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All quantum random number generators based on measuring value indefinite observables are at least three-
dimensional because the Kochen-Specker Theorem and the Located Kochen-Specker Theorem are false in di-
mension two. In this article, we construct a quantum random number generator based on measuring a three-
dimensional value indefinite observable that generates binary quantum random outputs with the same random-
ness qualities as the ternary ones: its outputs are maximally unpredictable.
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I. INTRODUCTION

All known quantum random number generators, which rely
on measuring value-indefinite observables [1–3] are three-
dimensional. This is because the Kochen-Specker Theo-
rem [4] and the Located Kochen-Specker Theorem [1, 5] are
false in dimension two. In this article, we construct a quantum
random generator based on measuring a three-dimensional
value indefinite observable generating binary quantum ran-
dom outputs with the same randomness qualities as the ternary
ones; its outputs are maximally unpredictable [6]. Our results
in C3 can easily be generalized to Cn with n > 3.

This is possible because if we fix a context C in Cn,n > 2
and a value indefinite observable E 2C (under a value assign-
ment function v), then we can locate a value indefinite ob-
servable G 2C such that v(G) = ÂE 02C\{E} v(E 0). Hence, the
measurements of the observables E and G produce maximally
unpredictable binary quantum random outputs.

II. NOMENCLATURE AND DEFINITIONS

By n, we denote a positive integer greater than 1. We denote
by C the set of complex numbers and employ the standard
quantum mechanical bra-ket notation. In this context, (unit)
vectors in the Hilbert space Cn are represented as |·i. Our
focus will be on one-dimensional projection observables. We
denote by Ey the operator Ey = |yihy|/|hy|yi| projecting
the Hilbert space Cn onto the linear subspace spanned by |yi.

In the following, we formalize hidden variables and the
concept of value definiteness as in [5].

Fix n> 1. Consider O ✓ {Ey | |yi 2Cn}, a nonempty set of
one-dimensional projection observables on the Hilbert space
Cn. A set C ⇢ O is a context of O if C has n elements (that is,
|C|= n), and for all Ey,Ef 2C with Ey 6= Ef, hy|fi= 0.

Since distinct one-dimensional projection observables com-
mute if and only if they project onto mutually orthogonal lin-
ear subspaces, a context C of O is a maximal set of compati-
ble one-dimensional projection observables on Cn. Due to the
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correspondence (up to a phase-shift) between unit vectors and
one-dimensional projection observables, a context is uniquely
defined by an orthonormal basis of Cn.

A function is partial if it may be undefined for some val-
ues; a function defined everywhere is called total. The square
root operation on the real numbers is partial because nega-
tive real numbers do not have real square roots. Partial func-
tions were introduced in computability theory in 1930s [7–9]
to model non-halting computations; they were used in quan-
tum physics in [1]. A value assignment function (on O) is a
partial two-valued function v : O ! {0,1}, assigning values to
some (possibly all) observables in O. While we could allow
v to be a function of both the observable E and the context C
containing E, enabling contextual value assignments, for the
sake of compactness, we define v as a noncontextual value
assignment function, that is, v(E,C) = v(E).

An observable E 2 O is value definite (under v) if v(E) is
defined; otherwise, it is value indefinite (under v). Similarly,
a context O is considered value definite (under v) if every ob-
servable E 2 O is value definite.

Let O be a set of one-dimensional projection observables
on Cn, and let v : O ! {0,1} be a value assignment function.
Then, v is admissible if the following two conditions hold for
every context C of O:

(a) Exclusivity: If there exists an E 2C with v(E) = 1, then
v(E 0) = 0 for all E 0 2C \{E}.

(b) Completeness: If there exists a E 2 C with v(E 0) = 0,
for all E 0 2C \{E}, then v(E) = 1.

Admissibility is a weaker requirement than the usual as-
sumption of the existence of a two-valued state—a total value
assignment—because fewer than n� 1 elements in a context
on Cn may be assigned the value 0, and no element is assigned
the value 1. If the value assignment is partial, then the observ-
ables corresponding to these remaining elements are value in-
definite. However, if the value assignment on a particular set
O of one-dimensional projection observables on Cn is total,
then admissibility coincides with the standard definition of
two-valued state(s).

Admissibility permits undefined values and thus value in-
definiteness of an observable E if both outcomes (0 and 1)
of a measurement of E would be incompatible with the defi-
nite values of other observables sharing a context with E. If
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v(E) = 1, a measurement of every observable in a context C
containing E must yield the outcome 1 for E. Consequently,
to avoid contradiction, the outcome of measurements for all
the other observables in the context must be 0, and vice versa.
On the other hand, if v(E) = 0, then the measurements of the
other observables in C could yield the values 1 and 0 (as long
as only one yields 1).

III. VALUE INDEFINITE OBSERVABLES

We proceed with the main result:
Fix a context C in Cn,n > 2. If an observable E 2 C is

value indefinite under a value assignment function v, then
there exists a value indefinite observable G 2 C such that
v(G) = ÂE 02C\{E} v(E 0).

For a proof, fix a context C and assume that E is value indef-
inite under v, meaning that both v(E) = 0 as well as v(E) = 1
are (in)consistent with respect to admissibility.

First, we show that

Â
E 02C\{E}

E 0 (1)

is value indefinite.
The following two cases arise:

(i) Suppose that

Â
E 02C\{E}

v(E 0) = 0. (2)

Then, due to Completeness (b), E needs to be assigned
the value one, that is, v(E) = 1. But this contradicts
the assumption that v(E) is undefined. Therefore, the
equality (2) is false.

(ii) Suppose that

Â
E 02C\{E}

v(E 0) = 1. (3)

Then, due to Exclusivity (a), E needs to be assigned the
value zero, that is, v(E) = 0. Again, this contradicts
the assumption that v(E) is undefined. Therefore, the
equality (3) is false.

Second, we show the existence of a value indefinite observ-
able G 6= E such that v(G) = ÂE 02C\{E} v(E 0). Indeed, if every
G 6= E would be value definite, then the sum (1) would be
value definite too, a contradiction.

Note that, because of context independence, that is, the in-
dependence of the value assignment function from the con-
text, if v(E) = 1, a measurement of observable E in any con-
text C containing E must yield the outcome 1. Consequently,
to avoid contradiction with the Exclusivity criterion (a), the

outcome of measurements for all of the other observables in
all of these contexts containing E must be 0; hence, the re-
maining observables in all of the contexts containing E are
value definite, with value 0.

Likewise, in n > 2 dimensions, having fewer than n � 1
observables—say, one to n � 2 observables—with value 0
could still lead to undefined value assignments on the remain-
ing n� 1 to 2 observables. Hence, these remaining n� 1 to
2 observables remain value indefinite. However, if there are
n�1 observables with value assignment 0, then, due to Com-
pleteness criterion (b), the remaining observable is assigned
value 1.

Note also that, by “merging” two or more observables of
the context, represented by the orthogonal projection oper-
ators E2, . . . ,En, we never left n-dimensional Hilbert space
Cn, because E2,...,nCn is the (n�1)-dimensional Hilbert space
spanned by the vectors |eii that form Ei = |eiihei|, with i =
2, . . . ,n. The vectors in E2,...,nCn are orthogonal to the one-
dimensional subspace E1Cn spanned by |e1i, and the vectors
|e1i, . . . , |e1i for an orthonormal basis.

For the sake of an example, we shall delineate a hyper-
graph introduced in [5] and split it into segments serving as
true-implies-false (TIFS) and true-implies-true (TITS) gad-
gets [10].

The hypergraph corresponding to the TIFS gadget in Fig-
ure 1 illustrates the orthogonality relations among vector la-
bels of the elements of hyperedges [11], as detailed in [10,
Table I]. By subsequently applying the admissibility rules [12,
Fig. 24.2.a] a single consistent value assignment, as in Fig-
ure 1(a) allows v(a) = 1 and v(b) = 0, whereas an inconsis-
tent value assignment arises when assuming v(a) = v(b) = 1.
Therefore, for any such configuration of quantum observables,
there exists no classical admissible value assignment v satisfy-
ing the constraint on the input and output ports v(a) = v(b) =
1. Consequently, if a has a preselected input state v(a) = 1,
then the value assignment v(b) for the output state b must be
either 0 or undefined, that is, value indefinite.

Conversely, the TITS gadget hypergraph in Figure 2 illus-
trates the orthogonality relations among vector labels of the
elements of hyperedges [11], as detailed in [10, Table I]. Us-
ing the admissibility rules [12, Fig. 24.2.a] a single consis-
tent value assignment, as in Figure 2(a) implies v(a) = 1 and
v(b) = 1, in contrast with the value assignment when assum-
ing v(a) = 1 and v(b) = 0.

As before, for any such configuration of quantum observ-
ables, there exists no classical admissible value assignment v
satisfying the constraint on the input and output ports v(a) = 1
and v(b) = 0, respectively. Consequently, if a has a prese-
lected input state v(a) = 1, then the value assignment v(b) for
the output state b must be either 1 or undefined, that is, value
indefinite.

Therefore, the concatenation of the two hypergraphs depict-
ing TIFS and TITS gadgets, originally introduced by Abbott
and the authors in [10], and shown in Figures 1 and 2 respec-
tively, excludes both admissible value assignments of 0 and 1,
rendering v(b) undefined and thus the observable b value in-
definite. Indeed, as in Figure 3 the penetration of admissible
value assignments is rather limited: if the system is prepared
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FIG. 1. The TIFS gadget hypergraph for b given v(a) = 1, as well as the TITS gadget hypergraph for 3 given v(a) = 1, illustrates the
orthogonality relations among vector labels of the elements of hyperedges [11] within a subset of quantum observables—also known as a
faithful orthogonal representation [13] or coordinatization [14], as enumerated in [10, Table I]. Red squares represent the value 1, and green
circles represent the value 0. (a) A singular consistent value assignment is obtained by assuming v(a) = 1 and v(b) = 0 and applying the
admissibility rules successively [12, Fig. 24.2.a]. (b) An inconsistent value assignment is obtained by assuming v(a) = v(b) = 1 and applying
the admissibility rules successively: the context {3,21,23}, shown dotted, contains three observables with the value 0; hence no admissible
value assignment v with the constraint on the input and output ports v(a) = v(b) = 1 exists. Therefore, if a has a preselected input state
v(a) = 1, then the value assignment v(b) for the output state b has either to be 0 or needs to be undefined, that is, b is value indefinite.
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FIG. 2. The TITS gadget hypergraph for b given v(a) = 1, as well as the TIFS gadget hypergraph for 3 given v(a) = 1, which is partly
reflection symmetric along the {a,1,2} context to the TIFS gadget hypergraph in Figure 1, illustrates the orthogonality relations among vector
labels of the elements of hyperedges [11] within a subset of quantum observables—also known as a faithful orthogonal representation [13] or
coordinatization [14], as enumerated in [10, Table I]. Red squares represent the value 1, and green circles represent the value 0. (a) A single
consistent value assignment is obtained by assuming v(a) = 1 and v(b) = 1 and applying the admissibility rules successively [12, Fig. 24.2.b].
(b) An inconsistent value assignment is obtained by assuming v(a) = 1 and v(b) = 0 and applying the admissibility rules successively: because
the context {6,7,b}, shown dotted, contains three observables with the value 0, no admissible value assignment v exists with the constraint on
the input and output ports v(a) = 1 and v(b) = 0. Therefore, if a has a preselected input state v(a) = 1, then the value assignment v(b) For the
output state, b has to be 1 or undefined; that is, b is an indefinite value.
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FIG. 3. Concatenated hypergraph from the hypergraphs depicting
TIFS and TITS gadgets shown in Figures 1 and 2, respectively. Ad-
missibility merely allows “star-shaped” value definite observables
along the two contexts {a,1,2} and {a,4,5} if the system is pre-
pared in state a.

in state a, then admissibility merely allows “star-shaped”
value definite observables along the two contexts {a,1,2}
and {a,4,5}. Note that all contexts {b,2,3}, {b,6,7}, and
{b,8,9}, in which b is an element, have at least one more el-
ement which is value indefinite. This is because the set of
observables O = {a,b,1, . . . ,35} is not unital [15], that is, all
eight admissible (or global) value assignments must assign the
value 1 to the observable 1, and thus the value 0 to a. There
does not exist any value assignment v(a) = 1 [12, Table 24.1].
However, such value assignments with v(a) = 1 exist for the
reduced set of observables O\{29,31} and O\{10,12} form-
ing TIFS and TITS, respectively.

A very similar argument uses the same hypergraphs as
in Figures 1 and 2 as TITS and TIFS gadgets for 3 given
v(a) = 1, respectively. Therefore, v(3) is undefined, and the
obsevable 3 is value indefinite.

IV. A CONSTRUCTION OF A BINARY QUANTUM

RANDOM NUMBER GENERATORS BASED ON VALUE

INDEFINITE OBSERVABLES

A. Quantum versus classical models

A quantum realization of the construction in Figures 1, 2
and 3 can be obtained from the faithful orthogonal represen-
tation of the elements of the hyperedges as vectors. One such
representation was already given in [10, Table I]. It assigns the
(superscript T indicates transposition) |ai =

�
1,0,0

�T to (the
pure state) a, also representable by the trace-class one orthog-
onal (that is, positive, self-adjoint) projection operator whose
matrix representation with respect to the Cartesian standard
basis is a diagonal matrix Ea = |aiha| = diag

�
1,0,0

�T and

|bi=
⇣

1p
2
, 1

2 ,
1
2

⌘T
as well as |3i=

⇣
1p
2
,� 1

2 ,�
1
2

⌘T
to the ob-

servables b and 3, respectively. Therefore, if the system is
preselected or prepared in state |ai, measurement of

Eb = |bihb|= 1
2

0

B@
1 1p

2
1p
2

1p
2

1
2

1
2

1p
2

1
2

1
2

1

CA

along |bi is obtained with the probability

Tr
�
Ea ·Eb

�
= |hb|ai|2 = 1

2
.

Likewise, measurement of

E3 = |3ih3|= 1
2

0

B@
1 � 1p

2
� 1p

2
� 1p

2
1
2

1
2

� 1p
2

1
2

1
2

1

CA

along |bi is obtained with the probability

Tr
�
Ea ·E3

�
= |h3|ai|2 = 1

2
.

As |2i is orthogonal to |ai, Tr
�
Ea ·E2

�
= |h2|ai|2 = 0, and

the observable 2 is defined. Hence, when the observable a is
preselected in the state |ai, both observables b and 3 become
value-indefinite (relative to admissibility), while observable 2
is value-definite with a value of v(2) = 0. A quantum cal-
culation confirmes what is posited in the (Located) Kochen-
Specker Theorem, that both b and 3 occur with a probability
of 1

2 .
To emphasize the three-dimensionality of the configuration,

even if only two observables have nonzero probabilities, the
sum of frequencies of the remaining quantum observables 2
and 3 in the complement {2,3} of the context {b,2,3} con-
taining b is 1/2. More explicitly, expressed in terms of or-
thogonal projection operators, the observable corresponding
to {2,3} is given by a matrix corresponding to the orthogonal
projection operator E2,3:

E2,3 = E2 +E3 = |2ih2|+ |3ih3|

=
1
2

0

B@
1 � 1p

2
� 1p

2
� 1p

2
3
2 � 1

2
� 1p

2
� 1

2
3
2

1

CA .
(4)

This is a particular case of (1). The vectors in E2,3 2C3 are or-
thogonal to vectors in Eb 2C3. Together, Eb+E2,3 = |bihb|+
|2ih2|+ |3ih3|= I3 yield the identity I3 = diag

�
1,1,1

�
.

Classically, there is no realization of the set of observables
O = {a,b,1, . . . ,35} in Figure 3 because some elements of
O are assigned the value 0 for all two-valued states [12, Ta-
ble 24.1], hence not separable [4, Theorem 0]. This result
holds for total value assignments—a stronger assumption than
admissibility. Indeed, in this case the “central” point 1 must be
classically assigned the value v(1) = 1, and, therefore, all re-
maining eight elements {a,2,13,15,16,17,25,27} in the four
contexts {a,1,2}, {1,13,16}, {1,15,17}, and {1,25,27} con-
taining 1 to be zero.
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B. Beam splitter realizations

Figure 4 presents a triangular array of quantum beam
splitters which physically transforms the preparation context
{a,4,5} into the measurement context {b,2,3}. The vec-
tor coordinatization [10, Table I] |ai =

�
1,0,0

�T , |bi =⇣
1p
2
, 1

2 ,
1
2

⌘T
, |2i =

⇣
0, 1p

2
,� 1p

2

⌘T
, |3i =

⇣
1p
2
,� 1

2 ,�
1
2

⌘
,

|4i =
�
0,0,1

�T , and |5i =
�
0,1,0

�T identifying the generic
label x with a (ket) vector |xi was used to compute the respec-
tive unitary transformation matrix [16, 17] that transforms the
input state a into the output state b, the input state 4 into the
output state 2, and the input state 5 into the output state 3:

U = |biha|+ |2ih4|+ |3ih5|

=
1
2

0

@

p
2

p
2 0

1 �1
p

2
1 �1 �

p
2

1

A .
(5)

This unitary matrix realizes a beam splitter [18–21] using
the parametrization of the unitary group [22]. Besides phase
shifters operating in one-dimensional subspaces (in this par-
ticular case, all zero but one), these concatenations of optical
elements contain beam splitters operating in two-dimensional
subspaces. These beam splitters have a parametrization uni-

tary matrix

B(w,j) =
✓

sinw cosw
e�ij cosw �e�ij sinw

◆

depending on two parameters: w is the transmissivity T =
sin2 w and reflectivity R = 1�T = cos2 w, and j is the phase
change at reflection.

T = 0, p
2 T = 0, p

2 T = 0, p
2

T = 2
3 ,

p
2

p
2

T = 3
4 ,

p
2

0
T = 2

3 ,
p
2

0

�
0,0,1

�T
= |4i

�
1,0,0

�T

�
0,1,0

�T
= |5i

�
0,1,0

�T

�
1,0,0

�T
= |ai

�
0,0,1

�T

3p
2

p
2

0

FIG. 4. A triangular array of quantum mechanical beam splitters
is a realization of the input or preparation context {a,4,5} and
the output or measurement context {b,2,3} in terms of the vec-

tor coordinatization [10, Table I] a ⌘
�
1,0,0

�T , b ⌘
⇣

1p
2
, 1

2 ,
1
2

⌘T
,

2 ⌘
⇣

0, 1p
2
,� 1p

2

⌘T
, 3 ⌘

⇣
1p
2
,� 1

2 ,�
1
2

⌘T
, 4 ⌘

�
0,0,1

�T , and 5 ⌘
�
0,1,0

�T .

The output wave function, given the input wave function, is the coherent superposition (summation) of the contributions of
all the possible forward passes from the input port(s) towards the output port(s). Thereby, the transmissibility and reflectivity
contribute by the square roots

p
T = sinw and reflectivity

p
R = cosw of T and R [23]. The sum of the phase shifts between

reflected and transmitted waves excited by a wave incident from the side of the beam splitter and the corresponding phase shift
for a wave incident from the opposing side contribute with p [24], whereby, for a symmetric lossless dielectric plate [25], the
reflected and transmitted parts are p/2 out of phase [23, 26].

The relations (6) present a computation of the effects on the input ports of the beam splitter in Figure 4 by successive applica-
tions of phase shifts and beam mixings.

|ai �! ei 3p
2

8
<

:ei p
2

r
1
4

0

@
0
0
1

1

A+

r
3
4

2

4ei p
2

r
1
3

0

@
0
1
0

1

A+

r
2
3

ei p
2

0

@
1
0
0

1

A

3

5

9
=

;= |bi,

|5i �! ei p
2

0

@ei p
2

r
1
3

8
<

:

r
3
4

0

@
0
0
1

1

A+ ei p
2

r
1
4

2

4ei p
2

r
1
3

0

@
0
1
0

1

A+ ei p
2

r
2
3

0

@
1
0
0

1

A

3

5

9
=

;

+

r
2
3

ei p
2

2

4
r

2
3

0

@
0
1
0

1

A+ ei p
2

r
1
3

ei p
2

0

@
1
0
0

1

A

3

5

1

A= |3i,

|4i �! ei p
2 ei p

2

0

@
r

2
3

8
<

:

r
3
4

0

@
0
0
1

1

A+ ei p
2

r
1
4

2

4ei p
2

r
1
3

0

@
0
1
0

1

A+

r
2
3

ei p
2

0

@
1
0
0

1

A

3

5

9
=

;

+ei p
2

r
1
3

ei p
2

2

4
r

2
3

0

@
0
1
0

1

A+ ei p
2

r
1
3

ei p
2

0

@
1
0
0

1

A

3

5

1

A= |2i.

(6)
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V. CERTIFICATION

In this section, we prove that the quality of randomness pro-
duced by the quantum random number generators described
by the value definite observables and the unitary matrices in
Equations (5) and subsequently (13) are the same as the qual-
ity of the quantum random number generators in [2, 3]: Every
sequence generated is maximally unpredictable: no algorithm
can predict a single bit of the sequence.

Suppose we prepare a quantized system in a state |ai =�
1,0,0

�T which is value definite with respect to any context
containing the observable |aiha|= diag

�
1,0,0

�
. This system

is then ‘analyzed’ in terms of the spin-1 operator in the x-
direction Sx, and its associated unit eigenvectors (through its
spectral decomposition) form the unitary operator given by
the unitary matrix [3]:

Ux =
1
2

0

@
1

p
2 1p

2 0 �
p

2
1 �

p
2 1

1

A . (7)

Then, as discussed earlier, Ux can be represented by a beam
splitter.

Note that, as |ai is not in the context formed by the row
vectors of Ux, it is not value definite with respect to S1. By
forming the scalar product between |ai and the row vectors of
Ux, and by taking the (absolute) square, we obtain a ternary
quantum random number generator producing ternary digits
with the probability distribution

� 1
4 ,

1
2 ,

1
4

�
, see [3].

The computable alphabetic morphism j : {0,1,2}! {0,1}

j(x) =

8
><

>:

0, if x = 0,
1, if x = 1,
0, if x = 2,

(8)

transforms by sequential concatenation ternary strings and
sequences into binary ones and preserves maximal unpre-
dictability for the probability distribution 1

4 ,
1
2 ,

1
4 ; see [27] and

Section 7 in [2].
Quantum mechanically, this alphabetic morphism corre-

sponds to a post-processing of the output of Ux|ai. In general,
by post-processing of a unitary transformation A we mean the
unitary transformation B = U 0A, where U 0 is a suitable uni-
tary transformation. Physically, this corresponds to the serial
composition of beam splitters, first applying A and then U 0.

The post-processing of (8) results in the ‘merging’ or ‘fold-
ing’ of a state with three nonzero components (or coordinates
with respect to a particular basis, here the Cartesian standard
basis) into a state with two nonzero components. The merging
is justified only if the corresponding input ports belong to the
same context. In other words, the corresponding observables
have mutually exclusive outcomes—a condition satisfied by a
beam splitter realizing Ux. The schema is presented in Fig-
ure 5. Thereby, the unitary matrix U 0

U 0 =
1

2
p

2

0

@
1+

p
2

p
2 1�

p
2

1�
p

2
p

2 1+
p

2p
2 �2

p
2

1

A (9)

Ux U 0
|a00i
|a0i
|ai

|30i

|20i

|10i

|0i
|1i
|2i

FIG. 5. A horizontal schema of two beam splitters Ux and U 0 in
serial compositionU 0Ux, with the ‘input’ state prepared in |ai, and
two ‘active output’ ports in states |0i and |1i.

corresponds to the alphabetic morphism j. Then, the com-
bined transformation is

U 0Ux =
1p
2

0

@
1 1 0
1 �1 0
0 0

p
2

1

A . (10)

This unitary matrix U 0Ux corresponds to a beam splitter
configuration that first allows a state |ai to be ‘expanded’ by a
unitary matrix Ux with three nonzero components. Simultane-
ously, given |ai, this output state Ux|ai corresponds to a value-
indefinite observable. Subsequently, it is ‘merged’ by the
unitary matrix U 0, representing a serially concatenated beam
splitter that transforms this state into one with two nonzero
components of equal probability amplitudes. On input |ai the
unitary transformation U 0Ux generates a ternary output with
the probability distribution

� 1
2 ,

1
2 ,0

�
, which corresponds to the

binary output with the probability distribution
� 1

2 ,
1
2

�
.

How can we realize this transformation in terms of uni-
tary equivalence? Two transformations, A and B, are uni-
tarily equivalent if there exists a unitary matrix V such that
B = V †AV , where V † means the Hermitian adjoint, or conju-
gate transpose, of V . If V is real-valued then V † = V T is just
the transpose V T of V .

From Specht’s Theorem [28, 29], two unitary matrices are
unitary equivalent if their eigenvalues coincide. In our case,
both Ux in (7) as well as U 0Ux in (9) have one eigenvalue �1,
and a double eigenvalue 1. More explicitly, the matrix

V =

0

BBB@

1
2
p

3

q
2�

p
2+

p
3 1

2
p

3

q
2+

p
2+

p
3

q
2
3

� 1p
6

q
2�

p
2+

p
3 � 1p

6

q
2+

p
2+

p
3 1p

3
1
2

q
2+

p
2+

p
3 � 1

2

q
2�

p
2+

p
3 0

1

CCCA

(11)
satisfies the equality V TUxV =U 0Ux: this proves that the ma-
trix Ux defined in (7) is unitarily equivalent to the matrix com-
bination U 0Ux in (10).

Using the invariance results in [3], we deduce that the quan-
tum random number generator described in the section gener-
ates maximally unpredictable binary random digits.

VI. BEAM SPLITTER AS AN ANALOGY OF ARIADNE’S

TREAD

How come can we quantum mechanically ‘spread’ a qutrit
state of input into a coherent superposition of all qutrit states,
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and finally end up with a binary sequence—very much like
two Hadamard unitary transformations first ‘spread’ a qubit,
and then (up to a constant scalar factor) ‘fold it back’ into its
original state? This is where the allegory of Ariadne’s thread
comes up in the configuration of a beam splitter. Consider a
general quantum beam splitter with m > 0 nonzero input and
n > 0 nonzero output ports. As long as the sum of probabili-
ties of preparation and detection on both the respective input
and the output ports adds up to one, a quantum realization is
feasible [18–21]. Indeed, all that is necessary is that the input
and the output state are tailored according to the probability
amplitudes (phases do not count).

Considering this scenario, one may question: What hap-
pens to quantum unitarity, especially if m 6= n? For instance,
with such a beam splitter, we could ‘merge’ two input ports
into one output port (n = m+1 = 2). Alternatively, one could
‘split’ a single input port into (a coherent superposition, re-
sulting in) two output ports (m = n+1 = 2). For instance, the
associated unitary three-dimensional matrix entries could be

U2-to-1 =

0

@
0 1p

2
1p
2

· · ·
· · ·

1

A , U1-to-2 =

0

B@
0 · ·
1p
2

· ·
1p
2

· ·

1

CA , (12)

where, for U2-to-1 (or U1-to-2) the remaining rows (or columns)
could fill up with unit vectors forming the orthonormal basis
of a two-dimensional subspace orthogonal to

⇣
0 1p

2
1p
2

⌘
(or

its Hermitian conjugate).
Indeed, to obtain a binary sequence, one could ‘post-

process’ the beam splitter arrangement in Figure 4 by a beam
splitter corresponding to the following real-valued unitary ma-
trix:

U 0
2-to-1 =

1p
2

0

@

p
2 0 0

0 1 1
0 1 �1

1

A . (13)

When the input state is |ai, the resulting output state is
U 0

2-to-1U |ai, with U and U 0
2-to-1 defined in Equations (10)

and (13), respectively.
More explicitly,

1p
2

0

@

p
2 0 0

0 1 1
0 1 �1

1

A 1
2

0

@

p
2

p
2 0

1 �1
p

2
1 �1 �

p
2

1

A

0

@
1
0
0

1

A=
1p
2

0

@
1
1
0

1

A .

A particle in state |ai will end up in either the first or second
port with probability 1

2 and be registered in the third port with
probability 0.

Two questions arise: (i) The unitary quantum evolution—
of the von Neumann type ‘Vorgang’ 2 [30, 31], referred to
as ’process 2’ by Everett [32]—that needs to be one-to-one,
appears to be compromised. (ii) Moreover, what happens in
such a situation concerning value indefiniteness and partial
value assignments?

The first question can be quickly addressed: The beam
splitter examples discussed here show that concentration on

a partial array of input and output ports cannot represent the
whole picture. The full specification of a beam splitter in n
dimensions is the same number n of input and output ports.
The quantum evolution is incomplete if some input and out-
put contexts are not considered. Any unitary transformation
can be represented by a bijective map of the vectors of one
orthonormal basis—the input context—into the vectors of an-
other orthonormal basis [16, 17]—the output context. Incom-
plete mappings of vectors from one context into some vectors
of another context may not be one-to-one and thus represent a
unitary transformation; only the totality of those vectors forms
a forward- and backward-reversible transformation.

One can view the context-to-context unitary mapping as a
sort of ‘rescrambling’ of information contained in the chan-
nels or ports of the beam splitter [33, 34]. Thereby, the ‘latent’
and ‘omitted’ ports act as Ariadne’s thread that must be con-
sidered for reversibility. The situation is similar to a zero-sum
game encountered in entanglement swapping.

VII. CONCLUSIONS

We have shown that if an observable E 2 C (in Cn,n > 2)
is value indefinite under a value assignment function v, then
we can locate a value indefinite observable G 2 C such that
v(G) = ÂE 02C\{E} v(E 0). This yields a quantum mechani-
cal justification for the algebraic post-processing transforming
ternary quantum random digits into binary ones [2, 3, 27].

It also sheds new light on a question [35] about the ‘effec-
tive two-dimensionality’ of a setup introduced earlier [1] in
which one output has probability zero, that might potentially
endanger the principle of three- and higher-dimensionality of
quantum random number generators [36]. The difference be-
tween the quantum random number generator in the 2012 ar-
ticle [1], which generates binary output directly, and the more
recent one [3] that generates manifestly tertiary output (which
needs post-processing) is the input state. Whereas the former
uses the input state

�
0,1,0

�T , the latter uses another (orthog-
onal) state |ai =

�
1,0,0

�T . In both instances, the ‘internal’
beam splitter machinery operates in three-dimensional Hilbert
space.

Furthermore, the outputs of the binary quantum random
number generators based on value-indefinite observables have
the same randomness qualities as the ternary ones; that is, they
are maximally unpredictable [6]. Our results in C3 can easily
be generalized to Cn with n > 3.
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