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Abstract

Computer Vision (CV) labeling problems play a pivotal role in low-level vision. For
decades, it has been known that these problems can be elegantly formulated as dis-
crete energy-minimization problems derived from probabilistic graphical models such as
Markov Random Fields (MRFs). Despite recent advances in MRF inference algorithms
(such as graph-cut and message-passing methods), the resulting energy-minimization
problems are generally viewed as intractable. The emergence of quantum computa-
tions, which offer the potential for faster solutions to certain problems than classical
methods, has led to an increased interest in utilizing quantum properties to overcome
intractable problems. Recently, there has also been a growing interest in Quantum
Computer Vision (QCV), hoping to provide a credible alternative/assistant to deep
learning solutions. This study investigates a new Quantum Annealing-based inference
algorithm for CV discrete energy minimization problems. Our contribution is focused
on Stereo Matching as a significant CV labeling problem. As a proof of concept, we
also use a hybrid quantum-classical solver provided by D-Wave System to compare our
results with the best classical inference algorithms in the literature. Our results show
that Quantum Annealing can yield promising results for Stereo Matching problems,
with improved accuracy on certain stereo images and competitive performance on oth-
ers.

Keywords: Quantum Annealing, Quantum Computer Vision, Computer Vision, Dis-
crete Minimization Models, Stereo Matching

1 Introduction

Computer Vision (CV) is a field of study focusing on how computers gain high-level percep-
tion from digital images/videos, which can help decision-making in real-world environments.
While humans routinely interpret the environment, enabling computers to perceive the real
world from its representation through images/videos remains a largely unsolved problem.
Many problems in CV are formulated as labeling problems. A CV labeling problem consists
of a set of image features (such as pixels, edges, or image segments) on which we want to
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estimate quantities from a set of labels [1] (such as intensity in Image Restoration or dis-
parity in Stereo Matching and Motion). Generally, CV labeling problems are modeled by a
discrete minimization problem, where an objective function is defined to be optimized over
a set of possible labeling solutions. When this objective function measures the badness, the
optimization problem is often called energy minimization, and the objective function is re-
ferred to as an energy function [2]. Given the intrinsically tricky nature of CV minimization
problems, researchers have always been looking for efficient algorithms to approximate the
optimal solution as fast and accurately as possible. Thus, there has been significant devel-
opment in minimization algorithms for CV problems from the classical methods in the 90s,
such as Simulated Annealing [3], Mean-field Annealing [4], and Iterated Conditional Modes
(ICM) [5] to the recent state-of-the-art algorithms, such as graph-cut based [6, 7, 8, 9, 10, 11]
and message-passing based [12, 13, 14] approaches (we refer interested readers to the most re-
cent comparative studies on CV minimization algorithms [15, 16, 17, 18, 19]). Despite being
extensively researched and even considering the most recent advances using deep learning-
based strategies [20], which are computationally expensive, CV labeling problems are still
considered open problems with no prefect (optimal) solutions due to the extensive range of
mathematics involved and the complexity of recovering unknowns from insufficient informa-
tion.

Therefore, researchers have always been looking for alternatives to tackle the problem.
With the advent of quantum computations which promise potentially lower-time complexity
on certain problems than the best-classical counterparts [21, 22, 23], recent studies have
focused on leveraging quantum properties to overcome intractable classical problems us-
ing Quantum Annealing (QA). D-Wave System was the first company to build a Quantum
Processing Unit (QPU) that naturally approximates the ground state of a particular prob-
lem representation, namely Ising model [24]. The importance of Ising models is that one
can solve a variety of NP-hard optimization problems by finding the corresponding ground
state [25, 26, 27]. Despite the promising experiments [21, 22], D-Wave QPUs are specifically
designed to solve optimization problems, making them less versatile than other quantum
computation approaches. This restricts their application domain primarily to optimization
and sampling tasks, while they may not be suitable for more general-purpose computing
requirements. Also, D-Wave QPUs exhibit limited qubit connectivity, and the scarcity of
available qubits has been consistently challenging, from the 128-qubit D-Wave One built in
2011 to the newly released 5000-qubit D-Wave Advantage. Therefore, large CV problems in-
volving highly non-convex functions in a search space of many thousands of dimensions have
not been widely explored to see if QA can provide advantages in real-world CV problems.
In recent years, there has been a growing interest in Quantum Computer Vision (QCV),
largely fueled by recent advancements in D-Wave QPU architectures and their capabilities
in solving optimization problems, such as Classification [28, 29, 30, 31, 32], Synchronization
[33, 34], Tracking [35], Fitting [36, 37], Detection [38], and Matching [39, 40, 41, 42, 43]
problems. However, each method employs a distinct quantum model to represent the re-
spective CV problem, allowing it to be minimized on a D-Wave QPU. A versatile framework
for converting a CV problem into an appropriate quantum model holds significant value.
Such a flexible solution not only simplifies the process of adapting various CV problems for
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quantum computation but also opens up new avenues for harnessing the power of quantum
computation in addressing intricate optimization tasks.

In this study, we aim to focus on a challenging labeling problem, Stereo Matching, and
provide a general-purpose quantum model that can be used for any CV labeling problem
(such as Image Segmentation, Image Restoration, Image Registration, Optical Flow, Object
Detection, and Image Inpainting). Due to the scarcity of available qubits on the current D-
Wave QPUs, we use a D-Wave hybrid quantum-classical solver to show the feasibility of the
proposed quantum model once enough qubits are available. Our findings show that QA can
offer promising results in CV applications compared to the state-of-the-art CV minimization
inference algorithms.

The paper is organized as follows: Section 2 briefly introduces Stereo Matching, an im-
portant CV labeling problem. In Section 3, we shift the focus to QA and D-Wave QPUs. Our
general-purpose quantum solution to Stereo Matching and its proof of correctness are pre-
sented in Section 4. We provide experimental results and numerical evaluation in Section 5.
Finally, Section 6 concludes the paper.

2 Stereo Matching

The characteristics of binocular vision in humans allow for the simultaneous observation of
a singular object by both eyes. This ability significantly contributes to the understanding
of depth in the brain. The distance between our eyes, often referred to as “baseline”, facil-
itates slight variation in the perspective captured by each eye. Despite each eye observing
a nearly identical image, a marginal displacement exists. The brain uses this displacement
to perceive a 3D observation from the scene. Likewise, a stereo vision system is designed to
replicate human vision mechanisms. This system comprises two horizontal cameras on the
left and right sides, effectively simulating human binocular perception. Each camera in the
system records an image that, while fundamentally similar, features a certain degree of dis-
placement. This displacement, often called disparity, signifies the difference in the position
of a 3D point, as observed from two different viewpoints (the left and right viewpoints) [44].
The main goal of implementing a stereo vision system is to construct a 3D model using
the left and right stereo images. This procedure may encompass various stages, including
Camera Calibration (optional), Rectification, Stereo Matching, and 3D Reconstruction [45]
as shown in Figure 1. Camera Calibration is the process of estimating specific parameters of
a camera. These parameters are used to correct image distortions and determine an accurate
relationship between a 3D point in the scene and its corresponding 2D projections in the
images [46]. Before Stereo Matching, rectifying a pair of stereo images is essential to reduce
the complexity of the underlying problem. The main goal of Stereo Matching is to match
a given pixel in the left image with its corresponding pixel in the right image, where the
corresponding pixels are the same projections of a 3D point in the real world. This process
can be performed by searching for the corresponding pixels in a 2D search space, which is
computationally expensive. Rectification transforms the 2D search space into a 1D search
space. This significantly simplifies the correspondence problem, as the search for matching
pixels can be reduced to a 1D search along the horizontal line of pixels rather than a 2D
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Figure 1: Outline of stereo-vision steps: Calibration (optional), Rectification, Stereo Match-
ing, and 3D Reconstruction.

search in the entire image. Despite this search-space reduction, Stereo Matching represents
the most computationally demanding component of a stereo vision system. A Stereo Match-
ing algorithm estimates a disparity value for each pixel in the left image to determine its
corresponding pixel in the right image. The final output is a disparity map in which regions
with higher disparity values belong to real-world objects closer to the cameras, whereas those
with lower disparity values belong to real-world objects farther away from the cameras. Re-
garding visualization, regions nearer and with greater disparity values appear brighter than
those farther away with smaller disparity values (see Figure 1).

Stereo Matching methods are broadly categorized into global and local approaches. While
local methods prioritize speed, often at the cost of accuracy due to susceptibilities like local
ambiguities and occlusions, global methods comprehensively consider the entire image dur-
ing disparity computation. Although computationally demanding, they effectively address
challenges such as occluded and textureless regions [44]. These methods typically lean on
probabilistic graphical models, a potent blend of probability and graph theory, for their
formalism [47]. Based on the defined probabilistic graphical model, an energy function is
modeled which can be minimized to solve the Stereo Matching problem [47, p. 1612]. In the
following, we provide the general form of a global Stereo Matching energy function, which
can be adapted for any CV labeling problem (see the recent comparative study on CV la-
beling problems [19] for more information).

Let Il and Ir be a pair of n × m stereo images, and D = {dmin, . . . , dmax} be a set of
positive integers, where dmin and dmax are the lowest and highest possible disparity values,
respectively. Considering the left image Il as the reference for which we want to compute a
disparity map, the set of pixels is defined as (1). We also initialize N as a 4-neighborhood
system defined in (2).
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P = {(i, j) | i ∈ {0, . . . , n− 1}, j ∈ {0, . . . ,m− 1}}, (1)

N = {{(i, j), (i′, j′)} | (i, j) ∈ P, (2)

(i′, j′) ∈ {(i± 1, j), (i, j ± 1)}},

where, 0 ≤ i′ < n, 0 ≤ j′ < m. In a global Stereo Matching model, the Stereo Matching
problem is modeled by a labeling problem where each pixel in P is labeled by a disparity
value in D [1, p. 5]. In fact, a “labeling” involves mapping from P to D. Such a labeling
problem is defined by a discrete optimization problem, where an energy function is defined
to be minimized over a set of possible labeling solutions. This energy function has two terms.
The first term penalizes the solutions when inconsistent with the data, and the second term
imposes some constraints on spatial coherence [18, p. 1]. Let w ∈ Dn×m be a vector of
variables defined as w = (wi,j)(i,j)∈P , where wi,j ∈ D. The global Stereo Matching energy
function F : Dn×m → R+ is defined as (3).

F (w) =
∑

(i,j)∈P

θ{i,j}(wi,j) + λ
∑

{(i,j),(i′,j′)}∈N

δ(wi,j, wi′,j′) (3)

where,

θi,j(wi,j) = |Il(i, j)− Ir(i− wi,j, j)| ,

δ(wi,j, wi′,j′) =

{
0, if wi,j = wi′,j′ ;
1, otherwise.

The first term is the Sum of Absolute Difference (SAD) matching cost function defined by
θ{i,j} : D → R+. When θ{i,j}(wi,j) is (or close to) zero, it means the pixel (i, j) in the left
image matches the pixel (i − wi,j, j) in the right image, and they are more likely to be the
same projections of a 3D point in the real world. In the second term, δ : D2 → {0, 1} is
the penalty function that penalizes the variation of the disparities, adding one when the
allocated disparities to a pair of neighboring pixels are not equal and zero otherwise. The
second term assumes that the disparities of a neighborhood of pixels present some coherence
and generally do not change abruptly [48]. Furthermore, λ ∈ R+, known as the smoothness
factor, weighs the penalties given by the second term.

We aim to provide a general-purpose quantum model for the defined global Stereo Match-
ing problem (3), which can be adapted to any CV labeling problem. Thus, we first give the
preliminaries to describe this quantum model.

3 Quantum Annealing

QA [49] is a specialized optimization technique that leverages principles from quantum
mechanics to solve complex computational problems. In this model, quantum bits (qubits)
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are particles in a quantum dynamical system that evolve based on special forces acting on
them. These forces are either internal (from interactions among qubits) or external (from
other sources). Each state of a register of qubits has energy based on the applied forces.
A time-dependent Hamiltonian is a mathematical representation of a system, providing in-
formation about the system’s energy and detailing the forces acting upon it at any given
time [24]. QA is a computational technique employed to discover the state of the system
with the minimum energy as determined by the time-dependent Hamiltonian. Consequently,
QA constitutes a computational paradigm known for its efficiency in addressing optimiza-
tion problems and providing approximations to the optimal solutions. It is inspired by the
concept of annealing in metallurgy, where a material is slowly cooled to minimize defects
and reach a low-energy state. In QA, this cooling process is simulated by a QPU known as a
quantum annealer which is based on a time-dependent Hamiltonian H(t) that has three com-
ponents [24]: Initial Hamiltonian HI , where all qubits are in a superposition state. Problem
Hamiltonian Hp, where the specific forces are defined to encode the objective function. The
lowest-energy state of Hp is the solution that minimizes the objective function. Adiabatic
path s(t), which is a smooth function that decreases from 1 to 0, such as s(t) = 1− t

tf
, where

s(t) decreases from 1 to 0 as t increases from 0 to some elapsed time tf . During QA, the
Initial Hamiltonian is slowly evolved along the Adiabatic path to the Problem Hamiltonian
as H(t) = s(t)HI +(1−s(t))Hp [24], decreasing the influence of HI over time to reach HP as
s(t) goes from 1 to 0. D-Wave Systems was the first company to build a quantum annealer.
To minimize/maximize an objective function using QA and a D-Wave QPU, it should be
in a standard model like Ising or Quadratic Unconstrained Binary Optimization (QUBO)
models [24]. Given a vector of n binary variables as x = (x1, x2, . . . , xn) ∈ {0, 1}n, a QUBO
model is represented as Hqubo(x) = xTQx, where {0, 1}n is a set of n binary values, and Q
is an n × n matrix that can be chosen to be upper-diagonal. Therefore, Hqubo(x) can be
reformulated as (4).

Hqubo(x) =
∑
i

Qi,ixi +
∑
i<j

Qi,jxixj. (4)

The diagonal terms Qi,i are the linear coefficients acting as the external forces, and the
off-diagonal terms Qi,j are the quadratic coefficients for the internal forces [24].

4 Quantum Stereo Matching

We introduce an equivalent QUBO model to the global Stereo Matching minimization prob-
lem (3) and provide proof of its correctness. Our idea draws inspiration from the approach
employed by the D-Wave Ocean SDK when handling discrete objective functions [50]. We
first allocate |D| binary variables to each pixel (i, j) ∈ P , where |D| is the number of ele-
ments in D, 0 ≤ i ≤ n − 1, and 0 ≤ j ≤ m − 1. Therefore, we define x ∈ {0, 1}nm|D| as a
vector of nm|D| binary variables such that x = (xi,j,d) for all (i, j) ∈ P and d ∈ D. Let our
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QUBO model be defined as (5).

H(x) = α
∑

(i,j)∈P

(
1−

∑
d∈D

xi,j,d

)2

+
∑

(i,j)∈P

∑
d∈D

θ{i,j}(d)xi,j,d (5)

+ λ
∑

{(i,j),(i′,j′)}∈N

∑
d1∈D

∑
d2∈D

δ(d1, d2)xi,j,d1xi′,j′,d2 ,

where α >
(∑

(i,j)∈P max{θ{i,j}(d) | d ∈ D}
)

+ λ|N |, and |N | is the number of elements in

N . We set x∗ = arg minxH(x) and define a vector of nm integer values as w∗ = (w∗i,j)(i,j)∈P ,
where w∗i,j = d if x∗i,j,d = 1. Then, w∗ minimizes the global Stereo Matching energy function
(3).

Proof of Correctness

Eq. (5) has three parts. The first part guarantees each pixel is assigned a unique disparity
value from D. The second calculates the cost of the assigned disparity values to the pixels.
The third part encodes the defined contextual constraint.

Definition 1. x is called feasible if and only if
∑

d∈D xi,j,d = 1 for all pixels (i, j) ∈ P . We
denote a feasible x by x′.

Definition 1 states that given a pixel (i, j) ∈ P , its corresponding vector of binary variables
(x′i,j,dmin

, . . . , x′i,j,dmax
) has only one value of “1” in its values, making it possible to label each

pixel uniquely by a disparity d ∈ D. Hence, the allocated disparity to a pixel (i, j) ∈ P is d
if x′i,j,d = 1.

Definition 2. Given x′, the corresponding integer vector w′ = (w′i,j)(i,j)∈P is called a label-
ing, where w′i,j = d if x′i,j,d = 1.

Lemma 1. Given a feasible x′ and its corresponding labeling w′, the equality H(x′) = F (w′)
holds, where F is the global Stereo Matching energy function in (3).

Proof. Considering H(x′) in (5),

• Since x′ is feasible,
∑

d∈D x
′
i,j,d = 1 for all pixels (i, j) ∈ P by Definition 1. Therefore,

we have

α
∑

(i,j)∈P

(
1−

∑
d∈D

x′i,j,d

)2

= α
∑

(i,j)∈P

(1− 1)2 = 0.

• Given a pixel (i, j) ∈ P , only one variable in the vector (x′i,j,dmin
, . . . , x′i,j,dmax

) is one,
and all the others are zero. This non-zero variable is x′i,j,w′

i,j
by Definition 2. Therefore,

we have ∑
(i,j)∈P

∑
d∈D

θ{i,j}(d)x′i,j,d =
∑

(i,j)∈P

θ{i,j}(w
′
i,j)x

′
i,j,w′

i,j

=
∑

(i,j)∈P

θ{i,j}(w
′
i,j).
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• Given {(i, j), (i′, j′)} ∈ N , the two corresponding vectors of binary variables are

– (i, j) : (xi,j,dmin
, . . . , xi,j,dmax)

– (i′, j′) : (x′i′,j′,dmin
, . . . , x′i′,j′,dmax

)

Since x′ is feasible, only one of the variables in each vector is one, and the others are
zero. These variables are x′i,j,w′

i,j
and x′i′,j′,w′

i′j′
, respectively, by Definition 2. Thus, we

can write

λ
∑

{(i,j),(i′,j′)}∈N

∑
d1∈D

∑
d2∈D

δ(d1, d2)x
′
i,j,d1

x′i′,j′,d2

= λ
∑

{(i,j),(i′,j′)}∈N

δ(w′i,j, w
′
i′j′)x

′
i,j,w′

i,j
x′i′,j′,w′

i′j′

= λ
∑

{(i,j),(i′,j′)}∈N

δ(w′i,j, w
′
i′j′).

Therefore, we can rewrite H(x′) as follows.

H(x′) =
∑

(i,j)∈P

θ{i,j}(w
′
i,j) + λ

∑
{(i,j),(i′,j′)}∈N

δ(w′i,j, w
′
i′j′) = F (w′).

Lemma 2. Let x∗ = arg minxH(x). x∗ is feasible.

Proof. For ease of reference, we rewrite H(x) as follows:

H(x) = αA(x) + B(x),

where

A(x) =
∑

(i,j)∈P

(
1−

∑
d∈D

xi,j,d

)2

,

B(x) =
∑

(i,j)∈P

∑
d∈D

θ{i,j}(d)xi,j,d

+ λ
∑

{(i,j),(i′,j′)}∈N

∑
d1∈D

∑
d2∈D

δ(d1, d2)xi,j,d1xi′,j′,d2 .

Towards a contradiction, suppose that x∗ is not feasible. In this case, A(x∗) 6= 0 and it is
non-negative. Therefore,

H(x∗) = αA(x∗) + B(x∗). (6)

Given a feasible x′, A(x′) = 0, and we have

H(x′) = B(x′). (7)
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Since x′ is feasible, B(x′) adds penalty values up to a maximum of
(∑

(i,j)∈P max{θi,j(d) | d ∈ D}
)

+

λ|N |. Considering (7), we have

H(x′) ≤

 ∑
(i,j)∈P

max{θi,j(d) | d ∈ D}

+ λ|N |. (8)

We know that α >
(∑

(i,j)∈P max{θi,j(d) | d ∈ D}
)

+ λ|N |, A(x∗) is non-zero and non-

negative, and B(x∗) is non-negative. Considering (6), we can write

H(x∗) = αA(x∗) + B(x∗) (9)

>

 ∑
(i,j)∈P

max{θi,j(d) | d ∈ D}

+ λ|N |. (10)

The following statement is true by (8) and (9): H(x′) < H(x∗), which is a contradiction.
Therefore, x∗ is feasible.

Theorem 1. Given w∗ as the corresponding labeling of x∗, w∗ minimizes the global Stereo
Matching energy function F defined in (3).

Proof. Towards a contradiction, we suppose that w∗ does not minimize F . In this case, there
must be a feasible x′ for which its corresponding labeling w′ minimizes F . Therefore, we have
F (w′) < F (w∗). Since x′ and x∗ are both feasible (see Lemma 2), we have H(x′) < H(x∗)
by Lemma 1. This is a contradiction because in this case x∗ 6= arg minxH(x).

Eq. 5 is versatile and can be adapted for a variety of CV labeling problems by replacing
P with any desired set of image features and replacing D with an appropriate set of labels
depending on the application. Then, the first and second terms in equation (3) can be defined
accordingly. The modified QUBO remains consistent with the QUBO model described in
equation (5). This adaptability showcases the broader applicability of the model, making it
a flexible tool for addressing a range of CV labeling challenges.

Example 1. We provide a simple example to show how our quantum model (5) can be
modeled and minimized via QA. Figure 2a and Figure 2a show a pair of (3× 4)-sized stereo
images with D = {0, 1}. The intensity values for the left and right images are shown on
the pixels. The corresponding pixel coordinates are illustrated in Figure 2c. Without loss
of generality, we ignore the first column of pixels in the left image since dmax is 1, and we
would obtain negative coordinates to match this column in the right image. The main goal
is to compute the disparity map allocated to the shown red square in Figure 2a. Figure 2d
shows the ground truth disparity map.

Considering (1) and (2), we first define P and N follows:

P ={(1, 0), (2, 0), (3, 0), (1, 1), (2, 1), (3, 1), (1, 2),

(2, 2), (3, 2)}

9



(a) (b) (c) (d)

Figure 2: (a) the left stereo image, (b) the right stereo image, (c) the pixel coordinates, (d)
the corresponding disparity map.

N ={{(1, 0), (2, 0)}, {(1, 0), (1, 1)}, {(2, 0), (3, 0)},
{(2, 0), (2, 1)}, {(3, 0), (3, 1)}, {(1, 1), (2, 1)},
{(1, 1), (1, 2)}, {(2, 1), (3, 1)}, {(2, 1), (2, 2)},
{(3, 1), (3, 2)}, {(1, 2), (2, 2)}, {(2, 2), (3, 2)}}.

The numbers of pixels and disparities are 9 and 2, respectively. Therefore, We define a vector
of 18 binary variables as x = {0, 1}18:

x = (x1,0,0, x1,0,1, x2,0,0, x2,0,1, x3,0,0, x3,0,1, x1,1,0,

x1,1,1, x2,1,0, x2,1,1, x3,1,0, x3,1,1, x1,2,0, x1,2,1,

x2,2,0, x2,2,1, x3,2,0, x3,2,1).

We set λ = 10 and α = 200 by which we have α >
(∑

(i,j)∈P max{θi,j(d)|d ∈ D}
)

+ λ|N |.
The QUBO model (5) is formulated as follows:

H(x) = 200
∑

(i,j)∈P

(
1−

∑
d∈D

xi,j,d

)2

+
∑

(i,j)∈P

∑
d∈D

θi,j(d)xi,j,d

+ 10
∑

{(i,j),(i′,j′)}∈N

∑
d1∈D

∑
d2∈D

δ(d1, d2)xi,j,d1xi′,j′,d2 .

The QUBO model H(x) has three terms denoted by H1, H2, and H3 from left to right,
respectively. The following shows each term’s expansion separately. We then add them all
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at the end. We start with the first term denoted by H1.

H1(x) = 200(− x1,0,0 − x1,0,1 + 2x1,0,0x1,0,1 + 1

− x2,0,0 − x2,0,1 + 2x2,0,0x2,0,1 + 1

− x3,0,0 − x3,0,1 + 2x3,0,0x3,0,1 + 1

− x1,1,0 − x1,1,1 + 2x1,1,0x1,1,1 + 1

− x2,1,0 − x2,1,1 + 2x2,1,0x2,1,1 + 1

− x3,1,0 − x3,1,1 + 2x3,1,0x3,1,1 + 1

− x1,2,0 − x1,2,1 + 2x1,2,0x1,2,1 + 1

− x2,2,0 − x2,2,1 + 2x2,2,0x2,2,1 + 1

− x3,2,0 − x3,2,1 + 2x3,2,0x3,2,1 + 1)

Next, we expand the second term as H2.

H2(x) =

= |Il(1, 0)− Ir(1, 0)|x1,0,0 + |Il(1, 0)− Ir(0, 0)|x1,0,1
+ |Il(2, 0)− Ir(2, 0)|x2,0,0 + |Il(2, 0)− Ir(1, 0)|x2,0,1
+ |Il(3, 0)− Ir(3, 0)|x3,0,0 + |Il(3, 0)− Ir(2, 0)|x3,0,1
+ |Il(1, 1)− Ir(1, 1)|x1,1,0 + |Il(1, 1)− Ir(0, 1)|x1,1,1
+ |Il(2, 1)− Ir(2, 1)|x2,1,0 + |Il(2, 1)− Ir(1, 1)|x2,1,1
+ |Il(3, 1)− Ir(3, 1)|x3,1,0 + |Il(3, 1)− Ir(2, 1)|x3,1,1
+ |Il(1, 2)− Ir(1, 2)|x1,2,0 + |Il(1, 2)− Ir(0, 2)|x1,2,1
+ |Il(2, 2)− Ir(2, 2)|x2,2,0 + |Il(2, 2)− Ir(1, 2)|x2,2,1
+ |Il(3, 2)− Ir(3, 2)|x3,2,0 + |Il(3, 2)− Ir(2, 2)|x3,2,1

H2(x) = 50x1,0,0 + 50x2,0,1 + 50x2,1,0

+ 50x3,1,1 + 50x1,2,0 + 50x2,2,1.

Finally, we compute the third term as H3:

H3(x) =

= 10(x1,0,0x2,0,1 + x1,0,1x2,0,0

+ x1,0,0x1,1,1 + x1,0,1x1,1,0 + x2,0,0x3,0,1

+ x2,0,1x3,0,0 + x2,0,0x2,1,1 + x2,0,1x2,1,0

+ x3,0,0x3,1,1 + x3,0,1x3,1,0 + x1,1,0x2,1,1

+ x1,1,1x2,1,0 + x1,1,0x1,2,1 + x1,1,1x1,2,0

+ x2,1,0x3,1,1 + x2,1,1x3,1,0 + x2,1,0x2,2,1

+ x2,1,1x2,2,0 + x3,1,0x3,2,1 + x3,1,1x3,2,0

+ x1,2,0x2,2,1 + x1,2,1x2,2,0 + x2,2,0x3,2,1

+ x2,2,1x3,2,0).
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Adding the three terms together, we have the main QUBO model as follows:

H(x) =− 150x1,0,0 − 200x1,0,1 − 200x2,0,0 − 150x2,0,1

− 200x3,0,0 − 200x3,0,1 − 200x1,1,0 − 200x1,1,1

− 150x2,1,0 − 200x2,1,1 − 200x3,1,0 − 150x3,1,1

− 150x1,2,0 − 200x1,2,1 − 200x2,2,0 − 150x2,2,1

− 200x3,2,0 − 200x3,2,1

+ 400x1,0,0x1,0,1 + 400x2,0,0x2,0,1

+ 400x3,0,0x3,0,1 + 400x1,1,0x1,1,1

+ 400x2,1,0x2,1,1 + 400x3,1,0x3,1,1

+ 400x1,2,0x1,2,1 + 400x2,2,0x2,2,1

+ 400x3,2,0x3,2,1 + 1800

+ 10x1,0,0x2,0,1 + 10x1,0,1x2,0,0 + 10x1,0,0x1,1,1

+ 10x1,0,1x1,1,0 + 10x2,0,0x3,0,1 + 10x2,0,1x3,0,0

+ 10x2,0,0x2,1,1 + 10x2,0,1x2,1,0 + 10x3,0,0x3,1,1

+ 10x3,0,1x3,1,0 + 10x1,1,0x2,1,1 + 10x1,1,1x2,1,0

+ 10x1,1,0x1,2,1 + 10x1,1,1x1,2,0 + 10x2,1,0x3,1,1

+ 10x2,1,1x3,1,0 + 10x2,1,0x2,2,1 + 10x2,1,1x2,2,0

+ 10x3,1,0x3,2,1 + 10x3,1,1x3,2,0 + 10x1,2,0x2,2,1

+ 10x1,2,1x2,2,0 + 10x2,2,0x3,2,1 + 10x2,2,1x3,2,0.

Giving H(x) to the D-Wave Ocean SDK for the QPU minimization, we obtain the optimal
solution x∗ = arg minxH(x) as follows:

• x∗1,0,0 = 0,

• x∗1,0,1 = 1,

• x∗2,0,0 = 1,

• x∗2,0,1 = 0,

• x∗3,0,0 = 1,

• x∗3,0,1 = 0,

• x∗1,1,0 = 0,

• x∗1,1,1 = 1,

• x∗2,1,0 = 0,

• x∗2,1,1 = 1,

• x∗3,1,0 = 1,

• x∗3,1,1 = 0,

• x∗1,2,0 = 0,

• x∗1,2,1 = 1,

• x∗2,2,0 = 1,

• x∗2,2,1 = 0,

• x∗3,2,0 = 1,

• x∗3,2,1 = 0,

We used the D-Wave default parameter settings for the hardware properties and initialized
the number of sample-reads as 1000. Given a pixel (i, j) ∈ P , if x∗i,j,d = 1 for d ∈ D, then d
is the allocated disparity to the pixel (i, j). Therefore, we have the following disparities for
the pixels:

• (1, 0)← 1

• (2, 0)← 0

• (3, 0)← 0

• (1, 1)← 1
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• (2, 1)← 1

• (3, 1)← 0

• (1, 2)← 1

• (2, 2)← 0

• (3, 2)← 0

which match the corresponding ground-truth disparities shown in Figure 2d. Figure 3 illus-
trates the corresponding D-Wave minor embedding for the defined QUBO, obtained by the
D-Wave Inspector tool.

(a)

(b)

Figure 3: D-Wave minor embedding for the given QUBO example. (a) the QUBO graph,
and (b) the QPU graph.
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5 Evaluation and Experimental Results on Stereo Im-

age Patches

5.1 Qubit Complexity

D-Wave quantum computers have showcased remarkable potential in solving optimization
problems. However, one significant challenge they face is the limited availability of qubits.
D-Wave QPUs employ QA to find/estimate the global minimum of a QUBO/Ising model.
While effective for specific problem types, this approach often requires a large number of
qubits, and the current generation of D-Wave QPUs have constraints on the number of
qubits that can be utilized. Consequently, proposing a QUBO model with fewer variables is
paramount as it addresses the current limitations in qubit availability, enables the solution
of larger and more complex problems, widens access to QA, and enhances the robustness
and practicality of QA technology in solving real-world optimization challenges. Recall P
as the set of pixels for a pair of stereo images with size n×m, and D as the set of possible
disparities values, where |P | = nm and |D| = k denotes the number of elements in P and
D, respectively. Given the defined vector of binary variables in (5), the number of QUBO
variables in our general-purpose quantum model is nmk. Table 1 compares our quantum
model with the existing labeling-based quantum solutions that can be utilized for Stereo
Matching. Cruz-Santos et al. [39] and Heidari et al.[40] models are based on the minimum st
cut problem, and Heidari et al.[51] approach reduces a CV labeling problem to the minimum
multi-way cut problem.

Table 1: Qubit-complexity comparison of the proposed quantum Stereo Matching models.

Model Qubit complexity
[39] 7nmk + 9nm− 2nk − 2mk − 2n− 2m+ 2
[40] nmk + nm+ 2
[51] nmk + k2

Ours nmk

5.2 Experimental Results

Once a QUBO model is prepared, it needs to be embedded within the QPU hardware ar-
chitecture for the minimization process. Embedding is the crucial step of mapping QUBO
variables onto the available qubits on the hardware. Embedding can be challenging due to
the relatively limited qubits and the restricted hardware connectivity. Consequently, it is
common to chain two or more qubits together on the QPU to represent a single QUBO vari-
able. While many real-world applications can successfully run on the D-Wave QPUs, there
are cases where the input data is too large to be directly solved by QA, primarily because
of the qubit scarcity. To overcome this size limitation, hybrid solvers combine classical and
quantum approaches for problem-solving. D-Wave hybrid solvers can handle problems with
a significantly higher number of variables than those directly solvable by a D-Wave QPU,
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offering a reliable estimate of the future accuracy of D-Wave QPUs once more qubits be-
come available on the hardware. As a proof of concept, we utilize the Constrained Quadratic
Model (CQM) D-Wave hybrid solver to minimize the proposed quantum Stereo Matching
model. This solver has the capability of handling up to 500,000 QUBO variables, but it still
poses restrictions on the size of the input stereo images and the number of disparities that
can be processed. Therefore, we had to use cropped pairs of stereo images to analyze the
performance of the Stereo Matching quantum model. We chose four pairs of stereo images
from 2001-Middlebury image datasets [52], namely Venus and Bull, Sawtooth, and Barn.
We could not use the latest stereo datasets because of their high disparity range. Given a
pair of cropped regions from recent Middlebury stereo datasets (see Figure 4), the majority
of regions in both cropped stereo images would be occluded due to a large disparity range,
resulting in only a small portion of the scene being visible in both images. This makes them
not suitable to evaluate our quantum model due to the simplicity of the defined global Stereo
Matching energy function in (3).

To identify a more common region of interest in both stereo images, we selected our pairs
of stereo images from the 2001 Middlebury image dataset [52], as well as two “natural” im-
ages (Tree and Castle) from the real world with low disparity ranges to incorporate complex
scene structures into our prepared dataset. Figure 5 illustrates our prepared stereo dataset
with the corresponding “ground truths.” We did not have ground truths for the natural
images since they were not created in controlled laboratory settings like 2001-Middlebury
image datasets [52]. Therefore, we incorporated a deep-learning-based model [54] to get
fairly accurate disparity maps to be used as the corresponding ground truths. Note that we
used the gray-scale versions of the shown stereo images.

We also selected the best-performing and state-of-the-art classical minimization algo-
rithms commonly used in CV, so that we can compare our quantum model with the classical
counterparts. The selected classical algorithms includes Swap move [8], Expansion move [8],
Max product Loopy Belief Propagation (LBP) [13], and the improved Tree Re-weighted Mes-
sage Passing (TRW-S) [55]. We utilized the Middlebury software framework for our classical
implementations [56].
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(a)

(b)

Figure 4: A pair of stereo images from 2014-Middlebury image datasets: (a) the quarter-
resolution version of the Australia stereo dataset from 2014-Middlebury image datasets [53],
and (b) the cropped regions of 150 × 150 pixels from the left and right stereo images, re-
spectively. Most regions in both cropped stereo images are occluded due to a high disparity
range, making them unsuitable for evaluating our minimization models with the classical
counterparts.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: The prepared stereo datasets, (a) Venus, (b) Bull, (c) Sawtooth, (d) Barn, (c) Tree,
and (d) Castle. In each row of images, we have the left stereo image, the right stereo image,
and the corresponding ground truth for the left stereo image. The white squares show the
cropped regions for our experiments.
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Figure 6: Computed disparity maps by the benchmark minimization algorithms.

Considering the global Stereo Matching energy function defined in (3), we established an
initial λ = 20 for all the benchmark minimization algorithms to ensure a fair comparison.
Figure 6 shows the computed disparity maps by the benchmark minimization algorithms.
Next, we define two widely-used metrics [57] to evaluate the accuracy of our results in com-
parison to the corresponding ground truths: the root-mean-squared error (rms) and the
percentage of mismatched/bad pixels (bad-β). Given a disparity map D and a ground truth
T defined by n×m matrices of integers, rms and bad-β are defined as (11).

rms =

√√√√ 1

nm

n∑
i=1

m∑
j=1

(Di,j − Ti,j)2, (11)
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Table 2: Numerical evaluation for the prepared stereo dataset.

Dataset Method rms bad-0.5 (%) bad-1.0 (%)

Venus

Ours 2.25 40.44 10.45
Swap 2.09 47.57 10.23
Expansion 1.94 43.81 9.76
BP-M 1.96 47.09 9.30
TRW-S 1.92 44.07 9.54

Bull

Ours 2.33 36.07 7.08
Swap 2.38 37.43 7.40
Expansion 2.38 37.28 7.36
BP-M 2.39 37.42 7.25
TRW-S 2.38 37.06 7.32

Sawtooth

Ours 2.27 22.54 10.26
Swap 2.44 22.76 10.27
Expansion 2.41 22.85 10.44
BP-M 2.41 23.59 10.30
TRW-S 2.36 22.67 10.36

Barn

Ours 2.27 14.37 7.41
Swap 2.23 16.11 7.51
Expansion 2.21 16.09 7.55
BP-M 2.38 20.21 8.25
TRW-S 2.23 15.54 7.33

Tree

Ours 2.99 24.99 13.22
Swap 3.32 33.85 14.39
Expansion 3.27 31.73 13.23
BP-M 3.16 33.45 13.91
TRW-S 3.12 31.81 13.22

Castle

Ours 2.74 34.52 17.62
Swap 2.83 32.85 17.25
Expansion 2.76 33.68 16.94
BP-M 2.99 41.12 21.21
TRW-S 2.66 33.36 16.62

bad-β =

(
1

nm

n∑
i=1

m∑
j=1

(|Di,j − Ti,j| > β)

)
× 100 (12)

where β ∈ R+ is the disparity error tolerance. In the following evaluation, we set β to 0.5
and 1.0, named bad-0.5 an bad-1.0, respectively. Table. 2 compares the performance of each
minimization algorithm based on the defined metrics. Given the cropped stereo images, the
results suggest that the quantum model outperformed the classical counterparts on the Bull,
Sawtooth. and Tree datasets, and performed competitively on the Venus, Barn, and Castle
datasets. Our findings show that QA can offer promising results in CV applications compared
to the state-of-the-art CV minimization inference algorithms. Due to the scarcity of available
qubits on the current D-Wave QPUs, we were not able to use a pure QA minimization, and
we used a D-Wave hybrid solver, which offers a reliable estimate of the future accuracy of
D-Wave QPUs once more qubits become available on the hardware. Since our model (5)
is a direct equivalent to the global Stereo Matching energy function (3), its energy solution
can be compared with that of the iterative classical minimization algorithms. Figure 7
shows the energies of the solutions obtained by each minimization model over the provided
stereo datasets. According to the findings, our approach demonstrated a capacity to obtain
solutions of lower energy in comparison to the iterative classical minimization methods for
each provided stereo dataset. This observation underscores the effectiveness of QUBOs when
solved by D-Wave hybrid solvers. We do not provide a comparison in terms of running time,
as the classical iterative minimization algorithms were significantly faster than the D-Wave
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Figure 7: A comparison between energies obtained by our model and the benchmarking
classical minimization.

hybrid solver when minimizing the corresponding QUBO models. The reason is because of
the way that a D-Wave hybrid solver works. A D-Wave hybrid solver is based on the D-
Wave Hybrid Solver Service (HSS). Once a QUBO is provided to the HSS, it activates one or
more heuristic solvers that run in parallel, either on a CPU or a GPU platform, to identify
high-quality solutions. Each heuristic solver comprises a classical heuristic module that
navigates the search space, and a quantum module is responsible for formulating quantum
queries directed to the D-Wave Advantage QPU. Solutions retrieved from the QPU assist
the heuristic modules in pinpointing more viable search space regions or refining the current
solutions. Each heuristic solver forwards its top solution to the HSS solver. The HSS solver
then determines the best solution from the collective outputs of the heuristic solvers and
relays this optimal solution back to the user [58]. Therefore, the running time is not derived
from a direct QPU minimization to be compared with the classical minimization methods.
We used a D-Wave hybrid solver as proof of concept to show that QA is capable of being
used in CV labeling problems once enough qubits are available on the QPU in future.

6 Conclusion

CV labelling algorithms play a pivotal role in the domain of low-level vision. For decades,
it has been known that these problems can be elegantly formulated as discrete energy-
minimization problems derived from probabilistic graphical models. Despite recent advances
in inference algorithms, the resulting energy-minimization problems are generally viewed
as intractable. In this study, we presented a QA-based method for solving CV discrete
optimization problems, specifically for Stereo Matching. However, our proposed quantum
model is not limited to Stereo Matching and can be applied to various CV labeling problems
such as Image Segmentation, Image Restoration, Image Registration, Optical Flow, Object
Detection, and Image Inpainting. We provided proof of correctness to demonstrate the
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equivalence of the proposed quantum model to the original discrete minimization energy
function. Due to the limited availability of qubits on the quantum hardware, we were not
able to minimize the Stereo Matching energy function directly on the QPU. Instead, we
utilized a D-Wave hybrid solver to show the feasibility of our proposed quantum model.
Our results showed promising solutions with lower energies compared to the best classical
minimization algorithms in the literature. When there are enough qubits available, it may
be a subject for future research to determine if a quantum-based CV inference offers any
advantages over classical minimization methods in terms of accuracy and speed.
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