

Yusuke Hioka¹, C.T. Justine Hui¹, Hinako Masuda² and Catherine I. Watson³ ¹Acoustics Research Centre, Department of Mechanical and Mechatronics Engineering, University of Auckland, New Zealand ²Faculty of Science and Technology, Seikei University, Japan

1. Background and Scope

- \checkmark It is logistically challenging to study speech perception when:
- studying the effect of varying acoustic environments; and/or comparing first (L1) and second (L2) language listeners because participants have to travel to the venues where experiment is
- conducted
- \checkmark Virtual sound reproduction technology could address the challenge thanks to its ability to reproduce the acoustics of arbitrary environments at any geographic locations in a controllable manner
- ✓ However, it has NOT been studied well if the results collected using virtual sound reproduction would replicate the results collected in the original real spaces
- This study investigates the difference of speech perception in varying acoustic environments between L1 and L2 language New Zealand English listeners using virtual sound reproduction technology
- \checkmark The study particularly focuses on how the results collected under virtual acoustic environments assimilate to that collected in the original real acoustic environments between L1 and L2 listeners

2. Virtual sound reproduction

• System overview

- ✓ Implemented 3rd order Ambisonics based system (Fig.1 top) ✓ Room impulse responses (RIR) in target environment were measured
- by Eigenmike (32-ch spherical microphone array) *https://leomccormack.github.io/sparta-site/
- ✓ The RIRs were encoded and decoded by the SPARTA toolboxes*
- ✓ Decoded RIRs were convolved with arbitrary sound sources to generate stimuli, then were rendered by 16-ch loudspeaker array (Fig.1 bottom) installed in the anechoic chamber at the University of Auckland

Figure 1: Virtual sound reproduction system used in the study; Top: Implementation flowchart; Bottom: Loudspeaker array configuration

Using virtual sound reproduction for studying L1/L2 speech perception in varying acoustic environments

³Department of Electrical, Computer and Software Engineering, University of Auckland, New Zealand

3. Subjective listening test Methodology Speech intelligibility test – participants transcribed spoken sentences in noise via GUI (Fig. 2). The number of correctly transcribed words was counted and scaled to 0 to 1 as *proportion correct*. Speech and noise were played simultaneously from various separation angles (Speech-noise separation; Fig. 3). \checkmark Room acoustics of the environment was varied by testing in 2 rooms and 2 source distances (*Room acoustics*). Recruited participants with different language background quantified by their first exposure to English-speaking environment (*Immersion age*) Conducted the test both in the real rooms and under the virtual sound reproduction (*Test venue*) Exit^{ID:} Trial 0 Please type out the sentence you heard. 0 = a lot of effort. 10 = no effort.0 1 2 3 4 5 6 7 8 9 10 Figure 2: Graphical user interface used in the test Sound sources ✓ Target speech: Bamford-Kowal-Bench (BKB) Sentence; recordings of New Zealand (NZ) accented female voice ✓ Noise: Babble noise ✓ Target-to-noise ratio: -3 dB Participants \checkmark 57 participants with normal hearing (self-reported); 18 – 49 years old • *Early* immersed (n = 20): born in NZ or moved to NZ before 12/13 16-ch loudspeaker array years old in anechoic chamber • Late immersed (n = 37): moved to NZ after 14 years old Marking rubric ✓ Marked by the root of words e.g. "running", "ran" correct for "run" ✓ No penalties for homonyms e.g. "meat"/"meet", "sun"/"son" ✓ No penalties for vowel merger in NZ English e.g. "ear"/"air" Playback **Room acoustics** ninar room

Distance	Seminar roc
	0.7 s
2 m	15.9 dB
5 m	6.8 dB
	Distance 2 m 5 m

ENGINEERING

