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Abstract

It is not for the sun to overtake the moon, nor does the night outstrip the day. They

all float, each in an orbit. (Quran 36:40)

There has been a recent revival of interest in structure preserving numerical methods for

ordinary differential equations having quadratic invariants. Much work has been done

for Runge–Kutta and multistep methods and there exist excellent symplectic integrators

among Runge–Kutta methods. General linear methods provide a unifying framework

for these traditional methods but, because of their multivalue nature we cannot hope for

true conservation of quadratic invariants. However, not everything is lost and we can

still search for G-symplectic general linear methods taking account of the underlying

invariants.

The multivalue nature of general linear methods exposes them to parasitic solutions. The

corruption of the numerical solution is partly due to the parasitic growth parameter and

partly due to the differential equation system being susceptible to parasitism. Two control

strategies have been employed to contain this situation. One, where the effective parasitic

growth parameter of a composition of different G-symplectic methods is forced to remain

bounded. Several possible composition techniques can be used of which one is employed

in this thesis and further reference is provided in the conclusions. The other strategy is to

construct methods where parasitic growth parameter is zero by design. The construction

of a method with four stages and three output values and a search for a suitable starting

method with algebraic analysis using rooted trees constitute an important aspect of this

thesis.

These strategies are investigated using various implementations for Hamiltonian and struc-

ture preserving systems and compared with a traditional symplectic method. This pro-

vides encouraging results for the G-symplectic general linear methods. The new methods

provide an alternative to the well established symplectic one step methods. The founda-

tion for the search of such methods is laid out in this thesis and it is anticipated that these

methods can be implemented for serious real world problems with confidence.
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Chapter 1

Introduction

Most physical phenomena, like the motion of blood in veins, the behaviour of electric

circuits in machines, the movement of stars in galaxies or the dynamics of shares in stock

markets, can be understood through their mathematical models. These models often con-

sist of system of ordinary differential equations (ODEs), that have time as the independent

variable and the variables of the physical systems as dependent variables. Generally these

ODEs are accompanied by an initial condition and thus constitute initial value problems.

They take the form

y′(x) = f (x,y(x)), y(x0) = y0.

In this initial value problem (IVP), y(x) is a vector valued function, y : R → Rm and

represents the solution, x denotes time, f : R×Rm → Rm and m is the dimension of the

problem. Normally we consider autonomous IVP’s, in which x is taken as one of the

components of the vector y(x) if necessary, and is given by

y′(x) = f (y(x)), y(x0) = y0. (1.1)

It is often the case that physical systems are modelled by higher order differential equa-

tions. An nth order autonomous differential equation system is given as

y(n)(x) = f (y,y′,y′′, · · · ,y(n−1)).

To solve such a system we need initial values for y,y′,y′′, · · · ,y(n−1). The existence and

uniqueness of the solution for an initial value problem is guaranteed if the function f

satisfies a Lipschitz condition [12].

Definition 1.0.1. A function f : Rm → Rm satisfies a Lipschitz condition, if for any Y,Z ∈
Rm, there exists a Lipschitz constant L such that

‖ f (Y )− f (Z)‖ ≤ L‖Y −Z‖.
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Generally speaking, the world of ordinary differential equations can be divided into stiff

and non-stiff problems. Stiff problems are those in which the components of the differen-

tial equations have vastly varying time scales and have large Lipschitz constants. All other

problems are non-stiff. This thesis is concerned with the numerical solution of differential

equations for non-stiff problems.

The solutions of the system of ordinary differential equations (ODEs) exhibit the be-

haviour of the underlying physical phenomenon. However, the analytical solutions are

difficult to find and numerical approximations of the exact solutions are sought. This is

achieved by using numerical methods that take an initial condition and move the solution

in the direction specified by the ODEs. Numerical methods are categorised as one-step

methods, multistep methods and general linear methods. A brief introduction of these

numerical methods is given here and a thorough analysis will be carried out in Chapter 2.

One-step methods calculate the solution y(x) at time xn, using given information from the

previous time xn−1. In doing so, these methods may calculate and use the solution values

at different points within the interval [xn−1,xn]. The first and the simplest one-step method

is the Euler method and is given by the formula

yn = yn−1 +h f (yn−1).

The solution yn−1 at time xn−1 is given, and we proceed along the tangent at this point with

slope f (yn−1), to a distance of h = xn−xn−1, where h is known as the stepsize. The Euler

method is a low order method and requires a smaller stepsize to achieve a given accuracy

for certain classes of differential equation systems. Higher order one-step methods can

be constructed by approximating the solution at several points in the integration interval.

These type of methods are called Runge–Kutta methods and are given as

Yi = yn−1 +
s

∑
j=1

ai jh f (Yj), i = 1,2, · · · ,s,

yn = yn−1 +
s

∑
i=1

bih f (Yi).

Here yn−1 is the given value of y at time xn−1. The internal stages Yi are calculated at

quadrature nodes ci within the interval [xn−1,xn], bi are the quadrature weights and ai j is

the coefficient matrix for the Runge–Kutta method. The coefficients ci, bi, ai j completely

characterise a Runge–Kutta method.

Linear multistep methods find the solution at time xn using available information at a

number of previous times xn−1,xn−2, · · · . The general form of a k-step linear multistep

2



method is given as

yn =
k

∑
i=1

αiyn−i +h
k

∑
i=0

βi f (yn−i).

If we take α1 = 1, all other αi = 0 and β0 = 0 we obtain,

yn = yn−1 +h(β1 f (yn−1)+β2 f (yn−2)+ · · ·+βk f (yn−k)). (1.2)

If instead β0 �= 0, we obtain methods of the form

yn = yn−1 +h(β0 f (yn)+β1 f (yn−1)+β2 f (yn−2)+ · · ·+βk f (yn−k)), (1.3)

By selecting the βi suitably in (1.2) we obtain order k. The method is then known as

Adams-Bashforth method. Similarly in (1.3), if the βi are chosen to attain order k+1, we

obtain Adams-Moulton methods.

Linear multistep methods require values of solution y at more than one point in the past

and are implemented in a recursive manner. To start the process, a starting method is

generally employed. Usually one-step methods such as Runge–Kutta methods are used

as starting methods. Once the data is available to start the procedure, a multistep method

is then employed. Here Newton iterations are used for stiff problems and fixed point

iteration is used for non-stiff problems. On the other hand, Milne [40] suggested to use

Adams-Bashforth as predictor and Adams-Moulton as corrector methods.

General linear methods are multistage and multivalue methods and are natural generali-

sations of linear multistep and Runge-Kutta methods. A general linear method is given

as

Y = hA f (Y )+Uy[n−1],

y[n] = hB f (Y )+Vy[n−1].

Here A, U , B, V are matrices representing a particular general linear method where

Y =

⎡⎢⎢⎢⎢⎣
Y1

Y2
...

Ys

⎤⎥⎥⎥⎥⎦ , f (Y ) =

⎡⎢⎢⎢⎢⎣
f (Y1)
f (Y2)

...

f (Ys)

⎤⎥⎥⎥⎥⎦ , y[n−1] =

⎡⎢⎢⎢⎢⎣
y[n−1]

1

y[n−1]
2

...

y[n−1]
r

⎤⎥⎥⎥⎥⎦ , y[n] =

⎡⎢⎢⎢⎢⎣
y[n]

1

y[n]
2
...

y[n]
r

⎤⎥⎥⎥⎥⎦
At the start of a step n, r quantities y[n−1] are required as input values. However, only

one input value is available with the IVP, which is the initial condition. A starting method

is therefore required to obtain the r input values. Once these are known, we calculate s

stages, Y and finally we calculate the output values y[n].

3



Numerical methods approximate the exact solutions and hence introduce errors. The error

at each time step is referred to as local truncation error or the discretization error. These

errors are calculated by comparing the numerical solution at time xn with the Taylor series

of the exact solution around xn. A related quantity is the order of the method. A method

is of order p if the Taylor series of the exact solution matches the numerical solution

up to O(hp), such that the residue has the leading order term with O(hp+1). The local

error accumulates over the course of the numerical integration and results in the global

error. Numerical methods which produce small global errors have always been a preferred

choice. However they do not always respect the qualitative features of the problem.

Traditionally, the emphasis has been on getting good quantitative behaviour of the ap-

proximate solution. Consistency, stability and convergence has always been the desired

and often required goal of these numerical methods and these will be studied in details

in Chapter 2 and Chapter 3. A consistent numerical method ensures a correct solution to

the simplest IVP, y′(x) = 1 with y(0) = 0. Stability of a numerical method is a guarantee

for bounded numerical solutions for an ODE having bounded exact solutions. Stability

in fact plays an important role in the selection of a numerical method for the solution of

stiff differential equations. A numerical method is of no use if the numerical solution

does not converge to the exact solution during the course of time. All these criteria focus

on obtaining the quantitatively correct numerical solutions of the ODEs. However there

exist classes of ODEs where qualitative behaviour of the solution is more important than

accuracy, and this is the main topic explored in this thesis.

Many physical systems obey certain natural laws which traditional numerical methods do

not take into account. We are interested in numerical methods that preserve these laws, or

in other words, conserve the geometric properties of the flow of ODEs while having good

quantitative properties including stability and convergence. These numerical methods are

called geometric integrators or structure preserving numerical methods and they offer a

good hope for reliable long time simulations while observing physically natural laws.

Although there exist multitude of systems observing several laws, a partial discussion of

the qualitative features of some of the systems is summarised here.

The nature of differential equations and the physical laws they maintain, determines an

appropriate geometric integrator. If the differential equations evolve on Lie groups which

are differentiable manifolds, we use Lie group methods [34]. If the solutions of differ-

ential equations possess symmetry, we use symmetry preserving methods. A detailed

discussion is available in [30]. However, in this thesis, we explore geometric integrators

for the differential equations having quadratic invariants, an important class of which is

Hamiltonian systems.
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The phase space in which a system evolves provides an understanding of the geometrical

properties of its solutions. For example it is well known that the solutions of Hamiltonian

systems preserve symplectic structure in its phase space. A detailed analysis of this is

given later in this chapter. These integrators are called symplectic integrators and they

preserve various quantities including the symplectic structure of the solutions of Hamil-

tonian systems.

One may ask why is it important to preserve qualitative properties? Since many of the

above properties are naturally present in the systems, it makes sense to preserve them

numerically. As an example we note that the planets revolve around the sun in fixed

orbits. No matter how accurate we mimic the motion of such planets by our traditional

numerical methods, if the orbits are not preserved, that would mean the planets will either

collide with the sun or go far away which is physically incorrect. As a further example we

consider the harmonic oscillator problem which is a Hamiltonian system describing the

motion of a unit mass attached to a spring with momentum p and position co-ordinates q

given by the ordinary differential equation system

q′ = p, p′ = −q. (1.4)

The total energy of the Hamiltonian system is a conserved quantity given by

H =
p2

2
+

q2

2
.

An application of the Euler method to solve (1.4) yields

p2
n+1 +q2

n+1 = (1+h2)(p2
n +q2

n).

Since

(1+h2)n ≈ 1+h(nh),

we obtain a linear error growth in the energy of the Hamiltonian system as depicted in

Figure 1.1. No matter how small the stepsize h is, the qualitative feature of the Harmonic

oscillator is lost.

1.1 Hamiltonian systems

Classical mechanics is a branch of physics which deals with physical laws governing the

motion of bodies. Hamiltonian mechanics is a reformulation of classical mechanics in

which the equations of motion are based on generalised co-ordinates qi and generalised

momenta pi. The equations of motion are called Hamiltonian system with Hamiltonian

5
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Figure 1.1: The energy of Harmonic oscillator calculated with the Euler method in the

left figure and exact Hamiltonian in the figure on the right with different energy levels.

H which is a function of p = (p1, p2, · · · , pn) and q = (q1,q2, · · · ,qn) and defines the

differential equation system

dpi

dx
= −∂H

∂qi
,

dqi

dx
=

∂H
∂ pi

, i = 1, · · · ,n, (1.5)

having n degrees of freedom. H usually corresponds to the total energy of the underlying

mechanical system and is the sum of its kinetic and potential energies. Another refor-

mulation of classical mechanics is Lagrangian mechanics which describes the motion of

bodies using configuration space. The Lagrangian L of a mechanical system is the differ-

ence of its kinetic energy and potential energy and defines the differential equation system

known as Euler Lagrange equations

∂L
∂qi

=
d
dx

(
∂L
∂q′i

)
. (1.6)

The equations of motion in Lagrangian mechanics can be converted to the equations of

motion in Hamiltonian mechanics via the Legendre transformation of the Lagrangian L

which is given as

H = ∑
i

piq
′
i −L. (1.7)

This is visualised by taking the total differential of the Hamiltonian H(p,q,x) and then

comparing it with the differential of the equation (1.7) and using the Euler Lagrange

equations (1.6).

If we write y = (p,q), the differential equation system (1.5) can be written as

y′ = J−1∇H. (1.8)
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∇ is a gradient operator and J is a skew symmetric matrix consisting of the zero matrix 0

and n×n identity matrix I given as

J =

[
0 I

−I 0

]
. (1.9)

In practice, we often deal with separable Hamiltonian systems where the Hamiltonian

function H has the form

H(p,q,x) = T (p)+V (q,x).

Here T represents kinetic energy and V represents potential energy.

We have already encountered an example of a Hamiltonian system namely, the Harmonic

oscillator in (1.4). We present another example of a Hamiltonian system here, and few

more examples are given in Chapter 5.

Example 1.1.1. The simple pendulum

Consider a simple pendulum having unit mass of bob attached to a rod of unit length

and having acceleration due to gravity as unity. The equations of motion of the simple

pendulum defines a Hamiltonian system with generalised momenta p and generalised

coordinates q and are given as

p′ = −sin(q), q′ = p.

The total energy H is given as

H =
p2

2
− cos(q).

1.1.1 Conservation of energy

For autonomous Hamiltonian systems, their total energy remains conserved. This means

that the value of Hamiltonian H remains constant along the solution of the system. Dif-

ferentiate H(p,q) with respect to time

dH
dx

= ∑
i

(∂H
∂ pi

dpi

dx
+

∂H
∂qi

dqi

dx

)
= 0. (1.10)

If traditional numerical methods are used to solve Hamiltonian systems, the energy of the

system is not conserved. Structure preserving numerical methods provide solutions of

Hamiltonian systems that conserve energy approximately.
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1.1.2 Symplecticity

An important property of Hamiltonian systems is that their phase flow is symplectic i.e.

it preserves oriented area in the case of one degree of freedom. The phase space of the

Hamiltonian systems is a 2n dimensional space with coordinates (pi,qi), i= 1 · · ·n. The

phase flow is the transformation of the phase space via the solution operator ψ such that

ψ : (p(0),q(0)) 	−→ (p(x),q(x)).

According to Liouville’s theorem, the phase flow preserves area in the case of one degree

of freedom provided that the vector field f in the phase space has div f = 0.

For Hamiltonian systems, the vector field is given as

f =
[−∂H

∂q
,
∂H
∂ p

]
,

div f =
−∂ 2H
∂q∂ p

+
∂ 2H
∂ p∂q

= 0.

Hence the solution operator ψ representing the phase flow of the Hamiltonian systems

is symplectic. The symplecticity of ψ can be understood from the picture below which

represents a sheet of paper having an area D placed in the phase space of a Hamiltonian

system and moves along the corresponding phase flow. After transformation through the

solution operator ψ , we observe that the paper is stretched but the area of paper remains

D.

q

p

D

ψ

q

p

D

The notion of symplecticity can be explained in various ways of which three are presented

here. The first is via the perturbation in the values of (p,q), the second is via the Jacobian

and the third is via the exterior product of the differential two forms. However, these are

equivalent in one way or other.

The phase flow of Hamiltonian systems is symplectic. This means that even though the

small perturbations in the initial values of momentum p or position q are not conserved

by the flow of Hamiltonian systems, the area of a set of possible initial perturbations is

preserved. Consider the Hamiltonian system in compact form with y = (p,q) as

y′ = f (y).
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If the initial condition y0 = (p0,q0) is perturbed by a small number εz for ε 
 1 and

z = [z1,z2], a fixed vector, the solution is modified by εz+O(ε 2). Thus we get

y′ + εz′ = f (y)+ εz f ′(y),

This implies

z′ = f ′(y)z, (1.11)

where

f ′(y) =

⎡⎢⎣ ∂ 2H
∂ p∂q

∂ 2H
∂ p2

−∂ 2H
∂q2 − ∂ 2H

∂ p∂q

⎤⎥⎦ .

We note that

trace( f ′(y)) =
∂ 2H
∂ p∂q

− ∂ 2H
∂ p∂q

= 0. (1.12)

Let us consider another similar perturbation ε z̃ for ε 
 1 and z̃ = [z̃1, z̃2] such that we

obtain

z̃′ = f ′(y)z̃, (1.13)

Consider the matrix

Z =

[
z1 z̃1

z2 z̃2

]
,

where the columns of Z are perturbations in the initial condition. We note that

det(Z) = z1z̃2 − z̃1z2,

d
dx

det(Z) = z′1z̃2 + z1z̃′2 − z̃′1z2 − z̃1z′2, (1.14)

From (1.11), (1.12) and (1.14) we get

d
dx

det(Z) =
(
z1z̃2 − z̃1z2

)( ∂ 2H
∂ p∂q

− ∂ 2H
∂ p∂q

)
= 0.

Hence the area formed by the components of Z is conserved.

To explain symplecticity in terms of the Jacobian, again consider the linear transforma-

tion ψ : (p,q) 	−→ (p∗,q∗). ψ is symplectic if, ψ ′T Jψ ′ = J, provided the Jacobian of

transformation has a unit determinant. Here J is given by (1.9).

To prove this, let us assume that the Jacobian of the transformation has a unit determinant.∣∣∣∣∣∣∣
∂ p∗
∂ p

∂q∗
∂ p

∂ p∗
∂q

∂q∗
∂q

∣∣∣∣∣∣∣=
∂ p∗∂q∗

∂ p∂q
− ∂ p∗∂q∗

∂q∂ p
= I.
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Now

ψ ′ =

[ ∂ p∗
∂ p

∂ p∗
∂q

∂q∗
∂ p

∂q∗
∂q

]
.

Thus

ψ ′T Jψ ′ =

[ ∂ p∗∂q∗
∂ p∂ p − ∂ p∗∂q∗

∂ p∂ p
∂ p∗∂q∗
∂ p∂q − ∂ p∗∂q∗

∂q∂ p
∂ p∗∂q∗
∂q∂ p − ∂ p∗∂q∗

∂ p∂q
∂ p∗∂q∗
∂q∂q − ∂ p∗∂q∗

∂q∂q

]

=

[
0 I

−I 0

]
= J.

Symplecticity can also be understood in terms of the solution of Hamiltonian systems

preserving symplectic structure on a manifold on which the solution exists. We need the

following definitions.

Manifold A manifold is a configuration space that looks locally like a Euclidean space.

A sphere is an example of a two dimensional manifold.

Differentiable manifold A manifold having a differential structure is called a differen-

tiable manifold. This allows us to do differential calculus on the manifold.

1-form Let Rn be a n−dimensional real vector space. A 1-form is a linear function

w : Rn → R such that for x,y ∈ Rn

w(λ1x,λ2y) = λ1w(x)+λ2w(y).

2-form A 2-form is a bilinear, skew symmetric function on pair of vectors

w2 : R
n×R

n → R,

such that

w2(λ1x+λ2y,z) = λ1w2(x,z)+λ2w2(y,z),

w2(x,y) = −w2(y,x).

Exterior product The exterior product of two 1-forms w1 and w2 on the pair of vectors

ξ ,η ∈ Rn is a 2-form and gives the oriented area of the projection of parallelogram

on w1-w2 plane. The exterior product is skew-symmetric, distributive and associa-

tive.

(w1 ∧w2)(ξ ,η) =

∣∣∣∣∣ w1(ξ ) w2(ξ )
w1(η) w2(η)

∣∣∣∣∣ .
10



Differential 1-form Consider a manifold M. Let TMx be the space of all tangents to

M at point x ∈ M. TMx is called the tangent space of M at x and the union of all

such tangent spaces at all points on M is called the tangent bundle TM. Differential

1-form on manifold M is a smooth map

w : TM → R
n.

Differential 2-form Differential 2-form is obtained by the exterior product of two differ-

ential 1-forms.

A symplectic structure on an even dimensional manifold M is a closed, non-degenerate

differential 2-form on M. We consider the transformation ψ : (p,q) 	−→ (p∗,q∗) and two

differential 1-forms

dp∗ = ∂ p∗
∂ p dp+ ∂ p∗

∂q dq,

dq∗ = ∂q∗
∂ p dp+ ∂q∗

∂q dq.

Now the exterior product of these differential 1-forms, dp∗ and dq∗, will provide a differ-

ential 2-form dp∗ ∧dq∗, which represents the oriented area of a parallelogram with sides

dp∗ and dq∗.

dp∗ ∧dq∗ =
∂ p∗

∂ p
∂q∗

∂ p
dp∧dp+

∂ p∗

∂ p
∂q∗

∂q
dp∧dq

+
∂ p∗

∂q
∂q∗

∂ p
dq∧dp+

∂ p∗

∂q
∂q∗

∂q
dq∧dq.

The exterior product is skew-symmetric and the Jacobian of the transformation should be

unity. Therefore

dp∗ ∧dq∗ = dp∧dq

Hence the area of the parallelogram with sides dp and dq is preserved after the transfor-

mation through ψ .

1.1.3 Linear and quadratic invariants

Hamiltonian systems belong to an important class of differential equation system where

the solution is known to possess invariants. Consider an initial value problem whose
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solution y has an invariant I(y)

y′(x) = f (y(x)), y(x0) = y0. (1.15)

I(y) is called a first integral of (1.15) if

I′(y) f (y) = 0, ∀y.

The energy H of a Hamiltonian system (1.5) is a first integral as shown in (1.10).

Many physical systems have invariants which are quadratic in nature. The quadratic func-

tion

I(y) = yT Qy,

is an invariant of (1.15) if

yT Q f (y) = 0.

where Q is a symmetric square matrix.

Example 1.1.2. Euler equations for rigid body motion

Rigid bodies are solid objects such that the distance between any two points on or inside

it is constant. The mathematical equations governing the motion of a rigid body were

derived by Euler and were given the name Euler equations. Assume the frame of reference

is fixed in the rigid body and the center of mass of the rigid body is located at the origin,

then the Euler equations are given as

dωx

dt
=

Iyy − Izz
Ixx

ωyωz, (1.16)

dωy

dt
=

Izz − Ixx

Iyy
ωzωx, (1.17)

dωz

dt
=

Ixx − Iyy

Izz
ωxωy, (1.18)

where ωx,ωy,ωz are the components of angular velocity along the principal axis and

Ixx, Iyy, Izz are the principal moments of inertia. The motion of a rigid body has two under-

lying quadratic invariants namely, the kinetic energy H and the squared norm of angular

momentum A, and are given as

H = 1
2

[
ωx ωy ωz

]⎡⎢⎣ Ixx 0 0

0 Iyy 0

0 0 Izz

⎤⎥⎦
⎡⎢⎣ ωx

ωy

ωz

⎤⎥⎦ , (1.19)

A =
[

ωx ωy ωz

]⎡⎢⎣ I2
xx 0 0

0 I2
yy 0

0 0 I2
zz

⎤⎥⎦
⎡⎢⎣ ωx

ωy

ωz

⎤⎥⎦ . (1.20)
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1.2 Numerical methods for Hamiltonian systems

Hamiltonian systems model a wide variety of applications ranging from celestial mechan-

ics to fluid dynamics and many more. It is vital to preserve the characteristic properties

of these systems during the calculation of their approximate solutions via numerical me-

thods. The important properties are the symplectic structure of the phase flow, the conser-

vation of linear and quadratic invariants and in applications such as N−body simulations,

the time reversible symmetry. An application of a numerical method to solve the Hamil-

tonian systems with a fixed stepsize approximates its continuous flow map with a discrete

flow map. Since the flow of the Hamiltonian systems is symplectic, we want our dis-

crete flow map to be symplectic which gives rise to the concept of symplectic numerical

methods. Here it should be mentioned that the selection of variable stepsize can lead

to non-symplectic behaviour unless each integration time step is ensured to possess the

underlying geometric properties.

Symplectic numerical methods exist for reliable long time integration of Hamiltonian

systems. An additional benefit of such methods is their ability to preserve the underlying

quadratic invariants effectively. However most of the numerical methods in practice are

not symplectic. Multistep methods require more than one initial condition to start with,

so they cannot define a map on phase space and hence cannot be symplectic in general.

One-step methods can only be considered as genuine symplectic methods. Many one-

step numerical methods have successfully been used in the past without recognising their

symplectic behaviour. These include the famous implicit midpoint rule and the Gauss-

Legendre methods. Sanz-Serna and Suris systematically developed symplectic Runge-

Kutta methods [46]. Their idea is based on features of algebraic stability introduced, in

connection with stiff systems, by Burrage and Butcher [4]. General linear methods are

multivalue in nature so we cannot expect genuine symplectic behaviour. However a vari-

ant of symplectic methods do exist in the class of general linear methods. These methods

are called G-symplectic methods.

There is a close relation between algebraic stability of numerical methods and symplectic-

ity. Linear stability analysis revolves around the famous Dahlquist test equation y ′ = f (y),
where f (y) = qy is a linear function. However non-linear stability analysis for Runge-

Kutta methods by Burrage and Butcher assumes f (y) to be non-linear and dissipative.

This gives us a condition on the co-efficients of Runge-Kutta methods [A,bT ,c] that for

algebraically stable Runge-Kutta methods we must have

M = diag(b)A+AT diag(b)−bbT ,
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a positive semi-definite matrix [4]. Hamiltonian systems are not dissipative. They in fact

conserve the quadratic invariants. This mean that the matrix M should exactly be zero and

this is the criteria for symplectic Runge-Kutta methods [46].

Non-linear stability analysis for multistep methods was difficult to grasp. Dahlquist in

[23] proposed to use one-leg methods instead of multistep methods to study the non-

linear stability of multistep methods for dissipative problems. In multistep methods we

use a linear combination of function evaluations f at number of past values while in one-

leg methods we evaluate function f only once at the linear combination of past values.

One-leg methods were helpful in studying the non-linear stability of dissipative problems

and this gives rise to the concept of G-stability. We consider a real, symmetric and positive

definite matrix G and the norm

‖y‖2
G =

r

∑
i, j=1

gi j〈yi,y j〉,

for

y =

⎡⎢⎣ y1
...

yr

⎤⎥⎦ ,

such that the numerical solution by one-leg methods is contractive under such a G norm

which in turn implies nonlinear stability of the numerical methods. The idea of G-stability

was extended to study the non-linear stability for general linear methods (A,U,B,V) to

solve dissipative problems and it was found that a contractive numerical solution is pos-

sible under G norm if the matrix M̃ is positive semi-definite [12] where M̃ is given as

M̃ =

[
DA+AT D−BT GB DU −BT GV

UT D−V T GB G−V T GV

]
. (1.21)

Here D is a positive semi-definite diagonal matrix. Like symplectic Runge-Kutta methods,

we can find G-symplectic general linear methods by requiring the matrix M̃ in (1.21) to

be exactly equal to zero.

The first G-symplectic general linear method was discovered by Butcher and is given in

[11]. This was a two-stage, order four, time reversible method based on Gauss quadrature

nodes. Applications of this method on various problems have pointed out that, although

it preserves the qualitative features, it has parasitic solutions. This is typical of multivalue

methods whereby the initial perturbations in starting approximations are not damped out

rather overtakes the actual solution. An analysis of the possible cause of parasitic solu-

tions is carried out and the parasitic growth parameter has surfaced. The parasitic growth

parameter is instrumental in the design and implementation of G-symplectic general lin-

ear methods avoiding the corruption of numerical solution by parasitic solutions.
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The first approach is to use the composition of two G-symplectic general linear methods

with parasitic growth parameters having opposite signs. These two methods are imple-

mented side by side in a sequence to control the growth of parasitic solutions. This is

due to the addition of the parasitic growth parameters of the two composing methods.

Since the composition of two symplectic methods is symplectic, the resulting procedure

retains the qualitative features of the underlying Hamiltonian system as expected from a

G-symplectic general linear method.

The second approach is to construct G-symplectic general linear methods by ensuring that

the parasitic growth parameter is effectively zero. However, it has been analysed that no

two-stage, two-step G-symplectic general linear method can be parasitic free. Work has

been done on the construction of four stages and three steps G-symplectic general linear

method. Since only the implicit methods can be considered, this increases the cost of the

method. The cost can be reduced by carefully selecting the structure of the matrix A. As a

result, a class of new methods have come out whose performance can be compared to that

of traditional Gauss Runge–Kutta methods even though the new methods are multivalue

in nature. Time reversal symmetry has also played an important role in the design of this

new class of methods.
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Chapter 2

Numerical methods for ordinary

differential equations

Numerical methods for ordinary differential equations approximate the exact solution of

ODE systems. They play a vital role in providing an understanding of the behaviour

of the underlying physical system. Many ODEs of practical importance are derived by

spatial discretisation of partial differential equations. This leads to large sparse systems

and we require numerical methods for their approximate solutions. These methods are

categorised as one-step methods, multistep methods or their generalisation, general linear

methods.

2.1 Runge–Kutta methods

Runge–Kutta methods are one-step methods for the numerical solutions of initial value

problems

y′(x) = f (y(x)), y(x0) = y0, y(x) ∈ R
m.

The exact solution is y(x) and Runge–Kutta methods provides an approximation at time

xn = nh, where n = 0,1, · · · and h is the stepsize. The general form of a Runge–Kutta

method is

Yi = yn−1 +
s

∑
j=1

ai jh f (Yj), i = 1,2, · · · ,s, (2.1)

yn = yn−1 +
s

∑
i=1

bih f (Yi).
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where Yi are s stages calculated during the integration from time xn−1 to xn. The output

value yn is an approximation of the actual solution y(xn). A Runge–Kutta method is

represented by a Butcher tableau

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

,

where bi are called the weights of the method and ci =
s

∑
j=1

ai j for i = 1, · · · ,s are the

abscissas of the method at which the stages Yi are evaluated. That is, stage number i

provides the following approximation

Yi ≈ y(xn−1 +hci)+O(h2).

Runge–Kutta methods are explicit if ai j = 0 for i ≤ j. This means that the stages can be

calculated sequentially. This requires less computation time and hence are a favourite for

solving ordinary differential equations. However, explicit methods are less desirable be-

cause of their limitation in stability for solving stiff differential equation system. Another

reason to avoid explicit Runge–Kutta methods is the inability to solve general Hamil-

tonian problems which are not separable. The famous Euler method and the midpoint

method written in Runge–Kutta formulation respectively are

0

1
,

0

1 1
1
2

1
2

.

While higher order explicit Runge–Kutta methods exist, the higher the order, the greater

the number of stages required and it is well known that an explicit Runge–Kutta method

of order s with only s stages is possible for s ≤ 4. The classical Runge–Kutta method of

order 4 with 4 stages is given as

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

.

Runge–Kutta methods are implicit if ai j �= 0 for some i ≤ j. Thus for an s-stage implicit

Runge–Kutta method to solve an m dimensional system of ODEs, sm non-linear equa-
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tions representing the stages need to be solved. This is usually achieved by Newton itera-

tions, which is quite expensive. Hence the general implicit Runge–Kutta methods are at a

disadvantage compared to their explicit counterpart when considering the cost of imple-

mentation. However, the advantages of using implicit Runge–Kutta methods over explicit

methods include the fact that fewer stages are required by implicit Runge–Kutta methods

to achieve the same order as that of explicit Runge–Kutta methods. Furthermore, implicit

Runge–Kutta methods are the only hope for solving stiff differential equations among the

one-step methods, if abnormally small stepsizes need to be avoided. Not only so, certain

classes of implicit Runge–Kutta methods are a good candidate for the solution of Hamil-

tonian and structure preserving ODEs. The most famous implicit Runge–Kutta methods

are the Gauss-Legendre Runge–Kutta methods which require s stages to achieve an order

2s. These methods are based on shifted Legendre polynomials such that the abscissa ci

of the Runge–Kutta methods are the zeros of the shifted Legendre polynomials P∗
s on the

interval [0,1] where

P∗
s (x) =

s!
2s

s

∑
k=0

(−1)s−k

(
s

k

)(
s+ k

k

)
xk.

If we take s = 1, we get,

P∗
1 (x) = x− 1

2 .

The zero of this polynomial is the abscissa of the 1-stage Runge–Kutta method, i.e. c1 =
1/2 and we get the 1-stage, order 2 implicit midpoint rule

1
2

1
2

1
.

If we take s = 2, we get

P∗
2 (x) = x2 − x+ 1

6 .

The zeros of this polynomial are the abscissas of the 2-stage Runge–Kutta method, i.e.

c1 = 1
2 −

√
3

6 , c2 = 1
2 +

√
3

6 ,

and we get the 2-stage, order 4 Gauss Runge–Kutta method

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

. (2.2)
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The values of the coefficients bi and ai j are calculated from the abscissa ci in a way to

ensure that the order of the method is 2s.

Implicit Runge–Kutta methods were further developed by Butcher [7] based on Radau

and Lobatto quadratures. The rationale behind such methods is to attain L-stability, but

it comes at a loss of the order of the method. The idea of stability will be explained in

Chapter 3. The first step is to choose the abscissa c1 = 0 or cs = 1 or both of them. The

rest of the abscissa are chosen such that, for Radau I methods, the abscissa are the zeros

of the quadrature polynomial P∗
s (x)+ P∗

s−1(x) of order 2s− 1 or, for Radau II methods,

the abscissa are the zeros of the quadrature polynomial P∗
s (x)−P∗

s−1(x) of order 2s− 1

and, for Lobatto III methods, the abscissas are the zeros of the quadrature polynomial

P∗
s (x)−P∗

s−2(x) of order 2s−2.

Although methods based on Radau and Lobatto quadratures have some appealing fea-

tures, they are not favourable candidates for solving stiff and conservative problems. One

reason is the semi-implicit nature of the stages which are expensive for non-stiff problems

and less competitive compared to fully implicit Gauss methods for solving stiff problems.

The other reason is that most of the methods are not A-stable, a desired property which we

will study in detail in Chapter 3. A popular choice for stiff problems is the method Radau

IIA. Lobatto methods have been employed to solve separable Hamiltonian problems when

used in pairs.

The contributing factor to the cost of implementation of the implicit Runge–Kutta me-

thods is the calculation of the implicit stages using Newton iterations. The cost increases

with the dimension of the problem. A cost effective approach is to use diagonally implicit

Runge–Kutta methods proposed by Alexander [1], where the matrix ai j is lower triangu-

lar which allow us to solve the stages sequentially. All the diagonal entries may be same

and the cost to compute them reduces. Nørsett further improved the efficiency of implicit

Runge-Kutta methods by choosing matrix ai j to have one point spectrum [42], allowing

the stages and output approximation to have the same order. Such methods are very useful

for stiff ordinary differential equations because the order achieved by solving them is not

the order of the output approximation, rather it is nearly the order of the stages and this is

referred to as stage order.

Implicit Runge–Kutta methods are generally not suitable for long time integration of

Hamiltonian systems because they introduce non-Hamiltonian perturbations which throw

the solution out of Hamiltonian regime. Sanz-Serna [44], Suris [48] independently dis-

covered a condition required for Runge-Kutta methods to be suitable for the long time

integration of Hamiltonian problems. Cooper [17] and Lasagni [36] also discovered the
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same condition but for general quadratic invariants. Such methods are called symplectic

Runge–Kutta methods. We will study them in detail in Chapter 3.

2.1.1 Symmetric Runge–Kutta methods

For Hamiltonian systems, the total energy H(p,q) and the symplectic structure of the flow

are conserved. This is also true if we reverse the direction of the flow. The Hamiltonian

systems are invariant under reflection symmetry, i.e. by changing p with −p, the Hamilto-

nian systems do not change. Thus if we move in phase space of a Hamiltonian system, by

reversing the direction of the momentum vector p, we will still be following the solution

curves in the same phase space but moving in the opposite direction. This give rise to the

concept of time reversal symmetry. Most of the conserved mechanical systems share this

property. All second order differential equation systems which can be written as a system

of first order differential equations have this property as well.

It is natural to require the numerical method to possess time reversal symmetry to correctly

mimic the behaviour of the ordinary differential equation system. A symmetric method

when applied to solve an ordinary differential equation takes an initial condition y0 to the

next value y1 with stepsize h, and when applied to solve the same ordinary differential

equation with the stepsize −h and initial condition y1, yields the output y0. One important

property of symmetric methods lies in the fact that they have an even order. This is

particularly helpful in the construction of a method because if for example we construct a

symmetric method of order 3, it automatically becomes a 4th order method.

A Runge–Kutta method is symmetric if it is equal to its adjoint method. The adjoint of

a Runge–Kutta method is also a Runge–Kutta method such that it undoes the work of

original Runge–Kutta method but with the sign of h reversed. Consider the general form

of a Runge–Kutta method (2.1) written with A = [ai j], bT = [b1,b2, · · · ,bs]

Y = 1yn−1 +hA f (Y ),

yn = yn−1 +hbT f (Y ).

Here the stages are evaluated at abscissa ci such that c1 < c2 < · · · < cs. There is a

possibility that some of the ci are equal. The adjoint of the Runge–Kutta method is

PY = 1yn−h(1bT P−PAP)(P f (Y )),

yn−1 = yn−h(bT P)(P f (Y )).
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Here the permutation matrix P is used given as

P =

⎡⎢⎢⎢⎢⎣
0 0 · · · 0 1

0 0 · · · 1 0
...

...
...

...
...

1 0 0 0 0

⎤⎥⎥⎥⎥⎦ . (2.3)

The stages of the adjoint method are evaluated in reverse direction at abscissa ci such that

cs < cs−1 < · · ·< c1. The permutation matrix ensures the reordering of the stages to align

with the actual method such that for s stages

(PY ) j = Ys+1− j.

Thus a Runge–Kutta method is symmetric if

bT = bT P,

A+PAP = 1bT .

The Gauss method of any order is symmetric. For example, when s = 2 we obtain the

method given in (2.2) and

bT P = [1
2

1
2 ]

[
0 1

1 0

]
= [1

2
1
2 ],

and,

A+PAP =

⎡⎢⎣ 1
4

1
4 −

√
3

6

1
4 +

√
3

6
1
4

⎤⎥⎦+

⎡⎢⎣ 0 1

1 0

⎤⎥⎦
⎡⎢⎣ 1

4
1
4 −

√
3

6

1
4 +

√
3

6
1
4

⎤⎥⎦
⎡⎢⎣ 0 1

1 0

⎤⎥⎦
=

⎡⎢⎣ 1
4

1
4 −

√
3

6

1
4 +

√
3

6
1
4

⎤⎥⎦+

⎡⎢⎣ 1
4

1
4 +

√
3

6

1
4 −

√
3

6
1
4

⎤⎥⎦
=

⎡⎢⎣ 1
2

1
2

1
2

1
2

⎤⎥⎦ .

2.1.2 Error analysis and order

The accuracy of a numerical method is analysed using local and global truncation errors.

The error introduced per integration step is termed as local error while the global error
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is the overall error accumulated during the whole integration process. The round-off er-

rors in the computations are often small compared to the truncation errors and can be

neglected. The local truncation error is evaluated by comparing the numerical solution

at time xn with the Taylor series expansion of the exact solution around xn. The actual

solution of a differential equation system is generally not known. An approach due to

Richardson is usually employed whereby the given ODE is first solved with initial con-

dition (x0,y0) and step size h and obtain two solutions y1 and y2 after two steps of the

numerical method. Later the same ODE is solved with initial condition (x0,y0) and step

size 2h to get a solution ỹ. The local error is estimated by comparing y2 with ỹ. Generally

speaking, the higher the order of a numerical method, the lower the error.

The order of a numerical method is a measure to check how close the approximate solution

is to the exact solution. By subtracting the numerical solution over one step and the

corresponding Taylor series expansion of the exact solution, a numerical method is of

order p, if the residue has leading order term with O(hp+1). To understand the order

of a Runge–Kutta method, we consider the first few terms of an expanded Runge–Kutta

method

yn = yn−1 +
s

∑
i=1

bihy′(xn−1)+
s

∑
i=1

bicih
2y′′(xn−1)+ · · · .

The first few terms of the Taylor series of the exact solution are

y(xn−1 +h) = y(xn−1)+hy′(xn−1)+ h2

2! y
′′(xn−1)+ · · · .

Comparing the two series yields

s

∑
i=1

bi = 1,

s

∑
i=1

bici = 1
2 .

This is a system of algebraic equations involving the coefficients of the Runge–Kutta

method. These equations are known as order conditions. For a Runge–Kutta method to

have a specified order, its coefficients should satisfy these order conditions. For lower

order methods, fewer order conditions are to be satisfied. However as the order increases,

the number of order conditions also increases. Thus, for example, there are four order

conditions a Runge-Kutta method must satisfy to achieve an order of three and for an

order five Runge–Kutta method, the number of order conditions increases to seventeen.

It is therefore advantageous to use a systematic approach and this depends on the use of

rooted trees as a graphical representation of the order conditions.
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2.1.3 Rooted trees

A tree is a graph having vertices and edges. A rooted tree is a connected non-cyclic graph

in which a vertex is assigned as root. Let T denote the set of all rooted trees including

the empty tree φ . Any t ∈ T can be defined recursively by removing the root of the

tree t and denoting the distinct subtrees as t1, t2, t3, · · · , tm. The relationship between t

and t1, t2, t3, · · · , tm is written as t = [tn1
1 , tn2

2 , tn3
3 , · · · , tnm

m ] where n1 · · ·nm are the number of

times the tree t1 · · ·tm occurs. A single tree with only one vertex is represented by τ and

denoted by . A tree with two vertices is represented by [τ] and denoted by . Let us

consider an example of a tree where m = 3.

t1 = t2 = τ = ,

t3 = [τ] = .

So we can write

t =

t1 t2 t3

as t = [t1t2t3] = [ττ[τ]].

Order The number of vertices of a tree t = [tn1
1 , tn2

2 , tn3
3 , · · · , tnm

m ] is called the order of the

tree and is denoted by r(t).

r(t) = 1+n1r(t1)+ · · ·+nmr(tm),

r(φ) = 0, r(τ) = 1.

Density The density γ(t) of a tree t = [tn1
1 , tn2

2 , tn3
3 , · · · , tnm

m ] is a measure of the non-

bushiness of the tree. The density of a rooted tree is computed recursively and is a product

of the order of the tree and the densities of subtrees when the root is chopped off.

γ(t) = r(t)γ(t1)n1 · · ·γ(tm)nm,

γ(φ) = 0, γ(τ) = 1.

Symmetry The symmetry is the order of the automorphism group of t and is denoted

by σ(t)
σ(t) = (σ(t1)n1 · · ·σ(tm)nm)(n1! · · ·nm!).

In addition to the functions on the trees defined above, we can associate some combina-

torial properties with the trees. A tree can also be uniquely labelled. Let α(t) represent
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the number of ways of labelling t with an ordered set and β (t) is the number of ways of

labelling t with an unordered set. It is shown by Butcher in [12] that

α(t) =
r(t)!

σ(t)γ(t)
,

β (t) =
r(t)!
σ(t)

.

2.1.4 Elementary differentials

To determine the order of a Runge–Kutta method, the numerical solution is compared

with the Taylor series expansion of the exact solution. For the comparison, f (y(x)) needs

to be differentiated several times.

y′(x) = f (y(x))

= f.

y′′(x) = f ′(y(x)) f (y(x))

= f′f.

y′′′(x) = f ′′(y(x))( f (y(x), f (y(x))+ f ′(y(x)) f ′(y(x)) f (y(x))

= f′′(f, f)+ f′f′f.

and so on. The quantities f, f′f, f′′(f, f), f′f′f are called elementary differentials F(t)(y(x)).
As the order of differentiation increases, the number of terms also increases. To handle the

situation, these elementary differentials are represented by trees and a recursive formula

for their construction is given by

F(t)(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y(x), if t = φ ,

f (y(x)), if t = τ,

f (m)(y(x))(F(t1)(y(x)), . . . ,F(tm)(y(x))), if t = [t1t2 · · ·tm].

The connection between elementary differentials and trees is given in the Table 2.1.

Theorem 2.1.1. If y(x) is k times differentiable then

y(k)(x) = ∑
r(t)=k

α(t)F(t)(y(x)). (2.4)

The proof can be found in [12].
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Tree Order Density Symmetry El. differentials El. weights

t r(t) γ(t) σ(t) α(t) β (t) F(t)(y) Φ(t)

1 1 1 1 1 f
s

∑
i=1

bi

2 2 1 1 1 f′f
s

∑
i=1

bici

3 3 2 1 3 f′′(f, f)
s

∑
i=1

bic
2
i

3 6 1 1 6 f′f′f
s

∑
i=1

biai jc j

4 4 6 1 4 f′′′(f, f, f)
s

∑
i=1

bic
3
i

4 8 1 3 24 f′′(f, f′f)
s

∑
i, j=1

biciai jc j

4 12 2 1 12 f′f′′(f, f)
s

∑
i, j=1

biai jc
2
j

4 24 1 1 24 f′f′f′f
s

∑
i, j,k=1

biai ja jkck

Table 2.1: Notation for trees and various functions on trees up to order 4.
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The Taylor expansion of the exact solution y(xn) to order p can be found in terms of

elementary differentials as follows:

y(xn) = y(xn−1)+
p

∑
k=1

hk

k!
y(k)(xn−1)+O(hp+1)

= y(xn−1)+
p

∑
k=1

hk

k! ∑
r(t)=k

α(t)F(t)(y(xn−1))+O(hp+1)

= y(xn−1)+ ∑
t∈T

r(t)≤p

hr(t) 1
σ(t)γ(t)

F(t)(y(xn−1))+O(hp+1). (2.5)

2.1.5 Elementary weights

The numerical solution can also be expressed in terms of trees. It has been shown by

Butcher in [12] that for an s-stage Runge–Kutta method, its coefficients are related to

trees via elementary weights Φ given as

Φ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s

∑
i=1

bi, if t = τ,

s

∑
i=1

biΦi(t1)Φi(t2) · · ·Φi(tm), if t = [t1t2 · · ·tm].

where Φi(t) is the elementary stage weight for the ith stage and is defined by

Φi(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s

∑
j=1

ai j = ci, if t = τ,

s

∑
j=1

ai jΦ j(t1)Φ j(t2), . . . ,Φ j(tm), if t = [t1t2 · · ·tm].

Table 2.1 shows the elementary weights for the trees of order up to 4. There are two

special elementary weight functions of particular interest. The first one is the ith derivative

operator Di which maps the solution y(x) to hiy(i)(x).

Di(t) =

⎧⎨⎩
r(t)!
γ(t) , if r(t) = i,

0, if r(t) �= i.
(2.6)

The widely used derivative operator is D1 or simply D given as

D(t) =

⎧⎨⎩1, if t = τ,

0, if t �= τ.
(2.7)
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The second elementary weight function of interest is the exact solution of the differential

equation represented by the Picard iterations E(t)

E(n)(t) =
nr(t)

γ(t)
,

and the special cases are

E(t) =
1

γ(t)
, E−1(t) =

(−1)r(t)

γ(t)
.

It has been shown by Butcher in [12] that the Taylor series expansions for the numerical

solution of a Runge–Kutta method is

yn = yn−1 + ∑
r(t)≤p

1
σ(t)

Φ(t)hr(t)F(t)(yn−1)+O(hp+1). (2.8)

For a Runge–Kutta method to have order p, the equations (2.5) and (2.8) should match

each other up to order O(hp+1). This results in the corresponding order conditions

Φ(t) =
1

γ(t)
, r(t) ≤ p.

Thus, for a Runge–Kutta method of order three, the following conditions need to be sat-

isfied.

order 3:

t Φ(t) = 1
γ(t)

s

∑
i=1

bi = 1

s

∑
i=1

bici =
1
2

s

∑
i=1

bic
2
i =

1
3

s

∑
i, j=1

biai jc j =
1
6
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2.1.6 Simplifying assumptions

The number of order conditions increases as we seek a higher order Runge–Kutta method.

Butcher introduced simplifying assumptions in [6] to reduce the number of order condi-

tions that are required by a Runge–Kutta method to have a particular order.

B(p) :
s

∑
i=1

bic
k−1
i =

1
k
, k = 1,2, · · · , p,

C(η) :
s

∑
j=1

ai jc
k−1
j =

ck
i

k
, i = 1,2, · · · ,s, k = 1,2, · · · ,η,

D(ξ ) :
s

∑
i=1

bic
k−1
i ai j =

b j(1− ck
j)

k
, j = 1,2, · · · ,s, k = 1,2, · · · ,ξ ,

E(η,ξ ) :
s

∑
j=1

s

∑
i=1

bic
k−1
i ai jc

l−1
j =

1
l(k + l)

l = 1,2, · · · ,ξ , k = 1,2, · · · ,η.

• The B(p) condition ensures that the method has quadrature order p and the order

conditions of bushy trees like , , , · · · are satisfied for trees up to order p.

• The C(η) condition is related to the stage order of a method and ensures that the

pair of trees like and give identical order conditions for k ≤ η . In general, if

two trees have elementary weight functions having a factor ci/k and ∑ai jc
k−1
j re-

spectively, with the remaining factors being identical, then their elementary weight

functions are equal.

• The D(ξ ) condition means that the order conditions of a tree having elementary

weight functions involving bic
k−1
i ai j are satisfied if there are other trees having

elementary weight functions involving b j and b jck
j. It is interesting to note that for

explicit methods with s = p = 4, D(1) must hold.

• The E(η,ξ ) ensures that the method is at least of order η +ξ , while automatically

satisfying the order conditions for trees [τ k−1[τ l−1]].
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2.1.7 B-series and composition rules

The Taylor series expansion of the numerical solution (2.8) can be written in terms of a

formal series as

B(κ(t),y(x)) = ∑
t∈T

κ(t)
σ(t)

hr(t)F(t)(y(x)),

= y+hκ( )f(y)+h2κ( )f′f(y)+h2κ( )f′′(f, f)(y) · · · .

where κ(t) : T → Rm are the elementary weight functions defined earlier. Such a series is

termed Butcher series by Hairer and Wanner [31] in honour of John Butcher. The above

series is a scaled version of Butcher.

The identity mapping corresponding to the elementary weight function 1(t) and the in-

verse mapping corresponding to the elementary weight function κ−1(t) is given as

• B(1(t),yn−1) = yn−1.

• yn = B(κ(t),yn−1), ⇐⇒ yn−1 = B(κ−1(t),yn).

The sum and the composition of two B-series B(κ(t),y) and B(μ(t),y) is given as:

• B(κ(t),y)+B(μ(t),y) = B((κ + μ)(t),y).

• B(κ(t),B(μ(t),y)) = B(κμ(t),y).

Here κ(φ) = 1 and (κμ)(t) : T → Rm is the product of elementary weight functions κ
and μ given by the mapping

(κμ)(t) = μ(φ)κ(t)+ μ(t)+ ∑
u≺t

μ(u)κ(t\u). (2.9)

where u is a subtree of t and t\u is the remaining collection of trees when u is removed

from t. Of particular interest is the composition where the second operator is the differ-

entiation operator (2.6) and (2.7), in which case the composition rule (2.9) becomes

(κDi)(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if r(t) < i,

i!
γ(t) , if r(t) = i,

∑
u≺t,r(u)=i

i!
γ(u)

κ(t\u), if r(t) > i.

30



(κD)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if t = φ ,

1, if t = τ,

κ(t1) · · ·κ(tm), if t = [t1 · · ·tm].

(2.10)

The product (κμ)(t) refers to the composition of elementary weights of two generalised

Runge–Kutta methods [a,bT ,c] and [A,BT ,C] with elementary weights κ(t) and μ(t) re-

spectively.

Let us take a closer look at the composition of two Runge–Kutta methods. Consider

2-stage Runge–Kutta methods having Butcher tableau

c1 a11 a12

c2 a21 a22

b1 b2

,

C1 A11 A12

C2 A21 A22

B1 B2

.

The equations are

Y1 = y0 +a11h f (Y1)+a12h f (Y2), Y̌1 = y1 +A11h f (Y̌1)+A12h f (Y̌2),

Y2 = y0 +a21h f (Y1)+a22h f (Y2), Y̌2 = y1 +A21h f (Y̌1)+A22h f (Y̌2),

y1 = y0 +b1h f (Y1)+b2h f (Y2), y2 = y1 +B1h f (Y̌1)+B2h f (Y̌2).

The composed method has the form

Y1 = y0 +a11h f (Y1)+a12h f (Y2),

Y2 = y0 +a21h f (Y1)+a22h f (Y2),

Y̌1 = y0 +b1h f (Y1)+b2h f (Y2)+A11h f (Y̌1)+A12h f (Y̌2),

Y̌2 = y0 +b1h f (Y1)+b2h f (Y2)+A21h f (Y̌1)+A22h f (Y̌2),

y2 = y0 +b1h f (Y1)+b2h f (Y2)+B1h f (Y̌1)+B2h f (Y̌2).

The composition of these Runge–Kutta methods is given by the Butcher tableau as

c1 a11 a12 0 0

c2 a21 a22 0 0

C1 +∑
i

bi b1 b2 A11 A12

C2 +∑
i

bi b1 b2 A21 A22

b1 b2 B1 B2

. (2.11)
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The first order condition corresponding to t = for the composed method is

(κμ)(t) = b1 +b2 +B1 +B2,

= ∑
i

bi +∑
i

Bi,

= κ( )+ μ( ).

As the order of the trees increases, so does the complexity. Thus a recursive formula is

required for the product of elementary weights. We need following information.

• Consider the Butcher group G and its subgroup G1 defined as

G = {κ | κ : T → R, κ is a linear functional} ,

G1 = {κ | κ ∈ G, κ(φ) = 1} .

The composition of the two B-series (2.9) is represented by G1 ×G → G. The

product of rooted trees t,u ∈ T is given by T × T → T , where tu is formed by

joining the root of t and u with the root of t as the root of the product.

• Consider a dual group Ĝ defined as

Ĝ = {t̂ | t̂ : G → R, t̂(κ) = κ(t), κ ∈ G, t ∈ T} ,

where the set of all dual rooted trees t̂ is denoted by T̂ . The product of dual rooted

trees t̂, û ∈ T̂ is given by T̂ × T̂ → T̂ such that

t̂.û = t̂u.

• Consider a function λ : G1 ×T → Ĝ given by

λ (κ, t) =

⎧⎨⎩τ̂, if t = τ,

λ (κ, t1)λ (κ, t2)+κ(t2)λ (κ, t1), if t = t1t2.

Theorem 2.1.2. Let κ ∈ G1 and μ ∈ G then

(κμ)(φ) = μ(φ)

(κμ(t)) = λ (κ, t)(μ)+κ(t)μ(φ)

The proof is given in [12].
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t κμ(t)
φ t0 μ(t0)

t1 κ(t1)μ(t0)+ μ(t1)
t2 κ(t2)μ(t0)+κ(t1)μ(t1)+ μ(t2)

t3 κ(t3)μ(t0)+κ(t2)μ(t1)+κ(t1)μ(t2)+ μ(t3)
t4 κ(t4)μ(t0)+κ(t1)2μ(t1)+2κ(t1)μ(t2)+ μ(t4)

t5 κ(t5)μ(t0)+κ(t3)μ(t1)+κ(t2)μ(t2)+κ(t1)μ(t3)+ μ(t5)

t6 κ(t6)μ(t0)+κ(t4)μ(t1)+κ(t1)2μ(t2)+2κ(t1)μ(t3)+ μ(t6)

t7 κ(t7)μ(t0)+κ(t1)κ(t2)μ(t1)+(κ(t1)2 +κ(t2))μ(t2)+κ(t1)(μ(t3)+ μ(t4)+ μ(t7))
t8 κ(t8)μ(t0)+κ(t1)3μ(t1)+3κ(t1)2μ(t2)+3κ(t1)μ(t4)+ μ(t8)

Table 2.2: Product of elementary weight functions of trees up to order 4.

For the tree with a single vertex, t = , represented by τ , we have

λ (κ,τ) = τ̂.

(κμ)(τ) = λ (κ,τ)μ +κ(τ)μ(φ),

= τ̂μ +κ(τ)μ(φ),

= μ(τ)+κ(τ)μ(φ).

The product (κμ)(t) for all trees of order up to four is given in Table 2.2.

2.1.8 Effective order

The idea of effective order was first introduced by Butcher in [9] and was later revisited in

[10] in an attempt to increase the accuracy of a Runge–Kutta method. This was success-

fully achieved for Singly Implicit Runge–Kutta methods by Butcher and Chartier [13].

The idea was later used for Diagonally Extended Singly Implicit Runge–Kutta methods

by Butcher and Chan [14] and Butcher and Diamantakis [15]. The accuracy of symplectic

integrators for Hamiltonian systems was enhanced using effective order by Sanz-Serna et

al [38].

A Runge–Kutta method u has an effective order p if there exists another method v such

that vuv−1 has order p. Sanz-Serna used the term pre-processing for the application of v

and post-processing for the application of v−1 in [38]. Furthermore

(vuv−1)n = vunv−1.
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Figure 2.1: Effective order

i ti (κμ)(ti) (Eκ)(ti)
1 κ1 + μ1 κ1 +1

2 κ2 +κ1μ1 + μ2 κ2 +κ1 + 1
2

3 κ3 +κ2μ1 +κ1μ2 + μ3 κ3 +κ2 + 1
2κ1 + 1

6

4 κ4 +κ2
1 μ1 +2κ1μ2 + μ4 κ4 +κ2

1 +κ1 + 1
3

5 κ5 +κ3μ1 +κ2μ2 +κ1μ3 + μ5 κ5 +κ3 + 1
2κ2 + 1

6κ1 + 1
24

6 κ6 +κ4μ1 +κ2
1 μ2 +2κ1μ3 + μ6 κ6 +κ4 + 1

2κ2
1 + 1

3κ1 + 1
12

7 κ7 +κ1κ2μ1 +(κ2
1 +κ2)μ2 +κ1(μ3 + μ4)+ μ7 κ7 +κ1κ2 + 1

2(κ2
1 +κ2)+ 1

2κ1 + 1
8

8 κ8 +κ3
1 μ1 +3κ2

1 μ2 +3κ1μ4 + μ8 κ8 +κ3
1 + 3

2κ2
1 +κ1 + 1

4

Table 2.3: Expressions for κμ and Eκ for trees of order up to 4.

Therefore, the method v is used once only in the beginning and similarly the method v−1

is also used once only at the end. Butcher has used an equivalent approach in [10] to

get the effective order conditions. The method v is applied followed by the method u.

Besides using the composition vu, another composition is also evaluated by first moving

along the exact flow E followed by the method v as shown in Figure 2.1. The exact flow

E represents the mapping from trees to real numbers as E = 1/γ , where γ is the density of

the corresponding tree. The method u is said to have an effective order p, if the elementary

weights κ of v and μ of u satisfy the following relation for all trees up to order p.

(κμ)(t) = (Eκ)(t).

Table 2.3 shows the product (κμ)(t) and (Eκ)(t) for trees of order up to four with

κ(ti) = κi. Here we have assumed that the empty tree φ is always mapped to 1.

Comparing the last two columns of Table 2.3 results in effective order conditions given as

μ1 = 1, μ2 = 1
2 ,

μ3 = 1
6 , μ5 = 1

24 ,

μ4 −μ8 +2μ7 −μ6 = 1
4 .
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We have only five effective order conditions for a fourth order Runge–Kutta method re-

sulting in more choice for the co-efficients of Runge–Kutta method.

Note that the idea of effective order provides a working ground for analysing the order

of a general linear method. A starting method is first employed to start the process of a

general linear method followed by the implementation of an actual general linear method.

This process will be explained in section 2.3.4.

2.2 Linear multistep methods

Linear multistep methods are multivalue numerical methods for the solution of initial

value problems

y′(x) = f (y(x)), y(0) = y0.

The first multistep methods were introduced by Adams and Bashforth in 1883 [2] and

were later given the name Adams-Bashforth methods. The modern theory of linear multi-

step methods is due to Dahlquist [21]. Other types of multistep methods were developed

by Nyström [43] and Milne [39]. The general form of a k-step linear multistep method is

yn =
k

∑
i=1

αiyn−i +h
k

∑
i=0

βi f (yn−i). (2.12)

If we take α1 = 1, all other αi = 0 and β0 = 0 we obtain

yn = yn−1 +h(β1 f (yn−1)+β2 f (yn−2)+ · · ·+βk f (yn−k)). (2.13)

If instead β0 �= 0, we obtain methods of the form

yn = yn−1 +h(β0 f (yn)+β1 f (yn−1)+β2 f (yn−2)+ · · ·+βk f (yn−k)), (2.14)

By selecting the βi suitably in (2.13) we obtain order k. The method is then known as

Adams-Bashforth method and they are explicit methods. Similarly in (2.14), if the β i are

chosen to attain order k + 1 we obtain implicit Adams-Moulton methods introduced by

Moulton in 1926 [41].

The coefficients of Adams method can easily be found by expanding the terms of the

method using truncated Taylor series. Thus for a two step Adams-Bashforth method

yn − yn−1 = β1hy′n−1 +β2hy′n−2,

yn − [yn−hy′n + h2

2! y′′n − h3

3! y′′′n ] = hβ1[y′n−hy′′n + h2

2! y
′′′
n ]+hβ2[y′n−2hy′′n ].
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Comparing the terms we get

β1 +β2 = 1,

β1 +2β2 = 1
2 .

Solving these equations result in β1 = 3
2 and β2 = −1

2 and the corresponding Adams-

Bashforth method is

yn − yn−1 = 3
2hy′n−1 − 1

2hy′n−2.

The coefficients of a linear multistep method can be characterised by the polynomials

ρ(w) = wk −α1wk−1 − . . .−αk, (2.15)

σ(w) = β0wk +β1wk−1 + · · ·+βk.

For the solution of stiff differential equations by linear multistep methods, Curtiss and

Hirschfelder introduced backward difference formula, aka. BDF, based on numerical

differentiation [19]. The characteristic polynomials for BDF methods are

ρ(w) = β
k

∑
i=1

1
i
wk−i(w−1)i,

σ(w) = βwk.

where

β =
( k

∑
i=1

1
i

)−1
.

Thus for s = 1, we get

β = 1,

ρ(w) = w−1,

σ(w) = w.

and we get implicit Euler method

yn− yn−1 = h fn.

Similarly for s = 2, we get

β =
1

1+ 1
2

= 2
3 ,

ρ(w) = w2 − 4
3w+ 1

3 ,

σ(w) = 2
3w2.
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and we get the following method

yn − 4
3yn−1 + 1

3yn−2 = 2
3h fn.

BDF methods are considered superior among multistep methods because of their stability

properties. However, they are only convergent for 1 ≤ s ≤ 6, yet this range of order of

BDF methods is sufficient for many practical problems.

Definition 2.2.1. A linear multistep method (2.12) is symmetric if

αi = −αk−i βi = βk−i ∀ k

2.2.1 Consistency, stability, convergence and order

Linear multistep methods are consistent i.e. producing exact results for a simple differen-

tial equation y′ = 1 if

ρ(1) = 0, ρ ′(1) = σ(1).

Linear multistep methods are stable if they yield bounded results for y′ = 0. If applied to

such a differential equation, the method becomes

yn =
k

∑
i=1

αiyn−i = α1yn−1 +α2yn−2 + · · ·+αkyn−k.

This is a difference equation and bounded solutions are obtained if all zeros of the poly-

nomial ρ(w) lie inside the unit disc and those on the boundary are simple. A stable and

consistent linear multistep method is convergent.

A linear multistep method has an order p, if the characteristic polynomials ρ(w) and σ(w)
satisfy

ρ(ez)− zσ(ez) = O(zp+1).

The maximum order of a k−step linear multistep method can be 2k. However for a stable

k−step method, the order p has the following bounds

p =

{
k +1, if k is odd,

k +2, if k is even.

This is known as the Dahlquist first barrier. It was later proved by Dahlquist that the order

of an A-stable linear multistep method can at most be 2. This is known as the Dahlquist

second barrier. The concept of A-stability is related to solving stiff differential equations

and this will be dealt with in detail in Chapter 3.
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2.3 General linear methods

General linear methods are a generalisation of Runge–Kutta methods and multistep me-

thods introduced by Butcher [8] and are used to find numerical solution of initial value

problems

y′(x) = f (y(x)), y(0) = y0.

The general form of a general linear method is

Y = h(A⊗ I) f (Y)+(U ⊗ I)y[n−1],

y[n] = h(B⊗ I) f (Y)+(V ⊗ I)y[n−1].

A⊗ I represents the Kronecker product of the matrix A and the identity matrix I and h

is the stepsize. The s−component vector Yi ≈ y(xn + cih) represents the stages and is an

approximation at the i−th stage evaluated at abscissa ci. f (Y ) is a vector of the stage

derivatives. The vector y[n−1] has r−components which are provided as input values at

the beginning of a step. The application of one step of a general linear method results in

an output approximation y[n].

Y =

⎡⎢⎢⎢⎢⎣
Y1

Y2
...

Ys

⎤⎥⎥⎥⎥⎦ , f (Y ) =

⎡⎢⎢⎢⎢⎣
f (Y1)
f (Y2)

...

f (Ys)

⎤⎥⎥⎥⎥⎦ , y[n−1] =

⎡⎢⎢⎢⎢⎣
y[n−1]

1

y[n−1]
2

...

y[n−1]
r

⎤⎥⎥⎥⎥⎦ , y[n] =

⎡⎢⎢⎢⎢⎣
y[n]

1

y[n]
2
...

y[n]
r

⎤⎥⎥⎥⎥⎦ .

With a slight abuse of notation, general linear methods are written as

Y = hA f (Y )+Uy[n−1],

y[n] = hB f (Y )+Vy[n−1]. (2.16)

The matrices A, U , V and B are representatives of a particular general linear method and

are generally given as

M =

[
A U

B V

]
. (2.17)

The class of general linear methods is large. One-step methods like Runge–Kutta methods

and all multistep methods can be written as special cases of general linear methods. Non-

traditional methods can also be written in general linear framework such as cyclic com-

posite methods, where several linear multistep methods are used cyclically, the Nordsieck

methods, where the information is passed between different steps using the Nordsieck

vector [yn,hy′n, h2

2! y
′′
n , . . . ,

hk

k! yk
n], the pseudo Runge–Kutta methods where in addition to the

stages of the current step, the stages of previous steps is also used and hybrid methods.
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A Runge–Kutta method (2.1) has a single input so r = 1, U = 1, V = 1 and the matrix B

has only one row. A two-stage Runge-Kutta method written in general linear formulation

is ⎡⎢⎣ Y1

Y2

y[n]

⎤⎥⎦=

⎡⎢⎣ a11 a12 1

a21 a22 1

b1 b2 1

⎤⎥⎦
⎡⎢⎣ h f (Y1)

h f (Y2)
y[n−1]

⎤⎥⎦ .

The linear multistep methods such as Adams-Moulton method (2.14) written in general

linear method formulation has s = 1 and is given as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

yn

h f (Y1)
h f (yn−1)
h f (yn−2)

...

h f (yn−k+1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0 1 β1 β2 · · · βk−1 βk

β0 1 β1 β2 · · · βk−1 βk

1 0 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h f (Y1)
yn−1

h f (yn−1)
h f (yn−2)
h f (yn−3)

...

h f (yn−k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The linear multistep methods are generally implemented as predictor-corrector pairs with

Adams-Bashforth as predictor method and Adams-Moulton as corrector method. This

predictor-corrector pair can also be written as a two-stage general linear method [12].

Moreover the BDF methods and one-leg methods can also be written as general linear

methods.

2.3.1 Symmetric general linear methods

A general linear method is symmetric if it is equal to its adjoint. The adjoint method

is also a general linear method which undoes the work of actual general linear method.

Consider the general linear method (2.16)

Y = hA f (Y )+Uy[n−1],

y[n] = hB f (Y )+Vy[n−1].

Unlike Runge–Kutta methods, it is not straightforward to invert the output approximation

because for general linear methods the output approximations involve a matrix V multi-

plied with the input approximations and V −1 might not be equal to V even though, both

matrices might have same eigenvalues on the unit circle. Thus we have to introduce an
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involution L, such that

L =

⎡⎢⎢⎢⎢⎣
0 0 · · · 0 1

0 0 · · · 1 0
...

...
...

...
...

1 0 0 0 0

⎤⎥⎥⎥⎥⎦ ,

having the properties

L2 = I, LV−1L = V.

Like Runge–Kutta methods, we introduce a permutation matrix P given in (2.3), so that

the stages of the adjoint method is reordered to align with the stages of the actual general

linear method. Now considering the fact that the adjoint general linear method takes the

step −h we can write its form

PY = (−h)(PUBP−PAP)(P f (Y ))+PUV−1y[n],

Ly[n−1] = (−h)(LBP)(P f (Y ))+V (Ly[n−1]),

and time reversal symmetry implies

B = LBP,

A+PAP = PUBP,

U = PUV−1. (2.18)

It is important to note that a symmetric method can be constructed by composing a general

linear method with its adjoint. We look at the composition of two general linear methods

whose representative matrices (2.17) are

M1 =

[
A1 U1

B1 V1

]
, M2 =

[
A2 U2

B2 V2

]
.

The composition is given as

M1 ◦M2 =

⎡⎢⎣ A1 0 U1

U2B1 A2 U2V1

V2B1 B2 V2V1

⎤⎥⎦ .

2.3.2 Pre-consistency, consistency, stability and convergence

The pre-consistency condition of a numerical method is related to its ability to exactly

solve the simplest ODE, y′(x) = 0 with solution y(x) = 1. Thus

y[n−1] = uy(xn−1)+O(h),

y[n] = uy(xn)+O(h).
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The vector u is known as the pre-consistency vector and is specific for a specific numerical

method. Thus for the Euler method, yn+1 = yn +h f (yn), the value of u is 1. In the case of

a general linear method

Y = Uy[n−1] = Uuy(xn−1)+O(h),

y[n] = Uy[n−1] = Vuy(xn−1)+O(h).

Therefore the pre-consistency condition of a general linear method is

Uu = 1, Vu = u.

The consistency of a method is determined by its ability to exactly solve the ODE y ′(x) =
1, with initial condition y(0) = 0. Thus

y[n−1] = uy(xn−1)+ vhy′(xn−1)+O(h2),

y[n] = uy(xn)+ vhy′(xn)+O(h2).

The vector v is known as the consistency vector and is specific for a specific numerical

method. Thus for the Euler method, yn+1 = yn +h f (yn), the value of v is 1. In the case of

a general linear method

Y = A1h+Uy[n−1] = A1h+Uuy(xn−1)+hUvy′(xn−1)+O(h2),

y[n] = B1h+Vy[n−1] = B1h+Vuy(xn−1)+hVvy′(xn−1)+O(h2).

Therefore the consistency condition of a general linear method is

B1+Vv = u+ v.

A method is of little or no use if it is not stable. Stability implies that the error introduced

by a numerical method in one step does not grow unboundedly in later steps. If a general

linear method is solving the ODE y′(x) = 0, then

y[n] = Vy[n−1] = V ny[0].

Thus the stability of a general linear method hinges on the matrix V being power bounded.

‖V n‖∞ ≤C, ∀ n = 1,2, · · · .
A general linear method is strictly stable, if all eigenvalues of V are inside the unit disc

except one, which is on the boundary.

Butcher [8] generalised the idea of Dahlquist [20] for the case of general linear methods,

that the stability and consistency of a general linear method is necessary and sufficient for

its convergence. A general linear method is convergent, if there exist a non-zero vector

u ∈ Rn such that if the starting approximation y[0] converges to uy(x0), then the final

approximation y[n] converges to uy(x0 +nh) for all n.
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Figure 2.2: Order of accuracy

2.3.3 Order of accuracy

A general linear method requires r approximations y[0]
i , i = 1,2, · · · ,r as input values.

However only a single initial condition y(x0) = y0 is provided with the initial value prob-

lem. Thus a starting method is often required to obtain approximations to the initial vector

y[0]. Consider an (s̄+ r)× (s̄+1) starting method S given as

S =

[
S11 S12

S21 S22

]
.

where r is the number of approximations required for the actual general linear method to

start and s̄ is the number of stages of the starting method. The pre-consistency conditions

for the starting method with u as the pre-consistency vector are

S22 = u, S12 = 1.

Once the starting method S is applied and input vector y[0] is available, the actual general

linear method M is then applied resulting in the combined effect as MoS. The exact

solution operator E is applied to move the solution from xn−1 to xn. The order of accuracy

of the general linear method M is p relative to the starting method S if

M ◦S−S ◦E = O(hp+1).

This is shown in Figure 2.2.

For a general linear method to be of order p, ideally all components of y[n] should be

of order p, however in practice, we content our self with the first component which is

approximating the actual solution to be of order p at least. A finishing procedure is often

required to undo the effect of starting method S. This is achieved by picking the first

component of the output approximation y[n] which approximates the exact solution.
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2.3.4 Algebraic analysis of order

The B-series for the starting method is

y[0] = B(S(t),y(xn−1)).

Let η(t) be the elementary weight function for the stages Y , then the B-series for the

stages is

Y = B(η(t),y(xn−1)).

The B-series for the stage derivatives h f (Y ) is

h f (Y ) = B(D(t),Y),

= B(D(t),B(η(t),y(xn−1))),

= B(ηD(t),y(xn−1)).

where D is the differentiation operator (2.7) and ηD represents the composition (2.10).

General linear method (2.16) can be represented in terms of its B-series. Consider the

B-series representation of the internal stages

B(η(t),y(xn−1)) = AB(ηD(t),y(xn−1))+UB(S(t),y(xn−1)),

= B(AηD(t)+US(t),y(xn−1)). (2.19)

Let ξ (t) be the elementary weight function of for the output approximation y[n] then

B(ξ (t),y(xn−1)) = BB(ηD(t),y(xn−1))+VB(S(t),y(xn−1)),

= B(BηD(t)+VS(t),y(xn−1)). (2.20)

The generating functions for the general linear method are obtained from equations (2.19)

and (2.20).

η(t) = AηD(t)+US(t), (2.21)

ξ (t) = BηD(t)+VS(t). (2.22)

The generating function for output approximations (2.22) is equivalent to the application

of the exact solution operator E to the starting method S.

ES(t) = BηD(t)+VS(t). (2.23)

The general linear method is said to be of order p, if at least the first component of (2.23)

is equal to E(t), for all tree of order less than or equal to p.
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Chapter 3

Stability and symplecticity of numerical

methods

Stability of a numerical method plays an important role in the numerical solution of ordi-

nary differential equations. The application of a numerical method yields results having

errors, because they are approximations to the exact solution. Stability of a numerical

method is concerned with the ability of a numerical method to monitor and control the

growth of these errors over an unbounded period of time. A numerical method is said

to be stable, if the error introduced by one-step of a numerical method remains bounded

throughout the integration process. The concept of stability was introduced in relation to

numerical solution of stiff ordinary differential equations. Stiffness is a qualitative prop-

erty possessed by most of the ordinary differential equation systems modelling the real

world phenomena. A stable numerical method is the only choice for the numerical solu-

tion of stiff ordinary differential equation system. Stability also plays an important role

in the selection of numerical methods for the solution of non-stiff ordinary differential

equation system.

Hamiltonian systems are conservative rather than stiff. They conserve energy like proper-

ties of the dynamics of mechanical system. Qualitatively accurate numerical solutions of

the Hamiltonian systems are best obtained by symplectic numerical methods. Symplec-

ticness is a qualitative property of Hamiltonian systems in terms of their solution and is

explained in Chapter 1. The criteria of a numerical method to be symplectic hinges on

certain equations, which the coefficients of the numerical methods should satisfy. There

is an intricate relation between the criteria of a numerical method to be symplectic and

to be stable. This relation is studied in the context of non-linear stability analysis of the

numerical solution of non-stiff ordinary differential equations.
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3.1 Stability of Runge–Kutta methods: linear case

The linear stability analysis of a Runge–Kutta method makes use of the Dahlquist linear

test equation taken from [22]

y′(x) = λy(x), (3.1)

where λ can be a complex number. An application of an explicit Runge–Kutta method to

solve (3.1) yields

Yi = yn−1 +
i−1

∑
j=1

ai jhλYj, i = 1,2, · · · ,s,

yn = yn−1 +
s

∑
i=1

bihλYi.

Calculate the explicit stages Yi sequentially and then evaluate yn, we get

yn = R(z)yn−1,

where z = hλ and

R(z) = 1+ z∑
i

bi + z2 ∑
i

biai j + z3 ∑
i

biai ja jk + · · · .

If the explicit Runge–Kutta method is of order p, then the order conditions for trees up to

order p should be satisfied. We recall from Chapter 2 that the first few order conditions

are

∑
i

bi = 1, ∑
i

biai j = 1
2 , ∑

i
biai ja jk = 1

6 .

Therefore an explicit method with order p has the stability function

R(z) = 1+ z+
z2

2!
+

z3

3!
+ · · ·+ zp

p!
+O(zp+1),

= exp(z)+O(zp+1).

For explicit Runge–Kutta methods with s stages and order p, if s = p then the stability

function is

R(z) = 1+ z+
z2

2!
+

z3

3!
+ · · ·+ zp

p!
.
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An s−stage implicit Runge–Kutta method applied to solve (3.1) yields

Yi = yn−1 +
s

∑
j=1

ai jhλYj, i = 1,2, · · · ,s,

yn = yn−1 +
s

∑
i=1

bihλYi.

Here the stages Yi are implicit and represent a system of linear equations. On solving this

system and using the values of the stages Yi in the output value yn, we have

yn = R(z)yn−1, (3.2)

where z = hλ and

R(z) = 1+ zbT (I− zA)−11,

=
det(I− zA+ z1bT )

det(I− zA)
.

The stability function of an implicit Runge–Kutta method of order p is a rational function

of z and can be written as

R(z) =
N(z)
D(z)

,

where both N(z) and D(z) are polynomial of degree at most p and D(0) = 1.

3.1.1 Padé approximation to the exponential

Consider a polynomial Nmn(z)of degree m ≥ 0 and a polynomial Dmn(z) of degree n ≥ 0

and consider a rational function

Rmn(z) =
Nmn(z)
Dmn(z)

.

Such a rational function can approximate a function f (z), which is analytic at zero with

f (0) �= 0, such that

f (z) =
Nmn(z)
Dmn(z)

+O(zm+n+1).

The rational function Rmn(z) is called the (m,n) Padé approximation to the function f (z)
and this rational function provides the highest order of approximation to the function f (z)
where

Nmn(z) =
m!

(m+n)!

m

∑
k=0

(m+n− k)!
k!(m− k)!

zk,

Dmn(z) =
n!

(m+n)!

n

∑
k=0

(m+n− k)!
k!(n− k)!

(−z)k.
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If Rmn(z) approximates the function ez, we get the Padé approximation to ez. An inter-

esting feature is that the Padé approximation to ez are equal to the stability functions of

some of the implicit Runge–Kutta methods and provides the stability order

ezDmn(z) = Nmn(z)+O(zm+n+1).

Let us take a closer look at the simple test equation (3.1) to understand the role of stability

function in the selection of a numerical method and the stepsize it can take. The exact

solution of (3.1) is

y(x) = eλxy0,

it is evident that

y(x) → 0 as x → ∞, provided Reλ < 0.

The numerical method should mimic this behaviour and this is possible if

yn → 0 as n → ∞.

From equation (3.2)

yn = R(z)ny0,

and hence

yn → 0 iff |R(z)| < 1.

The stability domain is the set

D = {z ∈ C; |R(z)|< 1},

We take an example of the explicit Euler method to solve the Dahlquist test equation (3.1).

The output is

yn = (1+ z)ny0.

The stability function is

R(z) = (1+ z)n,

and the bounded solutions require

|(1+ z)n| < 1.

Since z = hλ , the stepsize should therefore be chosen to satisfy this equation and hence

the selection of stepsize depends on λ , which is a stiffness indicator. The stability function

of an implicit Euler method is

R(z) =
1

(1− z)n ,
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Figure 3.1: The stability regions (shaded) of (a) the explicit Euler method and (b) the

implicit Euler method.

The stability regions of the explicit and the implicit Euler methods are plotted in the

Figure 3.1. The stability region of the explicit Euler method is a bounded shaded region

and this is the case for all explicit Runge–Kutta methods that their stability regions are

bounded. The stability region of the implicit Euler method is the unbounded shaded

region and this is true for all implicit Runge–Kutta methods that their stability regions

are unbounded. The boundedness of the stability region imposes severe restrictions on

the stepsize. Dahlquist [22] studied this phenomenon of dependence of stepsize to the

stability domain and introduced the concept of A-stability.

Definition 3.1.1. A method is said to be A-stable if the entire left half of the complex plane

C is included in the stability domain D of the numerical method.

C
− ⊆ D, where C

− = {z ∈ C : Re(z) < 0}.

For a Runge–Kutta method to be A-stable, its stability function must satisfy

|R(z)| ≤ 1, ∀ Re(z) ≤ 0. (3.3)

From the Figure 3.1, it is clear that the explicit Euler method is not A-stable because its

stability region is only a bounded unit disc centered at (−1,0), while the implicit Euler

method is A-stable because its stability region is unbounded and contains the whole left

half of the complex plane. In general all practical explicit Runge-Kutta methods are not

A-stable while many families of implicit Runge-Kutta methods exist which are A-stable

such as Gauss methods. Hence the implicit Runge–Kutta methods are a preferred choice

for the solution of stiff differential equations.

Theorem 3.1.2. A Runge–Kutta method with stability function R(z) = N(z)
D(z) is A-stable, if

and only if, all poles of R are in right half plane i.e. they have positive real parts and

|R(iy)| ≤ 1 for y ∈ R.

The proof is given in [33].
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α
α

Figure 3.2: A(α) stability region

Definition 3.1.3. A method is L-stable if in addition to (3.3), it satisfies

R(∞) = 0.

A numerical method for the solution of stiff ODEs should have the property of L-stability

as it ensures stable numerical results for z close to real axis with large negative real parts,

otherwise R(−z) ≈ 1 for z very large and the stiff components of the ODEs do not die

fast. For some ODEs which have real eigenvalues, like ODEs originating from spatially

discretised diffusion equation, we do not require all the negative complex plane to be

included in the stability region of the numerical method and the strict A-stability condition

can be relaxed. This gives rise to the concept of A(α) stability and we can use methods

which are not A-stable.

Definition 3.1.4. A method is A(α) stable, if a portion of the left half plane

Sα = {z; |arg(−z)| ≤ α, z �= 0}

is included in the stability domain instead of the whole left half of the complex plane as

shown in the Figure (3.2).

The linear test equation (3.1) due to Dahlquist assumes λ to be time independent. AN-

stability is a generalization of A-stability proposed by Burrage and Butcher [4] in which

the test equation to study the stability of numerical method is non-autonomous. Consider

the ordinary differential equation

y′(x) = λ (x)y(x), (3.4)

such that for AN-stability

Re(λ (x)) ≤ 0.

Apply an implicit Runge–Kutta method to solve (3.4)

Y = yn−1 +AZY,
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where

Z = diag[hλ (xn−1 +hc1),hλ (xn−1 +hc2), · · · ,hλ (xn−1 +hcs)].

Thus

Y = (I−AZ)−1yn−1.

The output is

yn = yn−1 +bT ZY

= yn1 +bT Z(I−AZ)−1yn−1

= R(Z)yn−1.

The function R(Z) is the stability function of the underlying Runge–Kutta method and is

given as

R(Z) = 1+bT Z(I−AZ)−11. (3.5)

A Runge–Kutta method is AN-stable if

|R(Z)| ≤ 1, ∀ Re(Z) ≤ 0. (3.6)

The consequences of AN-stability is summarised in the following theorem by Burrage

and Butcher [4] and Crouzeix [18].

Theorem 3.1.5. An implicit Runge–Kutta method [A,bT ,c] is AN-stable if b j ≥ 0, j =
1,2, · · · ,s, and the matrix

M = diag(b)A+AT diag(b)−bbT ,

is positive semi-definite.

Proof: We reproduce the proof from [4]. Let bi < 0 for some i and consider the stability

function R(Z) in (3.5). Further assume that Z has purely negative real values

Z =

⎡⎢⎢⎢⎢⎣
−t 0 · · · 0

0 −t 0
...

. . .
...

0 0 · · · −t

⎤⎥⎥⎥⎥⎦ .

Then

AZ = A

⎡⎢⎢⎢⎢⎣
−t 0 · · · 0

0 −t 0
...

. . .
...

0 0 · · · −t

⎤⎥⎥⎥⎥⎦
= −tA.
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Z(I−AZ)−1 = −tI(I + tA)−1

= −tI(I− tA+O(t2))

= −tI +O(t2).

R(Z) = 1+bT Z(I−AZ)−11

= 1+bT (−tI +O(t2)1

= 1+bT (−tI)1+O(t2)

> 1.

Thus for AN-stability b j ≥ 0. Now consider Z to be purely imaginary.

Z =

⎡⎢⎢⎢⎢⎣
iv1t 0 · · · 0

0 iv2t 0
...

. . .
...

0 0 · · · ivst

⎤⎥⎥⎥⎥⎦ ,

where vi are real numbers and t is a small positive number.

R(Z) = 1+bT Z(I−AZ)−11

= 1+ itbT diag(v)1− t2bT diag(v)Adiag(v)1+O(t3)

= 1+ itbTv− t2vT diag(b)Av+O(t3),

|R(z)|2 = 1− t2vT Mv+O(t3),

where

M = diag(b)A+AT diag(b)−bbT .

|R(z)|2 cannot exceed 1 for small t and

vT Mv > 0.

This implies M is positive semi-definite.

3.2 Stability of Runge–Kutta methods: non-linear case

Burrage and Butcher in [4] introduced the use of non-linear generalization of Dahlquist

test equation (3.1) to study the stability of numerical methods. Consider a non-linear

differential equation

y′(x) = f (y(x)), (3.7)
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such that f is non-linear and satisfies a contractive condition

〈 f (y)− f (z),y− z〉 ≤ 0, (3.8)

where y and z are two solutions of (3.7) with different initial conditions and 〈.〉 is a semi-

inner product. The norm induced by such an inner product is given as

‖y‖2 = 〈y,y〉.

The equation (3.8) ensures that the two solutions do not drift apart and the distance be-

tween two solutions is a non-increasing function i.e.

‖y(x1)− z(x1)‖ ≤ ‖y(x0)− z(x0)‖.

This is the case because

d
dx

|y(x)− z(x)|2 = 2〈 f (y)− f (z),y− z〉
≤ 0.

The non-linear stability of a Runge–Kutta method implies

‖yn − zn‖ ≤ ‖yn−1 − zn−1‖.

Definition 3.2.1. A Runge–Kutta method is BN-stable if, when applied to solve a non-

linear non-autonomous initial value problem

y′(x) = f (x,y(x)), y(x0) = y0.

satisfying the contractivity condition

〈 f (x,y),y〉 ≤ 0,

yields

‖yn‖ ≤ ‖yn−1‖.

Definition 3.2.2. A Runge–Kutta method is algebraically stable if bi > 0, i = 1,2, · · · ,s,
and the matrix

M = diag(b)A+AT diag(b)−bbT (3.9)

is positive semi-definite.

The linear and non-linear stability described above are related to each other as shown in

Figure 3.3.
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A-stability

AN-stability

BN-stability

Algebraic stability

Figure 3.3: Relations between different types of stabilities.

3.3 Canonical and Symplectic Runge–Kutta methods

Consider an initial value problem,

y′(x) = f (y(x)), y(x0) = y0. (3.10)

whose solution y has a quadratic invariant I(y) = yT Qy, if

yT Q f (y) = 0.

where Q is a symmetric square matrix.

A Runge–Kutta method is said to be canonical if it solves the equation (3.10) such that

the numerical solution yn also has the quadratic invariant I(yn). This property also has

wider implications and guarantees that the symplectic property is preserved. Pioneering

work in the development of symplectic Runge–Kutta methods is due to Cooper [17],

Lasagni [36], Sanz-Serna [44] and Suris [48]. Their idea is based on features of algebraic

stability introduced, in connection with stiff systems, by Burrage and Butcher [4] and

Crouzeix [18]. The matrix M in (3.9) used for the characterisation of algebraic stability

of Runge–Kutta methods play an important role in the symplecticity of Runge–Kutta

methods. Stability and symplecticity are both qualitative features and the matrix M in

(3.9) is crucial for both of them. Algebraic stability is concerned with solving dissipative

systems and the matrix M should be positive semi-definite while the symplecticity is

a characteristic property of Hamiltonian systems which are conservative, and requires

matrix M to be zero.

An application of a Runge–Kutta method (2.1) to solve (3.10) results in

Yi = y0 +h
s

∑
j=1

ai j f (Yj).

54



Since

〈Yi, f (Yi)〉 = 0,

⇒〈y0, f (Yi)〉+h
s

∑
j=1

ai j〈 f (Yj), f (Yi)〉 = 0. (3.11)

The output value is

y1 = y0 +h
s

∑
i=1

bi f (Yi),

〈y1,y1〉 = 〈y0,y0〉+h
s

∑
i=1

bi〈y0, f (Yi)〉

+h
s

∑
j=1

b j〈 f (Yj),y0〉+h2
s

∑
i, j=1

bib j〈 f (Yi), f (Yj)〉. (3.12)

From (3.11) and (3.12), it is evident that

〈y1,y1〉 = 〈y0,y0〉,
provided

biai j +b ja ji−bib j = 0. (3.13)

Hamiltonian systems (1.5) belong to an important class of differential equation system

with invariants. The solution (p,q) of a Hamiltonian system is symplectic meaning that

it preserves the symplectic structure on manifold on which the solution exist which in

turn implies that the differential 2-form dp∧dq is conserved throughout the flow of the

Hamiltonian system. As mentioned in Chapter 1, the differential two form dp∧ dq is a

wedge product and represents the oriented area of a parallelogram with sides dp and dq. It

has been shown by Sanz-Serna in [44] that an application of a Runge–Kutta method (2.1)

to the Hamiltonian system (1.5) would yield an output (pn,qn) satisfying the property

dpn ∧dqn = dpn−1 ∧dqn−1,

provided equation (3.13) is satisfied. We have the following theorem.

Theorem 3.3.1. A Runge–Kutta method [A,bT ,c] is symplectic, if

diag(b)A+AT diag(b)−bbT = 0. (3.14)

The proof is gven in [44].

We take example of three known methods

• The explicit Euler method — non-symplectic

yn = yn−1 +h f (yn−1),
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Figure 3.4: The explicit Euler method. Figure 3.5: The implicit Euler method.

• The implicit Euler method — non-symplectic

yn = yn−1 +h f (yn+1),

• The implicit midpoint method — symplectic

yn = yn−1 +h f (
yn + yn−1

2
).

We analyse the behaviour of these methods when solving the harmonic oscillator prob-

lem. The initial condition is the locus of a circle. Since harmonic oscillator problem is

a Hamiltonian system, we expect the area of the circle to be conserved during the flow

of the Hamiltonian system. For the explicit Euler method, the area of the initial circle

increases during the integration process given in Figure 3.4 and for the implicit Euler

method, the area of the initial circle decreases during the integration process given in

Figure 3.5, which clearly shows the non-symplectic behaviour of the explicit Euler and

the implicit Euler methods. Not only this, the circles are out of phase as well. However,

for the implicit midpoint rule, the area of the circle is conserved given in Figure 3.6, a

property shared by symplectic integrators.

Remark 3.3.2. An s-stage Gauss method is symplectic for s = 1,2 · · · .

As an example we consider the two stage order four Gauss method

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

. (3.15)
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Figure 3.6: The midpoint rule Figure 3.7: The IRK method
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Figure 3.8: The absolute error in the energy of Harmonic oscillator by Gauss IRK (3.15).

The method (3.15) satisfies (3.14) and is therefore symplectic as is shown in Figure 3.7.

The method (3.15) approximately conserves the total energy of the Hamiltonian system

as well. The Harmonic oscillator problem is solved using the method (3.15) and the

absolute error in the energy is depicted in the Figure 3.8 which remains bounded over

100000 steps with stepsize 0.01. Implicit Runge–Kutta methods are a preferred choice

for solving stiff systems. However for solving non-stiff problems like the Hamiltonian

systems, we can content ourselves to Diagonally implicit Runge–Kutta methods to save

the cost of implementation. A class of s-stage diagonally implicit symplectic Runge–
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Kutta methods must have bi �= 0 to avoid reducibility, and has the following structure

b1
2 0 0 · · · 0

b1
b2
2 0 · · · 0

...
...

...
. . .

...

b1 b2 0 · · · bs
2

b1 b2 b3 · · · bs

. (3.16)

The class of methods (3.16) can be seen as a composition of several implicit midpoint

methods and hence by the fact that implicit midpoint method is symplectic and the com-

position of two symplectic Runge-Kutta methods is symplectic, we can deduce that the

class of methods (3.16) is symplectic. A class of methods (3.16) of order 3 with 3 stages

were constructed by Suris [49] and Cooper [17].

3.3.1 Composition of symplectic Runge-Kutta methods

The composition of two symplectic Runge–Kutta methods is another symplectic Runge–

Kutta method. We recall from (2.11), that the composition of two Runge–Kuta methods

[a,bT ,c] and [A,BT ,C] is
c a 0

C +1bT 1bT A

bT BT

. (3.17)

Let both methods be symplectic such that

diag(b)a+aT diag(b)−bbT = 0,

diag(B)A+AT diag(B)−BBT = 0.

The composed method (3.17) is also a Runge–Kutta method which we denote as [ā, b̄T , c̄].
The composed method will be symplectic if

diag(b̄)ā+ āT diag(b̄)− b̄b̄T = 0.

Now

diag(b̄)ā =

[
diag(b)a 0

BbT diag(B)A

]
,

and

āT diag(b̄) =

[
aT diag(b) bBT

0 AT diag(B)

]
,
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and

b̄b̄T =

[
bbT bBT

BbT BBT

]
.

Thus we have

diag(b̄)ā+ āT diag(b̄)− b̄b̄T =

[
diag(b)a+aT diag(b)−bbT bBT −bBT

BbT −BbT diag(B)A+AT diag(B)−BBT

]
= 0.

3.3.2 Order conditions for symplectic Runge–Kutta methods

The order conditions for a Runge–Kutta method represent a relation among the coeffi-

cients of a Runge–Kutta method such that if these conditions are met, the method achieve

a particular order. The order conditions have already been encountered in Chapter 2. The

higher the order of a Runge–Kutta method, the higher the number of order conditions it

should satisfy. However, the number of order conditions for a symplectic Runge–Kutta

method decreases dramatically because the symplectic condition (3.14) acts as a con-

straint on the coefficients of a Runge–Kutta method. To understand this, we recall that for

each order condition there is a rooted tree. Now the fact is that each rooted tree originates

from a tree.

For a symplectic Runge–Kutta method, the trees can be divided into two categories, i.e.

superfluous trees and non-superfluous trees. For symplectic Runge-Kutta methods, the su-

perfluous trees do not contribute any order condition as the corresponding order condition

is already satisfied by the symplectic condition and the non-superfluous trees contribute

only one order condition. This results in reduction of order conditions required for a sym-

plectic Runge–Kutta method to achieve a particular order. Before proceeding any further,

let us look at the notion of superfluous trees in detail.

A tree is called superfluous, if it generates identical rooted trees when any two adjacent

nodes of the tree are taken as a root. Consider a tree t and name two of its vertices as i

and j. Let i is taken as root and ρ1ti is a rooted tree. Again let j is taken as root and ρ2t j

is a rooted tree.

i j
t

ρ1ti ρ2t j
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Since ρ1ti and ρ2t j represents similar rooted trees with a difference of orientation, the

underlying tree t is superfluous. The important factor being that we can choose any two

adjacent vertices as roots. Thus if we choose different vertices as i and j, we get two

rooted trees ρ3ti and ρ4t j

i j
t

ρ3t j ρ4ti

Although the two rooted trees ρ4ti and ρ3t j are not similar in this case, yet the underlying

tree t is superfluous as we have already found a scenario in the first case when two middle

vertices are selected as roots, yielding similar rooted trees.

Once the superfluous trees are deleted we are left with order conditions associated with

non-superfluous trees. We consider another tree t̃ and select two of its vertices as i and

j. Let i is taken as root and ρ5t̃i is a rooted tree. Again let j is taken as root and ρ6t̃ j is a

rooted tree.

i j
t̃

ρ5t̃i ρ6t̃ j

Both rooted trees are different. Again choose different vertices as i and j to become roots

i j
t̃

ρ7t̃ j ρ8t̃i

and we still get different rooted trees ρ7t̃i and ρ8t̃i. Since we did not get two similar rooted

trees for any of the two vertices being taken as root, the tree t̃ is a non-superfluous tree.

The effect of superfluous and non-superfluous trees on the order conditions is studied as

two separate cases below.

Case 1: This case is related to the tree t which has 4 vertices. We assume that the order

conditions for all trees with vertices less than 4 are satisfied. Multiply equation (3.14)
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Order General Runge–Kutta method Symplectic Runge–Kutta method

1 1 1

2 2 1

3 4 2

4 8 3

5 17 6

Table 3.1: Order conditions for general and symplectic Runge–Kutta methods to order 5.

with ci and c j and take summation over i and j

∑
i, j

biciai jc j +∑
i, j

b jc ja jici −∑
i, j

bicib jc j = 0,

⇒∑
i, j

biciai jc j = 1
8 . (3.18)

This is the order condition related to the rooted tree ρ1ti which originates from a super-

fluous tree. Thus the order condition related to superfluous trees can always be deduced

from the symplectic condition (3.14). Hence, for higher order symplectic Runge–Kutta

methods, all order conditions related to superfluous trees are automatically satisfied by

the symplectic condition and are therefore not required.

Case 2: This case is related to the tree t̃ which has 3 vertices. We assume that the order

conditions for all trees with vertices less than 3 are satisfied. Multiply equation (3.14)

with c j and take summation over i and j

∑
i, j

biai jc j +∑
i, j

b jc ja ji−∑
i, j

bib jc j = 0,

⇒(∑
i, j

biai jc j − 1
6)+(∑

j
b jc

2
j − 1

3) = 0.

The last equation is a summation of two order conditions for the rooted trees ρ6t̃i and ρ5t̃ j

that originates from a non-superfluous tree t̃. It is evident that if one of them is satisfied,

the other is automatically satisfied. So we only require one order condition. Hence for

this and higher order symplectic Runge–Kutta methods, the non-superfluous trees only

contribute one order condition. Table 3.1 shows the number of order conditions required

for a general and symplectic Runge–Kutta method to attain a particular order. We have

the following theorem from [45].

Theorem 3.3.3. A symplectic Runge–Kutta method has an order p, if for each non-

superfluous tree t̃ with any vertex as a root

φ(ρ t̃) =
1

γ(ρ t̃)
,

where ρ t̃ represents the rooted tree of t̃ of order up to p.
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3.3.3 Symplectic Runge–Kutta methods with transformations

A class of symplectic Runge–Kutta methods can be constructed using Vandermonde

transformation. The idea is to pre and post multiply the Vandermonde matrix with the

matrix of symplectic condition for Runge–Kutta method (3.14). The idea is best ex-

plained with the help of an example whereby the construction of a class of two stage,

second order symplectic Runge–Kutta method is considered.

Consider a Runge Kutta–method [A,bT ,c]. Consider the matrix for symplectic condition

Mi j = biai j +b ja ji−bib j, i, j = 1, · · · ,s.

Consider a Vandermonde matrix V

V = c j−1
i =

⎛⎜⎜⎜⎜⎝
1 c1 c2

1 · · · cs−1
1

1 c2 c2
2 · · · cs−1

2
...

...
...

. . .
...

1 cs c2
s · · · cs−1

s

⎞⎟⎟⎟⎟⎠ .

Multiply the matrix M with the matrix V as follows

ck−1
i ( biai j +b ja ji −bib j ) cl−1

j = 0, ∀ i, j,k, l.

For order two put k, l = 1,2 and take summation over i and j from 1 to s

∑
i, j

biai j +∑
i, j

b ja ji−∑
i, j

bib j = 0,

∑
i, j

biai jc j +∑
i, j

b jc ja ji −∑
i, j

bib jc j = 0,

∑
i, j

biciai j +∑
i, j

b ja jici −∑
i, j

bicib j = 0,

∑
i, j

biciai jc j +∑
i, j

b jc ja jici −∑
i, j

bicib jc j = 0.

Since we are constructing method of order two, the following order conditions must sat-

isfy.
s

∑
i=1

bi = 1,
s

∑
i=1

bici = 1
2 .
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Thus we have

∑
i

bici = 1
2 ,

∑
i, j

biai jc j +∑
i, j

b jc ja ji = 1
2 ,

∑
i, j

biciai j +∑
i, j

b ja jici = 1
2 ,

∑
i, j

biciai jc j = 1
8 .

Consider the relation

bi(ci − c1) = bici −bic1,

Take summation over i from 1 to s, and use previous equations we get

∑
i

bi(ci− c1) = ∑
i

bici −∑
i

bic1,

b2(c2 − c1) =
1
2
− c1,

b2 =
1
2 − c1

c2 − c1
.

Similarly we can get

b1 =
1
2 − c2

c1 − c2
.

Now consider the relation

bi(ci− c1)ai j(c j − c1) = biciai jc j −biciai jc1 −biai jc jc1 +biai jc1c1.

Take summation over i and j, and use previous equations we get

a22 =
1
8 − c1

3 − c1
6 + c1c1

2

b2(c2 − c1)(c2− c1)
.

Similarly we get

a11 =
1
8 − c2

3 − c2
6 + c2c2

2

b1(c1 − c2)(c1− c2)
,

a21 =
1
8 − c2

3 − c1
6 + c1c2

2

b2(c2 − c1)(c1− c2)
,

a12 =
1
8 − c1

3 − c2
6 + c1c2

2

b1(c1 − c2)(c2− c1)
.

A class of second order Runge-Kutta methods can be found by choosing c1 and c2. If we

impose the following extra condition on c1 and c2, obtained using quadrature, the method

thus obtained is of order 3.
c1 + c2

2
− c1c2 = 1

3 .
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3.4 Stability and symplecticity of multistep methods

The linear stability analysis of linear multistep methods can be understood by trying to

solve the Dahlquist test equation

y′ = λy,

with the linear multistep method

yn =
k

∑
i=1

αiyn−i +h
k

∑
i=0

βi f (yn−i). (3.19)

This result in a linear difference equation given for z = hq

(1− zβ0)yn− (α1 + zβ1)yn−1 − . . .− (αk + zβk)yn−k = 0. (3.20)

A linear multistep method is stable if all of its numerical solutions yn are bounded for

n → ∞, while the corresponding set of all z′s determines the stability domain of linear

multistep methods. An application of Lagrange method to solve the difference equation

(3.20) by assuming y j = wj yields

(1− zβ0)wn − (α1 + zβ1)wn−1 − . . .− (αk + zβk)wn−k = 0.

Divide throughout by wn−k and rearrange we get

(1− zβ0)wk − (α1 + zβ1)wk−1 − . . .− (αk + zβk) = 0,

(wk −α1wk−1 − . . .−αk)− z(β0wk +β1wk−1 + . . .+βk) = 0.

This can be represented in terms of the characteristic polynomials ρ and σ of the linear

multistep methods (2.15)

ρ(w)− zσ(w) = 0. (3.21)

The stability domain is the set of all z ∈ C such that the roots of (3.21) lies inside the unit

disc i.e. |w(z)| ≤ 1 and for the multiple roots, |w(z)| < 1. The boundary locus method is

used to plot the stability domain of linear multistep methods. Locus is a term used for a

set of points which share similar properties. A unit circle can be represented as a locus of

points whose distance from the centre of circle is always one. The procedure to plot the

stability domain is as follows. From (3.21)

z =
ρ(w)
σ(w)

.

Consider all points on the boundary of stability domain

|w(z)|= 1, ⇒ w(z) = eiθ , 0 ≤ θ ≤ 2π.
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Figure 3.9: The stability domain of Adams-Bashforth method (3.22) bounded by the

closed curve.

Therefore the locus of boundary of the stability region is given as

z =
ρ(eiθ )
σ(eiθ )

.

Consider an example of a 3rd order Adams-Bashforth method

yn = yn−1 +h
(

23
12 fn−1 − 4

3 fn−2 + 5
12 fn−3

)
, (3.22)

The characteristic polynomial are

ρ(w) = 1−w,

σ(w) =
23
12

w− 4
3

w2 +
5

12
w3.

The locus of boundary is

z =
1− eiθ

23
12eiθ − 4

3e2iθ + 5
12e3iθ

.

The stability domain of the Adams-Bashforth method (3.22) is a bounded region as

shown in Figure 3.9. The concept of A-stability for multistep method is similar to that of

Runge–Kutta method. A multistep method is A-stable, if all the negative complex plane

is included in the stability domain and therefore explicit multistep methods cannot be

A-stable because of having bounded stability domains. Implicit multistep methods can

however be A-stable but they are restricted to low order methods because of the Dahlquist

second barrier which states that no A-stable multistep method can have order greater than
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two. This is true for all BDF methods and the predictor-corrector pairs. The somewhat

weaker stability in the name of A(α)-stability is also applicable to linear multistep me-

thods just like Runge-Kutta methods.

3.4.1 One-leg methods and G-stability

Dahlquist in [23] proposed to use one-leg methods for the stability analysis of multistep

methods for non-linear differential equations. The general form of a one-leg method is

yn =
k

∑
i=1

αiyn−i +h f
( k

∑
i=0

βixn−i,
k

∑
i=0

βiyn−i

)
, (3.23)

provided
k

∑
i=0

βi = 1. The one-leg methods are a twin of linear multistep methods (3.19),

however, the former has cheaper implementation cost, because linear multistep methods

evaluate the function f at a number of past values while the one-leg counterpart evaluates

function f only once at the linear combination of the past values. It has also been proposed

by Liniger [37], Dahlquist et al [25],[26] and Watanabe and Sheikh [51] to use one-leg

methods as independent numerical methods in their own right.

The linear multistep methods and one-leg methods are related to each other via a trans-

formation. Let ȳ is the sequence of output values obtained from linear multistep methods

(3.19) and let ŷ is the sequence of output values obtained from one-leg methods (3.23),

then the transformation relating the two methods is

x̂n =
k

∑
i=0

βix̄n−i, ŷn =
k

∑
i=0

βiȳn−i.

therefore the stability analysis of linear multistep methods can be interpreted via the sta-

bility analysis of one-leg methods and in fact both methods have same difference equa-

tions for linear autonomous problems and hence have same stability regions. The trape-

zoidal method is a two step method given as

yn = yn−1 + 1
2h
(

f (xn−1,yn−1)+ f (xn,yn)
)
.

The corresponding one-leg method is the famous mid-point method

yn = yn−1 +h f (
xn−1 + xn

2
,
yn−1 + yn

2
).

The nonlinear stability analysis of linear multistep methods is carried out using one-leg

methods as proposed by G. Dahlquist and hence given the name G-stability. Consider and
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autonomous non-linear differential equation

y′ = f (y), (3.24)

such that the function f is non-linear and satisfies the contractive condition

〈 f (y)− f (z),y− z〉 ≤ 0.

where y and z are two solutions of (3.24) with different initial conditions and < . > rep-

resents an inner product. It is desired from the numerical method to produce results

satisfying the contractive condition which in turn implies that two approximately equal

numerical approximations at each step of the numerical method should not drift apart. For

one-step methods, this is easy to visualise as we have seen for Runge–Kutta methods that

the standard norm can be applied given as

‖yn − zn‖ ≤ ‖yn−1 − zn−1‖.

However, for a k−step linear multistep method, k input values are available at step n, so

the norm has to be modified to accommodate the k input values. Suppose

Yn = [yn,yn−1,yn−2, . . . ,yn−k]T .

Given a positive definite symmetric matrix G of dimension k× k, define a G-norm as

‖Yn‖2
G =

k

∑
i=0

k

∑
j=0

gi j‖Yn−i,Yn− j‖. (3.25)

Definition 3.4.1. The one-leg method (3.23) is G-stable, if the two numerical solutions y

and z of the contractive nonlinear differential equation (3.24) do not drift apart under the

G-norm (3.25), i.e.

‖yn − zn‖G < ‖yn−1 − zn−1‖G.

where G is a real symmetric, positive definite matrix.

The stability of linear multistep methods and one-leg methods is related via the following

theorem due to Dahlquist [24].

Theorem 3.4.2. An irreducible linear multistep method is A-stable, if the corresponding

one-leg method is G-stable.
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3.4.2 Symplecticity of multistep methods

Long term behaviour of multistep methods for the solution of Hamiltonian systems is un-

satisfactory in general. Not only multistep methods are non-symplectic, they also suffer

from parasitic solutions. However, there do exist partitioned multistep methods and mul-

tistep methods for second order differential equation systems which exhibit acceptable

behaviour for long time integration of Hamiltonian systems. This however requires the

method to be symmetric and possibly avoiding the double zero of the ρ polynomial on

the unit disc as this would lead to exponential error growth [20].

Kirchgraber in [35] showed that every strictly stable linear multistep method is essentially

equal to a one-step method. The non-symplectic behaviour of multistep methods is due

to non-symplectic nature of their underlying one-step method. Tang proved the following

theorem in [50] which was conjectured earlier by Feng Kang.

Theorem 3.4.3. The underlying one-step method of a consistent linear multistep method

cannot be symplectic.

This negative result extends to one-leg methods and partitioned linear multistep methods.

Only implicit midpoint rule is symplectic because its underlying one-step method is sym-

plectic and the explicit and implicit pair of the Euler method results in symplectic Euler

method.

Following the concept of G-stability of one-leg methods, we can find G-symplectic one-

leg methods with good results for long time integration of Hamiltonian systems. A mul-

tistep method is G-symplectic, if it solves conservative equation (3.10) with invariant

I(y) = yT Qy, such that the numerical solution satisfies

〈Yn,Yn〉G⊗Q = 〈Yn−1,Yn−1〉G⊗Q.

The norm induced by such an inner product is given by equation (3.25). We have the

following theorem due to Eirola and Sanz-Serna [28]

Theorem 3.4.4. Every irreducible symmetric one-leg method is G-symplectic for some

matrix G.

3.4.3 Parasitic solutions and backward error analysis

All multistep methods suffer from parasitic solutions, i.e. those numerical solutions which

accompany the numerical approximation to the exact solution. The multistep methods
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require initial approximations to start the procedure and if the perturbations in the initial

approximations are not damped out efficiently, the parasitic solutions overtake the actual

solution. For some problems, the parasitic solutions decrease as time goes on and dies

out and does not affect the numerical solution. However, for other problems, the parasitic

solutions increase and become large enough to destroy the actual solution and causes

numerical instability. We study the parasitic behaviour of leapfrog method which can be

written as

yn −2h f (yn−1)− yn−2 = 0.

Let us try to solve y′ = λy. This would yield for z = hλ

yn−2z(yn−1)− yn−2 = 0.

The characteristic equation is

w2 −2zw−1 = 0.

This would provide two roots

w1 = z+
√

z2 +1,

w2 = z−
√

z2 +1.

The general solution is

yn
1 = Awn

1 +Bwn
2

where the constants A and B can be found from the initial conditions. The root w1 is

approximating the actual solution which is an exponential function, while the root w2

is the parasitic solution. If |Re(z)| > 0 then w1 dominates w2 and the parasitic solution

dies out eventually. However if |Re(z)| < 0, then the parasitic solution w2 dominates

the approximation to the actual solution w1 and destroys the solution altogether. This is

sometimes referred to as weak instability.

Dahlquist in [21] found parasitic growth parameter in connection with stability of the

multistep methods which is given as

μp =
σ(wp)

wpρ ′(wp)
. (3.26)

where μp is the parasitic growth parameter for the parasitic root wp of the ρ(w) poly-

nomial of the linear multistep method and σ(w) is its other characteristic polynomial.

Hairer et al. in [30] has used the backward error analysis to obtain the same parasitic

growth parameter.

69



In numerical analysis, sometimes backward error analysis gives better understanding than

forward error analysis. The forward error analysis is concerned with the error between

exact solution and the approximate solution of an ordinary differential equation. The

backward error analysis is related to the qualitative behaviour of a numerical method and

was introduced by Wilkinson [52]. Thus for a symplectic method to solve a Hamiltonian

system, the numerical solution is an exact solution of a nearby Hamiltonian system known

as the modified equation. The backward error analysis is concerned with finding that

modified equation. The symplectic integrator exactly conserves the total energy of the

modified Hamiltonian system. Consider the Hamiltonian system (1.8)

y′ = J−1∇H.

Let us solve the Hamiltonian system with a symplectic integrator φh(y). According to the

theory of modified equations φh(y) is an exact solution of a modified system which is also

a Hamiltonian system [3] and is given as

y′ = J−1(∇H +h∇H2 +h2∇H3 + · · ·). (3.27)

where H2,H3, · · · can be found by comparing the Taylor series expansion of the solu-

tion of (3.27) with the symplectic numerical method being used [30]. The analysis is

important not only to find the modified equation but because a symplectic integrator can-

not simultaneously conserve the exact energy of a Hamiltonian system and symplecticity

[46]. Symplecticity is a characteristic property of a Hamiltonian system which should be

conserved exactly and by doing so, the symplectic integrator conserve energy of a nearby

Hamiltonian system.

Coming back to the role of parasitic growth parameter in multistep methods, Hairer et

al. in [30] has considered the parasitic modified equations. The general solution of a

multistep method can be written as

yn = y(nh)+ ∑
p∈I∗

wn
pzp(nh). (3.28)

where y(x) and zp(x) are smooth solutions representing the actual solution and the para-

sitic solutions respectively. I∗ is the index set of all parasitic roots wp = {w2,w3 · · · ,wk}
of the ρ(w) polynomial except the principal root, w1 = 1. The general solution is obtained

by truncating the modified equations for every solution of a multistep method and it was

found that the truncated modified equation related to parasitic solution z p is

z′p = μp f ′(y)zp.

where μp is the parasitic growth parameter given in (3.26). If the parasitic growth pa-

rameter is zero then the parasitic solution will not have any effect on the actual solution.

There exist long time bounds to limit the effect of the parasitic growth parameter.
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3.5 Stability of general linear methods: linear case

The stability analysis of general linear methods follows the same direction as stability

analysis of Runge-Kutta methods. The linear stability analysis for stiff ordinary differen-

tial equations and non-linear stability analysis for non-autonomous and dissipative non-

linear ordinary differential equations is studied here.

Following Dahlquist [22], a general linear method (2.16) is applied to the linear test equa-

tion

y′(x) = λy(x),

The stages become

Y = zAY +Uy[n−1],

= (I− zA)−1Uy[n−1].

where z = hλ , and h is the stepsize. The output approximation is

y[n] = zBY +Vy[n−1],

= zB(I− zA)−1Uy[n−1] +Vy[n−1],

= (V + zB(I− zA)−1U)y[n−1],

= M(z)y[n−1].

where M(z) is an r× r matrix valued function representing stability matrix of the general

linear method and is given as

M(z) = V + zB(I− zA)−1U,

Definition 3.5.1. The stability function of a general linear method is the polynomial

φ(w,z) = det(wI −M(z)),

Definition 3.5.2. A general linear method has a stability order p̃, if

φ(exp(z),z) = O(zp̃+1).

Definition 3.5.3. The stability region of a general linear method is the set of all z in the

complex plane such that
∞

sup
n=1

‖M(z)n‖ < ∞.

This means that the eigenvalues of M(z) satisfy |w| ≤ 1 when w has unit multiplicity and

|w| < 1 when w has multiplicity greater than 1. The boundary locus method is used to

plot the stability region of a general linear methods along the following lines.
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• Solve φ(w,z) = 0 to find z = g(w).

• Take values of w on the unit circle, i.e. w = exp(iθ) for θ ∈ [0,2π].

• The resulting z will provide the boundary of the stability region.

When a general linear method is applied to solve stiff ordinary differential equations,

there is a severe restriction on the stepsize either due to stability considerations or due to

accuracy concerns. To make sure the stability is not restricting the stepsize, the general

linear method has to be A-stable.

Definition 3.5.4. A general linear method is A-stable, if the stability matrix M(z) is power

bounded for all z ∈ C−.

If in addition, the general linear method is to be stable at infinity, then it should be L-

stable.

Definition 3.5.5. A general linear method is L-stable, if it is A-stable and

ρ(M(∞)) = 0.

Definition 3.5.6. A general linear method is strictly stable, if all eigenvalues of the matrix

V lie inside the unit disc except one which is on the boundary.

The Dahlquist test equation (3.1) is first generalised to include non-autonomous ordinary

differential equations of the form

y′(x) = λ (x)y(x).

If a general linear method is applied to solve this ODE, the outcome is

Y = (I−AZ)−1Uy[n−1],

y[n] = (V +BZ(I−AZ)−1U)y[n−1].

where Z = diag(z1,z2, · · · ,zs) and zi = hλ (xn−1 + cih), i = 1, · · · ,s. The stability matrix

is given as

M(Z) = V +BZ(I −AZ)−1U.

Definition 3.5.7. A general linear method is AN-stable, if there exist an inner product

norm ‖.‖ such that M(Z) is power bounded i.e.

supn‖M(Z)n‖ < C, ∀zi ∈ C
−.

72



3.6 Stability of general linear methods: non-linear case

The Dahlquist test equation (3.1) is further generalised to include non-linear ordinary

differential equations whose solution is dissipative.

y′(x) = f (y(x)),

such that

〈 f (y),y〉 ≤ 0. (3.29)

where f (y) is a non-linear function and the equation (3.29) implies that ‖y(x)‖ is a non-

increasing function. Given a problem of this nature and a general linear method to solve

it, the computed solution has the non-increasing nature if,

‖y[n]‖G < ‖y[n−1]‖G.

Here a G-norm is used where G is an r× r matrix. For an s-stage, r-step general linear

method, r input values are available at each step, so instead of a standard Euclidean norm,

a G-norm is used given as

‖y[n]‖2
G = 〈y[n],y[n]〉G,

such that

〈y,z〉G =
r

∑
i, j=1

gi j〈yi,z j〉.

Recall that a general linear method is given as

Y = hA f (Y )+Uy[n−1],

y[n] = hB f (Y )+Vy[n−1],

where the super vector Y = [Y1, · · · ,Ys] represents s-stages and the super vector y[n] =
[y[n]

1 , · · · ,y[n]
r ] represents r-steps. The G-norm defined above is for r-steps, i.e. stable

behaviour of a general linear method is guaranteed if

‖y[n]‖G < ‖y[n−1]‖G.

For the s-stages Y , we define a D-norm such that

〈U,V〉 =
s

∑
i=1

di〈Ui,Vi〉.

where D = diag(d1, · · · ,ds) is an s×s is a positive semi-definite diagonal matrix. We have

the following theorem
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Theorem 3.6.1. For a general linear method (A,U,B,V), to solve dissipative problem

(3.29), a contractive numerical solution is possible under G norm such that

‖y[n]‖2
G < ‖y[n−1]‖2

G,

provided the matrix given below is positive semi-definite.[
DA+AT D−BT GB DU −BT GV

UT D−V T GB G−V T GV

]
. (3.30)

The proof is given in [5].

3.7 Symplecticity of general linear methods

General linear methods is a bigger class of methods comprising of Runge–Kutta methods

and linear multistep methods as special cases. Because of their multivalue nature, they

cannot be symplectic in general, in line with linear multistep methods. The underlying

one-step method can shed light on symplectic behaviour of general linear methods.

Following the work of Kirchgraber [35], Stoffer showed in [47] that every strictly stable

general linear method is essentially conjugate to a one-step method of the same order.

Thus, to proceed further we have to restrict ourselves to the strictly stable general linear

methods such that the matrix V has 1 as simple eigenvalue and all other eigenvalues lie

inside the unit disc. A transformation T for the general linear method M in (2.17), is

therefore required to separate the eigenvalues of matrix V and we consider

T−1MT =

[
A UT

T−1B T−1VT

]
, (3.31)

where the transformation is such that

T−1VT =

[
1 0

0 V ∗

]
, (3.32)

with spectral radius satisfying ρ(V∗) < 1. The transformation of the output values at step

n is

z[n] = T−1y[n], (3.33)

such that the first component of the transformed value z[n] still approximates the exact

solution. Considering the matrix V to have the special structure of (3.32), we have the

following theorem from [47]
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Theorem 3.7.1. Let M be a strictly stable general linear method of order p. Then there

exist a starting method S̄ and a one-step method φ , such that

• M is of order p relative to S̄.

• φ is of order p.

• φ is conjugate to M.

The one-step method φ is known as the underlying one-step method and the symplectic

behaviour of the general linear method hinges on the fact that the underlying one-step

method is symplectic. However, it has been proved in [16] that it is not possible for a

general linear method to be symplectic unless it is equivalent to a Runge–Kutta method.

The negative result of the non-existence of a truly symplectic general linear method is in

line with the behaviour of linear multistep methods. Likewise, it is possible to study the

symplectic behaviour of general linear methods under G-norm given in (3.25). The first

such method was introduced by Butcher [12]. The idea behind the construction of such

methods was taken from the idea of symplectic behaviour of Runge–Kutta methods. For

Runge-Kutta methods, the matrix (3.9) which appears in its non-linear stability analysis,

if equals to zero, results in the method being symplectic. For general linear methods,

the matrix in (3.30) being actually zero results in the general linear method to be G-

symplectic. In fact, general linear methods are a generalisation of two different classes of

methods, namely the Runge–Kutta methods and the linear multistep methods and justifi-

ably the G-symplecticity of general linear methods inherit the corresponding attributes of

both classes of methods. A detailed analysis of G-symplectic behaviour of general linear

methods is the subject of Chapter 4.
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Chapter 4

General linear methods for ordinary

differential equations with invariants

General linear methods are multivalue multistage methods for the solution of ordinary

differential equations. A detailed discussion concerning the structure and properties of

these methods is given in Chapter 2 and Chapter 3. However in this chapter, we are

concerned with the ability of general linear methods to solve Hamiltonian systems so

as not only to get accurate approximations to their exact solution, but also to achieve

the same qualitative behaviour for the approximate solution as possessed by the exact

solution. In general we are interested to know when a general linear method can mimic

the dynamics of a differential equation system with quadratic invariants over long time.

In particular, this means adhering to symplectic behaviour for Hamiltonian systems.

There are several desirable attributes, a numerical method, in this case a general linear

method, should have. Symplecticity and time reversal symmetry play an important role in

the choice of the numerical method for Hamiltonian systems. The Hamiltonian systems

are reversible and have symplectic behaviour and it is desirable by the numerical method

to preserve these properties. Another important factor to be considered when designing

a general linear method for the solution of Hamiltonian systems is to avoid the parasitic

solution growth which is typical of multivalue methods.

4.1 G-symplectic general linear methods

An s-stage, r-value irreducible general linear method, with r > 1, cannot preserve the

quadratic invariants in general over long time intervals [16]. However we would like
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to know how close we can get to conserving them. For r = 1, a general linear method

reduces to a Runge–Kutta method. Such a method is symplectic provided its coefficients

satisfy the symplectic condition (3.14). We would like to know if a similar criterion is

available for a general linear method. Consider the method

Y = hA f (Y )+Uy[n−1],

y[n] = hB f (Y )+Vy[n−1]. (4.1)

To study this method for quadratic invariants, the inner product has to be modified to

accommodate r-input values y[n−1], and r-output values y[n]. We introduce a G-norm

similar to that introduced for non-linear stability of general linear methods [4]. Here we

consider a symmetric r× r matrix G with elements gi j, and define the inner product

〈y,z〉G =
r

∑
i, j=1

gi j〈yi,z j〉,

where

y =

⎡⎢⎣ y1
...

yr

⎤⎥⎦ , z =

⎡⎢⎣ z1
...

zr

⎤⎥⎦ .

The G-norm introduced by such an inner product is

‖y‖2
G = 〈y,y〉G.

We would like to know if there exist a G matrix for which this property holds. In addition

to G, we introduce a diagonal s× s matrix D = di and ask if these can be chosen such that

〈y[n],y[n]〉G = 〈y[n−1],y[n−1]〉G +2h
s

∑
i=1

di〈Yi,Fi〉,

where Fi = f (Yi). If the general linear method is to solve a conservative problem having

the property

〈y, f (y)〉 = 0,

this means that

〈y[n],y[n]〉G = 〈y[n−1],y[n−1]〉G. (4.2)

because the term 2h
s

∑
i=1

di〈Yi,Fi〉 is zero. Methods satisfying (4.2) are called G-symplectic

general linear methods.
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Theorem 4.1.1. A general linear method (A,U,B,V) is G-symplectic, if there exist a

symmetric r× r matrix G and a diagonal s× s matrix D such that

G = V T GV,

DU = BT GV,

DA+AT D = BT GB.

Proof : Consider the relation

〈y[n],y[n]〉G −〈y[n−1],y[n−1]〉G−2h
s

∑
i=1

di〈Yi,Fi〉

Using the general linear method (4.1)

=
r

∑
i, j=1

gi j〈BhFi +Vyn−1
i ,BhFj +Vyn−1

j 〉

−
r

∑
i, j=1

gi j〈y[n−1]
i ,y[n−1]

j 〉

−2h
s

∑
i=1

di〈AhFi +Uy[n−1]
i ,Fi〉.

Expanding the inner product and combining like terms yield

=− [G−V T GV ]〈y[n−1]
i ,y[n−1]

j 〉
−2[DU −BT GV ]〈y[n−1]

i ,hFj〉
− [DA+AT D−BT GB]〈hFi,hFj〉,

and hence, for problems which satisfy

〈y, f (y)〉= 0,

we get

〈y[n]y[n]〉G = 〈y[n−1],y[n−1]〉G,

provided

G = V T GV,

DU = BT GV,

DA+AT D = BT GB.
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4.1.1 Examples

Example 1 : Consider the following general linear method⎡⎢⎢⎢⎢⎢⎣
Y

y[n]
1

y[n]
2

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
0 1 0

2 0 1

0 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
h f (Y )

y[n−1]
1

y[n−1]
2

⎤⎥⎥⎥⎥⎥⎦ . (4.3)

This is the leap-frog method written in general linear formulation. Although we cannot

hope to have true conservation of quadratic invariants, i.e. we cannot get

〈y[n]
1 ,y[n]

1 〉G = 〈y[n−1]
1 ,y[n−1]

1 〉,
〈y[n]

2 ,y[n]
2 〉G = 〈y[n−1]

2 ,y[n−1]
2 〉,

we can preserve the quadratic invariants under a G-norm and by making use of Theorem

4.1.1 we can find the matrices G and D as

G =

[
0 1

1 0

]
, D =

[
2
]
.

We get

〈y[n],y[n]〉G = 〈y[n−1],y[n−1]〉,
2

∑
i, j=1

gi j〈y[n]
i ,y[n]

j 〉 =
2

∑
i, j=1

gi j〈y[n−1]
i ,y[n−1]

j 〉,

〈y[n]
1 ,y[n]

2 〉 = 〈y[n−1]
1 ,y[n−1]

2 〉.

Example 2 : Another example of a G-symplectic general linear method, which was pre-

sented by Butcher in [12] has coefficient matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3+
√

3
6 0 1 3+2

√
3

3

−
√

3
3

3+
√

3
6 1 −3+2

√
3

3

1
2

1
2 1 0

−1
2

1
2 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.4)

This method satisfies the conditions of Theorem 4.1.1 with

G =

[
1 0

0 3+2
√

3
3

]
, D =

[
1
2 0

0 1
2

]
.

Associated with this method is a similar method in which the sign of
√

3 is changed and

we will present this method in section 4.3.
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Figure 4.1: The error in energy of the simple pendulum problem with initial value of

q = 1.2.

4.1.2 Experiment

We recall from Chapter 1, the equations of motion of the simple pendulum

p′ = −sin(q), q′ = p.

The total energy H is a conserved quantity and is given as

H =
p2

2
− cos(q).

The general linear method (4.4) has been applied to solve the simple pendulum problem.

The initial values are chosen to be p = 0, q = 1.2. The error in energy is plotted for

100,000 steps with stepsize 0.01 and is given in the Figure 4.1. The results are completely

consistent with our belief that the method is G-symplectic since it is clearly conserving

the total energy of the simple pendulum problem with very small errors. However if we

take the initial value of q to be 2.3, we get the error in energy of the simple pendulum

as plotted in the Figure 4.2. In the second case we have taken only 10,000 steps with

the same stepsize of 0.01 but obtain large error in energy. Although the method (4.4) is

G-symplectic and is supposed to conserve the energy for all initial values, we see a large

energy error and this is due to the corruption by the parasitic solutions.
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Figure 4.2: The error in energy of the simple pendulum problem with initial value of

q = 2.3.

4.2 Parasitic solutions

It is typical of multivalue methods to suffer from parasitic solutions. Parasitic solutions are

those numerical solutions which are obtained in addition to the numerical approximation

of the exact solution. We have already encountered them in section 3.4.3 in relation to

multistep methods. An analysis is done to study the parasitic solutions using general

linear methods having structure

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

Y2

y[n]
1

y[n]
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a11 u11 u12

a21 a22 u21 u22

b11 b12 1 0

b21 b22 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hF1

hF2

y[n−1]
1

y[n−1]
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where Fi = f (Yi). Note that V has eigenvalues 1 and -1. The stages and output values are

Yi = h
2

∑
j=1

ai jFj +ui1y[n−1]
1 +ui2y[n−1]

2 , i = 1,2,

y[n]
1 = h

2

∑
i=1

b1iFi + y[n−1]
1 ,

y[n]
2 = h

2

∑
i=1

b2iFi− y[n−1]
2 .

The first component y[n]
1 approximates the exact solution and the second component y[n]

2

approximates a related quantity e.g. scaled second derivative in the case of (4.4) . The

second component y[n]
2 is the parasitic solution. We perturb the second component and

study the rate of growth of the parasitic solution at the start of step n

y[n−1]
2 −→ y[n−1]

2 +(−1)n−1zn−1.

This perturbation will affect the stages Yi approximately as follows

Yi +δYi = h
2

∑
j=1

ai jFj +ui1y[n−1]
1 +ui2(y

[n−1]
2 +(−1)n−1zn−1),

⇒ δYi = (−1)n−1ui2zn−1.

The stage derivatives Fi will be perturbed approximately as

Fi +δFi = f (Yi +δYi)

= f (Yi)+δYi
∂ f
∂y

,

⇒ δFi = δYi
∂ f
∂y

= (−1)n−1 ∂ f
∂y

ui2zn−1.

Combining these equations, we see that the perturbation in the second output value is

y[n]
2 +(−1)nzn = h

2

∑
i=1

b2i(Fi +δFi)− (y[n−1]
2 +(−1)n−1zn−1)

= h
2

∑
i=1

b2iFi − y[n−1]
2 +(−1)n−1h

2

∑
i=1

∂ f
∂y

b2iui2zn−1 − (−1)n−1zn−1,

⇒ zn =
(
1−h

2

∑
i=1

∂ f
∂y

b2iui2
)
zn−1.
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This represents Euler method solving the differential equation

z′ = μ
∂ f
∂y

z, (4.5)

where μ =−
2

∑
i=1

b2iui2 is responsible for the growth of parasitic solution and hence termed

as parasitic growth parameter. The term μ can be found from the matrix product

BU =

[
1 0

0 −μ

]
.

It appears that μ = 0 is required to have parasitic free solutions for particular problems.

We will consider parasitic growth parameter for the methods in which r ≥ 3 in section

4.5.

4.3 Construction of two stages, two input value G-symplectic

methods

We discuss the construction of a two stage, two input value G-symplectic general linear

method which was presented by Butcher in [12] and is given in (4.4). We will observe

that the parasitic growth is intrinsic to such methods. We will construct parasitic free

methods with s,r > 2 values later in this chapter. The general linear method is desired to

be G-symplectic and symmetric having the following structure

⎡⎢⎣ A U

B V

⎤⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 1 u12

a21 a22 1 u22

b11 b12 v11 v12

b21 b22 v21 v22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with,

G =

[
g11 g12

g21 g22

]
, D =

[
d1 0

0 d2

]
.

The matrix A is lower triangular for cheap implementation. The structure of the matrix

U is such that the first column is a vector of ones because during the calculation of the

stages, the first column of the matrix U is multiplied with the input value representing
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the actual solution and we want stages to at least approximate the actual solution exactly.

Consider the G-symplectic condition

G = V T GV,[
g11 g12

g21 g22

]
=

[
v11 v12

v21 v22

][
g11 g12

g21 g22

][
v11 v12

v21 v22

]
,

g11 = v2
11g11 +2v21g12v11 + v2

21g22,

g12 = v11g11v12 + v12g21v21 + v11g12v22 + v21g22v22,

g22 = v2
12g11 +2v12g12v22 + v2

22g22.

By comparing both sides of the equations we get

G =

[
1 0

0 g

]
, V =

[
1 0

0 v

]
.

where v can either be +1 or −1. Let us consider the case where

V =

[
1 0

0 −1

]
.

Since we are trying to construct methods which are symmetric, we will see how the sym-

metric properties of a method shape the stages and output values.

Y1 = ha11F1 + y[0]
1 +u12y[0]

2 ,

Y2 = ha21F1 +ha22F2 + y[0]
1 +u22y[0]

2 ,

y[1]
1 = hb11F1 +hb12F2 + y[0]

1 ,

y[1]
2 = hb21F1 +hb22F2 − y[0]

2 .

Here the first stage Y1 is calculated at c1 and the second stage Y2 is calculated at c2. We

refer to the c values as stage abscissas. Now if we take a step backward with stepsize −h,

then the first stage Y1 will be calculated at c2 and second stage Y2 will be calculated at c1.

The input values will now be [y[1]
1 ,y[1]

2 ] and the output is

y[0]
1 = −hb11F2 −hb12F1 + y[1]

1 ,

y[0]
2 = −hb21F2 −hb22F1 − y[1]

2 .

This implies,

y[1]
1 = +hb11F2 +hb12F1 + y[0]

1 ,

y[1]
2 = −hb21F2 −hb22F1 − y[0]

2 .
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For a method to be symmetric, the output of the adjoint method with stepsize −h should

be equal to the input of the actual method with stepsize h and comparing them yields

b11 = b12, b22 = −b21.

Now consider the G-symplectic condition

BT GV = DU,[
b11 −gb21

b11 gb21

]
=

[
d1 d1u12

d2 d2u22

]
.

By comparing we get,

D =

⎡⎢⎣ b11 0

0 b11

⎤⎥⎦ , U =

⎡⎢⎣ 1 −gb21
b11

1 gb21
b11

⎤⎥⎦ .

Let x = b21/b11, then the structure of the general linear matrix becomes

[
A U

B V

]
=

⎡⎢⎢⎢⎢⎣
a11 0 1 −gx

a21 a22 1 gx

b11 b11 1 0

b11x −b11x 0 −1

⎤⎥⎥⎥⎥⎦ ,

with,

G =

[
1 0

0 g

]
, D =

[
b11 0

0 b11

]
.

Now consider the matrix product

BU =

[
b11 b11

b11x −b11x

][
1 −gx

1 gx

]

=

[
2b11 0

0 −2gb11x2

]
.

To avoid parasitism we must have

−2gb11x2 = 0.

Since, g �= 0, b11 �= 0, so the only option is x2 = 0, which is not possible because this

makes the second input component redundant and the general linear method reduces to
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a Runge–Kutta method. Hence it is not possible to have parasitic free general linear

methods with two stages and two input values. The matrix B can be written as

B =

[
b11 b11

b11x −b11x

]

=

[
1 1

x −x

][
b11 0

0 b11

]
= XD.

Now consider the G-symplectic condition

DA+AT D = BT GB,[
2a11 a21

a21 2a22

]
= XT GXD,[

2a11 a21

a21 2a22

]
=

[
1 x

1 −x

][
1 0

0 g

][
1 1

x −x

][
b11 0

0 b11

]

=

[
b11(1+gx2) b11(1−gx2)
b11(1−gx2) b11(1+gx2)

]
.

This implies,

a11 =
b11

2
(1+gx2),

a21 = b11(1−gx2),

a22 = a11.

We are trying to construct a method of order 4 and the method satisfies the relative order

conditions. The first order condition is

b11 +b11 = 1,

⇒ b11 = 1
2 .

The second order condition is

b11(c1 + c2) = 1
2 ,

⇒ c1 = 1− c2.

The third order condition is

b11(c2
1 + c2

2) = 1
3 ,

c2
1 − c1 + 1

3 = 0,

⇒ c1 = 3±√
3

6 .
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Let us take c1 = 3+
√

3
6 . Since a11 = c1, we get,

gx2 = 3+2
√

3
3 .

For convenience we choose x = 1, so that

b11 = b21 = 1
2 .

The general linear method is

P :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3+
√

3
6 0 1 −3+2

√
3

3

−
√

3
3

3+
√

3
6 1 3+2

√
3

3

1
2

1
2 1 0

1
2 −1

2 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.6)

G =

[
1 0

0 3+2
√

3
3

]
, D =

[
1
2 0

0 1
2

]
.

The general linear method (4.6) suffers from parasitic solution. The parasitic growth

parameter, which is the (2,2) component of the matrix product BU is given as

μ1 = 1+ 2√
3
.

The general linear method (4.6) requires a starting method and one such starting method

was presented by Butcher in [11] to ensure that the method has order 4. The starting

method is ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3+
√

3
6 0 1

−3+
√

3
3

3+
√

3
6 1

0 0 1
√

3−1
8 −

√
3−1
8 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.7)

If we take c1 = 3−√
3

6 , we get the following method

N :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3−√
3

6 0 1 −3−2
√

3
3

√
3

3
3−√

3
6 1 3−2

√
3

3

1
2

1
2 1 0

1
2 −1

2 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.8)
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G =

[
1 0

0 3−2
√

3
3

]
, D =

[
1
2 0

0 1
2

]
.

The general linear method (4.8) also suffers from parasitic solution and the parasitic

growth parameter is given as

μ2 = 1− 2√
3
.

The starting method for the general linear method (4.8) is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3−√
3

6 0 1

−3−√
3

3
3−√

3
6 1

0 0 1

−
√

3+1
8

√
3+1
8 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.9)

4.4 Avoiding parasitism via composition

The parasitic corruption of the numerical solution by the general linear methods can be

controlled by the composition of general linear methods. We consider two G-symplectic

general linear methods P and N given by (4.6) and (4.8) with a slight change in method

P by changing the signs in the second row of matrix B and second column of matrix U .

This is done to ensure that the starting method for both of these methods is same which is

the method (4.9).

The general linear methods P and N are implemented in a sequence in such a way that

the cumulative value of their parasitic growth parameters does not lie outside the interval

[− 2√
3
, 2√

3
]. This is achievable since the parasitic growth parameters of the two different

general linear methods add up when the two methods are used in composition. This fact

was pointed out in [32]. However it depends on the magnitude of the parasitic growth

parameters as to which sequence of methods is used. For the methods (4.6) and (4.8), a

sequence suggested by Butcher is very effective,

N7 P N14 P N14 P N14 P N14 P N14 P N14 P N13 P · · ·

This sequence is shown in Figure 4.3. It simply says that we start the numerical integra-

tion by first taking seven steps of method N. In doing so, the parasitic growth parameter

μ2 of method N adds up to a total amount which is slightly below -1. Afterwards, we take

one step of method P and the parasitic growth parameter μ1 will add to already accumu-

lated values of μ2. The sequence is maintained such that the parasitic growth parameter
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Figure 4.3: Composition of methods P and N.

does not go out of the interval [− 2√
3
, 2√

3
]. Note that at step number 112, we have used

method P instead of N to compensate for the fact that the ratio of |μ1| and |μ2| is slightly

less than 14. The pendulum problem is solved with this sequence of methods and with

the initial conditions of p = 0 and q = 2.3 to study the effect of parasitism. However, the

effect of parasitism is controlled by the sequence of methods and the error in the energy

of the simple pendulum problem is presented in Figure 4.4. Here we have taken 100,000

steps with stepsize 0.01.
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Figure 4.4: The error in energy of the simple pendulum problem with initial values of

p = 0, q = 2.3.
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4.5 Parasitic free G-symplectic methods

Although it is not possible for two stage, two input value general linear methods to avoid

parasitism, it is possible to construct methods with more stages and input values, which

do not suffer from parasitic solutions.

4.5.1 Four stages, three input value method

A G-symplectic general linear method is constructed with four stages (s = 4) and three

input values (r = 3). This method is further required to be symmetric and having no

parasitism. We will assume that the structure of the method is

⎡⎢⎣ A U

B V

⎤⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 0 0 1 u12 u13

a21 a22 0 0 1 u22 u23

a31 a32 a33 0 1 u32 u33

a41 a42 a43 a44 1 u42 u43

b11 b12 b13 b14 1 0 0

b21 b22 b23 b24 0 z 0

b̄21 b̄22 b̄23 b̄24 0 0 z̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with,

G =

⎡⎢⎣ 1 0 0

0 g 0

0 0 g

⎤⎥⎦ , D =

⎡⎢⎢⎢⎣
d1 0 0 0

0 d2 0 0

0 0 d3 0

0 0 0 d4

⎤⎥⎥⎥⎦ .

Note that A has been chosen to be lower triangular for cheap implementation. The struc-

ture of the matrix U is such that the first column is a vector of ones because during the

calculation of the stages, the first column of the matrix U is multiplied with the input

value representing the actual solution and we want stages to at least approximate the ac-

tual solution exactly. This is to make sure that for the pre-consistency vector u, we have

Uu = 1, Vu = u.

The second and third row of the matrix B are complex conjugates, so does the second and

third row of the matrix V . The complex numbers z and z̄ in the matrix V are chosen such
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that |z| = 1, but not +1 or −1 and we have taken them to be the cube roots of unity

z = e
2πi
3 , z̄ = e

−2πi
3 .

Complex numbers are used here keeping in mind that they can easily be converted to real

numbers via a transformation aiming at a careful construction of U . Since we are con-

structing a symmetric method, to see the effects of time reversal symmetry, we consider

the general linear method in the form

Y1 = ha11F1 + y[0]
1 +u12y[0]

2 +u13y[0]
3 ,

Y2 = ha21F1 +ha22F2 + y[0]
1 +u22y[0]

2 +u23y[0]
3 ,

Y3 = ha31F1 +ha32F2 +ha33F3 + y[0]
1 +u32y[0]

2 +u33y[0]
3 ,

Y4 = ha41F1 +ha42F2 +ha43F3 +ha44F4 + y[0]
1 +u42y[0]

2 +u43y[0]
3 ,

y[1]
1 = hb11F1 +hb12F2 +hb13F3 +hb14F4 + y[0]

1 ,

y[1]
2 = hb21F1 +hb22F2 +hb23F3 +hb24F4 + zy[0]

2 ,

y[1]
3 = hb̄21F1 +hb̄22F2 +hb̄23F3 +hb̄24F4 + z̄y[0]

3 .

where, Fi = f (Yi). If the method has time reversal symmetry, then we can take a step

backward with stepsize −h and we should get the output values same as the input values

provided to the original method with step size h. The stages are such that⎡⎢⎢⎢⎣
Ỹ1

Ỹ2

Ỹ3

Ỹ4

⎤⎥⎥⎥⎦= P

⎡⎢⎢⎢⎣
Y1

Y2

Y3

Y4

⎤⎥⎥⎥⎦ ,

where

P =

⎡⎢⎢⎢⎣
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎤⎥⎥⎥⎦
is an s× s permutation matrix as given in (2.3). The first stage of the adjoint method with

stepsize −h is

Ỹ1 = −ha11F4 + y[1]
1 +u12y[1]

2 +u13y[1]
3

= h(b11 +u12b21 +u13b31)F1 +h(b12 +u12b22 +u13b32)F2

+h(b13 +u12b23 +u13b33)F3 +h(−a11 +b14 +u12b24 +u13b34)F4

+ y[0]
1 +u12zy[0]

2 +u13z̄y[0]
3 .
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Similarly the fourth stage of the adjoint method is

Ỹ4 = −ha41F4 −ha42F3 −ha43F2 −ha44F1 + y[1]
1 +u42y[1]

2 +u43y[1]
3

= h(−a44 +b11 +u42b21 +u43b31)F1 +h(−a43 +b12 +u42b22 +u43b32)F2

+h(−a42 +b13 +u42b23 +u43b33)F3 +h(−a41 +b14 +u42b24 +u43b34)F4

+y[0]
1 +u42zy[0]

2 +u43z̄y[0]
3 .

Comparing Y1 with Ỹ4 and Y4 with Ỹ1, we get

u43 = −u13, u42 = −u12. (4.10)

Similarly it can be shown that

u33 = −u23, u32 = −u22. (4.11)

This is possible only if the method satisfies all the conditions of time reversal symmetry

given in (2.18). The G-symplectic conditions for a general linear method with complex

entries is

G = V ∗GV,

DU = B∗GV,

DA+A∗D = B∗GB.

where ∗ represents conjugate transpose. Now consider the condition

B∗GV = DU,⎡⎢⎢⎢⎣
b11 gzb̄21 gz̄b21

b12 gzb̄22 gz̄b22

b12 gzb̄23 gz̄b23

b11 gzb̄24 gz̄b24

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
d1 d1u12 d1u13

d2 d2u22 d2u23

d3 −d3u22 −d3u23

d4 −d4u12 −d3u13

⎤⎥⎥⎥⎦ .

Comparing the terms in the two matrices and using the equations (4.10) and (4.11), we

get the following structure of the matrices D, B and U .

D =

⎡⎢⎢⎢⎣
b11 0 0 0

0 b12 0 0

0 0 b12 0

0 0 0 b11

⎤⎥⎥⎥⎦ ,

B =

⎡⎢⎣ b11 b12 b12 b11

b21 b22 −b22 −b21

b̄21 b̄22 −b̄22 −b̄21

⎤⎥⎦ .
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Let

B1 =
b21

b11
,

B2 =
b22

b12
.

This implies,

B =

⎡⎢⎣ b11 b12 b12 b11

b11B1 b12B2 −b12B2 −b11B1

b̄11B̄1 b̄12B̄2 −b̄12B̄2 −b̄11B̄1

⎤⎥⎦

=

⎡⎢⎣ 1 1 1 1

B1 B2 −B2 −B1

B̄1 B̄2 −B̄2 −B̄1

⎤⎥⎦
⎡⎢⎢⎢⎣

b11 0 0 0

0 b12 0 0

0 0 b12 0

0 0 0 b11

⎤⎥⎥⎥⎦
= XD,

and

U =

⎡⎢⎢⎢⎣
1 gzB̄1 gz̄B1

1 gzB̄2 gz̄B2

1 −gzB̄2 −gz̄B2

1 −gzB̄1 −gz̄B1

⎤⎥⎥⎥⎦ .

Now consider the condition

DA+A∗D = B∗GB.

The lower triangular part L(.) of the matrix on the left hand side is equal to the lower

triangular part of the matrix on the right hand side.

L(DA+A∗D) = L(B∗GB),

where L(.) is a linear operator and

L(DA+A∗D) =

⎡⎢⎢⎢⎣
2a11b11 0 0 0

a21b12 2a22b12 0 0

a31b12 a32b12 2a33b12 0

a41b11 a42b11 a43b11 2a44b11

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
b11 0 0 0

0 b12 0 0

0 0 b12 0

0 0 0 b11

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

2a11 0 0 0

a21 2a22 0 0

a31 a32 2a33 0

a41 a42 a43 2a44

⎤⎥⎥⎥⎦
= DY.
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Thus

DY = L(B∗GB) = L(DX∗GXD),

Y = L(X∗GXD). (4.12)

From the relation (4.12) we get

a11 =
b11

2
(1+2g|B1|2),

a21 = b11(1+2gRe(B1B̄2)),

a22 =
b12

2
(1+2g|B2|2),

a31 = b11(1−2gRe(B1B̄2)),

a32 = b12(1−2g|B2|2),
a33 = a22,

a41 = b11(1−2g|B1|2),
a42 = b12(1−2gRe(B1B̄2),

a43 = b12(1+2gRe(B1B̄2),

a44 = a11.

where Re(.) represents the real part of a complex number. Due to symmetry

c3 = 1− c2, c4 = 1− c1.

Let us suppose that c1 = 0 and B1 = 1. This implies

a11 = 0,

⇒ g = −1
2 .

Moreover

a11 +a22 = 1
4 ,

⇒ a22 = 1
4 .

We are trying to construct a method of order 4 and the method satisfies the relative order

conditions. The first order condition is

b11 +b12 = 1
2 . (4.13)

The third order condition is

b11(c2
1 − c1 + 1

6)+b12(c2
2 − c2 + 1

6) = 0.
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Since c1 = 0, we get

2r2 −3s2 +1 = 0, (4.14)

where

r2 = −b11

b12
, (4.15)

s = (2c2
2 −1)2.

All solutions of the Diophantine equation (4.14) are given by

s =
6t2 +4t +1

6t2−1
, (4.16)

r =
6t2 +6t +1

6t2−1
. (4.17)

From the equation (4.13) and (4.15), we get

b11 = − r2

2(1− r2)
, b12 =

1
2(1− r2)

.

We are constructing a method without parasitism and this is possible if (2,2) and (3,3)
component of the matrix product BU is zero. This implies

b11|B1|2 +b12|B2|2 = 0.

Since we have assumed B1 = 1, we get

|B2|2 = r2.

Before proceeding any further, let us convert the complex numbers into real numbers,

using the transformation

T =

⎡⎢⎣ 1 0 0

0 1
2

i
2

0 1
2 − i

2

⎤⎥⎦ . (4.18)

The coefficient matrices of the general linear method will transform as[
A U

B V

]
−→

[
A UT

T−1B T−1VT

]
,

with

G −→ T ∗GT,
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where T ∗ is the conjugate transpose of T such that

T ∗ =

⎡⎢⎣ 1 0 0

0 1 1

0 −i i

⎤⎥⎦ .

The general linear method thus become

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 0 0 1 gRe(zB̄1) −gIm(zB̄1)
a21 a22 0 0 1 gRe(zB̄2) −gIm(zB̄2)
a31 a32 a33 0 1 −gRe(zB̄2) gIm(zB̄2)
a41 a42 a43 a44 1 −gRe(zB̄1) gIm(zB̄1)
b11 b12 b12 b11 1 0 0

2b11Re(B1) 2b12Re(B2) −2b12Re(B2) −2b11Re(B1) 0 Re(z) −Im(z)
2b11Im(B1) 2b12Im(B2) −2b12Im(B2) −2b11Im(B1) 0 Im(z) Re(z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with

G =

⎡⎢⎣ 1 0 0

0 −1
4 0

0 0 −1
4

⎤⎥⎦ , D =

⎡⎢⎢⎢⎣
b11 0 0 0

0 b12 0 0

0 0 b12 0

0 0 0 b11

⎤⎥⎥⎥⎦ .

where Re(.) represents the real part of a complex number and Im(.) represents the imagi-

nary part and

Re(zB̄2) = Re(z)Re(B̄2)+ Im(z)Im(B̄2),

Im(zB̄2) = Re(z)Im(B̄2)− Im(z)Re(B̄2).

Since

B1 = 1 ⇒ Re(B1) = 1, Im(B1) = 0.

Also

|B2|2 = r2 ⇒ Im(B2) =
√

r2 −Re(B2)2,

where Re(B2) is calculated as follows. Consider the equation

a21 = b11(1+2gRe(B1B̄2))

= b11(1−Re(B2)). (4.19)
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and the fact that

c2 = a21 +a22,

a21 = c2 − 1
4 . (4.20)

From (4.19) and (4.20), we get

Re(B2) = 1− c2 − 1
4

b11

= 1− (4c2 −1)(2(1− r2))
4r2

= 1− (2(2c2 −1)+1)(2(1− r2))
4r2

= 1− (2s+1)(2(1− r2))
4r2 .

Everything depends on parameter t in (4.16) and (4.17). Numerical searches have found

several acceptable values of t provided

1. Re(B2) satisfies,

−|B2| < Re(B2) < |B2|.

2. The method has a stability order 4, i.e.

φ(exp(z),z) = O(z5),

where

φ(w,z) = det(wI−M(z)),

and M(z) is the stability matrix given by

M(z) = V + zB(I− zA)−1U

= V + zBU + z2BAU + z3BA2U.

A choice of t = −1
7 leads to the following general linear method
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1
4

√
3

4

−11
72

1
4 0 0 1 − 1973

29068 + 2
√

3
√

14595
7267 −1973

√
3

29068 − 2
√

14595
7267

− 2647
72240

1009
1680

1
4 0 1 1973

29068 − 2
√

3
√

14595
7267

1973
√

3
29068 + 2

√
14595

7267

− 169
1680

113821
283920

473
676 0 1 −1

4 −
√

3
4

− 169
3360

1849
3360

1849
3360 − 169

3360 1 0 0

− 169
1680 − 84839

283920
84839

283920
169

1680 0 −1
2 −

√
3

2

0 −43
√

14595
35490

43
√

14595
35490 0 0

√
3

2 −1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4.21)

with,

G =

⎡⎢⎣ 1 0 0

0 −1
4 0

0 0 −1
4

⎤⎥⎦ , D =

⎡⎢⎢⎢⎣
− 169

3360 0 0 0

0 1849
3360 0 0

0 0 1849
3360 0

0 0 0 − 169
3360

⎤⎥⎥⎥⎦ .

The method (4.21) is a G-symplectic symmetric method and does not suffer from parasitic

solution. Moreover the method has matrix A which is lower triangular and has cheap

implementation. The cost of implementation is further decreased by the fact that the first

and last stage of method is explicit and only the second and the fourth stage is implicit for

which we may need Newton iterations to iteratively solve them.

4.5.2 Algebraic analysis of the order and the starting method

The general linear method (4.21) has an order 4. We employ the algebraic analysis of the

order to the general linear method (4.21), which we will refer to as method M. It requires

three input values to start the procedure. However only one initial condition is provided

with the initial value problem. The rest of the initial input values are calculated using a

starting method say S. As explained in section 2.3.3, the order of accuracy of the general

linear method M relative to the starting method S is p if

M ◦S−S ◦E = O(hp+1),

where E is the shift operator representing the exact solution. The general linear method

(4.21) is symmetric and therefore has an even order. The analysis of the order of the
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general linear method (4.21) is carried out only for trees of order up to three because the

symmetry will ensure that the method actually has order 4. To start the procedure, the

general linear method (4.21) is transformed into its complex formulation using the same

transformation T as in (4.18) but in the reverse direction. The coefficient matrices of the

general linear method will transform from real to complex formulation as

[
A U

B V

]
−→

[
A UT ∗

TB TVT ∗

]
,

and the matrices of the method are

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1
4 − i

√
3

4
1
4 + i

√
3

4

−11
72

1
4 0 0 1 u22 ū22

− 2647
72240

1009
1680

1
4 0 1 −u22 −ū22

− 169
1680

113821
283920

473
676 0 1 −1

4 + i
√

3
4 −1

4 − i
√

3
4

− 169
3360

1849
3360

1849
3360 − 169

3360 1 0 0

− 169
3360 b22 −b22

169
3360 0 −1

2 + i
√

3
2 0

− 169
3360 b̄22 −b̄22

169
3360 0 0 −1

2 − i
√

3
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.22)

where

u22 = 1973
29068(−1+ i

√
3)+ 2

√
4865

7267 (
√

3+ i),

b22 = − 84839
567840 − i43

√
14595

70980 .

Out of the three output components of the general linear method (4.22), the first one is

an approximation to the actual solution and therefore the input to the first component,

which is provided by the starting method is taken as the identity method. The second

and third components of the method (4.22) which are complex conjugate of each other,

approximate some nearby quantities and we take starting approximations to be θ : T −→
R and θ̄ : T −→ R where θ(t) and θ̄(t) for all trees up to order 3 are
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φ
θ 0 0 θ1 θ2 θ3

θ̄ 0 0 θ̄1 θ̄2 θ̄3

Note that in B-series notation with a scaled version of Butcher, we have

B(θ ,y0) = θ1h2f′f+ 1
2!θ2h3f′′(f, f)+θ3h3f′f′f+ · · · ,

where f′f, f′′(f, f), and f′f′f are Elementary differentials given in Table 2.1.

The algebraic analysis of order of general linear method (4.22) is done on the same lines as

explained in section (2.3.4). Let ξ be the generating function for the input approximations

and let η be the generating function for the internal stages. Then from (2.21), (2.22) and

(2.23)

η = AηD+Uξ , (4.23)

Eξ = BηD+Vξ . (4.24)

To start the procedure we assume ξ1 = 1, ξ2 = θ and ξ3 = θ̄ , such that

φ
ξ1 1 0 0 0 0

ξ2 0 0 θ1 θ2 θ3

ξ3 0 0 θ̄1 θ̄2 θ̄3

Now we calculate the generating functions for the internal stages η , their stage derivatives

ηD and the output values ξ̂ as follows.

For the empty tree φ , we take

η1 η1D η2 η2D η3 η3D η4 η4D ξ̂1 ξ̂2 ξ̂3

φ 1 0 1 0 1 0 1 0 1 0 0
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For the tree with one vertex ,

η1D( ) = η1(φ)

= 1,

η1( ) = 1ξ1( )+u12ξ2( )+ ū12ξ3( )

= 0,

η2D( ) = η2(φ)

= 1,

η2( ) = a21η1D( )+a22η2D( )+1ξ1( )+u22ξ2( )+ ū22ξ3( )

= a21 +a22

= 8
43 ,

η3D( ) = η3(φ)

= 1,

η3( ) = a31η1D( )+a32η2D( )+a33η3D( )+1ξ1( )+u32ξ2( )+ ū32ξ3( )

= a31 +a32 +a33

= 35
43 ,

η4D( ) = η4(φ)

= 1,

η4( ) = a41η1D( )+a42η2D( )+a43η3D( )+1ξ1( )+u42ξ2( )+ ū42ξ3( )

= a41 +a42 +a43

= 1,

ξ̂1( ) = b11η1D( )+b12η2D( )+b12η3D( )+b11η4D( )+1ξ1( )

= b11 +b12 +b12 +b11

= 1,

ξ̂2( ) = b21η1D( )+b22η2D( )−b22η3D( )−b21η4D( )+ v22ξ2( )

= b21 +b22 −b22 −b21

= 0,

ξ̂3( ) = b31η1D( )+b32η2D( )−b32η3D( )−b31η4D( )+ v33ξ3( )

= b31 +b32 −b32 −b31

= 0.
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For the tree , to calculate ηD( ) using the formula (2.10), we chop the root of the tree

and apply η on the rest of the tree which is , such that

η1D( ) = η1( )

= 0.

Thus

η1( ) = 1ξ1( )+u12ξ2( )+ ū12ξ3( )

= u12θ1 + ū12θ̄1

= θ1(1−i
√

3
4 )+ θ̄1(1+i

√
3

4 ),

η2D( ) = η2( )

= 8
43 ,

η2( ) = a21η1D( )+a22η2D( )+1ξ1( )+u22ξ2( )+ ū22ξ3( )

= 2
43 + −1973+24

√
4865

29068 (θ1 + θ̄1)+ 1973
√

3+8
√

3
√

4865
29068 (iθ1 − iθ̄1),

η3D( ) = η3( )

= 35
43 ,

η3( ) = a31η1D( )+a32η2D( )+a33η3D( )+1ξ1( )+u32ξ2( )+ ū32ξ3( )

= 5693
18060 + 1973−24

√
4865

29068 (θ1 + θ̄1)+ −1973
√

3−8
√

3
√

4865
29068 (iθ1 − iθ̄1),

η4D( ) = η4( )

= 1,

η4( ) = a41η1D( )+a42η2D( )+a43η3D( )+1ξ1( )+u42ξ2( )+ ū42ξ3( )

= 45719
70980 − 1

4(θ1 + θ̄1)−
√

3
4 (iθ1 − iθ̄1),

ξ̂1( ) = b11η1D( )+b12η2D( )+b12η3D( )+b11η4D( )+1ξ1( )

= 1
2 ,

ξ̂2( ) = b21η1D( )+b22η2D( )−b22η3D( )−b21η4D( )+ v22ξ2( )

= 10229
70980 + i9

√
3
√

4865
2360 − θ1

2 + i
√

3θ1
2 ,

ξ̂3( ) = b31η1D( )+b32η2D( )−b32η3D( )−b31η4D( )+ v33ξ3( )

= 10229
70980 − i9

√
3
√

4865
2360 − θ̄1

2 − i
√

3θ̄1
2 .
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For the tree , to calculate ηD( ) using the formula (2.10), we chop the root of the tree

, to obtain two similar trees and and apply η on them such that

η1D( ) = η2
1 ( )

= 0.

Thus

η1( ) = 1ξ1( )+u12ξ2( )+ ū12ξ3( )

= u12θ2 + ū12θ̄2

= θ2(1−i
√

3
4 )+ θ̄2(1+i

√
3

4 ),

η2D( ) = η2
2 ( )

= 64
1849 ,

η2( ) = a21η1D( )+a22η2D( )+1ξ1( )+u22ξ2( )+ ū22ξ3( )

= 16
1849 + −1973+24

√
4865

29068 (θ2 + θ̄2)+ 1973
√

3+8
√

3
√

4865
29068 (iθ2 − iθ̄2),

η3D( ) = η2
3 ( )

= 1225
1849 ,

η3( ) = a31η1D( )+a32η2D( )+a33η3D( )+1ξ1( )+u32ξ2( )+ ū32ξ3( )

= 144769
776580 + 1973−24

√
4865

29068 (θ2 + θ̄2)+ −1973
√

3−8
√

3
√

4865
29068 (iθ2 − iθ̄2),

η4D( ) = η2
4 ( )

= 1,

η4( ) = a41η1D( )+a42η2D( )+a43η3D( )+1ξ1( )+u42ξ2( )+ ū42ξ3( )

= 33889
70980 − 1

4(θ2 + θ̄2)−
√

3
4 (iθ2 − iθ̄2),

ξ̂1( ) = b11η1D( )+b12η2D( )+b12η3D( )+b11η4D( )+1ξ1( )

= 1
3 ,

ξ̂2( ) = b21η1D( )+b22η2D( )−b22η3D( )−b21η4D( )+ v22ξ2( )

= 10229
70980 + i9

√
3
√

4865
2360 − θ2

2 + i
√

3θ2
2 ,

ξ̂3( ) = b31η1D( )+b32η2D( )−b32η3D( )−b31η4D( )+ v33ξ3( )

= 10229
70980 − i9

√
3
√

4865
2360 − θ̄2

2 − i
√

3θ̄2
2 .

For the tree , to calculate ηD( ) using the formula (2.10), we chop the root of the tree

, to obtain and apply η on it such that

η1D( ) = η1( )

= θ1(1−i
√

3
4 )+ θ̄1(1+i

√
3

4 ).
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Thus

η1( ) = 1ξ1( )+u12ξ2( )+ ū12ξ3( )

= u12θ3 + ū12θ̄3

= θ3(1−i
√

3
4 )+ θ̄3(1+i

√
3

4 ),

η2D( ) = η2( )

= 2
43 + −1973+24

√
4865

29068 (θ1 + θ̄1)+ 1973
√

3+8
√

3
√

4865
29068 (iθ1 − iθ̄1),

η2( ) = a21η1D( )+a22η2D( )+1ξ1( )+u22ξ2( )+ ū22ξ3( )

= −479+3
√

4865
14534 (θ1 + θ̄1)−

√
3(479+

√
4865)

14534 (iθ1 − iθ̄1)

−
√

3(1973+8
√

4865)
29068 (iθ3 − iθ̄3)− 1973−24

√
4865

29068 (θ3 + θ̄3),

η3D( ) = η3( )

= 5693
18060 + 1973−24

√
4865

29068 (θ1 + θ̄1)+ −1973
√

3−8
√

3
√

4865
29068 (iθ1 − iθ̄1),

η3( ) = a31η1D( )+a32η2D( )+a33η3D( )+1ξ1( )+u32ξ2( )+ ū32ξ3( )

= 7711
72240 − 67060−589

√
4865

2034760 (θ1 + θ̄1)+
√

3(201180+589
√

4865)
6104280 (iθ1− iθ̄1)

+
√

3(1973+8
√

4865)
7267 (iθ3 − iθ̄3)+ 1973−24

√
4865

29068 (θ3 + θ̄3),

η4D( ) = η4( )

= 45719
70980 − 1

4(θ1 + θ̄1)−
√

3
4 (iθ1− iθ̄1),

η4( ) = a41η1D( )+a42η2D( )+a43η3D( )+1ξ1( )+u42ξ2( )+ ū42ξ3( )

= 22639
94640 − 38920+1973

√
4865

7997080 (θ1 + θ̄1)+
√

3(116760−1973
√

4865)
23991240 (iθ1− iθ̄1)

+
√

3
4 (iθ3− iθ̄3)+ 1

4(θ3 + θ̄3),

ξ̂1( ) = b11η1D( )+b12η2D( )+b12η3D( )+b11η4D( )+1ξ1( )

= 1
6 ,

ξ̂2( ) = b21η1D( )+b22η2D( )−b22η3D( )−b21η4D( )+ v22ξ2( )

= 20597
283920 + i4853

√
3
√

4865
29811600 − 1973

√
4865θ̄1

3998540 − i278
√

3θ̄1
28561

− 278θ̄1
28561 + i1973

√
4865

√
3θ̄1

11995620 − θ3
2 + i

√
3θ3
2 ,

ξ̂3( ) = b31η1D( )+b32η2D( )−b32η3D( )−b31η4D( )+ v33ξ3( )

= 20597
283920 + i4853

√
3
√

4865
29811600 − 1973

√
4865θ1

3998540 − i278
√

3θ1
28561

− 278θ1
28561 + i1973

√
4865

√
3θ1

11995620 − θ̄3
2 + i

√
3θ̄3
2 .
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The general linear method (4.22) will be of order 4, if

Eξ1(t) = ξ̂1(t),

Eξ2(t) = ξ̂2(t),

Eξ3(t) = ξ̂3(t),

where

φ
Eξ1 1 1 1

2
1
3

1
6

Eξ2 0 0 θ1 2θ1 +θ2 θ1 +θ3

Eξ3 0 0 θ̄1 2θ̄1 + θ̄2 θ̄1 + θ̄3

Thus we get unique values of θ

θ1 = 0.05878953294+ i0.064578611121,

θ2 = 0.03728447850− i0.033942152651,

θ3 = 0.01776807645− i0.01766421180.

Using the values of θ , we can obtain a starting method S to make sure that the general

linear method (4.22) is of order 4 relative to the starting method. We take the abscissa c̃

and matrix Ã of the starting method to be of classical order 4 Runge–Kutta method given

as

c̃ = [0 1
2

1
2 1],

Ã =

⎡⎢⎢⎢⎣
0 0 0 0
1
2 0 0 0

0 1
2 0 0

0 0 1 0

⎤⎥⎥⎥⎦ . (4.25)

The starting method will get one input value and three output values so the structure of

the starting method is ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
1
2 0 0 0 1

0 1
2 0 0 1

0 0 1 0 1

0 0 0 0 1

b̃1 b̃2 b̃3 b̃4 0
¯̃b1

¯̃b2
¯̃b3

¯̃b4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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The matrix B̃ has the second and third row as complex conjugate of each other in line with

the general linear method (4.22). The value of B̃ = [b̃1, b̃2, b̃3 ˜,b4] can be found using the

order conditions

∑
i

b̃i = 0,

∑
i

b̃ic̃i = θ1,

∑
i

b̃ic̃
2
i = θ2,

∑
i j

b̃iãi j c̃ j = θ3.

This implies

⎡⎢⎢⎢⎣
b̃1

b̃2

b̃3

b̃4

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
−0.101799641805663+ i0.261620138702276

0.046506760094787− i0.199814069408086

0.039513457627372− i0.194268985756399

0.015779424083504+ i0.132462916462209

⎤⎥⎥⎥⎦ .

Transforming the complex numbers into real using the transformation matrix T in (4.18),

such that B −→ T ∗B yields the starting method⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
1
2 0 0 0 1

0 1
2 0 0 1

0 0 1 0 1

0 0 0 0 1

b̃1 b̃2 b̃3 b̃4 0

b̃5 b̃6 b̃7 b̃8 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.26)

where ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̃1

b̃2

b̃3

b̃4

b̃5

b̃6

b̃7

b̃8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.203599283611326

0.093013520189574

0.079026915254744

0.031558848167008

−0.523240277404552

0.399628138816171

0.388537971512798

−0.264925832924417

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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4.5.3 Verification of order

In order to verify that the general linear method (4.21) is of order 4 relative to the starting

method (4.26) we proceed as follows. Suppose we solve an ordinary differential equation

system and take one integration step using the starting method (4.26). Afterwards, we take

the second integration step with the actual general linear method (4.21). This procedure

is equivalent to proceeding with a bigger step taken by a method originated by composing

the starting method and the actual general linear method. If we only consider the compo-

nent of output approximation from the general linear method which is approximating the

actual solution then the structure of the composed method will be

c̃ Ã 0

c U × B̃ A

B̃(1, :) B(1, :)

, (4.27)

where c̃, B̃ and Ã each represents the corresponding entries in the starting method (4.26)

and rest of the entries are from actual general linear method (4.21). The structure of the

composed method (4.27) represents a Runge–Kutta method with abscissas

Ccom = [0 1
2

1
2 1 0 0.186046511627907 0.813953488372093 1].

The vector Bcom has structure

Bcom = [0 0 0 0 −0.05029761904 0.55029761904 0.55029761904 −0.05029761904].

The matrix Acom has structure

Acom =

[
Ã 0

U × B̃ A

]
,

where the matrix Ã is given by (4.25), A is the same matrix given in (4.21), and

U×B̃ =

⎡⎢⎢⎢⎣
−0.27746950716 0.19629744018 0.18799860564 −0.10682653867

0.08100545721 −0.06122566487 −0.05940925575 0.03962946341

−0.08100545721 0.06122566487 0.05940925575 −0.03962946341

0.27746950716 −0.19629744018 −0.18799860564 0.10682653867

⎤⎥⎥⎥⎦ .

Now it is easy to see that the method (4.27) is of order 4, because it satisfies order con-

ditions for all trees of order up to 4. Hence the general linear method (4.21) is of order 4

relative to the starting method (4.26).
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Chapter 5

Numerical experiments

This chapter presents the results of numerical methods constructed in this thesis to two

types of problems, the Hamiltonian problems and the problems with quadratic invariants.

The aim is to observe the ability of the methods to provide qualitatively correct numerical

results over long time. Moreover, we would like to observe the accuracy of the methods

for short time integration and the efficiency of methods in terms of minimum cost of

implementation for which the behaviour of global error and the number of function eval-

uations are very important. The reference method is taken to be the famous fourth order

Gauss symplectic Runge–Kutta method given in (3.15). Although the methods studied

in this thesis are general linear methods with multiple input values, we aim to achieve

comparable performance to the one-step method.

It is widely believed that a qualitatively correct numerical result is obtained with a fixed

stepsize implementation of the numerical method for solving, for example, Hamiltonian

problems with symplectic methods, see for example [46]. We therefore use constant step-

size in all numerical experiments. The numerical methods employed in this chapter have

implicit stages to evaluate. We use modified Newton iterations and aim for convergence

within machine accuracy. The experiments carried out are of preliminary nature but pave

a way for more practical calculations using the methods and techniques described in this

thesis.

The first section of this chapter discusses numerical methods used for the experiments. A

construction of these methods was the subject of Chapter 4. The later sections introduce

problems for later experiments. We have taken three problems from among Hamiltonian

systems and two problems with quadratic invariants. Each problem is accompanied by

the numerical results and a discussion.
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5.1 Methods

• P :

⎡⎢⎣ A U

B V

⎤⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3+
√

3
6 0 1 −3+2

√
3

3

−
√

3
3

3+
√

3
6 1 3+2

√
3

3

1
2

1
2 1 0

1
2 −1

2 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The starting method is ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3+
√

3
6 0 1

−3+
√

3
3

3+
√

3
6 1

0 0 1
√

3−1
8 −

√
3−1
8 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

• N :

⎡⎢⎣ A U

B V

⎤⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3−√
3

6 0 1 −3−2
√

3
3

√
3

3
3−√

3
6 1 3−2

√
3

3

1
2

1
2 1 0

1
2 −1

2 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The starting method is ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3−√
3

6 0 1

−3−√
3

3
3−√

3
6 1

0 0 1

−
√

3+1
8

√
3+1
8 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

• COM : We compose the methods N and P in the sequence

N7 P N14 P N14 P N14 P N14 P N14 P N14 P N13 P · · ·

provided the second row of matrix B and second column of matrix U both multiply

with -1 for the method P. The starting method for the method N is used as the

starting method for COM as discussed in section 4.4.
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• GLM43:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1
4

√
3

4

−11
72

1
4 0 0 1 − 1973

29068 + 2
√

3
√

14595
7267 −1973

√
3

29068 − 2
√

14595
7267

− 2647
72240

1009
1680

1
4 0 1 1973

29068 − 2
√

3
√

14595
7267

1973
√

3
29068 + 2

√
14595

7267

− 169
1680

113821
283920

473
676 0 1 −1

4 −
√

3
4

− 169
3360

1849
3360

1849
3360 − 169

3360 1 0 0

− 169
1680 − 84839

283920
84839

283920
169

1680 0 −1
2 −

√
3

2

0 −43
√

14595
35490

43
√

14595
35490 0 0

√
3

2 −1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The starting method is ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
1
2 0 0 0 1

0 1
2 0 0 1

0 0 1 0 1

0 0 0 0 1

b̃1 b̃2 b̃3 b̃4 0

b̃5 b̃6 b̃7 b̃8 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̃1

b̃2

b̃3

b̃4

b̃5

b̃6

b̃7

b̃8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.203599283611326

0.093013520189574

0.079026915254744

0.031558848167008

−0.523240277404552

0.399628138816171

0.388537971512798

−0.264925832924417

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

• IRK4 :

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

.
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5.2 The Kepler problem

The Kepler problem describes the motion of a planet revolving around sun which is con-

sidered to be fixed at origin. The equations of motion defines a separable Hamiltonian

system

q′1 = p1,

q′2 = p2,

p′1 =
−q1

(q2
1 +q2

2)
3
2

,

p′2 =
−q2

(q2
1 +q2

2)
3
2

,

where (q1,q2) are the generalised position coordinates of the body and (p1, p2) are the

generalised momenta. The total energy of the system is

H = 1
2(p2

1 + p2
2)−

1√
q2

1 +q2
2

.

The initial conditions are taken to be

( q1, q2, p1, p2 ) =
(

1− e, 0, 0,
√

1+e
1−e

)
,

where 0 ≤ e < 1 is the eccentricity of the elliptic orbits which are formed by the motion

of one body around the other. The exact solution of the Kepler problem is given in [27]

which is

q1(x) = cos(E)− e,

q2(x) =
√

1− e2sin(E),

where E is the eccentric anomaly given by the Kepler formula

x = E − sin(E).

The first experiment studies the conservation of energy of the Kepler problem with e =
0 and stepsize 2π

1000 . We see the corruption of numerical solution by parasitism in the

method P in Figure 5.1, where only after 10000 steps, we observe an energy drift. For

the method N in Figure 5.2, a similar behaviour is observed but the numerical method

is corrupted after longer time. This is because the parasitic parameter of the method

P is 1 + 2/
√

3 which is greater than the parasitic parameter of the method N which is
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1−2/
√

3. However, for the method COM, which is a composition of the methods P and

N, we get long time energy conservation in Figure 5.3 for one million steps. The method

GLM43, a G-symplectic methods without parasitism, preserves the energy well, as shown

in Figure 5.4 for one million steps which is comparable to the energy conservation of the

method IRK4 as shown in Figure 5.5 over same integration time.

Our second experiment studies the conservation of energy of the Kepler problem in the

case when e = 0.5. As expected, we get energy conservation over one million steps and

the results are given in Figure 5.6 for IRK4, Figure 5.7 for COM and Figure 5.8 for

GLM43.

The third experiment is to compare the global error of the methods by comparing the

numerical solution with the exact solution of the Kepler problem. To study the accuracy

for a fixed short time interval we consider the global error over half period π with e = 0.

The results are shown in the Table 5.1. The results clearly show excellent short term

behaviour of the methods GLM43 and COM and they are comparable to the behaviour

of the method IRK4. The long term behaviour of the methods in terms of global errors

is shown in Figure 5.9. Here we have taken a stepsize of 2π/100 and e = 0. We notice

that method IRK4 performs better than the method COM and GLM43. We get similar

results for e = 0.5 with a smaller stepsize of 2π/1000 as shown in Figure 5.10. Figure

5.11 and Figure 5.12 show a comparison of global error of methods P, N and COM for

e = 0 and e = 0.5 respectively and they reveal parasitic corruption of numerical solution

by the methods P and N.

The fourth experiment is to compare the efficiency of the methods by calculating the

number of function evaluations. Because of the implicit nature of the stages, the Jacobian

is evaluated for each Newton iteration. Figure 5.13 and Figure 5.14 show a plot between

number of function evaluations and the global error as the stepsize decreases for Kepler

problem with e = 0 and e = 0.5 respectively. In this context, both graphs clearly show the

superiority of the method COM over IRK4 and GLM43. This is because the method COM

has diagonally implicit stages whereas the method IRK4 has fully implicit stages and the

method GLM43 has double the number of stages of the method COM. The method IRK4

initially performs better than the method GLM43, but the method GLM43 outperforms

IRK4 later. The Table 5.2 contains the data for the global error as stepsize is decreased and

shows that the RK4 method and GLM43 method both have O(h5) behaviour. This should

have been O(h4) behaviour because both methods are of order 4. The reason is that, due

to the symmetry of the Kepler problem, some error constants might have cancelled each

other. The method COM shows O(h5) behaviour as the stepsize is decreased and becomes

smaller.
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Figure 5.1: The error in energy of the Kepler problem (e = 0) with the method P.
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Figure 5.2: The error in energy of the Kepler problem (e = 0) with the method N.
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Figure 5.3: The error in energy of the Kepler problem (e = 0) with the method COM.
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Figure 5.4: The error in energy of the Kepler problem (e = 0) with the method GLM43.
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Figure 5.5: The error in energy of the Kepler problem (e = 0) with the method IRK4.
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Figure 5.6: The error in energy of the Kepler problem (e = 0.5) with the method IRK4.
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Figure 5.7: The error in energy of the Kepler problem (e = 0.5) with the method COM.
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Figure 5.8: The error in energy of the Kepler problem (e = 0.5) with the method GLM43.
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Figure 5.9: Global error for the Kepler problem (e = 0).
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Figure 5.10: Global error for the Kepler problem (e = 0.5).
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Figure 5.11: Global error for the Kepler problem (e = 0).
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Figure 5.12: Global error for the Kepler problem (e = 0.5).
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Figure 5.13: No. of function evaluations vs. global error for the Kepler problem (e = 0).
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Figure 5.14: No. of function evaluations vs. global error for the Kepler problem (e = 0.5).
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h IRK4 COM GLM43

×10−8 ×10−8 ×10−8

2π
250 2.5749841826202 2.4814200779159 5.7479511003845

2π
500 0.1609427202781 0.1668628110285 0.3591377951417

2π
1000 0.0100604075192 0.0100796753011 0.0224437601322

Table 5.1: Global error for the Kepler problem (e = 0) over half period.

h IRK4 COM GLM43

×10−3 ×10−3 ×10−3

2π
100 0.190348790675350 0.157793341150169 0.428141240916403

2π
200 0.005949952292952 0.003630915274365 0.013354383403031

2π
400 0.000185979799382 0.000156258671458 0.000417095524816

2π
800 0.000005594508212 0.000005244850396 0.000012497546977

2π
1600 0.000000181963291 0.000000182358518 0.000000383102910

Table 5.2: Global error for the Kepler problem (e = 0) for 10000 steps.
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5.3 Harmonic oscillator

The motion of a unit mass attached to a spring with momentum p and position co-

ordinates q defines a Hamiltonian system

q′ = p, p′ = −q.

The energy is given by

H =
p2

2
+

q2

2
.

The exact solution is ⎡⎣ p(x)

q(x)

⎤⎦=

⎡⎣ cos(x) −sin(x)

sin(x) cos(x)

⎤⎦⎡⎣ p(0)

q(0)

⎤⎦ .

For the numerical solution of the Harmonic oscillator, a stepsize of 0.01 is taken and the

problem is integrated for one million steps. The parasitic solution does not overtake the

actual solution and we get energy conservation for methods P and N as shown in Figure

5.15 and Figure 5.16 respectively. Not surprisingly, we get excellent energy conservation

for the method IRK4 is Figure 5.17, for the method COM in Figure 5.18 and for the

method GLM43 in Figure 5.19
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Figure 5.15: Conservation of energy of Harmonic Oscillator by P.
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Figure 5.16: Conservation of energy of Harmonic Oscillator by N.
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Figure 5.17: Conservation of energy of Harmonic Oscillator by IRK4.
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Figure 5.18: Conservation of energy of Harmonic Oscillator by COM.

0 2000 4000 6000 8000 10000
−12

−10

−8

−6

−4

−2

0

2

4
x 10

−14

Figure 5.19: Conservation of energy of Harmonic Oscillator by GLM43.

124



5.4 The simple pendulum

We recall from Chapter 1, the equations of motion of the simple pendulum,

p′ = −sin(q), q′ = p.

The total energy H is a conserved quantity and is given as

H =
p2

2
− cos(q).

We have seen in Chapter 4, that the simple pendulum problem is capable of having par-

asitic solutions for initial conditions chosen as p = 0, q = 2.3. This can be observed

from Figure 5.20 and Figure 5.21 where we have applied the method P and the method

N with stepsize 0.05, to the simple pendulum problem respectively. Here we have taken

1000 steps only for method P and 2000 steps for method N. However the methods IRK4,

COM and GLM43 have excellent energy conservation for one million steps with the same

stepsize, as shown in Figure 5.22, Figure 5.23 and Figure 5.24 respectively.
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Figure 5.20: Conservation of energy of the simple pendulum by P.
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Figure 5.21: Conservation of energy of the simple pendulum by N.
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Figure 5.22: Conservation of energy of the simple pendulum by IRK4.
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Figure 5.23: Conservation of energy of the simple pendulum by COM.
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Figure 5.24: Conservation of energy of the simple pendulum by GLM43.
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5.5 Euler equations for rigid body motion

The mathematical equations governing the motion of a rigid body are recalled from (1.16)

dωx

dt
=

Iyy − Izz
Ixx

ωyωz,

dωy

dt
=

Izz − Ixx

Iyy
ωzωx,

dωz

dt
=

Ixx − Iyy

Izz
ωxωy,

where ωx,ωy,ωz are the components of angular velocity around the principal axis and

Ixx, Iyy, Izz are principal moment of inertia. The motion of rigid body has the following

two underlying quadratic invariants namely, the kinetic energy H and the squared norm

of angular momentum A given in (1.19) and (1.20).

We apply the numerical methods for one million steps of stepsize 0.01 to see whether

these invariants are preserved by the numerical solution. For the method IRK4, the Figure

5.25 shows excellent preservation of these invariants. A similar result is obtained for the

method COM as shown in the Figure 5.26 and the method GLM43 as shown in Figure

5.27. For the methods P and N, the numerical results is not corrupted by the parasitic

solution and we get conservation of invariants as given in Figure 5.28 and Figure 5.29

respectively.
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Figure 5.25: Conservation of invariants of Euler rigid body motion by IRK4.
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Figure 5.26: Conservation of invariants of Euler rigid body motion by COM.
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Figure 5.27: Conservation of invariants of Euler rigid body motion by GLM43.
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Figure 5.28: Conservation of invariants of Euler rigid body motion by P.
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Figure 5.29: Conservation of invariants of Euler rigid body motion by N.
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5.6 Differential equations on sphere

We consider a system of ordinary differential equations

y′ = f (x,y),

such that ‖y‖2 is constant. The solution of such a system evolves on a sphere. We consider

a particular example similar to the one given in Diffman [29], where the solution evolves

on a unit sphere. The equations of motion are

y′ =

⎡⎢⎢⎢⎣
0 0.1sin(x) −0.2cos(x)

−0.1sin(x) 0 0.3sin(2x)

0.2cos(x) −0.3sin(2x) 0

⎤⎥⎥⎥⎦y = Ay, y(0) =

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦ , (5.1)

where A is a skew-symmetric matrix. Equations of type (5.1) are at the centre of numerical

methods for differential equations on Lie groups. We have done certain experiments using

the methods outlined at the start of this chapter, to see how close the numerical solution

is to the manifold which is a unit sphere. We have always taken 105 steps with stepsize of

0.001.

The first experiment is with the method IRK4. Figure 5.30 shows the drift of the numer-

ical solution from the unit sphere. The result is consistent with the fact that IRK4 is a

symplectic method. The second experiment is with the method GLM43 and even though

it is a G-symplectic method we get excellent results in terms of adherence of the numeri-

cal solution to the unit sphere as shown in Figure 5.31. The method COM also performed

very well as shown in Figure 5.32. Similar good results are obtained for the method P as

shown in Figure 5.33 and for the method N as shown in Figure 5.34.

We study the G-symplectic condition of the method GLM43 such that

〈y[n],y[n]〉G = 〈y[n−1],y[n−1]〉,
3

∑
i, j=1

gi j〈y[n]
i ,y[n]

j 〉 =
3

∑
i, j=1

gi j〈y[n−1]
i ,y[n−1]

j 〉,

(y[n]
1 )2 − (1

4)(y[n]
2 )2 +(1

4)(y[n]
3 )2 = (y[n−1]

1 )2 − (1
4)(y[n−1]

2 )2 +(1
4)(y[n−1]

3 )2

and we can clearly see that this condition is satisfied in Figure 5.35. Similar results are

obtained for the method P in Figure 5.36, whose G-symplectic condition is

(y[n]
1 )2 +(3+2

√
3

3 )(y[n]
3 )2 = ((y[n−1]

1 )2 +(3+2
√

3
3 )(y[n−1]

3 )2

For the method N, again similar results are obtained as shown in Figure 5.37 with the

same G-symplectic condition as of P but with −√
3 instead of

√
3.
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Figure 5.30: The drift from unit sphere of solution of the method IRK4.

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−14

time

|| 
y(

in
it.

) 
|| 

− 
|| 

y 1(a
pp

ro
x.

) 
||

Figure 5.31: The drift from unit sphere of first component of the method GLM43.
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Figure 5.32: The drift from unit sphere of first component of the method COM.

0 20 40 60 80 100
−2

−1

0

1
x 10

−14

time

|| 
y(

in
it.

) 
|| 

− 
|| 

y 1(a
pp

ro
x.

) 
||

Figure 5.33: The drift from unit sphere of first component of the method P.
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Figure 5.34: The drift from unit sphere of first component of the method N.
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Figure 5.35: G-symplectic error of the method GLM43.
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Figure 5.36: G-symplectic error of the method P.
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Figure 5.37: G-symplectic error of the method N.
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The results of these experiments are encouraging. The G-symplectic methods performed

well compared to the symplectic Runge–Kutta method and even better for analysing cer-

tain aspects of some problems despite that they are multivalue methods. These methods

have a potential for being used as geometric integrators for long time integration of con-

servative systems without losing many qualitative features of the underlying system.
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Chapter 6

Conclusions and future work

Numerical integration of ordinary differential equation systems with quadratic invariants

is the main topic explored in this thesis with an emphasis on G-symplectic general linear

methods. The multivalue nature of these methods contributes to the corruption of numeri-

cal solution by the parasitic solution component. Two approaches have been employed in

order to contain this effect. The first is to compose methods with parasitic growth param-

eters having opposite signs. The second is to construct methods for which the parasitic

growth parameter is zero by design.

The structure of the thesis is devised with an objective to provide a coherent and concise

step by step understanding of the main topic. In Chapter 1, an introduction of Hamiltonian

systems and related conservative problems was provided. A review of the traditional

methods for numerically solving ordinary differential equation systems and conservative

problems was given. Chapter 2 deals with a detailed study of the numerical methods

viz. Runge–Kutta methods, multistep methods and general linear methods with an aim

to get an insight of their working and interconnectivity. This was further extended to

Chapter 3, where stability and symplecticity of the methods were discussed in particular.

Although symplectic Runge–Kutta methods were developed independently, there is an

intricate relation between their non-linear stability and symplecticity. This also extends

to G-symplectic general linear methods and is explored in Chapter 4.

The ability of general linear methods to solve practical problems is hampered by the

parasitic solutions ingrained in such methods. This also extends to G-symplectic general

liner methods for the solution of those conservative problems which are capable of having

parasitism. The growth of parasitic solution, therefore depends on the numerical method

and the problem it is trying to solve. Their relation was studied in this thesis. As explained
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earlier, a successful attempt was made to combine two G-symplectic methods of order

four in a sequence with parasitic growth parameter of one method having an opposite sign

to that of other. Such a sequence was implemented to ensure that the accumulated parasitic

growth parameter does not grow out of a specified bound. Excellent energy conservation

is observed by the composition method for solving Hamiltonian problems. More general

quadratic invariants were also well preserved, including especially the case where the

solution lies on a manifold of unit sphere. The composition proved to be useful not only

in containing the effect of parasitism but also to be more efficient than the Runge–Kutta

method in terms of number of function evaluations. This is supported by the experiments.

Moreover the global error of the composition method is comparable to the Runge–Kutta

method, although the former is a multistep multivalue method and the later is a one-step

method.

A fourth order symmetric G-symplectic general linear method was constructed with no

parasitism. This necessarily had four stages and three output values, since we have ob-

served that a G-symplectic method cannot avoid parasitic corruption with only two stages

and two output values by design. Complex numbers were chosen for matrices B and

V such that the second and third rows of matrices B and V were complex conjugates.

Because the eigenvalues of the matrix V should lie on a unit disc, we took V to be a

diagonal matrix with entries 1, z and z̄ such that |z| = 1. We took a particular value of

z = exp(2πi/3), whereas methods with z = i are also known to exist. A transformation

was applied to obtain the method with real entries. The starting method had four explicit

stages for cheap implementation and three output values with only one input value given

by the initial condition of the differential equation system. The matrix B for the starting

method also had second and third rows to be complex conjugate and this was also trans-

formed to real numbers via the transformation. The coefficients of matrix B were found

from the algebraic analysis of the order with Butcher series. The starting method and the

actual method are implemented in a way equivalent to effective order approach and we

used its tools in our search for the starting method.

The G-symplectic general linear method was constructed by making sure that the quadra-

ture order and the stability order was four, and the experiments confirmed that the method

itself turned out to be of order four. The parasitic growth parameter was essentially taken

to be zero and we saw energy conservation for Hamiltonian systems over long time inte-

gration by the numerical solution without being distorted by the parasitic solutions. This

method was more efficient than the two stage, fourth order implicit Gauss Runge–Kutta

method in the long run considering the number of function evaluations for a particular

problem.
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There are several open questions we would like to explore. In the course of finding a

remedy for the corruption of numerical solution by parasitism, the composition of me-

thods turned out to be an effective approach. Whether the sequence of methods used in

composition, we have considered and implemented, provides an optimal solution, is still

unknown. The error constants of the methods P and N are different and we have taken

same stepsize for both methods. An option that may lead to better performance and more

control is to use a block of sequence of methods with a combined greater stepsize, while

internally the block may have used different stepsizes. Also, the consequence of having

different G matrices for the composed methods is also open to investigation. We can

also do an analysis of the order of the composed methods with many N methods and an

occasional P method.

For the construction of a G-symplectic method without parasitism, we took several choices

for convenience. For example, the value of z in matrix V is taken to be exp(2πi/3). These

methods belong to a larger class, where different values of z yields different methods. It

is not known what is the optimal choice of z. The choice of z will have an effect on the

starting method and we may be able to attain higher accuracy.

Hamiltonian systems are often separable as is the case with the examples in our exper-

iments. However our methods are geared towards general Hamiltonian problems. The

advantage of solving different variables of the system with different numerical methods

and still avoiding the parasitic growth is also open to investigation. The comparison of

general G-symplectic general linear methods and the partitioned G-symplectic methods

can shed light on their suitability and effectiveness.

The methods and techniques derived in this thesis are novel ideas. They have desired

features of G-symplecticity, time reversal symmetry and no parasitism. Their lucid con-

struction provided in this thesis can be manipulated for higher order methods. The exper-

imental evidence points out that they may be suitable to form the kernel of an efficient

solver for conservative systems.
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