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Abstract

A physical system is determined by a finite set of initial conditions and
laws represented by equations. The system is computable if we can solve the
equations in all instances using a “finite body of mathematical knowledge".
In this case, if the laws of the system can be coded into a computer program,
then given the system’s initial conditions of the system, one can compute the
system’s evolution.

This scenario is tacitly taken for granted. But is this reasonable? The
answer is negative, and a straightforward example is when the initial condi-
tions or equations use irrational numbers, like Chaitin’s Omega Number: no
program can deal with such numbers because of their “infinity”.

Are there incomputable physical systems? This question has been the-
oretically studied in the last 30–40 years. This article presents a class of
quantum protocols producing quantum random bits. Theoretically, we prove
that every infinite sequence generated by these quantum protocols is strongly
incomputable – no algorithm computing any bit of such a sequence can be
proved correct. This theoretical result is not only more robust than the ones
in the literature: experimental results support and complement it.

1 Introduction

According to Einstein [23]

Physics constitutes a logical system of thought which is in a state of
evolution . . . The justification (truth content) of the system rests in the
proof of the usefulness of the resulting theorems on the basis of sense
experiences, where the relations of the latter to the former can only be
comprehended intuitively.
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This is in agreement with Hertz’s contemplation of the relationship between phys-
ical and formal entities [28]:

We form for ourselves images or symbols of external objects, and the
form which we give them is such that the necessary consequents of the
images in thought are always the images of the necessary consequents
in nature of the things pictured.

Both Einstein and Hertz do not perceive a ‘strong’ connection between physical
entities and their corresponding categories of mind, but rather a homomorphism.
This raises the question: how much trust can we place in the theoretical categories
regarding their usefulness in physics? What criteria can be provided to ensure and
certify their applicability relative to our assumptions?

A physical system is determined by a finite set of initial conditions and laws rep-
resented by equations. The system is computable if we can solve the equations
in all instances using a “finite body of mathematical knowledge". If the laws of
the system can be coded into a computer program, then given the system’s initial
conditions, one can compute the system’s evolution.

One needs to differentiate between operational, empirically accessible, observables
on the one hand, and, on the other hand, theoretical assumptions and conventions
– such as the existence of the continuum – that are not operational (“almost all”
elements are incomputable and even random), but provide a convenient formal-
ism [10].

This scenario is tacitly taken for granted in discussing issues of incomputability.
But is this reasonable? The answer is negative, and a straightforward example is
when the initial conditions or equations include irrational numbers, like Chaitin’s
Omega Number: no program can deal with such numbers because of their infinity.

Incomputability in physics has been studied by many authors [53, 54, 56, 38, 21,
44, 17, 19, 63, 35, 20, 8, 41, 29, 33, 60, 41, 13, 34, 1, 3, 27, 7, 30]. The results in all
these articles are mainly theoretical, so following Einstein’s above citation, we can
ask: what is their justification? The word “real" in the title means “a justification
of incomputability claims based on usefulness”.

For sufficiently complex systems (even reversible) determinism on a “one-by (to)-
one” evolution basis does not imply predictability [52]. For example, take the
n-body problem as example: the respective series solutions [59, 43, 51, 57, 58]
may be “very slowly” convergent [22], or even encode the Halting Problem [55].

Quantum underdetermination can be expressed in terms of gaps in the physical de-
scription [25, 26, § III.12-14]: Due to the unitarity of quantum evolution, informa-
tion cannot be created nor annihilated. Therefore, if a quantised system encodes
a finite amount of information any query above this information must inevitably
be indeterminate and value indefinite relative to the original quantum state. One
could, of course, suppose that the entanglement can fulfil such a request with the
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measurement apparatus and thus the environment at large [36, 37], resulting in an
unbounded nesting argument with an ever-increasing Heisenberg cut. Yet the fact
remains that, due to the finite (possibly relational [62]) amount of information en-
coded in a quantised system, information in excess of this amount cannot reside or
be encoded in any pre-selected state.

This article uses a located form of the Kochen-Specker Theorem to derive a class
of quantum protocols producing quantum random bits. Theoretically, we prove
that every infinite sequence generated with these quantum protocols is strongly in-
computable – no algorithm computing any bit of such a sequence can be proved
correct. Such a result is more robust than the ones in the literature and satisfies Ein-
stein’s requirement of justification: the experimental results presented here confirm
and complement incomputability and, quite importantly, the choice of physical as-
sumptions.

The paper is organised as follows. In Section 2, we present the theoretical frame-
work for the Localised Kochen-Specker Theorem, allowing the construction of
strongly incomputable sequences via measurements of value-indefinite observ-
ables. In Section 3, we use a standard superconducting transmon system to im-
plement logical states as qutrits and realise the theoretical quantum protocols in
Section 2. In Section 4, we present a method to empirically show the incomputabil-
ity of the outputs generated in Section 3. The last Section 5, we briefly discuss the
results presented in this article and suggest further continuations.

2 3D-QRNG – Theory

In this section, we present the theoretical framework allowing the construction of
value-indefinite observables, their tolerance to measurement errors and the certifi-
cation of the degree of randomness of their outcomes.

2.1 Notation and definitions

The set of positive integers will be denoted by N. Consider the alphabet Ab =
{0, 1, . . . , b � 1}, where b � 2 is an integer; the elements of Ab are the digits
used in natural positional representations of numbers in the interval [0, 1) at base
b. By A

⇤
b and A

!
b we denote the sets of (finite) strings and (infinite) sequences

over the alphabet Ab. Strings will be denoted by x, y, u, w; the length of the string
x = x1x2 . . . xm, xi 2 Ab, is denoted by |x|b = m (the subscript b will be omit-
ted if it is clear from the context); Am

b is the set of all strings of length m. Se-
quences will be denoted by x = x1x2 . . . ; the prefix of length m of x is the string
x(m) = x1x2 . . . xm. Strings will be ordered quasi-lexicographically according to
the natural order 0 < 1 < 2 < · · · < b � 1 on the alphabet Ab. For example, for
b = 2, we have 0 < 1 < 00 < 01 < 10 < 11 < 000 . . . . We assume knowledge
of elementary computability theory over different size alphabets [11].

3



By C, we denote the set of complex numbers. We then fix a positive integer n � 2
and let O ✓ {P : | i 2 Cn} be a non-empty set of one-dimensional projection
observables on the Hilbert space Cn.

A set C ⇢ O is a context of O if C has n elements and for all P , P� 2 C with
P 6= P�, h |�i = O. A value assignment function (on O) is a partial function
v : O ! {0, 1} assigning values to some (possibly all) observables in O. The
partiality of the function v means that v(P ) can be 0, 1 or indefinite. An observable
P 2 O is value definite (under the assignment function v) if v(P ) is defined, i.e. it
is 0 or 1; otherwise, it is value indefinite (under v). Similarly, we call O value
definite (under v) if every observable P 2 O is value definite.

We then fix a positive integer n � 2 and let O ✓ {P : | i 2 Cn} be a non-
empty set of one-dimensional projection observables on the Hilbert space Cn. A
set C ⇢ O is a context of O if C has n elements and for all P , P� 2 C with
P 6= P�, h |�i = O. A value assignment function (on O) is a partial function
v : O ! {0, 1} assigning values to some (possibly all) observables in O. The
partiality of the function v means that v(P ) can be 0, 1 or indefinite. An observable
P 2 O is value definite (under the assignment function v) if v(P ) is defined, i.e. it
is 0 or 1; otherwise, it is value indefinite (under v). Similarly, O is value definite
(under v) if every observable P 2 O is value definite.

2.2 Localised Kochen-Specker Theorem

We next present the main result used to construct a value indefinite observable.
First, we assume the following premises:

• Admissibility. This assumption guarantees agreement with quantum me-
chanics predictions. Fix a set O of one-dimensional projection observables
on Cn and the value assignment function v : O ! {0, 1}. Then v is admissi-
ble if for every context C of O, we have that

P
P2C v(P ) = 1. Accordingly,

only one projection observable in a context can be assigned the value 1.

• Non-contextuality of definite values. Every outcome obtained by measur-
ing a value definite observable is non-contextual, i.e. it does not depend on
other compatible observables which may be measured alongside it.

• Eigenstate principle. If a quantum system is prepared in the state | i, then
the projection observable P is value definite.

The last assumption is motivated by Einstein, Podolsky and Rosen definition of
physical reality [24, p. 777]: If, without in any way disturbing a system, we can
predict with certainty the value of a physical quantity, then there exists a definite
value prior to observation corresponding to this physical quantity. A criterion for
value-definiteness results: if a quantum system is prepared in an arbitrary state
| i 2 Cn, then the measurement of the observable P should yield the outcome 1,
hence, if P 2 O, then v(P ) = 1.
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We can now state the main result:

Theorem 1 (Localised Kochen-Specker Theorem [4, 5, 34, 7]) Assume a quan-
tum system prepared in the state | i in a dimension n � 3 Hilbert space Cn, and
let |�i be any quantum state such that 0 < |h |�i| < 1. If the following three
conditions are satisfied: i) admissibility, ii) non-contextuality and iii) eigenstate
principle, then the projection observable P is value indefinite.

Theorem 1 states that, under the given assumptions, any quantum state |�i that is
neither orthogonal nor parallel to | i is value indefinite. This result has two major
consequences:

1. it shows how to construct a value indefinite observable effectively,

2. it guarantees that the status of “value-indefiniteness” is invariant under minor
errors in measurements: this is a significant property as no measurement is
exact.

We note that Theorem 1, as the original Kochen-Specker Theorem [32], is not valid
in C2, hence the requirement to work in C3.

How “good” is such a 3D-QRNG, i.e. what randomness properties can be certified
for their outcomes? For example, can we prove that the outcomes of the 3D-QRNG
are “better” than the outcomes produced by any pseudo-random number generator
(PRNG)?

For certification, we use the following assumption, which is motivated by the fact
that a computable sequence is the strongest form of “deterministic hidden vari-
able":

• epr principle: If a repetition of measurements of an observable generates a
computable sequence, then these observables are value definite.

Based on the Eigenstate and epr principles, we can prove that the answer to the
last question is affirmative: Any infinite repetition of the experiment measuring a
quantum value indefinite observable generates an incomputable infinite sequence
x1x2 . . . : no PRNG has this randomness property.

A stronger result is true. Informally, a sequence x is bi-immune if no algorithm can
generate infinitely many correct values of its elements (pairs, (i, xi)). Formally, a.
sequence x 2 A

!
b (b � 2) is bi-immune if there is no partially computable function

' from N to Ab having an infinite domain dom(') with the property that '(i) = xi

for all i 2 dom(') [9]).

Theorem 2 ([1, 7]) Assume the Eigenstate and epr principles. An infinite repe-
tition of the experiment measuring a quantum value indefinite observable in Cb

always generates a b-bi-immune sequence x 2 A
!
2 , for every b � 2.

In particular, every sequence generated by the 3D-QRNG is 3-bi-immune.
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Theorem 3 ([7]) Assume the epr and Eigenstate principles. Let x be an infinite
sequence obtained by measuring a quantum value indefinite observable in Cb in
an infinite repetition of the experiment E. Then, no single bit xi can be predicted.

In particular, no single digit of every sequence x 2 A
!
3 generated by the 3D-QRNG

can be algorithmically predicted.

The following simple morphism ' : A3 ! A2 transforms a ternary sequence into
a binary sequence:

'(a) =

8
><

>:

0, if a = 0,

1, if a = 1,

0 if a = 2,

(1)

, which can be extended sequentially for strings, y(n) = '(x(n)) = '(x1)'(x2)
. . .'(xn) and sequences y = '(x) = '(x1)'(x2) . . .'(xn) . . . . This transfor-
mation preserves 2-bimmunity:

Theorem 4 ([7]) Assume the epr and Eigenstate principles. Let y = '(x), where
x 2 A

!
3 is a ternary sequence generated by the 3D-QRNG and ' is the alphabetic

morphism defined in (1). Then, no single bit of y 2 A
!
2 can be predicted.

As noted in [7], Theorem 1 shows that given a system prepared in state | i, a one-
dimensional projection observable can only be value definite if it is an eigenstate
of that observable. Consequently, for any diagonalisable observable O with spec-
tral decomposition O =

Pn
i=1 �iP�i , where �i denotes each distinct eigenvalue

with corresponding eigenstate |�ii, O has a predetermined measurement outcome
if and only if each projector in its spectral decomposition has a predetermined
measurement outcome. Thus, the previous result holds true to the outcome of the
measurement of any observable with non-degenerate spectra. Such generalisation
is particularly useful in the case when we use the value assignment function to
represent a value definite observable. These results have been used to design the
following quantum operators of the 3D-QRNG. These 3D-QRNGs operate in a
succession of events of the form “preparation, measurement, reset”, iterated indefi-
nitely many times in an algorithmic fashion [1]. The first 3D-QRNG was designed
in [1], realized in [34] and analysed in [2]. While the analysis failed to observe
a strong advantage of the quantum random sequences due to incomputability, it
has motivated the improvement in [7], in which the problematic probability zero
branch Sx = 0 in Figure 1.

The next 3D-QRNG is presented in Figure 2. The unitary matrix Ux corresponding
to the spin state operator Sx is

Ux =
1

2

0

@
1

p
2 1p

2 0 �
p
2

1 �
p
2 1

1

A .
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Figure 1: QRNG setup proposed in [1]; the values 1
2 ,

1
2 (in blue) correspond to the

outcome probabilities
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Figure 2: Blueprint for a new QRNG; the values 1
4 ,

1
2 ,

1
4 (in blue) correspond to the

outcome probabilities of setups prepared in the state | i = |±1i

As Ux can be decomposed into two-dimensional transformations [16]

Ux =

0

@
1 0 0
0 �i 0
0 0 �i

1

A·

0

BB@

1p
3

q
2
3 0

i

q
2
3 � ip

3
0

0 0 1

1

CCA·

0

B@

p
3
2 0 � i

2
0 1 0
i
2 0 �

p
3
2

1

CA·

0

BB@

1 0 0

0 1p
3

q
2
3

0 i

q
2
3 � ip

3

1

CCA .

a physical realisation of the unitary operator by a lossless beam splitter [?, 61] was
obtained; the new outcome probabilities are 1/4,1/2,/1/4.

3 3D-QRNG – Physical Realisation

To realise the protocols shown in Figs. 1,2 we used a standard superconducting
transmon system [34]. The transmon has a weakly anharmonic multi-level struc-
ture [31], and its three lowest energy eigenstates |0i, |1i and |2i can be used as the
logical states of a qutrit.

To implement the protocol shown in Fig. 1 we followed the recipe from [34] where
the eigenstates of the Sz operator were mapped to the states of the qutrit as follows

{|z,�1i, |z, 0i, |z,+1i}! {|2i, |0i, |1i}. (2)

This mapping provided an advantage of preparing |z, 0i state by cooling down the
transmon to the base temperature of a dilution refrigerator (⇠ 20mK).
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To perform an arbitrary rotation of the qutrit quantum state R
i,i+1
n̂ (�) we applied

microwave pulses resonant to the |0i $ |1i or |1i $ |2i transition frequencies,
respectively. Two rotations R

12
y (⇡) · R01

y (⇡/2) of the state before the dispersive
measurement were used to engineer a measurement in the eigenbasis of Sx. The
resulting measurement outcomes of the transmon energy eigenstates were mapped
to the following outcomes of the measurement of Sx operator: {|0i, |1i, |2i} !
{|x,+1i, |x,�1i, |x, 0i}.

To implement the protocol shown in Fig. 2 we used a slightly different encoding:

{|z,�1i, |z, 0i, |z,+1i}! {|1i, |2i, |0i}. (3)

In this case, state |z,+1i was prepared by cooling the transmon. The following
measurement in the eigenbasis of Sx was engineered by applying the same rota-
tions R01

y (⇡/2) ·R12
y (⇡/2) before the dispersive measurements. The measurement

outcomes of the transmon were then mapped to the following outcomes of the
measurement of Sx operator: {|0i, |1i, |2i}! {|x, 0i, |x,�1i, |x,+1i}.

To measure the transmon, we used the standard dispersive readout scheme where
the transmon is capacitively coupled to a co-planar waveguide resonator. The dif-
ference between the frequency of the resonator (fr = 7.63 GHz) and the |0i $ |1i
(f01 = 5.49 GHz) and |1i $ |2i (f12 = 5.16 GHz) transitions of the transmon
was designed to be much larger than the qubit-resonator coupling to ensure that
the system is in the dispersive regime. In this regime, the frequency of the res-
onator depended on the states of the transmon and underwent shifts of �8.5 MHz
or �15.5 MHz when the transmon was excited in |1i or |2i states, relative to fr

when the transmon was prepared in its ground state |0h [31]. We used a Josephson
parametric amplifier to distinguish between three different transmon states with
high fidelity. In addition, we set the readout pulse frequency close to the cavity
frequency corresponding to the |1i state of the qutrit, which allowed the three pos-
sible qutrit states to be well separated on the I-Q plane for the time-integrated signal
measured with the heterodyne detection scheme. The readout frequency was then
fine-tuned to maximise the three-level readout fidelity. The measurement response
was classified using a convolutional neural network (CNN) to increase the readout
fidelity further, as described in [42].

The procedure used to generate the random numbers required an initial calibration
procedure typical for circuit quantum electrodynamics setups. This involved cali-
bration of fr, f01 and the R01

y (⇡) and R
01
y (⇡/2) pulses. Two R

01
y (⇡/2) pulses were

used to fine-tune f01 using a Ramsey measurement. The R
01
y (⇡) and R

01
y (⇡/2)

pulses were then fine-tuned with repeated pulses. A similar procedure was fol-
lowed to calibrate for f12 and the R

12
y (⇡) and R

12
y (⇡/2) pulses.

After initial calibrations, we optimised the readout frequency of a single-shot read-
out using the Josephson parametric amplifier. The CNN is then trained for 50
cycles using 1024 measurements of the readout resonator after preparing each of
the three states, |0i,|1i and |2i as described in [42].
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The procedure so far involved repeated measurements where the transmon was re-
set to |0i state by waiting 35 µs to reach thermal equilibrium (at a decay rate of
250 kHz). We used an active reset protocol described in [39] to increase the exper-
iment cycle time. This involved a reset pulse to transfer the |2i state population to
the readout resonator and let it decay much faster (at a decay rate of 4 MHz). An
R

12
y (⇡) pulse is then used to transfer the unwanted |1i state population to the |2i

state, and the reset pulse was used again to transfer |2i state population to the read-
out resonator. The R12

y (⇡) (40 ns), reset pulse (370 ns), and a wait time (50 ns) for
the readout resonator to decay were used four times in series to ensure the trans-
mon is in the ground state, taking 1.84 us in total. The reset protocol was tested
using standard acquisition methods and the CNN to ensure the CNN was perform-
ing as intended. The reset time, the preparation pulses for the protocol and the
measurement pulse time amounted to 3.2 us, corresponding to a rate of 312.5 kHz.

To ensure robust generation of 100 Gbit of random numbers, the procedure outlined
in Algorithm 2 was followed, involving intermittent checks of the CNN without
reset, retraining the CNN if necessary and re-calibrating the transmon as shown in
Algorithm 1 if that fails.

Algorithm 1 Calibration
1: procedure CALIBRATE . Calibrates the transmon preparation and readout
2: Trep  40 µs
3: set measurement frequency to fr

4: set previously calibrated settings
5: Ramsey frequency calibration for f01
6: Calibrate R

01
y (⇡) and R

01
y (⇡/2) pulses

7: Ramsey frequency calibration for f12
8: Calibrate R

12
y (⇡) and R

12
y (⇡/2) pulses

9: Calibrate reset pulse frequency
10: set measurement frequency to fr � 9 MHz
11: Create convolutional neural network (CNN)
12: Train CNN for 50 training cycles
13: end procedure

The errors of our protocol consisted of the initialisation errors, the errors of the
control pulses, and the measurement errors. As the initialisation and control errors
were calibrated to be kept within < 1%, the measurement error was the domi-
nant error of our protocol due to the relaxation of the higher excited states of the
qutrit to the lower energy states during the readout time. The typical assignment
fidelities were 95%, 88%, and 78% for the ground, first and second excited states,
respectively. All the fidelities were continuously monitored during random number
generation, and a drop in the value of the average assignment fidelity was used to
trigger the re-calibration of the protocol (see Algorithm 2).
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Algorithm 2 Generation
1: procedure RUNINDEX
2: if files exist then

3: r  1+ last random_xxx.rbf file number
4: else

5: return r  0
6: end if

7: return r

8: end procedure

9: Trep  40 µs
10: Prepare |0i,|1i and |2i . Cyclically for each repetition
11: Create convolutional neural network (CNN)
12: Train CNN for 50 training cycles
13: f  measurement accuracy
14: . Assignment fidelity as defined in [42]
15: c 0 . Calibration counter used to terminate
16: l 0 . Low f counter used to calibrate
17: r  RUNINDEX
18: while r < 750 do

19: while f < 0.86 do

20: if l > 20 then

21: if c > 5 then

22: ERROR . Calibrated 5 times already. Failed
23: end if

24: CALIBRATE
25: c c+ 1
26: l 0
27: end if

28: l l + 1
29: Train CNN for 20 more training cycles
30: f  measurement accuracy
31: end while

32: Trep  3.2 µs
33: Program protocol pulses
34: Measure 226 repetitions
35: Store measurements in random_r.rbf
36: Trep  40 µs
37: end while

38: On Error Log error and restart
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4 Testing

In this section, we present an empirical method to show the incomputability of the
outputs generated in Section 3.

4.1 Why do we need testing?

Why should we be interested in answering the above question? After all, incom-
putability is established by mathematical proof, so why would we need experimen-
tal corroboration, a weaker argument? An example is a random number generator
certified (by a mathematical proof) always to produce an incomputable infinite
sequence of random bits. Indeed, the mathematical proof certifying incomputabil-
ity is part of a mathematical model which uses certain physical assumptions; its
veracity rests on those assumptions. The fact that each individual assumption is
reasonable does not automatically guarantee that globally, the set of assumptions
is also reasonable. Experimental testing is essential not only for corroborating the
conclusion of the proof but also for supporting the adequacy of the model. Further-
more, thorough testing allows one to detect any issues with assumptions made in
the theoretical analysis of a device or its practical deployment.

Can we test incomputability with a statistical test, that is, with a method of sta-
tistical inference to decide whether the data at hand sufficiently supports a par-
ticular hypothesis? The answer is negative. Intuitively, this is a consequence
of the “asymptotic” nature of the notion of computability and its negation: fi-
nite variations do not change them. For example, if the sequence x1x2 . . . xn . . .

is computable (incomputable), then the sequences y1y2 . . . ymx1x2 . . . xn . . . and
xkxk+1 . . . xm . . . are also computable (incomputable) for every string y1y2 . . . ym

and positive integer k. For example, the Champernowne binary sequence [15]

0, 1, 00, 01, 10, 11, 000, . . .

obtained by concatenating all binary strings in shortlex order.1 This sequence
is computable and normal, i.e. its digits are uniformly distributed: all digits are
equally likely, all pairs of digits are equally likely, all triplets of digits are equally
likely, and so on. Normality is a “symptom” of randomness, and computability is
a “symptom” of non-randomness. The Champernown sequence shows that these
symptoms can be compatible; no statistical test can detect its computability, hence
non-randomness.

Does this mean that incomputability cannot be “experimentally tested”? Of course,
no. In what follows, we will describe such a test used in assessing the quality of
outputs of quantum random generators, [12, 2].

1Strings are first sorted by increasing length, and strings of the same length are sorted into lexi-
cographical order: 0, 1; 00, 01, 10, 11; 000, 001, . . . 111; . . .
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4.2 Theory

We continue with a topic apparently unrelated to the question discussed in this
section: testing of primality of positive integers. Primality is considered computa-
tionally easy because there exist polynomial algorithms in the size of the input to
solve it; the first such algorithm was proposed in 2004 [6]. However, every known
primality polynomial algorithm is “practically slow”, so probabilistic algorithms2

are instead used [50].3

The practical failure of polynomial primality tests motivated the search for prob-
abilistic algorithms for primality [40, 45, 47, 48, 50, 50]. To test the primality of
a positive integer n, the Solovay-Strassen primality test generates the first k nat-
ural numbers uniformly distributed between 1 and n � 1, inclusive, and, for each
i 2 {i1, . . . , ik} checks “quickly” the validity of a predicate W (i, n) based on Eu-
ler’s criterion (called the Solovay-Strassen predicate). If W (i, n) is true then “i is a
witness of n’s compositeness”; hence n is certainly not prime. Otherwise, the test
is inconclusive. In this case, the probability that n is prime is greater than 1� 2�k.
This result is based on the fact that at least half the i’s between 1 and n� 1 satisfy
W (i, n) if n is composite, and none of them satisfy W (i, n) if n is prime [49].

In detail, we first define the Solovay-Strassen predicate W (i, n) by
✓
i

n

◆
i
(n�1)/2 6⌘ 1 mod n,

where
�
i
n

�
is the Jacobi symbol4 with i 2 N, i < n� 1.

If i � 2 and W (i, n) is true, we say that i is an Euler witness (E-witness). If n > 3
is an odd composite, and W (i, n) is false for i � 1, we say n is an Euler pseudo-
prime for the base i or that i is an Euler liar (E-liar) for the Solovay-Strassen
primality test. In particular, the set Lss(n) of E-liars has at most �(n)

2 elements.
Thus, the probability of sampling an E-liar when performing the Solovay Strassen
test is given by �n = |Lss(n)|/(n� 1)

The size of Lss(n) varies for different odd composite numbers. Consider the
Carmichael numbers, that is, composite positive integers n satisfying the con-
gruence b

n�1 ⌘ 1 (mod n) for all integers b relatively prime to n. The largest
�n is found in a subset of Carmichael numbers with �n = 1

2 . A Carmichael
number passes a Fermat primality test [18, Section 31.8] to every base relatively

2Currently the best runs in time O((log n)6).
3In contrast, factorisation of positive integers is “thought”, but not proved, to be a computationally

difficult problem. Currently, one cannot factorise a positive integer of 500 decimal digits that is the
product of two randomly chosen prime numbers. This fact is exploited in the RSA cryptosystem
implementing public-key cryptography [46].

4If the prime factorisation of the odd number n is pa1
1 pa2

2 . . . pak
k , then

�
i
n

�
=⇣

i
p1

⌘a1
⇣

i
p2

⌘a2

. . .
⇣

i
pk

⌘ak
.
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prime to the number, but few of them pass the Solovay-Strassen test. Increasingly
Carmichael numbers become “rare”.5

Consider s = s0 . . . sm�1 a binary string (of length m) and n an integer greater
than 2. Let k be the smallest integer such that (n � 1)k+1

> 2m � 1; we can thus
rewrite the number whose binary representation is s into base n� 1 and obtain the
unique string dkdk�1 . . . d0 over the alphabet {0, 1, . . . , n� 2}, that is,

kX

i=0

di(n� 1)i =
m�1X

t=0

st2
t
.

The predicate Z(s, n) is defined by

Z(s, n) = ¬W (1 + d0, n) ^ · · · ^ ¬W (1 + dk�1, n), (4)

where W is the Solovay-Strassen predicate.

The digits of s (rewritten in base n � 1) are used to define the Solovay Strassen
predicates. If n is a pseudo-prime for all the bases from s used to construct these
predicates, we say that s is a Z � liar.

A string s is c-random if K(s) � |s| � c; |s| is the string length and K is the
Kolmogorov complexity [11].

Chaitin-Schwartz Theorem. [14] For all sufficiently large c, if
s is a c-random string of length (l + 2c) and n is an integer whose
binary representation is l bits long, then Z(s, n) is true if and only if
n is prime.

This result cannot be used to de-randomise6 Solovay-Strassen probabilistic algo-
rithm because the set of c-random strings is incomputable.7 However, the result
can be used to model strings from different random number generators to test the
quality of long binary strings by comparing their behaviour. In particular, we look
at the number of Z-liars found by each generator.

4.3 Experimental analysis

Standard statistical tests of randomness focus on properties of the distribution of
bits or bit strings within sequences, failing to distinguish between pseudo-random
number generators and quantum random number generators. To address this issue,
in [2], the ability of random strings to de-randomise the Solovay-Strassen proba-
bilistic test of primality was used to compare the algorithmic randomness of strings
generated by a QRNG and those produced by different PRNGs. Despite leading to

5There are 1,401,644 Carmichael numbers in the interval [1, 1018].
6That is, to transform the probabilistic algorithm into an equivalent deterministic algorithm.
7In fact, highly incomputable [11]: no infinite set of c-random is computable.
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mostly inconclusive results, the tests conducted showed some advantages offered
by a 3D-QRNG against PRNGs with respect to the randomness of its outputs.

The following test, called the fourth Chaitin-Schwartz-Solovay-Strassen test (CSS4)
in [2], showed the highest potential for distinguishing between sources of random
strings. Recall that the crucial fact is that the set of c-random strings is (highly)
incomputable.

We construct the Chaitin-Schwartz predicate Z(s, n) from (4) and generate a pool
of Solovay-Strassen predicates composed of the digits s in base n � 1. Then, we
fix c = l � 1 where l is the l-bit binary representation of n and sample s from
chunks of l(l + 2c) bits in order to look for Z-liars generated by a set of bases for
the predicates extracted from the string s.

In [2], Carmichael numbers were used in the majority of the tests. However, despite
Carmichael numbers having a larger Lss(n), it is difficult to find Z-liars due to the
length of their binary representation. For example, for the smallest Carmichael
number more than 70 ⇥ 232 bits would need to be read to find a Z-liar since the
Solovay-Strassen test guarantees a predicate is true with a probability of at least
one-half when n is a composite number. For smaller numbers we expect see to a
larger number of Z-liars. Thus, for this test, only odd composite numbers less than
50 were used for each round, and the process was repeatedly parsed through each
string with an incremental bit offset.

Recently in [30], a similar approach was taken by applying these tests to a different
set of PRNGs and two different QRNGs with a larger set of numbers; each string
tested had a length of 226. Once again, the QRNGs showed no clear advantage over
the PRNGs. Moreover, the difficulty of finding Z-liars led to a similar limitation in
terms of numbers tested; Z-liars were only observed for composites n  25. Still,
an essential characteristic of this test was confirmed: its sensitivity to the size of the
pool of unique bases extracted from the random strings. No Z-liars were recorded
when a repetitive structure generated by their sampling process was present. For
this reason, we have a variation of this test was performed.

We tested two PRNGs and a QRNG: the Python3 Mersenne Twister-based gener-
ator, the hashing function SHA3, considered a “cryptographically secure PRNG”
and the 3D-QRNG described in this paper.

Since the number of Solovay-Strassen tests increases with longer binary represen-
tations, the probability of observing a Z-liar becomes smaller, so a large pool of
unique bases was required to detect a significant number of Z-liars [2]. Thus, we
prepared ten sets of strings of size 232 for each generator and applied the shifting
process described in [2] for the test. The average number of Z-liars over the com-
posite numbers less than 50 was taken as the metric. Despite only detecting Z-liars
for composites up to 25, there was a noticeable difference between sources for the
numbers 9 and 15. For these numbers, from our predicate construction, we have
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Composite number tested 9 15 21 25 27 33 35 39 45 49
sha3 265.6 60.3 0 0.2 0 0 0 0 0 0
python3 260.1 58 0 0.3 0 0 0 0 0 0
qutrits 536.4 131.9 0 0.2 0 0 0 0 0 0

Table 1: Average number of Z-liars sampled by composite number tested (over 10
strings of length 232)

that a minimum of 40⇥ 213 bits and 40⇥ 210 bits are needed for a c-random string
to have a chance of finding a Z-liar.

Figure 3: Fourth Chaitin-Schwartz-Solovay-Strassen test: distribution of the aver-
age Z-liar counts for all odd composite numbers less than 50

The occurrence of patterns in long enough sequences of random events is in-
evitable. Since a lower quality of randomness increases the rate at which this
occurs, the gap between the number of unique bases extractable between RNGs
with different qualities of randomness widens. Thus, given long enough strings,
we can observe this behaviour. Since many unique bases are required to increase
the likelihood of finding Z-liars, from Figure 1, we see the advantage offered by a
3D-QRNG generator over other alternative sources of randomness.

In order to analyse the statistical significance of these results, we conducted the
non-parametric and distribution-free two-sample Kolmogorov–Smirnov test. This
test identifies if two datasets differ significantly without any prior assumption about
an underlying distribution. To this end, we say that the difference between two
datasets is statistically significant if the p-value obtained through this test is less

15



sha3 qutrits
python3 0.9780 0.0047

sha3 0.0047

Table 2: Kolmogorov-Smirnov test p-values for the fourth Chaitin-Schwartz-
Solovay-Strassen test with the Z-liar count metric

than 0.005. This critical p-value is chosen to reduce the chance of false positives
as well as allow us to provide a direct comparison with results from [2].

We note that there is a significant difference between the 3D-QRNG qutrits and the
PRNGs. A similar behaviour was revealed in [2], where despite the non-conclusive
results of the fourth Chaitin-Schwartz-Solovay-Strassen test, the Kolmogorov-Smirnoff
test showed that the difference between a 3D-QRNG and the other PRNGs is sta-
tistically relevant. The outcomes of the fourth Chaitin-Schwartz-Solovay-Strassen
test presented here show a stronger advantage of 3D-QRNGs over PRNGs.

5 Conclusions

This article uses a located form of the Kochen-Specker Theorem to derive a phys-
ical realisation of a class of 3D-QRNGs by means of a superconducting trans-
mon. The sequences produced by these 3D-QRNGs are strongly incomputable,
a property that no other QRNG provides to date. Furthermore, we have used a
non-statistical randomness test to probe experimentally the incomputability of its
generated long strings: for the first time, a provable advantage over the best PRNGs
was found. This result has been achieved by using the Chaitin-Schwartz Theorem
to probe the “usefulness” of generated quantum random bits, a form of Einstein’s
justification.

These results highlight the real effects of incomputability in quantum systems and
complement the theoretical certification via value indefiniteness of the class of
QRNGs implemented. Furthermore, the experimental results confirm and comple-
ment incomputability and, quite significantly, the choice of physical assumptions
in the theoretical part.

Finally, there is a strong motivation for developing alternative tests capable of prob-
ing at algorithmic properties of randomness that better suit a wide range of applica-
tions where the quality of randomness needs to be assessed quickly or dynamically.
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