

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the <u>Library Thesis Consent Form</u> and <u>Deposit Licence</u>.

Note : Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.

Mathematical modelling of adult GnRH neurons in the mouse brain and its bifurcation analysis

Wen Duan

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Applied Mathematics, The University of Auckland, 2010.

Abstract

Gonadotropin-releasing hormone (GnRH) neurons are cells in the hypothalamus that produce GnRH, one of the major hormones that controls fertility and reproduction. However, despite their importance, little is known about the mechanisms by which GnRH is produced. GnRH neurons exhibit complicated membrane potential dynamics, in the form of electrical bursting, and this bursting is closely coupled to the dynamics of intracellular calcium (Ca²⁺) in ways that are not yet well understood.

A mathematical model has been constructed to help understand the mechanisms underlying the observed behaviours of GnRH neurons, and how electrical bursting synchronizes with transients in the cytosolic Ca^{2+} concentration ($[Ca^{2+}]_{cyt}$). Simulations show that the model is consistent with all of the most important experimental data involving TTX (tetrodotoxin), zero extracellular- $[Ca^{2+}]$ ($[Ca^{2+}]_e$) solution, apamin, CPA (cyclopiazonic acid) and 2-APB (2-aminoethoxydiphenyl borate). The mathematical model predicted the existence of particular $[Ca^{2+}]_{cyt}$ -activated potassium (K⁺) channels (s $I_{AHP-UCL}$), which were then confirmed experimentally. In contrast to the apaminsensitive $[Ca^{2+}]_{cyt}$ -activated K⁺ channels (s I_{AHP-SK}), which control both the structure of firing within bursts and the interburst intervals, s $I_{AHP-UCL}$ solely determines the interburst dynamics. Furthermore, we show how a fast-slow bifurcation analysis of the model can be used to understand the behaviour of the cells under a wide range of experimental conditions.

The high complexity of the initial GnRH neuron model prompted us to develop a much simpler bursting model based on the FitzHugh-Nagumo (FHN) model. This simplified bursting model exhibits the similar qualitative behaviour as our initial GnRH neuron model. The use of bifurcation analysis with the FHN model simplifies the simulation of bursting, and the results of this analysis are also briefly explained.

Acknowledgements

First and foremost, I thank my supervisor, Professor James Sneyd, for his support over many years. He has been very kind to me since I first met him when I was still an undergraduate. I truly appreciate that he provided me with this opportunity to work with him. During the 3 years of performing work for this thesis, he taught me a great deal about the subject area of the project and he was always patient in explaining every detail. I still remember the experience of my first presentation, which despite going very badly on elicited encouragement from him. Although nowadays I still cannot present a good seminar, my ability could have been worse if he had not done that. He always helps his students—not just me but also his other students—whenever he possibly can. He is the best supervisor I could have hoped for.

I would also like to thank my family. My wife Shelley always believes that I can finish my job well and she has been my best audience whenever I needed to prepare talks. My parents-in-law have been babysitters whenever I have had to come to the office, and they look after my family so well that I can concentrate on my work. My parents often call to ask how my work is going, and they think about me and my study all of the time even though they are far away in China.

I wish to express my gratitude to our collaborators, Allan Herbison and Kiho Lee, who provided fantastic experimental data and awesome discussions during this research. I also want to thank Vivien Kirk for answering my questions about bifurcation analysis.

I would like to thank my fellow students and postdocs—Emily Harvey, Shawn Means, Laurence Palk and Kate Patterson—who provided helpful suggestions for my work in many group meetings. Special thanks go to Inga Wang, Tiangang Cui, Wenjun Zhang and Yousaf Habib, who always tried their best to help me in understand the mathematics and also provide suggestions to improve my personal life.

Finally, I want to thank the Marsden Fund of the Royal Society of New Zealand, and the Health Research Council of New Zealand for financially supporting my work.

Contents

A	Acknowledgements			v
\mathbf{C}	onter	nts		vii
\mathbf{Li}	st of	Figure	es	x
\mathbf{Li}	st O	f Table	s	xiv
1	Bio	logy in	troduction	1
	1.1	GnRH	, GnRH neurons, hormones, the hypothalamus and the endocrine	
		system		2
	1.2	Electri	cal properties and Ca^{2+} dynamics in the GnRH neurons	8
	1.3	Experi	mental data from native GnRH neurons	11
		1.3.1	Experimental data indicating synchronization between the AC	
			and $[Ca^{2+}]_{cvt}$	12
		1.3.2	Pharmacological manipulations of SB GnRH neurons	14
		1.3.3	Conclusions from the data	19
2	Mat	themat	ics introduction	21
	2.1	Review	v of current models	21
	2.2	Review	v of Ca^{2+} models	24
		2.2.1	The IP_3R	25
		2.2.2	The RyR	29
		2.2.3	Ca ²⁺ -ATPase pumps	30
		2.2.4	Other Ca^{2+} fluxes	32

	2.3	The Lebeau mathematical model of GT1 cells $\ldots \ldots \ldots \ldots \ldots$	32
		2.3.1 Simplified voltage submodel	35
		2.3.2 Simplified Ca^{2+} submodel	37
		2.3.3 Results from the simplified model and bifurcation analysis \ldots	39
	2.4	Review of the fast-slow bifurcation analysis	45
3	Mo	del of GnRH neurons	53
	3.1	Model hypothesis	54
	3.2	Model description and results	56
	3.3	Model predictions	69
	3.4	Discussion	72
4	Bifı	urcation analysis of the model	81
	4.1	Bifurcation analysis of the unperturbed GnRH neurons	82
	4.2	Bifurcation analysis of the pharma cological perturbed GnRH neurons $% \mathcal{A}$.	87
		4.2.1 TTX, apamin and UCL2077	87
		4.2.2 CPA and 2-APB	91
		4.2.3 Zero- $[Ca^{2+}]_e$	93
	4.3	Discussion	95
5	Double FHN model		
	5.1	Review of the FHN model	98
	5.2	Description of the double FHN model	101
	5.3	Simulation results of the double FHN model	104
	5.4	Bifurcation analysis of the double FHN model	110
6	Cor	nclusions and future directions	121
G	Glossary		
Bi	bliog	graphy	129

List of Figures

1.1	Schematic diagrams of the endocrine system	4
1.2	Ratiometric pericam in the transgenic mice	6
1.3	Morphology of GnRH neurons in the transgenic mouse	7
1.4	Schematic diagram of the major cellular Ca^{2+} fluxes	10
1.5	Relationship between AC spiking and $[Ca^{2+}]_{cyt}$ in a dult GnRH neurons	13
1.6	Burst firing drives $[Ca^{2+}]_{cyt}$ transients in GnRH neurons $\ldots \ldots \ldots$	15
1.7	Measured $[\mathrm{Ca}^{2+}]_{\mathrm{cyt}}$ transients derived from both extra cellular sources $% (\mathrm{Ca}^{2+})_{\mathrm{cyt}}$.	16
1.8	$[Ca^{2+}]_{cyt}$ transients derived from internal stores	17
1.9	Response of SB GnRH neurons to apamin	18
1.10	Responses of SB GnRH neurons to ionotropic glutamate and GABA_A	
	receptor blockers	19
2.1	Schematic diagram of the Sneyd and Dufour $\mathrm{IP}_3\mathrm{R}$ model \hdots	27
2.2	Schematic diagram of the RyR model in Stern et al. (1999)	30
2.3	Schematic diagram of the SERCA pump model in Maclennan et al. $\left(1997\right)$	31
2.4	Schematic diagram of the Lebeau model (Lebeau et al., 2000) \ldots .	34
2.5	Responses of the simplified Lebeau model to the addition of GnRH dur-	
	ing blockade of SK channels by apamin	40
2.6	Bifurcation diagram of the voltage subsystem in the simplified Lebeau	
	model, V against g_d	42
2.7	HB point and SN point in the $(g_d, [Ca^{2+}]_{cyt})$ plane of the simplified	
	Lebeau model	43

2.8	Responses of the stochastic simplified Lebeau model to the addition of	
	GnRH during $[Ca^{2+}]_{cyt}$ buffering with BAPTA	44
2.9	Simulation results from the simplified Chay-Keizer model	47
2.10	Bifurcation diagrams of the simplified Chay-Keizer model	49
3.1	Simplified schematic diagram of the GnRH neuron model	57
3.2	Reaction scheme for $sI_{AHP-UCL}$ subunit transitions $\ldots \ldots \ldots \ldots$	59
3.3	Data sampling in Lee et al. (2010)	62
3.4	Simulation results from the GnRH neuron model, part 1	64
3.5	Simulation results from the GnRH neuron model, part 2	65
3.6	Two statistical results from the experimental data obtained by Lee et al.	
	$(2010) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	67
3.7	Two statistical results from the stochastic GnRH neuron model \ldots .	68
3.8	Predictions from the GnRH neuron model	70
3.9	Measured responses of SB GnRH neurons to UCL2077 \ldots	71
4.1	Bifurcation diagram of the voltage subsystem in the GnRH neuron model	83
4.2	Bifurcation results in the $(X, [Ca^{2+}]_{cyt})$ plane of the GnRH neuron model	84
4.3	$[Ca^{2+}]_{cyt}$ and $[Ca^{2+}]_t$ nullclines from the GnRH neuron model $\ldots \ldots$	86
4.4	The steady-state curve in the presence of TTX, with $[{\rm Ca}^{2+}]_{\rm cyt}=0.01$.	88
4.5	Bifurcation diagram of the apamin result	89
4.6	Bifurcation diagram of the UCL2077 result	90
4.7	Bifurcation diagram of the CPA result	91
4.8	Bifurcation diagram of the 2-APB result	92
4.9	Bifurcation diagram of the zero- $[Ca^{2+}]_e$ result $\ldots \ldots \ldots \ldots \ldots$	94
5.1	Phase portrait for the FHN model, with different values of applied cur-	
	rent (I_{app})	100
5.2	Bifurcation diagram of the FHN model, considering $I_{\rm app}$ as the bifurca-	
	tion parameter	102
5.3	Initial bursting, TTX and zero- $[Ca^{2+}]_e$ results from simulations of the	
	double FHN model	106

5.4	Apamin, CPA and 2-APB results from simulations of the double FHN	
	model	107
5.5	Prediction from the double FHN model	109
5.6	Bifurcation diagram of the V FHN model when $c = 0.01$, with I as the	
	bifurcation parameter	111
5.7	Solution trajectory and the z nullcline of the double FHN model	113
5.8	Double FHN model trajectory in the (c, w_2, z) plane, and z nullcline and	
	HB_1 point in the (c, z) plane	116
5.9	Solution trajectory, the c and w_2 nullclines (when $V = 0$) of the double	
	FHN model	117
5.10	Double FHN model trajectory in the (c, w_2, z) plane, and the c and w_2	
	nullclines in the (c, w_2) plane	118

List of Tables

2.1	Parameter values used in the simplified Chay-Keizer model	48
2.2	Parameter values used in the simplified Lebeau model	51
3.1	Parameter values used in the Ca^{2+} submodel of the GnRH neuron model	76
3.2	Parameter values used in the voltage submodel of the GnRH neuron model	77
3.3	Parameter values used for the J_{release} term in the deterministic GnRH	
	neuron model	78
3.4	Parameter values used for the J_{release} term in the simplified GnRH neuron	
	model	79