · · · , xn) ∈ {0,±1}n

returning
∏n

i gxi
i ⋆ E.

4. A sends a string v = (v1, · · · , vn) ∈ {0,±1}n to
∏n

i gvi
i ⋆ E to the challenge oracle C.

5. C ignores if v has been queried before or is of Hamming weight less than 2. Otherwise, C,
depending on b, computes X0 = ∏n

i gvi
i ⋆ E or X1 = r ⋆ E for some r ← G, and send Xb

to A. This process will only output for one time.

6. A outputs b′ ∈ {0, 1} to guess b.

We denote the advantage of the decisional problem adversary A by

AdvtMDDH(A) =
∣∣∣Pr[A(ExptMDDH(n, b = 0))→ 1]− Pr[A(ExptMDDH(n, b = 1))→ 1]

∣∣∣ ,
where b is the randomness in the experiment, and the probability is taken over the randomness
used by A and the randomness used in the experiment. The group action (G, E , ⋆, E0) is im-
plicitly parameterized in the experiment. We say the tMDDH problem is hard, if for any PPT
adversary A, there exists a negligible function negl such that AdvtMDDH(A) ≤ negl(λ).

Theorem B.1.5. The tMDDH problem is not easier than the mcrDDH problem. Concretely, let
A be an adversary against the mcrDDH problem with the parameter (G, E , ⋆, E0) and n ∈ N. If
at most qDH = poly(λ) queries are made in the mcrDDH experiment, then there exists tMDDH
problem adversaries B2, · · · Bn such that

AdvtMDDH(A) ≤
n∑

i=2
AdvmcrDDH(Bi).

Proof. We prove the theorem via a hybrid argument by introducing two series of games
Game1, · · · , Gamen by modifying the responses of the DH oracle and the challenge oracle in the
tMDDH experiment gradually. Among the games, Game1 be the original tMDDH experiment,
We will modify the response of the challenge oracle and the DH oracle together, which will be
explained later. For i ∈ [n] where b ∈ {0, 1}, let A(Gamei(b)) represent A running the Gamei,
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the modified tMDDH experiment with the random coin b used in the experiment, and A will
return 0 or 1. Therefore, by definition,

AdvtMDDH(A) = |Pr[A(Game1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]|. (B.1)

Looking ahead, Gamen is the modified tMDDH experiment where both the DH oracle and
the challenger reply with random elements in E . Therefore, since b is information theoretically
hidden from A,

|Pr[A(Gamen(b = 1))→ 1]− Pr[A(Gamen(b = 0))→ 1]| = 0. (B.2)

Game1 : the original tMDDH experiment starting with a tuple (g1 ⋆ E, · · · , gn ⋆ E) where
g1, · · · , gn ← G and the oracle response as specified.

Game2 to Gamen: for j ∈ {2, · · · , n}, Gamej is the same as Gamej−1 except that the response
of the DH oracle and the challenge oracle is modified as follows. The modification starts with a
list L which is initially

{(0, E), (e1, g1 ⋆ E), · · · , (ej , gj ⋆ E)} ⊆ {0,±1}j × E .

On the query x = (x1, · · · , xn) ∈ {0,±1}n, if ((x1, · · · , xj), X) ∈ L for some X ∈ E , the oracle
returns (∏n

i=j+1 gxi
i )⋆X; otherwise, it draws g′ ← G, computes X = g′ ⋆E, adds ((x1, · · · , xj), X)

to the list L, and returns (∏n
i=j+1 gxi

i ) ⋆ X to A. The reply for the challenge query is modified
in the same way if the random coin b = 0.

Claim that Gamej−1 ≈c Gamej for A for any 2 ≤ j ≤ n by assuming the mcrDDH problem.
Concretely, a reduction Bj to the mcrDDH problem proceeds as follows

1. Obtain T = (g′ ⋆ E0, {(Xi, X ′
i, X ′′

i )}i∈[qDH+j−1]) from the mcrDDH oracle.

2. Overwrite the notations of Xi, X ′
i, X ′′

i by
(
g′ ⋆ E, {Xi, X ′

i, X ′′
i }i∈[qDH+j−1]

)
← g ⋆ T where

g ← G.

3. Then, Bj initializes with a list

L =

(e1, X1), · · · , (ej−1, Xj−1),(e1 + ej , X ′
1), · · · , (ej−1 + ej , X ′

j−1), (0, E),
(e1 − ej , X ′′

1 ), · · · , (ej−1 − ej , X ′′
j−1), (ej , g′ ⋆ E)

 ⊂ {0,±1}j × E ,

4. Invoke A on input (E, X1, · · · , Xj−1, g′⋆E0, gj+1⋆E0, · · · , gn⋆E0) where gj+1, · · · , gn ← G.

5. Upon receiving the oracle query (x1, · · · , xn) ∈ {0,±1}n, check whether ((x1, · · · , xj), X) ∈
L for some X ∈ E . If so, return ∏n

i=j+1 gxi
i ⋆ X. Otherwise, update

L←
{
((x1, · · · , xj−1, 0), Xct), ((x1, · · · , xj−1, 1), X ′

ct), ((x1, · · · , xj−1,−1), X ′′
ct)
}
∪ L,

and set ct← ct + 1, and rerun this step again.
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6. Output whatever A returns.

Note that in Step 1. if Bj is in ExpmcrDDH(0) (Def. B.1.3 Item 1) then Bj generates Gamej−1

because g′ ⋆Xi = X ′
i and g′−1 ⋆Xi = X ′′

i . In contrast, if it is in ExpmcrDDH(1) (Def. B.1.3 Item 2),
then Bj generates Gamej . It follows that for b ∈ {0, 1},

AdvmcrDDH(Bj) =|Pr[Bj(ExpmcrDDH(0))→ 1]− Pr[Bj(ExpmcrDDH(1))→ 1]|
=|Pr[A(Gamej−1(b))→ 1]− Pr[A(Gamej(b))→ 1]|. (B.3)

Therefore, we have

AdvtMDDH(A) = |Pr[A(Game1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]| (By Eq. (B.1))

≤
n∑

j=2
(|Pr[A(Gamej−1(b = 1))→ 1]− Pr[A(Gamej(b = 0))→ 1]|

+ |Pr[A(Gamej−1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]|)
+ |Pr[A(Gamen(b = 1))→ 1]− Pr[A(Gamej−1(b = 1))→ 1]|

(Union bounds.)

=
n−1∑
j=2

AdvmcrDDH(Bj). (By Eqs. (B.2) and (B.3))

The result follows.
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