
Two-phase subsampling for DNA
sequencing with application to

endangered species

Pei Luo

Supervisor: Prof. Thomas Lumley

Dr. Ben Stevenson

Department of Statistics
The University of Auckland

A thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Statistics, the University of Auckland, 2024.

February 2024



Abstract

Whole-genome sequencing for New Zealand endangered parrot species kākāpō has been
completed for the entire population. Despite the decreasing cost of DNA sequencing, this
sort of effort is generally not feasible in conservation studies or large human cohorts. A
cost-saving strategy is to obtain relatively inexpensive information for the whole sample,
such as low-resolution genotype data, then resequence a small subsample from the original
sample with higher resolution and use the combined data to infer the whole sample. Such
sampling strategies are called two-phase sampling, where the initial sampling of the cohort is
followed by a subsampling of the chosen individuals to be resequenced.

This thesis explores the two classes of approaches to handling incomplete data in two-
phasing sampling designs under different situations. The first class of approaches is genotype
imputation, which is a process of predicting the missing genotypes using low-resolution
genotypes of the whole sample and high-resolution genotypes of the subsample. However,
genotype imputation is much more complicated for endangered species than for well-studied
species such as humans, livestock and other model organisms.

Alternatively, statistical inference of model parameters under two-phase sampling de-
signs can be carried out by maximum likelihood approaches that account for the missing
mechanisms of the data, which is another class of approaches that I explore. In genetic
association studies, the polygenic model is often used to describe the architecture of complex
traits as it allows the possibility that thousands of variants could contribute to the phenotypic
variation in the population. Under such a proposition, mixed models can be used to measure
the genetic effect of a particular variant while attributing the remaining variation to the
population correlation structure.

In this thesis, I propose a weighted maximum likelihood approach for fitting mixed
models that takes advantage of the fact that the kākāpō population relatedness structure
is known, making it possible to incorporate the population covariance matrix rather than
the sample covariance matrix into the model. The performance of the proposed method is
evaluated using the kākāpō data and simulated data with a population structure similar to
humans. Hence the method should provide a general solution for fitting mixed models under
two-phase sampling designs in both endangered species and human populations.
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quencing reads. Note that male kākāpō have lower proportion of coverage
because they have two Z chromosomes but no W chromosome (females have
ZW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Pairwise kinships inferred by GBS data using a marker-based approach
proposed by Weir & Goudet [154]. . . . . . . . . . . . . . . . . . . . . . . 28
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6.4 Simulated kākāpō-like pedigree, including 112 affected kākāpō (colored
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Glossary

Genetic linkage Genetic linkage is the phenomenon where genes are
linked (i.e. physically close to each other along a chromo-
some), and hence they are likely to be inherited together.

Genetic marker A genetic marker is a DNA sequence such that its location
on the chromosome is known (e.g. SNPs).

Genome-wide association study A genome-wide association study (GWAS or GWA study)
is an approach to find the association between genetic
variants and a particular trait by scanning SNPs across
the genome in different individuals.

Genotype A genotype is the genetic identity of an allele that is
determined by the makeup of the allele.

Genotype imputation Genotype imputation is the process of predicting the un-
observed genotypes.

Haplotype A haplotype is a combination of alleles that were inherited
together from a single parent.

Heterogeneity Heterogeneity refers to the substructure within a popu-
lation that may be caused by subpopulations with differ-
ent ethnic ancestries, different environments or different
disease-related genetic factors.

Heterozygous A diploid organism is heterozygous at a locus if the alleles
are different from one another.

Identical by descent An IBS segment is identical by descent (IBD) if the indi-
viduals inherited the DNA segment from the same ances-
tor.

Identical by state A DNA segment is called identical by state (IBS) in two
or more individuals if the nucleotide sequences in the
DNA segment are identical between these individuals.



Glossary xiii

Inheritance vector An inheritance vector of a pedigree at a locus is a vector
containing meiosis indicators of all non-founders that
represents the inheritance pattern of the pedigree at the
locus.

Linkage analysis Linkage analysis is a family-based approach that searches
for genetic markers that cosegregate with a particular
phenotype through families.

Linkage disequilibrium Linkage disequilibrium (LD) is the phenomenon where al-
leles at different loci are non-randomly associated in such
a way that they are inherited together more frequently
than expected if they were independent and randomly
associated.

Maximum clique A clique is a subgraph that has all of its nodes connected
to each other. A maximum clique is the largest clique that
is not part of other cliques.

Meiosis indicator A meiosis indicator is a vector containing two binary
number that indicate the pattern of allele transmission
at this particular locus. The first (resp. second) binary
number represents the allele transmission from the indi-
vidual’s mother (resp. father), and 0 (resp. 1) indicates the
maternal (resp. paternal) copy of the allele is transmitted.
2. Law of independent assortment: Genes of different
traits are segregated independently of one another during
the formation of gametes.
3. Law of dominance: An organism with at least one
dominant allele will display the effect of the dominant
allele.

Pedigree A pedigree is a graph that illustrates the biological rela-
tionships between an organism and its ancestors.

Phase Phasing refers to the process of assigning alleles to the
paternal and maternal chromosomes. A resulting pair
of allele combinations on maternal and paternal chromo-
somes is called a phase.

Phenotype A phenotype is an observable characteristic or trait of an
organism.
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Recombination Recombination is a special form of genetic exchange
such that two genetic sequences are combined into one
sequence.

Single nucleotide polymorphism A single nucleotide polymorphism (SNP) is a variation at
a single DNA building block, namely nucleotide.



Chapter 1

Introduction

The kākāpō, Strigops habroptilus, is a critically endangered species in New Zealand, and
it is the world’s largest, the only flightless, and the only lek-breeding parrot. Whole genome
sequence data has been obtained for the entire kākāpō population. The DNA sequences
data allows the kākāpō recovery team to perform numerous analyses of the kākāpō species
providing insights into genetic management, disease, fertility and ageing [44, 53]. One of the
major goals in the kākāpō conservation project is to find functional genetic variants that are
associated with key traits using genome-wide association studies (GWA studies, or GWASs).
A GWAS is a process of finding functional variants by testing hundreds of thousands of
genetic variants across the genome in different individuals for association with the trait. In
many GWA studies, the polygenic model is considered to be the founding principle as it
allows the possibility that thousands of variants could contribute to the phenotypic variation
in the population.

Under the polygenic model [51, 150], one can fit mixed models to measure the genetic
effect of a particular variant while accounting the other variants as correlations between
related individuals. Mixed-effects models have been widely used not only to carry out GWA
studies but also to estimate heritability [8, 62, 163, 164, 166].

Since heritable genetic variation is a necessary condition for evolution by both natural and
artificial selection, heritability is a critical concept in conservation genetics that measures the
amount of phenotypic variation in a population caused by genetic factors relative to the total
phenotypic variation due to both genetic and environmental factors. Thus the mixed-effects
models play an important role in making informed decisions for genetic management of
endangered species [6, 12, 49, 64, 79, 127].

However, sequencing the entire genome of every individual in a population is not cost-
effective in general and GWA studies typically find associations with nearby genetic variants
rather than the functional genetic variants. A cost-saving strategy is to do two-phase sampling,
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that is, genotyping all individuals in the large sample in low resolution, fully sequencing
a small subsample, and then using the combined data to impute the missing genotypes of
the rest of the sample. Chapter 2 provides the background knowledge of the work in the
subsequent chapters, covering topics such as the sequencing method, the use of the genomics
data in GWA studies and the prediction of missing genotypes.

In particular, this thesis focuses on predicting the missing genotypes in low-resolution
data, because low-resolution genotype data is much cheaper and therefore can be obtained
for every individual. Following some background on statistical methods for inferring missing
genotypes in Chapter 2, Chapter 3 provides a simulation study that uses masked kākāpō
genotype data to demonstrate the process of predicting the missing genotypes. The kākāpō
sequence data makes it possible to assess the accuracy of genotype prediction, compare
the performance of the statistical methods, and investigate the factors that affect prediction
accuracy. The simulation study in Chapter 3 also demonstrates that genotype imputation can
be computationally challenging in situations where the low-resolution genotype has a high
error rate.

An alternative approach for missing data problem is to use the subsample data to estimate
the same parameters in mixed-effects models as would be estimated with the complete sample
data. When the subsample is selected at random or the selection depends on an observed
covariate in the model, valid inference can be made from the subsample data using standard
methods. However, random sampling is less efficient than outcome-dependent sampling for
rare outcomes [16]. In order to obtain valid inference with incomplete genotype data, it is
crucial to take into account the missingness structure when it comes to model fitting. Chapter
4 provides a review on two-phase sampling and the maximum likelihood estimation methods.

For mixed model inference under two-phase sampling, most estimation methods are
developed for independent individuals and very few of them allow correlated individuals. In
particular, methods that allow correlated individuals are usually only valid when sampling
clusters are the same as model clusters, and such a sampling design is impossible for
individuals with a complex correlation structure such as kākāpō. To the best of my knowledge,
no methods have been proposed for mixed model inference under two-phase sampling where
individuals have a complex correlation structure.

Therefore, this thesis focuses on a special case of two-phase sampling, where the individ-
uals are related. In Chapter 5, I propose a weighted maximum likelihood estimation (MLE)
approach for fitting linear mixed models that takes advantage of the fact that the kākāpō
population kinship structure is known, making it possible to model the population covariance
matrix rather than the sample covariance matrix. Since the population kinship structure is
often known either exactly or approximately for endangered species, the proposed approach
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provides a general solution for fitting linear mixed models under two-phase sampling designs
in conservation genetics. The proposed method is written as an R package WLMM, which is
available on GitHub (https://github.com/zoeluo15/WLMM).

For binary outcomes, McCulloch proposed a Monte-Carlo expectation-maximization
(EM) algorithm with a Gibbs sampler to maximize the likelihood of a probit-normal model
with independent random effects [98]. In Chapter 6, I consider an extension of McCulloch’s
model and propose a weighted maximum likelihood method for generalized linear mixed
models with correlated random effects under two-phase designs.

https://github.com/zoeluo15/WLMM


Chapter 2

Genetic background

This chapter provides the background knowledge of the subsequent chapters. I start with
the introduction to some fundamental genetic concepts in Section 2.1. Next, Section 2.2
gives an overview of the process of obtaining the genetic data used for methods evaluation
in later chapters. Then, Section 2.3 gives an introduction to GWA studies that use such
genetic data to identify variations in DNA sequence associated with a trait. Finally, since the
interest of this thesis is reducing the cost of obtaining genetic data and making use of the
low-resolution genotype, Section 2.4 describes the idea of predicting missing genotypes and
relevant statistical methods.

2.1 Fundamental genetics concepts

Deoxyribonucleic acid (DNA) is a double-stranded helix that is composed of two se-
quences of nucleotides and describes the genetic information of an individual. A nucleotide
is composed of a nitrogenous base, a sugar, and a phosphate group, where the sugar is
deoxyribose attached to the phosphate group. There are four types of nucleotides in DNA,
classified by the nitrogenous base, which may be either adenine (A), cytosine (C), guanine
(G), or thymine (T). The nucleotides in a strand are joined together through the sugars and
phosphates, and two strands are joined together by nitrogenous bases on different strands.
Two nitrogenous bases from different strands that bond together are referred to as a base
pair, where A and T always pair together and C and G always pair together. The two strands
of DNA are parallel but oriented in opposite directions. Each strand begins with the 5’
phosphate group of the first nucleotide in the strand (referred to as 5’) and terminates with
the 3’ hydroxyl of the last nucleotide (referred to as 3’).

The complete set of DNA, known as the genome, is organised into a number of different
chromosomes, and the number varies between species. The chromosomes with similar
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lengths and sequences come into sets. For humans and animals, there are two chromosomes
in a set, with one inherited from the maternal parent and one inherited from the paternal parent,
and such species are called diploid. For example, humans have 23 pairs of chromosomes
including one pair of sex chromosomes (XX for females or XY for males), and kākāpō have
26 pairs of chromosomes including one pair of sex chromosomes (ZW for females or ZZ for
males).

A source of genetic variation in the DNA inheritance process that makes an individual
different to their parents is meiosis. Meiosis is a process that reduces the number of chro-
mosomes in the parent cell by half and produces cells for sexual reproduction. The process
of meiosis involves four steps: replication, crossover, the first cell division and second
cell division. In the first step, a double-stranded DNA is replicated to create an identical
copy, where each strand serves as a template to produce a new strand. The two copies of
a chromosome are linked together to form an X-shape, where the pair of linked copies is
referred to as sister chromatids and the pair of unlinked copies is referred to as non-sister
chromatids. Errors that occur in the DNA replication process (e.g. a single nucleotide base
is changed, inserted or deleted from a DNA sequence) are a source of point mutations. For
humans, the copy error rate is approximately 1 per 10,000 nucleotides.

Next, copies of the same chromosome are paired up to exchange DNA materials between
non-sister chromatids. This process is known as crossover or recombination, which results
in two unique non-identical sister chromatids. In other words, recombination creates a new
combination of DNA materials in an individual compared to the DNA materials found in
their parents. Then, the two pairs of chromatids are randomly divided into two cells in the
first cell division, and the sister chromatids within both pairs are randomly divided into four
gametes. A gamete is a reproductive cell of an individual, also known as a sex cell, which is
haploid because it only contains one set of chromosomes. For example, in humans, gametes
contain one chromosome from each of the 23 chromosome pairs. The process of cell division
results in a new combination of maternal and paternal chromosomes, which is also referred to
as independent assortment. As a result of recombination and independent assortment, genetic
variation is introduced to an individual, making the individual different to their parents.

2.2 Genotyping by sequencing

Genotyping by sequencing (GBS) is a high-throughput sequencing method for discovering
genetic variation in order to perform genotyping studies. GBS is suitable for genetic studies
of endangered species, livestock and plants because it is capable of efficiently producing
high-density genotype data of a large number of DNA samples at a low cost, and can be
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generalized to non-human organisms. GBS provides a rapid and low-cost This section
provides an introduction to the GBS process as the kākāpō genetic data used in the thesis is
generated using this method [53]. GBS is comprised of the following steps:

Step 1. Hair, tissue or blood samples of target individuals are collected;

Step 2. Multiple copies of DNA are extracted from each sample;

Step 3. Copies of DNA are cut into many small pieces using restriction enzyme(s), a
protein produced by bacteria, at specific sequences that are recognised by the
restriction enzyme;

Step 4. Adapters and barcodes are attached to the ends of the DNA fragments, where
adapters are short sequences needed in PCR amplification in step 6, and barcodes
are unique sequences of nucleotides used to identify samples from different
individuals;

Step 5. DNA from different samples are pooled together;

Step 6. DNA fragments are amplified using a polymerase chain reaction (PCR) step,
which is a technique that clones the targeted parts of a DNA sequence and
produces thousands to millions of copies of target DNA;

Step 7. DNA fragments that are either too short or too long are removed, where the size
selection depends on the laboratory setting;

Step 8. One end of the DNA fragments is sequenced with a fixed number of nucleotides
using a sequencing machine, and the end of the fragment is called a sequence
read;

More details about the GBS laboratory protocol can be found in Elshire et al. [47] and
the size selection step in Dodds et al. [43].

In order to be used in genetic analysis (e.g. genome-wide association study introduced in
the following section), the sequence reads need to be processed into a Variant Call Format
(VCF) file [38], which contains information on genetic variation. First, DNA fragments
belonging to the same individual are combined into a file by identifying reads with the
same unique barcode. Then, the location of sequence reads on the genome is determined
by mapping to a reference genome, which is a representation of the genome sequence for a
particular species. Finally, the genetic variation is identified by scanning for variation at a
single base pair across the reads from all individuals that are mapped to the same location on
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the reference genome. Such a genetic variation is called a single nucleotide polymorphism
(SNP) and caused by point mutation.

For each SNP called from the GBS data, the VCF file records the number of reads for
the reference allele (when the observed DNA state at a position is the same as the reference
genome) and alternative allele (when the observed DNA state at a position is different to the
reference genome) for each sample. The read count data are then used to infer the genotype
of the called SNPs.

A genotype refers to an unordered set of alleles carried by an individual at a particular
genetic marker. A genetic marker refers to a variant in DNA sequences with a known physical
location on a chromosome, which includes SNPs but can also be a sequence of DNA. For a
diploid individual that has two copies of each marker, the genotype of a biallelic SNP (only
one alternative allele) is coded as either “0/0”, “0/1” or “1/1”, where 0 indicates reference
allele, and 1 indicates alternative allele. A genotype is called homozygous if the two alleles
are identical and heterozygous otherwise. The forward slash (/) notation means it is unknown
which is the maternal/paternal allele. An ordered sequence of such alleles along a single
chromosome is called a haplotype, where the alleles in a haplotype tends to be inherited
together.

However, haplotype reconstruction and genotype inference cannot be carried out directly
due to sequencing errors and missing parental alleles. Sequencing error refers to the mistake
in called nucleotide base, which can occur during the sequencing process in the laboratory or
result from incorrect alignment to the reference genome. The problem of missing parental
alleles arises when there is no reads cover one of the two parentally inherited chromosomes,
which is a consequence of low read depth. While the first problem can result in false homozy-
gous calls at heterozygous sites, the second problem can result in false heterozygous calls at
homozygous sites [54], and both problems are missleading in locating the recombinations.
Therefore, quality control of the called variants is necessary for haplotype construction and
genotype imputation.

2.3 Genome-wide association studies

The goal of a GWAS is to find the association between genetic variants and a particular
trait (e.g. human disease, measurable characteristics etc.), by scanning SNPs across the
genome in different individuals, and searching for SNPs that are found more frequently in
individuals with the trait than individuals without the trait. If any SNPs are identified to be
associated with the trait, then regions near these SNPs may contain a gene or genes that are
responsible for the trait. This is based on the assumption that only low levels of recombination
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occurred between the associated SNPs and the risk gene in many past generations for the
majority of the population [104].

The first successful GWAS, about myocardial infarction, was published in 2002 [105]. In
2005, the first result of significant association from a GWAS was reported: two SNPs were
found that change the allele frequency in patients with age-related macular degeneration [77].
By September 2018, over 70,000 associations between genetic variants and traits have been
found in over 5,000 human GWA studies [26]. Although a lot of GWA studies are focused
the association between SNPs and human diseases, they can be applied to other organisms in
the same manner.

Many GWA studies rely on SNP chips (or SNP arrays). SNP chips are designed to
identify the specific nucleotides present at hundreds of thousands of locations across the
genome where SNPs are known to exist. The selection of SNP locations depends on the
population minor allele frequency (MAF), in other words, most SNP chips mainly cover
common SNPs but cover very limited rare variants or even no rare variants. Therefore,
despite the fact that GWA studies have successfully discovered associations between many
common variants and human diseases, GWA studies are underpowered to detect associations
with rare variants through linkage disequilibrium with common SNPs [84, 104]. Linkage
disequilibrium refers to the phenomenon where alleles at nearby loci are correlated in such a
way that they are inherited together more frequently than expected if they were independent
and randomly associated. Unlike common variants which can be found in many individuals in
the population regardless of ethnicity and relatedness, and a certain proportion of moderately
rare variants can be found in other subpopulations [56, 143], very rare variants are usually
shared only within ethnic groups or families. Therefore, population-based GWA studies need
to either take a larger sample size or include more inividuals with a particular trait in order to
find association between rare variants and the trait. For example. in a case-control GWAS
which aims to determine whether a SNP is more frequently associated with cases (diseased
individuals) or controls (healthy individuals), increasing the number of cases can enrich the
genetic loci containing variants that are rare in the population.

Another problem with population-based GWA studies is the presence of a substructure
within a population, which can be caused by subpopulations with different ethnic ancestries,
different environments or different disease-related genetic factors. Population stratification
can lead to a difference in allele frequencies within case and control groups, and hence
increase the rate of type 1 error in population-based GWA studies. For example, previous
studies have showed differences in genetic predictions of height among the European popula-
tions, but the differences were overestimated due to unrecognized population stratification in
genome-wide association studies [135]. Family-based GWA studies overcome the challenge
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of unidentified population heterogeneity because they are conditional on the genomes of the
founders of each pedigree instead of population allele frequencies.

Linkage analysis is a family-based approach that searches for genetic markers that
cosegregate with a particular phenotype through families. It has successfully identified
genetic variants that cause rare diseases such as Huntington disease [92]. In other words, a
linkage study aims to identify loci that are physically close to each other along a chromosome,
and such loci are defined to be linked. If two or more loci are linked, their alleles tend to be
inherited together within families. Linked loci can be broken up by recombinations, and the
closer the loci of two markers, the lower the probability of recombination, and vice versa.
Thus, recombination frequency (frequency of a recombination occur between two genetic
markers) is used to identify whether two loci are linked and how tightly [14]. Therefore,
linkage analysis is a powerful tool to localize potential causal genes (i.e. genes that are
responsible for a particular disease or trait) for related individuals by the linkage between
those genes with genetic markers.

In contrast to linkage analysis, which relies on the fact that disease/trait-causing genes
are inherited together with genetic markers within a family, GWAS studies rely on linkage
disequilibrium between disease/trait-associated variants and causal variants within population.
Genetic linkage and linkage disequilibrium are different in terms of scale which is demon-
strated in Figure 2.1. Morgan (M) is a unit for recombination frequency that measures the
relative distance between genes on a chromosome, and one morgan means that the expected
number of recombination between two genes on a chromosome is one. Linkage analysis
looks at genetic markers that are separated by multiple centimorgans (cM, and 1 cM=100
M). In humans, 1 cM approximately equals to 1 Megabase pair (Mbp), and 1 Mbp equals to
1,000 kilobase pairs (kbp). While linkage can be detected within a long interval (≤ 5 Mbp),
association requires a much finer scale (≤ 100 kbp) in order to be detected [104]. Since
linkage can be detected in long intervals, the number of genetic markers needed for linkage
analysis is much less than association analysis. However, this also leads to a wide range of
candidate regions containing the potential causal genes (e.g. 10–20 Mbp) [87]. Therefore, it
is common in family-based designs to use linkage analysis to first identify candidate regions,
and then conduct an association analysis which requires denser genetic markers to narrow
the region of interest (e.g. [35, 59–61, 82, 94]).

For the human genome, there are possibly at least 10 million common genetic variants
(MAF>0.05) [72], and GWA studies typically genotype only a fraction (e.g. 100,000–1,000,000)
of all genetic variants. In some scenarios, we may have genotype information with even
lower coverage or low-depth sequencing data with high sequencing error. A GWAS requires
high-density SNPs across the genome in order to narrow down intervals that contain probable
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causal variants. Although the genotyped genetic variants might not be enough to narrow the
interval of interest, they provide useful information for inferring the non-genotyped variants
in the same group of individuals.

   10cM

(�10Mbp)

   0.1cM

(�100kbp)

    Linkage

Disequilibrium

Genetic 

Linkage

   1cM

(�1Mbp)

A B

C

Position on chr3 (cM)

Fig. 2.1 A: different scales of genetic linkage and linkage equilibrium on human genome;
B: Linkage of two genes on Chromosome 3 and the LOD score is an estimates of relative
probability that two loci on a chromosome are physically close enough to each other and
hence they are likely to be inherited together [69]; C: SNP rs2707466 regional association
plot of the discovery genome-wide meta-analysis. Circles show GWA meta-analysis p-value
of SNPs on Chromosome 7, with different colors indicating varying linkage disequilibrium
with rs2707466 (diamond) [170]. Note that 1Mb ≈ 1cM.
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2.4 Genotype imputation

The process of predicting the unobserved genotypes is referred as genotype imputation,
which is a strategy that can boost the power of a GWAS without extra sequencing. There are
two types of genotype imputation, one is family-based imputation with related samples, the
other one is population-based imputation with unrelated samples.

2.4.1 Family-based genotype imputation

For a family-based GWAS in which candidate regions have been identified by linkage
analysis, the goal is to collect sequencing data of the candidate regions in order to test
for associations between genetic variants and the trait. However, the budget may allow
sequencing candidate regions for only a subset of the sampled individuals. On the other
hand, sequencing every individual in the family is equivalent to effectively sequencing
many stretches of chromosome more than once because relatives share long stretches of
chromosome. Therefore, it is cost-saving and efficient to sequence a subset of individuals in
a pedigree, and use their sequencing data to infer genotype of their relatives.

To illustrate the process of imputation for related individuals, consider the example
two-generation pedigree in Figure 2.2 which contains two parents and four offspring. For
individuals with identical nucleotide sequences in the stretch of shared chromosome, the
common DNA segment is called identical by state (IBS) in these individuals. An IBS segment
is identical by descent (IBD) if the individuals inherited the segment from the same ancestor.
In Figure 2.2A, all individuals in the family have pre-existing genotype information for a set
of markers (the loci colored in red), and the genotype for remaining markers are obtained for
parents only but left to be imputed for offspring (indicated in black). Then offspring with
partial genotype information are compared with parents with complete genotype information
in this DNA segment to identify stretches of shared chromosome within the pedigre. This
process is demonstrated in Figure 2.2B, where each haplotype transmitted between two
generations is given a unique color. Finally, as shown in Figure 2.2C, the missing genotypes
of offspring are imputed if the haplotypes they inherited are IBD to copies of the same
haplotypes.
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Fig. 2.2 The process of family-based genotype imputation. The pedigree shows the relation-
ships between members in a two-generation family. Parents are the first generation at the top
and offspring are the second generation at the bottom. Females are represented by circles
and males are represented by squares.
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The IBD pattern of a pedigree at a single locus can be described by a quantity called the
inheritance vector (IV) [1]. For example, consider a pedigree structure at a particular locus
given in Figure 2.3. The two top generation individuals and the first inividual on the left at
the second generation are called founders because they don’t have parents in the pedigree.
Each non-founder has two binary numbers in the bracket, namely meiosis indicators, which
indicate the pattern of allele transmission at this particular locus. The first (resp. second)
binary number represents the allele transmission from the individual’s mother (resp. father),
and 0 (resp. 1) indicates the maternal (resp. paternal) copy of the allele is transmitted.
Note that founders do not have a pair of meiosis indicators since there is no information on
their parents. The vector that contains meiosis indicators of all non-founders at a locus is
then called the IV. If there are N non-founders in a pedigree, then the IV at any locus on a
chromosome is a vector with 2N elements. Since an allele can be either maternal (denoted
by 0) or paternal (denoted by 1), in total there are 22N possible inheritance patterns of the
pedigree at the locus.

A/T T/T

T/A T/T
{1,0}

A/T
{0,1}

A/T
{0,0}

T/T
{0,1}

A/T
{1,0}

Fig. 2.3 An IV (indicated in blue) of non-founders shows the inheritance pattern in a pedigree
at a particular locus. The pedigree is a three-generation pedigree with grandparents at the
top and grandchildren at the bottom. Females are represented by circles and males are
represented by squares.

Merlin [1] and GIGI [34] coupled with gl_auto [142] (part of the MORGAN program) are
two family-based imputation approaches for general pedigrees that rely on IBD computation,
but GIGI is compatible with large pedigrees whereas Merlin requires splitting the pedigree.
While Merlin computes IBD internally based on the Lander-Green algorithm [81], GIGI
uses gl_auto for IBD computation. The idea of the Lander-Green algorithm is to model
the flow of alleles of a pedigree at multiple loci as a Markov process with hidden states
being IV at each locus [5]. For small pedigrees, gl_auto infers the shared segments of a
chromosome by sampling IVs with probabilities obtained from exact computations based
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on the Lander-Green algorithm. For large pedigrees, gl_auto uses a Markov Chain Monte
Carlo (MCMC) sampler based on both the Lander-Green algorithm and the Elston-Stewart
algorithm [48] to approximate the likelihood of observed genotype on a pedigree [157].

IVs are sampled for a set of framework markers which are sparsely distributed on the
chromosomes based on the observed genotypes of the framework markers using gl_auto.
In general, most information of IVs in a pedigree can be extracted by a moderate number of
framework markers [158, 159]. Hence, IVs at the position of dense markers between two
framework markers can be sampled based on the IVs sampled at the two framework markers
as IVs at nearby positions are highly correlated.

Let Sv denotes the IV at the position of a dense marker v, and s denotes a configuration of
the IV. GIGI estimates the probability distribution of the missing genotype Giv of individual i
of dense marker v being a particular genotype configuration g conditional on the observed
genotypes of all framework markers Gob

F , the observed genotypes Gob
v of dense marker v.

P(Giv = g|Gob
F ,Gob

v ) = ∑
s

P(Giv = g |Sv = s,Gob
F ,Gob

v )P(Sv = s |Gob
F ,Gob

v )

∼= ∑
s

P(Giv = g |Sv = s,Gob
F ,Gob

v )P(Sv = s |Gob
F ) (2.1)

∼= ∑
s

P(Giv = g |Sv = s,Gob
v )P(Sv = s |Gob

F ) (2.2)

= ∑
s

P(Giv = g,Gob
v |Sv = s)

∑k P(Giv = k,Gob
v |Sv = s)

P(Sv = s |Gob
F ) (2.3)

The exact equality in Eq 2.1 holds when dense marker v is one of the framework markers. Eq
2.2. And Eq 2.1 is approximately equal to the LHS by assuming the influence of including
additional genotype of dense marker v on the IV inference at the position of v is small. Eq
2.2 is an exact equality when the framework markers are in linkage equilibrium with dense
marker v, and a good approximation otherwise as genotype of distant marker is unlikely to
be informative. In Eq 2.3, each term in the fraction can be be computed efficiently [80, 134]
where the bottom is summed over all possible genotype configurations, and the remaining
term can be estimated by averaging over the sampled IVs at position v. Then, a Monte Carlo
estimator for genotype Giv is

P̂(Giv = g|Gob
F ,Gob

v ) =
1
n∗

n

∑
j=1

P(Giv = g |S j
v,G

ob
v ),

where S j
vn is the IV sampled at iteration j for j = 1, . . . ,n, and n∗ is the number of iterations

that S j
v is consistent with the observed genotypes Gob

v at dense marker v. Finally, GIGI calls
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the most likely genotype based on the estimated probabilities. Alternatively, one can set a
threshold, and the complete genotype can be called if

P̂(Giv = g|Gob
F ,Gob

v )> t1,

where t1 is a user-defined threshold. When there is ambiguity in genotype calling (i.e. the
estimated probability of the missing genotype being the heterozygous configuration is equal
to t1), the algorithm will call the more likely allele from the two alleles, that is:

P̂(Giv = a/ · |Gob
F ,Gob

v )> t2,

where a/· denotes the genotype contains an a allele, and t2 = t1 +(1− t1/2).

2.4.2 Population-based imputation

The intuition behind population-based imputation is that apparently unrelated individuals
still share short genome sequences inherited from distant ancestors. Sequencing a small
panel allows common haplotypes to be measured, and the haplotypes are put together into
imputed genotypes according to the SNP information.

Genotype imputation for unrelated individuals follows a similar process to family-based
imputation, and the idea is illustrated in Figure 2.4. The unrelated individuals in Figure 2.4B
are first genotyped at a modest number of genetic markers, but genotypes at most markers
remain unknown. The next step is to assign observed alleles to the paternal and maternal
chromosomes, and this process is called phasing or haplotype estimation. Then the estimated
haplotypes are compared to reference haplotypes in Figure 2.4A to identify shared stretches
(Figure 2.4C). Unlike family-based imputations, for which the observed genotypes of a
relatively small subset of individuals can make useful predictions of the genotypes of the rest
pedigree, population-based imputation require a much larger set of genotyped individuals
from the same ethnic origin to serve as a reference panel. The accuracy of population-based
imputation increases as the size of reference panel increases, particularly for rare variants
[22]. An example of a reference panel of the human genome is HapMap, which consists of
genotypes at several million genetic markers for 269 individuals from different ethnic groups
[71]. Finally, the missing genotypes are imputed using the matching reference haplotypes
(Figure 2.4D).

In contrast to IBD-based phasing in related individuals, population-based phasing uses
the linkage disequilibrium information pooled from hundreds to thousands of individuals to
model the haplotype frequencies. A detailed review on haplotype phasing is given in [24],
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with a focus on the developement of population-based phasing methods. While the phasing
accuracy in common variants can be improved by increasing the sample size, marker density
and so forth, accurate phasing for rare variants remains a problem for population-based
approaches [24].

In particular, both family-based and population-based phasing methods are unable to
phase de novo mutations (i.e. mutations that are arise for the first time in an individual
that are not found in the genome of its parents). Read-based phasing (that uses sequencing
reads covering at least two heterozygous variants to construct haplotypes) provides a more
comprehensive understanding of the genome because of its ability to phase rare variants and
de novo mutations. Read-based approaches such as WhatsHap [97] and HapCut2 [45] phase
individual genomes by aligning the sequencing reads to the reference genome, and reads that
cover at least two heterozygous variants are partitioned into two groups that correspond to the
pair of haplotypes. When pedigree information is available, WhatsHap is able to utilize the
fact that the haplotypes of an offspring are a recombination of the haplotypes of its parents to
increase the phasing accuracy [97]. Due to the length of sequencing reads, the number and
type of variants can be phased by read-based approaches has been limited, until the rapid
development of long read sequencing technologies in recent years.

ATGTGCACAAGACCACTCTA
ATGTGCACAATGAACAGCTT
CATGTACACCTACCAATCTA
ATTGTACACCGACCACTCTA
ATTGGCACAATGAACCGCTA
CTTGGACAAATGAACAGCTA
ATGTGCACAAGGAACCTCTT
ATGTGACACCGGACCATCCA
ATTTGACACATACAACGTCT
CTGGTACACCGACCAATCTT

G G C A
C AG T

C AG T

??G???????G????C???A
??G???????T????C???A
??T???????T????A???A
??G???????T????C???A

ATGTGCACAATACCACTCTA

CTGGTACACCTGAACCGCTA

ATGTGCACAAGACCACTCTA

T T A A

CATGTACACCTACCAATCTA

Unrelated individuals

Reference haplotypes

Fig. 2.4 The process of population-based genotype imputation. A: the reference set of
haplotypes; B: unrelated individuals with partial genotype information; C: the observed
haplotypes are colored according to their matching with haplotypes in the reference set; D:
missing genotypes are imputed using the matching reference haplotypes.

Several population-based genotype imputation methods are computationally feasible
for a GWAS purpose (e.g. [22, 66, 86, 124]). These methods typically use hidden Markov
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models (HMMs) to sample haplotype pairs for each individual conditional on their unphased
low-density genotype data, and then the missing genotypes are imputed by the inferred
haplotypes. The basic idea of HMMs is that there are hidden states underlying the observed
data, and these hidden states have a Markov structure (i.e. the next state only depends on
the current state and does not depend on any previous states). In the context of haplotyping
and genotype imputation, the observed data is the unphased low-density genotype, and the
hidden state is the haplotype phase. And the observed genotype at a marker only depends on
the haplotype phase at that marker.

FastPHASE [124], MaCH [86] and IMPUTE2 [66] are based on the Li and Stephens frame-
work [85]. Under this framework, each reference haplotype is a hidden state of the HMM at
each marker. The underlying true haplotypes are assumed to be combinations of reference
haplotypes where the switches from one reference haplotype to another represent the recom-
binations. In order to account for mutation and genotype error, the framework also allows
the observed alleles to be different to the alleles on the underlying true haplotypes.

The model parameters are estimated using the expectation-maximization (EM) algorithm
[41], which is an iterative method to obtain maximum likelihood estimation in the presence
of latent variables. In this situation, the EM algorithm starts with an arbitrary guess of the
haplotype phase and missing genotypes and uses them for the maximum likelihood estimation
of model parameters such as recombination rate, mutation rate and genotype error rate. Then,
the parameter estimates are used together with the observed genotype data to re-estimate the
haplotype phase and mixing genotypes. The EM algorithm stops once the convergence of the
parameter estimates is reached.

In MaCH and IMPUTE2, the hidden states in HMM are the reference haplotypes. During
each EM algorithm, the haplotype pair of each individual is re-estimated using the reference
haplotypes previously estimated for the other individuals. In contrast to MaCH which esti-
mates recombination rates and mutation rates between markers in the model fitting process,
IMPUTE2 requires a recombination map to derive these model parameters. In order to better
capture the complex patterns of LD, fastPHASE uses a cluster of similar haplotypes as each
reference haplotype and allows the cluster membership changes along a chromosome as
the parameters are updated in the model fitting process. While phasing and imputation
accuracy can be improved by enriching the reference haplotypes, the computation time of
these methods grows quadratically as the number of haplotype clusters/reference haplotypes
increases.

In contrast to the above methods based on the Li and Stephens framework, the Browning
model in BEAGLE [22, 23] is more parsimonious, and there are some important differences.
First, the number of states at each marker varies along the genome to handle the difference in
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complexity at different markers. Note that both BEAGLE and fastPHASE consider clusters
of similar haplotypes as hidden states, but the number of clusters is fixed in fastPHASE.
Second, BEAGLE does not explicitly model recombinations and mutations but accounts for
them in the transitions between states. Third, there are at most k transitions from one state at
a marker to states at the next marker, where k is the number of observed alleles for the next
marker (e.g., k = 2 for SNPs). Fourth, there is only one possible outcome (i.e. the observed
allele) from each state in BEAGLE whereas methods under Li and Stephens framework include
both the observed allele and mutation in the model. These differences together restrict the
possible transitions in HMM given observed genotypes, thus reducing the computation time
in parameter estimation.

2.4.3 Subject selection strategies

In population-based imputation, unobserved genotypes can be imputed using external
sequencing data as a reference. For example, the HapMap [70–72] haplotypes can be used to
impute the missing genotypes if the ancestry of the sample is close to one of the ancestry
groups in the HapMap project. However, when there are no such reference haplotypes
available, a subsample selected from the original sample can serve as the reference. While
population-based imputation allows both types of reference data, family-based imputation
requires selecting individuals for sequencing from the same pedigree as the original samples
[34, 122]. In many cases, particularly for wildlife populations, the budget constraint still
remains a problem for sequencing a large number of individuals. Thus, it is important to
prioritize the individuals chosen for sequencing.

The choice of individuals for sequencing has a direct impact on the imputation quality
of the non-sequenced individuals, hence it is important to carefully choose which subset of
individuals to sequence. Subject selection depends on the type of the study. In population-
based studies, individuals are considered unrelated or distantly related, and hence share little
common genetic information. Therefore, it is natural to select a subsample for sequencing in
a way that the reference panel covers as many distinct haplotypes as possible to achieve a
high imputation accuracy. On the other hand, individuals in family-based studies are closely
related, and genotype imputations profit from the fact that closely related individuals share
longer stretches of IBD DNA segments. Thus the ideal reference individuals would contain
the most genetic information of their relatives. There has been a number of subject selection
strategies developed in order to attain a higher accuracy of predicting the genotype of non-
sequenced individuals [137, 36, 34]. This section provides a review on three prevalent subject
selection strategies including PRIMUS, ExomePicks and GIGI-Pick, which are favourable
for different situations in genotype imputation. Based on their designs, these selection
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strategies can be classified into two categories: (1) a method for population-based imputation:
PRIMUS; and (2) methods for family-based imputation: ExomePicks and GIGI-Pick.

PRIMUS

PRIMUS is a subject selection strategy that identifies a set of maximumly unrelated
individuals [137]. The program takes the estimates of pairwise kinship (i.e. a measure of
relatedness) as input and transforms them into an undirected graph consisting of multiple
family networks, with nodes being individuals and edges being relationships above a user-
defined threshold of relatedness. Individuals from different family networks are considered
as unrelated.

Within each family network, PRIMUS identifies the maximumly unrelated set of individu-
als by searching the maximum clique in the complement graph. In the complement graph,
edges are relationships below the user-defined threshold (i.e. original edges in the graph
are removed because they correspond to relationships above the threshold). A clique is a
subgraph that has all of its nodes connected to each other. A maximum clique is the largest
clique that is not part of other cliques. Then, the maximumly unrelated set in all individuals
is the combination of maximumly unrelated set within each family network. When there
are more than one maximum clique, a unique strength of PRIMUS is to weight the maximum
clique given additional criteria (e.g. disease status, data completeness .etc).

In terms of GWA studies, when the variants are assumed to be rare in the population,
PRIMUS selects subjects by obtaining more copies of the variants to find the associations
between variants and the trait [99]. For population based-imputation, PRIMUS should also lead
to a higher accuracy than random selection as maximumly unrelated individuals carry more
unique haplotypes than randomly selected individuals. On the contrary, PRIMUS can be worse
than random selection in family-based imputations as maximumly unrelated individuals
provide little information on the other individuals [147].

ExomePicks

For each pedigree in the dataset, ExomePicks starts from the oldest generation and
moves towards the youngest generation of the pedigree, selecting individuals from each
generation for sequencing [36]. The program requires only a pedigree file, which describes
the relationship between individuals, and a data file, which describes the content of the
pedigree file. In particular, the data file should at least indicate the individuals in the
pedigree that have been genotyped at some markers, and hence are eligible to be selected for
sequencing.
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If pre-existing genotype information is available for all individuals in the pedigree,
ExomePicks selects all the founders and at least one of their offspring. The founders are
selected for identification of all chromosomes segregating in the pedigree, and at least one
offspring for each founder is selected because they provide information needed for phasing.
If a founder has not been genotyped, an additional offspring from this founder or an offspring
from the same generation will be selected.

However, the IBD sharing inferred by pedigree structure does not include the variance
that is introduced by the probabilistic process of Mendelian segregation [144]. For example,
an offspring has exactly 50% IBD sharing with a parent but IBD sharing with a sibling has
an expectation of 50% and non-zero variance. It is important to take variation in IBD sharing
into account because the IBD sharing between sequenced individuals and genotyped but
non-sequenced individuals provide information needed for phasing, and hence imputing the
missing genotypes [29]. Therefore, ExomePicks might be a desirable choice for subject
selection only when high-density SNP markers are available on all individuals, two examples
are given in [4] and [145].

GIGI-Pick

A pedigree file does not specify the allele inheritance pattern in a pedigree, however,
the inheritance vector does. GIGI-Pick is a subject selection strategy that profits from the
inheritance vector. Similar to ExomePicks, GIGI-Pick also makes use of the IBD sharing,
but GIGI-Pick requires relatively sparse markers in comparison to ExomePicks. In other
words, the strength of GIGI-Pick is dealing with uncertainty in the data. Given the genotype
of the markers, marker map positions, pedigree structure and population allele frequencies,
the program gl_auto uses MCMC to sample IVs that are consistent with the pedigree
structure and pre-existing genotypes [33]. For each sampled IV, ability to impute genotypes
for any choice of selected subject can be measured by calculating coverage.

Given a selection of subjects, coverage is defined as the expected percentage of alleles
that are either observed or can be imputed by the observed genotype conditional on a given
IV, and it is calculated as follows. Let I be the number of disjoint IBD graph in an IV. In
an IBD graph, the nodes are copies of distinct chromosomes from subjects with observed
genotypes, and each pair of nodes are connected by the subjects who inherted those copies of
distinct chromosomes. When the observed genotypes can be phased, a total of Fi alleles can
be inferred for the i-th IBD graph,

Fi = wi + xi,
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where wi is the number of copies of alleles already genotyped, and xi is the number of copies
of alleles can be imputed because they are on a copy of the same chromosome as copies of
alleles with observed genotypes. When the observed genotypes cannot be phased, a total of
Gi alleles can be inferred for the i-th IBD graph,

Gi = wi + yi,

where yi is double the number of subjects whose genotype is unobserved but both their alleles
are IBD with alleles of subjects with observed genotypes. Then for a sampled IV,

coverage =
1

2N ∑
i
(Fi pi +Giqi),

where pi is the probability that the observed genotype can be phased, and qi = 1− pi is the
probability the observed genotypes cannot be phased.

The genotype imputation ability for a particular choice of subject selection at a random
locus is measured by calculating the average coverage over all sampled IVs. The selection
algorithm begins with calculating the coverage for all subjects available for sequencing and
subjects with top coverages are kept as current top choices. Then the same calculation is
applied on all possible combinations of the kept subjects from the last iteration and the
remaining subjects, and the top choices are updated with an additional subject. This process
is terminated when the number of chosen subjects reaches a specified threshold.

By sampling IVs, GIGI-Pick allows for stochastic variation in IBD sharing and also for
the probability of recombination between markers, which is important when the markers
are relatively sparse. In the simulation study presented by Cheung et al. [33], it was shown
that GIGI-Pick outperforms ExomePicks for subject selection in a single pedigree dataset.
When the pedigree is too complex or the number of pedigrees is large (e.g. in a population-
based study), GIGI-Pick may be computationally infeasible due to constraints of the IV and
the number of IVs need to be drawn for all pedigrees.

Other sampling strategies

There are other sampling strategies that are designed for different purposes, such as for
association studies. Wang et al. [151] proposed G-STRATEGY, which aims to select a subset
of individuals that reinforce the power of detecting an association by maximizing the objective
function involving the enrichment value and the pairwise kinship coefficient. G-STRATEGY
is appropriate for situations when none of the individuals are genotyped but all individuals
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are phenotyped, and Wang et al. [151] showed that it has an outstanding performance in
subject selection in datasets with relatively low relatedness among individuals.

David et al. [39] recently developed a sampling method for association studies that
prioritize the individuals to be phenotyped when genotype data are available. Their method
optimizes the sampling by maximizing the D criterion, which is a criterion that quantifies
the merit of a design. In David et al. [39], the D criterion quantifies estimation errors of the
target parameter, and the optimal subsample can be selected by maximizing the D criterion
using STPGA (Selection of Training Populations by Genetic Algorithm) [2, 3]. David et
al. [39] showed that optimized designs improve the precision of the joint estimation of
breeding values and genetic effect of the locus, particularly for small sample sizes. Moreover,
optimized designs are more efficient than simple random sampling for estimating locus
effects for traits with simple genetic architecture.

A summary of the sampling strategies discussed in this section is provided in Table 2.1.
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Chapter 3

Integrating the kākāpō data and
simulations of existing selection strategies

Since imputed genotypes can be used to carry out numerous analyses such as GWAS,
there have been many studies on the factors that can affect the quality of genotype imputation
for humans and livestock [63, 67, 96, 131, 147, 148]. Previous studies showed that factors
include the size and quality of the reference haplotype panel, composition of the reference
haplotypes, MAF of the target SNPs, genotype density, the relationships between imputed
individuals and reference individuals and so forth. However, there are few such studies
for wildlife populations or endangered species because it is too expensive to sequence the
whole population. Therefore, the kākāpō WGS data provide a great opportunity to learn
the differences in the genome and pedigree structure between kākāpō and humans in the
context of genotype imputation. The aim of this chapter is to compare the performance
of various combinations of selection strategies and imputation methods given the masked
kākāpō genomics data. The masked genomics data is simulated by hiding the sequences in
chosen genome regions.

This chapter begins with a description of different ways of simulating low-density kākāpō
genotype data in Section 3.2, and followed by a brief comment on the variant calling and
quality control of the kākāpō genomic data in Section 3.3. Then, Section 3.4 discusses the
application of existing strategies for selecting reference individuals in genotype imputation.
Finally, Section 3.5 shows the results for haplotype phasing and genotype imputation, and
discusses the factors that affect imputation quality for the kākāpō data.
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3.1 The kākāpō GBS data

The kākāpō GBS data is provided by the Kākāpō125+, which is a gene sequencing
project established by Kākāpō Recovery and the Genetic Rescue Foundation following the
initial genome sequencing of Jane, a reference kākāpō, in 2015 at Duke University and
Pacific Biosciences. The Kākāpō125+ consortium led by Genomics Aotearoa has been
producing global analyses of the dataset focusing on genetic management, disease, fertility
and ageing [44, 53]. This work has been undertaken in partnership with Ngāi Tahu, who are
the traditional guardians (kaitiaki) for this kākāpō data set. The kākāpō GBS data contains
the genotype information of 169 kākāpō (76 females and 93 males).

Among the 169 individuals, 125 of them were alive at the time, and samples from live
kākāpō were collected as part of regular monitoring activities by the Kākāpō Recovery
Team. DNA was extracted using a phenol/chloroform extraction protocol [123]. For the 44
historical samples, DNA was extracted from the toepads of the 13 historical birds using a
DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) with appropriate precautions taken
to minimize the risk of contamination [78].

The extracted DNA was cut into many small fragments using restriction enzymes Pstl
and Mspl (New England Biolabs, Ipswich, USA), which resulted in recognition sequences
each containing a PstI restriction site (CTGCAnG) and a MspI restriction site (CnCGG). In
the reference kākāpō genome which is 1.14 Gbp long (Gb = giga base pairs = 1,000,000,000
bp), the total hit count of the two cut sites is 1.74 million.

After the DNA was digested, barcoded adapters were added to the ends of the DNA
fragments to distinguish between samples, which allows DNA from different samples to
be pooled together. All the pooled DNA was then amplified using a PCR step, followed
by removing DNA fragments that are shorter than 193 bp and longer than 500 bp (SAGE
Science, Beverly, USA).

Finally, the remaining DNA fragments were sequenced using Illumina HiSeq 2500 with a
2x150 bp setup in at New Zealand Genomics Limited in Palmerston North, New Zealand for
modern samples, and Illumina HiSeqX with a 2x150 bp setup at the SciLifeLab sequencing
facility in Stockholm, Sweden for historical samples. More details of the DNA extraction
and sequencing process are described in Dussex et al. [44].

3.2 Subsampling of sequencing reads

The best way to do low-density genotyping depends on what genotyping technologies
are available at the time, and it will change over time, thus three approaches for simulating
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low-density genotype data are considered here. For kākāpō, the sequenced reads across all
individuals in the population were obtained using GBS. The most straightforward way to do
low-density genotyping is to perform low-depth WGS, and this can be simulated by random
sampling of the sequenced reads. More details on how I simulate low-depth WGS data are
described in the following paragraph.

For humans, approximately an average read depth of 30-fold is considered to be sufficient
for genotyping. This is relatively close to the read depth of the kākāpō data. The average
read depth per sample in the complete kākāpō data has a mean of 17.03-fold and a median
of 19.15-fold (with a minimum of 10- and a maximum of 40.19-fold), and the average read
depth for each kākāpō is shown in the top figure of Figure 3.1. Here I consider an extremely
low read depth of an average depth of approximately 2-fold (ideally each allele is covered
once by the read). By randomly selecting a proportion of reads from each individual based
on its average read depth (i.e. the higher the average depth, the lower the proportion of reads
that are sampled), the average read depth per sample in the resulting low-depth GBS data has
a mean of 2.469-fold and a median of 2.519-fold (with a minimum of 2.312- and a maximum
of 3.65-fold), and the reduced average read depth for each kākāpō is shown in the top figure
of Figure 3.1.
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Fig. 3.1 Comparison of average depth and reference genome coverage between extremely
low-depth (2-fold) and complete kākāpō GBS data. Average depth refers to the average
number of times that a nucleotide base is covered by unique reads over the genome of the
target inidividual, and reference genome coverage refers to the proportion coverage of the
reference genome by sequencing reads. Note that male kākāpō have lower proportion of
coverage because they have two Z chromosomes but no W chromosome (females have ZW).

It is expected that the error rate will be much higher in the variants called from low-depth
GBS data than those from the complete data. However, low-depth GBS is much cheaper and
more practical in wildlife conservation considering the current cost. For populations with a
low recombination rate (e.g. the chance of a recombination event is only 1% in every million
base pairs on average per generation for humans), the low-depth GBS data should also be
enough to infer an offspring inheritance from its parents regardless of the error rate.

It is also possible to obtain low-density genotype data without reducing sequencing depth.
This can be done by picking a grid of short sequences and sequencing them with good quality
in all individuals. The size of the marker region on each chromosome should be short enough
such that a marker of the offspring can be found in at least one parent, and long enough such
that the marker is different between founders. In other words, two markers are identical only
if they are IBD. However, the similarity between many founders is not much less than the
similarity between first-degree relatives (e.g., parents/offspring, siblings) as shown in Figure
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3.2. This is because of the incomplete pedigree information and the high level of inbreeding
in the kākāpō population (see Figure 3.3). Consequently, it is difficult to pick a subset of
markers that are useful for IBD tracking, thus this approach was not pursued in this study.

Fig. 3.2 Pairwise kinships inferred by GBS data using a marker-based approach proposed by
Weir & Goudet [154].

Alternatively, all or a subset of the loci where the reference kākāpō, Jane, is heterozygous
can be taken and genotyped in all individuals. To avoid confusion, Jane is the reference
kākāpō for sequence mapping instead of the reference individuals for genotype imputation.
This approach gives a random set of markers with varying density along the genome. Al-
though Jane died without any offspring, its genome was sequenced with very high depth
(approximately 100-fold). Therefore, genotyping Jane’s variants in all individuals can pro-
duce a set of variants that are very likely to be true variants rather than genotyping errors.
Using this approach, I obtained a set of low-density genotypes which contains 16,000 het-
erozygotes from Jane and an additional 4,000 heterozygous from Richard Henry. The reason
for including heterozygotes from Richard Henry is discussed in Section 3.4. In later parts of
the chapter, the low-density genotypes obtained this way are referred to as reference SNPs.

3.3 Variant calling and quality control

Variant calling is the process of mapping the GBS reads to a reference genome and
identifying the variation in the alleles (i.e. SNPs) relative to the reference genome. For
the kākāpō population, the Vertebrate Genome Project [44, 116] provided a high-quality
genome assembly of a kākāpō (Jane), which is used as the reference genome. Initially, I
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used the software FreeBayes to call variants from the low-density kākāpō GBS data, but
the major issue of FreeBayes is the high error rate. Instead, I use the learning-based variant
caller DeepVariant with a model trained using the kākāpō genomics data, and the code
is adapted from Guhlin et al. [58]. The details of model training and examination of the
performance of the trained DeepVariant model are described in Guhlin et al. [58]. Since
DeepVariant is not a sex-aware caller, the downstream analysis focuses on the autosomes
(non-sex chromosomes) only.

The number of SNPs identified for each individual before quality control is shown by the
red dots in Figure 3.4. The number of SNPs called from extremely low-depth GBS data has
a mean of 250,289, a median of 246,734, a minimum of 178,057 and a maximum of 502,095.
The number of SNPs identified for each individual in the reference SNPs data has a mean
of 10,212, a median of 10,202, a minimum of 8,792 and a maximum of 12,826. False or
uncertain genotype calls can be removed using the filtering function in BCFtools.

After removing the loci with a fraction of missing genotypes that are larger than 20%,
minor allele frequency less than 5% or major allele frequency larger than 95%, and Mendelian
inconsistencies, the number of SNPs identified for each individual is shown by the green
dots in Figure 3.4. The number of SNPs identified from extremely low-depth GBS data was
greatly reduced after quality control, with a mean of 18,620, a median of 18,637, a minimum
of 9,618 and a maximum of 34,614. In contrast, most of the reference SNPs are likely to be
real variants. The number of filtered SNPs in the reference SNPs data has a mean of 9,631, a
median of 9,729, a minimum of 7,397 and a maximum of 11,008.
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Fig. 3.4 Number of SNPs before and after quality control.

Furthermore, genetic variants with either too low depth or too high depth should also
be removed because they are likely to be the consequence of aligning errors in sequence
mapping. This is not a concern in reference SNPs because they are either heterozygotes of
Jane, who was sequenced with very high read depth, or heterozygotes of Richard Henry with
very high quality (QUAL=99). Note that QUAL is the quality score of SNP that is defined as
−10log10P(genotype call is wrong), i.e., the higher the QUAL, the the lower the probability
that the genotype call is wrong.

On the other hand, when the variants are called from extremely low-depth GBS data,
simply excluding all the variants with very low depth is infeasible as the majority have depth
below 5. To rule out potentially false-positive calls in variants called from extremely low-
depth GBS data, I also removed variants with quality lower than the threshold (QUAL=15,
indicated by the black vertical line in Figure 3.5), where the quality threshold was chosen by
comparing the quality distribution between variants existing in both extremely low-depth
data and complete data and variants existing in extremely low-depth data only.
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Fig. 3.5 The quality distribution of variants exist in both extremely low-depth data and
complete data and variants exist in extremely low-depth data only. The black line (QUAL=15)
is chosen to be the threshold and variants with quality lower than the threshold are removed.

3.4 Subject selection and kinship estimation

There are several options for subject selection, including pedigree-based approaches
ExomePicks and GIGI-Pick, and relatedness-based approach PRIMUS. I applied these ap-
proaches to both low-depth GBS and reference SNP data, and compared the performance
of different subject selection strategies based on genotype imputation accuracy in Section
3.5. I found that ExomePicks and GIGI-Pick work for general pedigrees, whereas selection
strategies such as PRIMUS that rely on pairwise kinships and can be sensitive to the pedigree
structure.

For outbred populations (e.g. humans), pairwise kinships of first-degree relatives should
be distinguishable from pairwise kinships of unrelated individuals. Given low-depth GBS
data with the average read depth ranges from 2-fold to 10-fold (1-fold to 5-fold per allele),
I estimated pairwise kinships of 169 kākāpō using a marker-based approach proposed by
Weir & Goudet [154]. In Weir & Goudet’s approach, the kinship coefficient for a pair of
individuals is estimated by the proportion of alleles carried by the pair of individuals that
are identical in states, relative to the average matching for all pairs of distinct individuals.
As this is a relative estimate, a negative pairwise kinship means that the pair of individuals
shares less alleles than the population average.

As shown in Figure 3.6, pairwise kinship estimation becomes more reliable as the average
read depth increases. However, regardless of the read depth, there is always an overlap
between the estimated pairwise kinships of first-degree relatives and the estimated pairwise
kinships of Stewart Island founders. The overlapping suggests that the Stewart Island
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founders are related, resulting from the sharp historic reduction in the kākāpō population
size. For truly unrelated individuals, the depth of sequencing reads should not lead to a
different conclusion of their relationship. For example, the Fiordland kākāpō named Richard
Henry is genetically different to the Stewart Island kākāpō because they were separated by
the sea. In Figure 3.6, the relatedness between Richard Henry and Stewart Island founders is
clearly lower than the relatedness between parents and offsprings even in the inference from
extremely low-depth GBS data (2-fold). Unfortunately, Richard Henry is a special case and
the pairwise kinships estimated by extremely low-depth GBS data provides no information
on the relationships between the rest of the kākāpō. Therefore, it is very challenging to
reconstruct the pedigree structure based on the pairwise kinships estimated from extremely
low-depth GBS data.

Fig. 3.6 Pairwise kinships inferred by GBS data with different depths.

I also estimated pairwise kinships from the reference SNPs data. In contrast to extremely
low-depth GBS data, estimated pairwise kinships based on 20k reference SNPs are very
close to that based on the complete data (Figure 3.7). For kākāpō, the reference SNPs from
Jane alone do not capture the unique features of Richard Henry (Figure 3.7). After including
genetic markers from Richard Henry in the reference SNPs, the relatedness inference based
on low-density genotype is almost as good as the inference based on the complete data.



3.5 Genotype imputation 34

For kākāpō or other endangered inbred species, relatedness-based selection strategies may
not be ideal regardless of the quality of sequencing data, as it is very difficult to reconstruct
the pedigree correctly. When this is not the case, reference SNPs could be a better choice
than low-depth GBS data for relatedness inference.

Fig. 3.7 Pairwise kinships inferred by reference SNPs (heterozygotes in Jane only and 16000
heterozygotes in Jane and 4000 heterozygotes in Richard Henry)

3.5 Genotype imputation

To the best of my knowledge, GIGI is the only well-known family-based imputation
program that handles large pedigrees, and GIGI2 [146] is a new program that implements
GIGI’s imputation approach but much faster and using less memory. Considering the
complexity of the kākāpō pedigree, I used GIGI2 for family-based genotype imputation in
this chapter. As another option, I used the population-based method BEAGLE to impute the
missing genotype in the low-density kākāpō genotype data. In this case, kākāpō were treated
as unrelated. The two subsections in this section discuss family-based approaches first and
then population-based approaches in phasing and genotype imputation respectively, for the
kākāpō study.

For the kākāpō study, I performed genotype imputation on chromosomes S1, S9 and S26,
which were selected as representations of macrochromosomes, intermediate chromosomes
and microchromosomes respectively. Microchromosomes are tiny chromosomes (less than 20
Mb) that are typically observed in the karyotype of birds, fish, reptiles and amphibians. The
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chromosomes that are larger than microchromosomes are called macrochromosomes (greater
than 40 Mb) and intermediate chromosomes (between 20 Mb and 40 Mb). In contrast
to macrochromosomes, bird microchromosomes have a higher and unevenly distributed
recombination rate (higher near chromosome ends), higher substitution (mutation due to
substitution of nucleotides) rate, and consequently a higher gene density [9, 10, 28, 46, 133].
The small size of the bird microchromosome also imposes challenges to genome assembly
(the reconstruction of the original DNA sequence from short DNA segments) [46], which
may result in a high error rate in the downstream analyses.

3.5.1 Phasing

In this study, haplotyping in the family-based approach used by GIGI2 is done by
gl_auto, which locates genetic recombinations by sampling IVs given low-density genotypes
and a pedigree. The quality of the low-density genotypes that are used to sample IVs has
a direct impact on the imputation performance. More specifically, it is essential to have
consistency between IVs and the observed genotypes at the positions of dense markers. Even
with strict quality control, low-depth GBS data is not ideal for IV sampling because of the
high error rate, and the genotyping errors lead to shorter haplotypes compared to the actual
haplotypes. For example, when I use reference SNPs instead of SNPs called from low-depth
GBS data, GIGI2 is able to impute an average (over chromosomes) of 34% more loci, and
the accuracy increases by an average of 7% among the imputed genotype given the dense
genotype of 54 kākāpō selected by GIGI-Picks. Note that this result is not influenced by
subject selection strategy as shown in the next section.

Reference haplotypes such as HapMap for the human population are necessary for
genotype imputation of unrelated individuals. Since there are no reference haplotypes of
the kākāpō population due to its small population size, the genotypes of reference kākāpō
need to be phased. Among the common phasing tools, WhatsHap gives the best haplotypes
for the kākāpō genomics data [57]. The only drawback of WhatsHap is that the algorithm is
very time-consuming. In particular, for pedigree-awared phasing, the required computational
resources increase exponentially as pedigree size increases. For example, WhatsHap can take
6 to 7 days to phase the genotypes of the simplest 3-generation family in the kākāpō pedigree
(using a single CPU on the Broadwell E5-2695v4, dual socket 18 cores per socket nodes,
128GB RAM, with the individual processors being Intel Xeon E5, 2.1 GHz).

Since all selections involve more than two generations and a high level of inbreeding,
the genotypes of reference kākāpō selected by ExomePicks, GIGI-Pick and PRIMUS are
phased using reads only in this study to avoid extremely complex computation. In order to
incorporate pedigree in phasing and complete the computation in a reasonable amount of time,
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I selected 27 kākāpō from 9 trio families as reference individuals because parents-offspring
is the simplest and the most informative relationship for phasing. Moreover, the parents from
the chosen trio families are unrelated in the pedigree so that there can be as many distinct
haplotypes as possible in the reference panel.

Besides achieving high accuracy, we also want to phase and impute as many variants
as possible. For gl_auto, this only depends on the error rate of variants calling, whereas
for WhatsHap, it also depends on the length of sequencing reads. WhatsHap is only able
to phase heterozygotes that are covered by reads with another heterozygote, and kākāpō
sequenced with short-read sequencing technology, which is less ideal than long reads. For
the kākāpō data, this greatly limits the number of variants that can be phased. Consequently,
WhatsHap cannot guarantee that a genetic variant is phased for all reference individuals, and
such variants are removed from the reference set as required by BEAGLE.

Taking the largest chromosome S1 as an example, more than 99% of the variants can be
imputed using the GIGI in combination with gl_auto, approximately 20% of the variants
can be imputed using BEAGLE in combination with WhatsHap (reads only) and 46% of the
variants can be imputed using BEAGLE in combination with WhatsHap (reads and pedigree),
based on the genotypes of 27 reference kākāpō.

As a conclusion, the family-based approach GIGI in combination with gl_auto has a
clear advantage in situations where the population has no reference haplotypes available and
is not sequenced with long-read sequencing technologies. The following section provides
more details on the accuracy of family-based imputation and population-based imputation
with different selection strategies and different numbers of reference kākāpō.

3.5.2 Imputation accuracy

For family-based imputation, I use both the proportion of correctly imputed genotypes
and Pearson’s squared correlation between observed and imputed genotypes (R2) to assess
the imputation accuracy as they are two common metrics for imputation accuracy evaluation.
Previous studies have shown that the proportion of correctly imputed genotypes overestimates
accuracy for rare variants [113], and R2 is the best measure of accuracy [147]. However, it
might not be a good idea to rely only on R2 because kākāpō is a highly inbred species (i.e.,
no variation between individuals at a large number of loci). Moreover, the set of individuals
with observed genotypes is not always the same as the set of individuals whose genotypes
can be imputed.

Figure 3.8 shows the positive relationship between the proportion of correctly imputed
genotypes and the number of individuals with dense genotypes on the three chromosomes.
It is also not surprising to see that the proportion of correctly imputed genotypes tends to
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increase as the chromosome size increases since the genotyping error rate is higher on the
microchromosomes. Regardless of chromosomes and selection strategy, roughly 80% of the
genotypes can be imputed correctly given 14 kākāpō with dense genotype, and roughly 92%
of the genotypes can be imputed correctly when dense genotypes are available for half of the
kākāpō population.

In family-based imputation, kākāpō with dense genotypes are selected by “per nuclear
family” output in ExomePicks, as recommended by the author [36], and the genome-wide
coverage metric in GIGI-Pick. Cheung et al. [33] showed that GIGI-Pick outperforms
ExomePicks by leveraging the uncertainty in the pedigree’s inheritance pattern on both
rare variants and SNPs for a pedigree with no inbreeding. However, the same result does
not seem to hold for inbred populations with low genetic heterogeneity, such as kākāpō.
In terms of proportion of correctly imputed genotypes, GIGI-Pick and ExomePicks have
similar performance to random selection overall, but pedigree-based selections are slightly
more informative than random selection when a large number of individuals are selected
(Figure 3.8). By looking into R2 at different MAF intervals (Figure 3.9), GIGI-Pick and
ExomePicks lead to higher proportions of correctly imputed genotypes compared to random
selection because they have higher R2 for common variants (Figure 3.9).

Fig. 3.8 Difference in the imputation performance of GIGI2 with different selection strategies:
the proportion of correctly imputed genotypes on chromosome S1, S9 and S26 given low-
density genotype data (reference SNPs). The proportion of correctly imputed genotypes for
random selection is the average proportion of correctly imputed genotypes over ten different
random selections.
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Fig. 3.9 Difference in the imputation performance of GIGI2 with different selection strategies:
Pearson’s squared correlation between observed and imputed genotypes (R2) on chromosome
S1, S9 and S26 given 54 kākāpō with low-density genotype data (reference SNPs). R2 for
random selection is taken to be the average value over ten different random selections.

As mentioned at the beginning of section 3.5.1, the error rate of low-density genotypes
greatly affects the accuracy of family-based imputation. This is also true for population-
based imputation. For example, when reference SNPs are used instead of SNPs called from
low-depth GBS data, BEAGLE is able to correctly impute 22% more missing genotypes on
chromosome S1 and 11% more missing genotypes on chromosome S9 and S26 given the
dense genotypes of 27 kākāpō selected by PRIMUS.

Another main factor influencing the accuracy of population-based imputation is the
phasing method. In Figure 3.10, the imputation accuracy increases by 13% on average when
pedigree information is incorporated in phasing, whereas the imputation accuracy improves
less than 5% by doubling the number of reference kākāpō when genotypes of the reference
kākāpō are phased using linkage disequilibrium information only. PRIMUS is an exception in
the selection strategy where increasing number of reference individuals does not always result
in higher imputation accuracy, because a smaller set of maximumly unrelated individuals is
not necessarily a subset of a lager set of maximumly unrelated individuals.

The effect of reference individuals selection is also relatively small for the kākāpō data
as different selections of reference kākāpō makes little differences in imputation accuracy.
Although PRIMUS is designed to select the maximumly unrelated subset of individuals so
that the reference genotype contains the most variants in the population, it does not show any
advantages compared to random selection or even family-based approaches ExomePicks or
GIGI-Pick in the population-based imputation of kākāpō genotype. This is likely to be the
same problem as in family-based imputation: a different selection of reference kākāpō would
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result in far fewer changes in reference haplotypes compared to the human population due to
its low genetic heterogeneity.

Fig. 3.10 Difference in the imputation performance of BEAGLE with different selection
strategies and different number of reference individuals: the proportion of correctly imputed
genotypes on chromosome S1, S9 and S26 given low-density genotype data (reference SNPs)
and dense genotype of the ∼ 27 (represented by dot and solid line)/55 reference individuals
(represented by triangle and dashed line). The proportion of correctly imputed genotypes for
random selection is the average proportion of correctly imputed genotypes over ten different
random selections. Note that the 27 reference individuals (composed of 9 trio families, and
the results are represented by yellow solid line at the top of the figure) are phased using
linkage disequilibrium (LD) and pedigree information, whereas the reference individuals
selected by other strategies are phased using LD information only.

3.6 Summary

This chapter demonstrated the process of genotype imputation for endangered species
kākāpō and investigated the factors that affect imputation performance. The imputation
performance on the kākāpō genome data is affected the most by two factors.

First, when the target population has no reference haplotypes available and is not se-
quenced with long-read sequencing technologies, family-based genotype imputation that
utilizes the pedigree information allows more missing genotypes to be imputed and correctly
imputed than population-based genotype imputation that ignores the pedigree information
(as discussed in Section 3.5.1). For population-based genotype imputation that requires



3.6 Summary 40

pre-phasing of the dense genotype, the use of pedigree information in phasing also leads to
substantial improvement in the number of missing genotypes that can be imputed and the
proportion of correctly imputed genotypes. For homogeneous species with complex popula-
tion structures, using the relationship between individuals greatly reduce the uncertainty in
phasing and imputation, hence allowing more missing genotype to be imputed with higher
accuracy.

Second, among the potential factors that could affect imputation accuracy, the quality
of low-density genotypes is the most important factor that affects the imputation quality (as
discussed in Section 3.5.1 and Section 3.5.2). For the family-based imputation method GIGI,
the quality of low-density genotypes affects the number of sampled IVs that are consistent
with the observed genotypes, hence affecting the number of markers with missing genotypes
that can be imputed and the proportion of correctly imputed genotypes. For the population-
based imputation BEAGLE, the quality of low-density genotypes also affects the haplotype
phase inference and hence the imputation accuracy.

The kākāpō study also found that the selection of reference individuals is unimportant
in the genotype imputation for inbred species such as kākāpō. This is true for both family-
based and population-based imputation (as discussed in Section 3.5.2). In family-based
imputation for kākāpō, GIGI-Pick no longer has an advantage compared to ExomePicks

by leveraging the uncertainty in the pedigree’s inheritance pattern as it does for pedigrees
without inbreeding. In population-based imputation for kākāpō, PRIMUS does not lead to
higher imputation accuracy than other strategies by selecting the maximumly unrelated subset
of individuals (hence enriching the reference haplotypes). A sensible explanation for this is
the low genetic heterogeneity of inbred species, in other words, different selections provide a
similar amount of genome information.

In summary, family-based genotype imputation can impute most missing genotypes
in the low-density kākāpō genotype data with high accuracy. While imputed genotypes
enable GWA studies with a reduced cost, the use of pedigree information greatly increases
the computation time, and the computation time grows exponentially as the pedigree size
increases. Furthermore, genotype imputation is more complicated for endangered species
compared to humans, livestock and other model organisms because data required for imputa-
tion, such as the genetic map and reference haplotypes, are not available like the well-studied
species. Since no genetic map is available, I assumed the recombination rate varies between
chromosomes but remains constant within each chromosome in this study. This may cause
a loss in phasing and imputation quality because many birds including kākāpō have low
recombination rates at the middle of the chromosomes but high recombination rates close
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to the end of the chromosomes. Therefore, the phasing accuracy could be improved once a
fine-scaled genetic map of kākāpō becomes available.

In the next chapter, I will explore the possibility of inferring the population parameter
required in GWA studies using the dense genotypes only available for a subset of individuals,
and propose a method that is relatively fast and straightforward to implement.



Chapter 4

Two-phase sampling

Chapter 3 demonstrated the process of predicting the missing genotype in the low-density
kākāpō genotype data using the dense genotype of a subset of individuals. An alternative
approach to deal with the problem that only a small fraction of the sample can be resequenced
is to treat it as a missing data problem, and use the subsample data to estimate the same
parameters in mixed-effects models as would be estimated with the complete sample data.
This chapter starts with an introduction on the incomplete data problem in section 4.1,
followed by the common two-phase sampling design in section 4.2 and methods for model
inference under two-phase sampling in section 4.3.

4.1 Missing data problem

Rubin [121] classified missing data problems into three categories according to their
missingness mechanism.

If there is no relationship between the missingness and both observed and unobserved
variables of the data, then every data point has the same probability of being missing, and the
data are said to be missing completely at random (MCAR). In this case, the missing data can
be simply removed from the data, and the parameters estimated with maximum likelihood
methods are unbiased. However, data are rarely MCAR in practice.

A more general and realistic assumption in maximum likelihood estimation (MLE) is
the data are missing at random (MAR), which allows the missingness to be depending on
observed variables. In other words, data points in the same group defined by an observed
variable have the same probability of being missing. Hence, a random subset can be obtained
from the underlying population if we can control for the observed variables. MAR is said to
be ignorable because maximum likelihood inference can ignore the missingness mechanism
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when the missingness distribution is independent of the outcome distribution conditional on
the observed variables [88].

When neither MCAR or MAR holds, the data are not missing at random (NMAR) which
means the missingness depends on unobserved variables. Such missingness is nonignorable
and the MLEs of parameters of interest are very likely to be biased if the missing data
mechanism is not modeled. NMAR is the most complex case in the three missingness
mechanisms, especially when the probability of being missing varies for unknown reasons.

If the missingness is induced by selecting a particular sample from the population, then
missingness mechanism depends on the sampling design. Two-phase samples may be MAR
given only the observed data when the missingness depends on either the the explanatory
variable or the response variable [110], but NMAR when missingness depends on both of
them. Another example of NMAR data is when individuals are selected by non-probability
sampling from the population using non-random methods based on various criteria such as
convenience. While non-probability sampling allows easy and cheap data collection, it is
impossible to estimate the sampling probability and identify possible bias. On the contrary,
probability sampling is usually more complex and expensive, but all individuals have known
non-zero sampling probabilities as they are randomly selected from the population. For a
probability sample, the sampling weights, which are the inverse of sampling probabilities,
can be calculated, hence we are able to correct the bias caused by the missingness.

4.2 Two-phase sampling

In genetic association studies, the goal is to identify the genetic variants that are associated
with the diseases or traits. It is usually relatively easy and affordable to obtain the disease
status or measure the trait values such as blood pressure, but cost-prohibitive to obtain
high-density genetic variant data at sample sizes sufficiently large for association studies,
despite the decreasing cost of DNA sequencing. Consequently, association studies typically
find nearby genetic markers rather than the functional variants that are responsible for the
trait. One approach to find the functional variants is to obtain the complete sequencing data
of the genome region that shows a signal of association. However, resequencing with high
density is usually limited to only a subsample by the budget constraint.

Neyman [103] proposed two-phase sampling or double sampling, which is a cost-efficient
strategy for data collection. In phase I, a large sample is collected from the target population
and relatively cheap information is obtained for all individuals. In phase II, a subsample is
selected based on the phase I information, and the expensive variable is measured for the
subsample.
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A two-phase sampling design that depends on the response variable, also referred to as
outcome-dependent sampling, is a primary strategy to increase the power of an association
study. For binary diseases with low prevalence, simple random sampling is not efficient as it
will only include a small number of cases. Given the disease status of all individuals in phase
I, outcome-dependent design (case-control design) samples all the cases with the disease and
a small fraction of the controls (individuals without disease), and the variable of interest is
measured on the phase II sample. By oversampling the rare outcomes, outcome-dependent
sampling results in a subsample in which more individuals carry the functional genetic
variants and hence greatly increases the power of the association study. It has also been
shown for continuous outcomes that individuals with extreme trait values provide more
information than randomly sampled individuals [149, 161].

Since the aim of resequencing is to find the functional variants associated with the trait
of interest and nearby variants tend to be inherited together, it may be helpful to select the
subsample based on outcome as well as the genetic markers. In orther words, the idea is to
increase the number of possible carriers of the functional variants by oversampling cases
or individuals with extreme trait values who carry the highest-signal genetic marker. Such
stratified case-control sampling was first proposed by White [155] in 1982, and it is more
informative than the standard case-control design by sampling based on both outcome and
exposure. For conservation study of kākāpō or other endangered species, the sample size
may be too small to detect any association between low-density genetic variants and the trait
of interest. In such scenarios, we can select a subsample based on phenotypes and pedigree,
which are both available for all kākāpō. The pedigree information of endangered species is
typically known by their recovery programme and it is closely related to the genetic data.

For the missingness mechanisms in section 4.1, consistent or asymptotically unbiased
MLEs can be obtained using a subsample under the framework of two-phase sampling. The
next section reviews several common methods for handling missing data under two-phase
designs.

4.3 Estimation methods

Let Y denote the outcome variable, X denote the expensive covariate, S denote the
inexpensive covariate that is correlated with X , and A denote the auxiliary variable. Under
outcome-dependent sampling, Y and A are obtained for the entire phase I sample, whereas X
is only measured for the phase II subsample. Let R be the sampling indicator given phase
I data, with Ri = 1 if the i-th individual is in phase II and Ri = 0 otherwise. For parameter
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vector θ , the observed-data likelihood is given by

L = ∏
Ri=1

P(yi|xi,si,A;θ)P(xi|si,A) ∏
Ri=0

P(yi|si,A;θ).

If Y is independent of A given X , or Y |A can be integrated out over A (although this is often
not the case), the observed-data likelihood can be written as

L = ∏
Ri=1

P(yi|xi,si;θ)P(xi|si) ∏
Ri=0

P(yi|si;θ),

where P(Y |S;θ) =
∫

P(Y |X ,S;θ)P(X |S)dx is the measurement error model. The full like-
lihood is usually complicated to derive and may lead to inconsistent estimates if P(X |S) is
not correctly specified. As the imputation approach for missing data problem is discussed
in Chapter 2, this section focuses on the common methods for statistical inference under
two-phase sampling with a focus on the maximum likelihood approach.

4.3.1 Weighted likelihood

The weighted likelihood is a Horvitz-Thompson (HT)-type estimator [65] that has been
widely used because of its simplicity and robustness, and multiple methods have been
developed from it [52, 73, 115, 120, 169]. An estimate of the population log-likelihood can
be obtained using individuals with complete observed data using sampling weights, which
are the inverse sampling probabilities:

ℓ(θ) = ∑
Ri=1

1
πi

logP(yi|xi,si;θ),

where πi is the phase II inclusion probability for the i-th individual given phase I data. In
general, the HT-type estimator is robust to the bias caused by model misspecification when
the sampling weights are correctly specified. However, for mixed models, which requires
integration over the random effects, the HT-type estimator is no longer a sum of over all
clusters when the sampling design involves within-cluster sampling.

Schildcrout et al. [125] considered linear mixed model with longitudinal data under
outcome-dependent sampling, and developed a conditional complete data likelihood that
uses phase II individuals only. For cluster-correlated data under two-phase designs, Rivera-
Rodriguez et al. [118] proposed a generalized estimating equations approach based on
inverse-probability weighting for inference of marginally specified generalized linear models,
and a calibrated inverse-probability weighting estimator for improved estimation.
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4.3.2 Stabilized weights and generalized raking

The HT-type estimator is known to be inefficient as the phase I information of non-phase
II individuals is completely ignored. In order to improve efficiency, several methods have
been developed for weight adjustments. When the mean model is correctly specified, Magee
[93], Robins et al. [119], Pfeffermann and Sverchkov [108], Skinner and Mason [132]
proposed estimates of a function that is chosen to minimise the variation of the sampling
weights, and weights divided by the function are referred to as stabilized weights [119].

Generalized raking, also known as calibration of the weights, is a survey sampling tech-
nique that improves the efficiency of estimation of population means by adjusting sampling
weights based on auxiliary variables [42]. In contrast to stabilized weights, calibration
does not make any model assumptions. Under two-phase sampling, calibration works when
auxiliary variables are linearly correlated with estimators for the regression parameter of
interest [20, 91, 117]. Breslow et al. [21] described a strategy for obtaining an estimation of
the correlated auxiliary variable using fully observed variables. Støer and Samuelsen [140]
and Rivera and Lumley [117] used a similar procedure for different sampling designs. While
a poor choice of the function in stabilized weights can lead to larger variance, the calibrated
estimator is always asymptotically more efficient than the uncalibrated estimator [90].

4.3.3 Pseudolikelihood

Pseudolikelihood is an approximation to the full likelihood function in a more tractable
form. Breslow and Cain [15] developed a pseudolikelihood method to estimate the parameters
in logistic models under two-phase design, with the phase I sample selected by a case-control
sampling. Let Y = {0,1} be the binary outcome and S = {1, · · · ,J} be the stratification
variable, Ni j be the number of phase I subjects with Y = i and S = j, xi jk be the covariate
vector that is only measured for the ni j phase II subjects randomly selected from Ni j, and
logit−1 denotes the standard logistic distribution function. Breslow and Cain [15] first
obatined an estimate of the log-odds for stratum j by maximizing the pseudolikelihood of
the phase I data

L1 =
1

∏
i=0

J

∏
j=1

PNi j
i j ,

with

P1 j = Pr(Y = i|S = j) = logit−1
(

log
N1 j

N0 j

)
and P0 j = 1−P1 j,
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and then substituted it into the pseudolikelihood of phase II data

L2 =
1

∏
i=0

J

∏
j=1

ni j

∏
k=1

p
ni jk
i jk ,

with

p1 jk = logit−1
(

log
N0 jn1 j

N1 jn0 j
+β0 + xT

1 jkβ1

)
and p0 jk = 1− p1 jk,

where log N0 jn1 j
N1 jn0 j

is an offset term for correction of sampling bias. Schill et al. [126] assumed
the same model and gave an alternative estimator by jointly fitting logistic models to phase I
and phase II data.

When the missingness is independent of the discrete outcome Y , Pepe and Fleming
[106] and Carroll and Wand [30] developed estimated likelihood methods by replacing the
unspecified marginal distribution function P(X) with an consistent estimator. The method
proposed by Pepe and Fleming [106] requires a discrete covariate, however that of Carroll
and Wand [30] allows continuous covariate using kernel density estimators. Weaver and
Zhou [152] extended their work and proposed a maximum estimated likelihood estimator for
continuous outcome Y under outcome-dependent sampling design. Chatterjee et al. [32] also
developed an efficient pseudoscore estimator that accepts aither a discrete or a continuous
outcome, and is similar in nature to the estimated likelihood proposed by Weaver and Zhou
[152].

In order to accommodate the potential correlation for inividuals and unknown covariates
within a cluster, Xu and Zhou [162] proposed a semiparametric estimated likelihood estimator
for linear mixed model with cluster random effects. They considered an outcome-auxiliary-
dependent sampling design, and accounted for the sampling bias through a nonparametric
estimator of the conditional cumulative distribution function of F(X |S,A). Most of the other
pseudolikelihood approachs for mixed model inference use sampling weights to adjust the
bias caused by complex sampling. Pfeffermann et al. [107] developed a pseudolikelihood for
linear mixed model that employed a probability-weighted iterative generalized least squares
algorithm. Rabe-Hesketh and Skrondal [112] proposed a sample weighted pseudolikelihood
for generalized linear mixed models. Let i be the subscript for the sampled clusters s, πi

be the sampling probability for cluster s(i), ui be the cluster random effect, j (and k) be
the subscript for individuals sampled within a cluster, and θ = (θy,θu) be the set of model
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parameters. The sample weighted log-likelihood is given by

ℓ̂(θ) = ∑
i∈s

1
πi
ℓi(θ), (4.1)

where

ℓi(θ) = log
∫

exp

(
∑

j∈s(i)

1
π j|i

f (yi j|xi j,ui;θy)

)
g(ui|θu)dui, (4.2)

with f (·) and g(·) being the density functions of the response variable y and random effect u.
As shown in Eq 4.2, the sample weighted log-likelihood (Eq 4.1) is not design-unbiased

because the sampling weights appear in the weighted estimating equation in a non-linear
form. Rao et al. [114] and Yi et al. [165] overcame this problem by considering the pairwise
composite likelihood that is constructed from the sum of the pairwise likelihood. With the
same notation, the idea of pairwise log-likelihood is to replace the log-likelihood for each
cluster in Eq 4.2 by the sum of all possible pairwise log-likelihood:

ℓ̂(θ) = ∑
i∈s

1
πi

∑
j<k

j,k∈s(i)

1
π jk|i

ℓ jk|i(θ), (4.3)

where πi is the sampling probability for cluster i, and π jk|i is the probability of both individual
j and k are sampled given cluster i is sampled, and

ℓ jk|i(θ) = log
∫

f (yi j|xi j,ui,θy) f (yik|xik,ui,θy)g(ui|θu)dui. (4.4)

Huang’s PhD thesis [68] extended their work by establishing consistency and asymptotic
normality of the weighted pairwise likelihood estimator under two situations: (1) when the
sampling clusters (primary sampling units in the sampling design) are not the same as the
model clusters that define the random effect; (2) when the random effects are correlated.

4.3.4 Full likelihood

Maximum likelihood is generally more efficient than weighted likelihood and pseudo-
likelihood because it makes more assumptions, however it is more complicated to implement
because the nuisance parameter is often treated nonparametrically and may involve a high-
dimensional integral.
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Under two-phase sampling with a simple random sampling in phase I, Scott and Wild
[128] proposed a maximum likelihood estimation method for discrete outcome Y and explana-
tory variable X , which can be substantially more efficient than pseudolikelihood. However,
the number of nuisance parameters increases rapidly as the number of levels in X increases,
and the method becomes unfeasible. To solve this problem, Scott and Wild [129] developed
a semiparametic maximum likelihood method that obtains the maximum likelihood estimates
by iterating the pseudolikelihood procedure and updating the offset parameter. When the
phase I sample is selected by a case-control sampling, Breslow and Holubkov [18] derived
a full maximum likelihood estimator, and showed their method is equivalent to Scott and
Wild’s approach [129] with phase I data being a simple random sample.

For continuous outcomes with standard outcome-dependent sampling, Zhou et al. [171]
derived a semiparametric likelihood as a product over a number of mutually exclusive
intervals of the outcome. Then they profile out the likelihood to obtain the empirical
likelihood and maximize the profile likelihood over all distributions whose support contains
the observed X values.

Whittemore [156] and Zhao et al. [168] proposed maximum likelihood methods for case-
control family design, which is also referred to proband design, that identifies the relatives of
each proband (the first person in a family who had diagnosis of diseases) selected in the case-
control study and records their disease status and covariates. They allow correlated binary
data by considering the conditional distribution of relatives’ outcome given the proband
outcomes. Neuhaus et al. [100] considered an extension to the case-control family design,
and developed a semiparametric maximum likelihood method that applies to any designs if
the population of families can be divided into a finite number of strata.

For the semiparametric maximum likelihood approach discussed above, the difficulty in
implementation is that the nuisance parameter is treated nonparametrically. Neuhaus et al.
[101] extended their work in [100] to fit generalized linear mixed models that allows family-
specific random effects. For mixed models, the computation of the marginal probabilities
requires integration of the conditional probabilities over the distribution of the random effect.
Therefore, the full likelihood becomes substantially more complicated when the clusters are
large or when the sampling probabilities depend on outcomes within clusters [101].



Chapter 5

Linear mixed models under two-phase
sampling

The most common approach for fitting linear mixed models is maximum likelihood
estimation (MLE) and it is implemented in a number of software such as the R [111] package
lme4 [11] and its extension lme4qtl [173] which allows user-defined variance-covariance
matrices for random effects. An underlying assumption for MLE using the sample data
is that the observations are sampled in a way that they are representative of the whole
population. However, random sampling is generally less efficient than outcome- or covariate-
dependent sampling designs for model inferences, and MLE methods that do not incorporate
the informative sampling design and can therefore lead to biased estimation.

This chapter develops a weighted MLE approach that takes advantage of the fact that
the kinship matrix is known for the whole kākāpō population, allowing us to model the
population covariance matrix rather than the sample covariance matrix. Since the population
kinship structure is often known for endangered species, the proposed weighted MLE
approach provides a general solution for fitting linear mixed models in conservation genetics.
The proposed method is written as an R package WLMM and available on GitHub (https:
//github.com/zoeluo15/WLMM).

The aim of this chapter is to describe the proposed weighted MLE approach and evaluate
its performance under two-phase sampling designs using two case studies. The kākāpō study
should be a good example for fitting linear mixed models in conservation study of small
inbred populations with complex pedigree. Access to the kākāpō data is via application to
the Department of Conservation, who assess requests in partnership with Ngāi Tahu, the
kaitiaki (guardians) for this data set. A simulated nuclear family dataset is used to extend the
results to larger populations with simple pedigree structures, and it should provide a basis for
analysis in large outbred populations, such as humans.

https://github.com/zoeluo15/WLMM
https://github.com/zoeluo15/WLMM
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The chapter starts with description of the methods in section 5.1, with the proposed
weighted MLE approach in section 5.1.3. Then, section 5.2 provides the model inference
under two-phase sampling. Lastly, section 5.4 proves the consistency of the proposed
likelihood estimator.

5.1 Methods

5.1.1 The linear mixed model

Consider the following model that describes a continuous phenotype y (e.g. length,
height),

y = Xβ +Zu+ e, u ∼N (0,σ2
g Φ) and e ∼N (0,σ2

e I)

where N is the population size, y is a N ×1 vector for the phenotype values, X is a N ×2
design matrix made up of a intercept column of 1 and a column for genotype, containing the
number of copies of alternative alleles for all individual at a particular locus, i.e.,

Xi2 =


0, if the genotype of i-th kākāpō is aa,

1, if the genotype of i-th kākāpō is Aa,

2, if the genotype of i-th kākāpō is AA,

Here the genetic markers are assumed to be biallelic (one variant allele relative to the
reference allele), but the approach would also work for multiallelic markers (markers with
more than one variant allele relative to the reference allele). The parameter vector β =(β0,β1)

comprises the population mean and the coefficient for the genetic fixed effect.
Z is a N ×N design matrix that specifies the structure of the random effect u. The genetic

random effect u and the environmental random effect e are N ×1 vectors, independent of
one another and follow multivariate normal distributions with σ2

g being the genetic variance,
ΦN×N being the kinship matrix, σ2

e being the environmental variance and I being an N ×N
identity matrix. In lme4 [11], the covariance matrix of the random effect is defined by
its grouping structure which can be inappropriate in the situation where individuals are
genetically related to each other. The R package lme4qtl [173] is developed for such
situations that allows a customized covariance matrix for the random effect.

In this study, I consider a single genetic random effect with one individual per level of
the random effect. That is, the design matrix Z is simply an identity matrix. Therefore, the
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model is reduced to the simplest form with a different multivariate normal error termε .

y = Xβ + ε,

and the covariance matrix of ε can be written as

Ξ = σ
2
g Φ+σ

2
e I

= σ
2(h2

Φ+(1−h2)I)

where σ2 = σ2
g +σ2

e is the total phenotypic variance and h2 =
σ2

g
σ2 is the heritability which

measures the proportion of variation in phenotype y can be explained by genetic variation.
For a linear mixed model, the estimated population log-likelihood implemented in lme4

and lme4qtl [11, 173] is composed of a log-determinant term and a residual sum of squares
(RSS) term,

ℓ(θ) =−1
2

log |Ξ|− 1
2
(y−Xβ )T

Ξ
−1(y−Xβ ), (5.1)

where θ = {β ,σ2,h2} denotes the parameters of interest. The log-likelihood in Eq 5.1 works
when the sample is representative of the population, but it is likely to provide biased estimates
otherwise.

5.1.2 Full likelihood

Full likelihood properly accounts for covariance structure and the missing mechanism,
however it is more complicated to construct. In this case, we need to deal with the fact that
individuals in the pedigree who were not sampled have unobserved genotypes. One solution
is to set up a Bayesian model that uses the full likelihood, and samples the unobserved
genotypes under the constraint of consistency with observed genotypes. In practice, this is
feasible for simple pedigrees, but becomes computationally intensive and time-consuming as
the pedigree size and complexity increase.

For the simulated nuclear family data with the outcome-dependent sampling in Design
1, it is relatively straightforward to construct the full likelihood. Code is included below
to fit the model using NIMBLE [40]. The model of missing mechanism is simple because
P(Ri = 1) is either 1 or follows a binomial distribution with p = n2

N−n1
(See Design 1 for the

definition of N, n1 and n2). The only complicated part is modeling the probability distribution
of missing genotypes because individuals are related.
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Design 1. Let N be the population size and n be the sample size, consider the following
outcome-dependent sampling.

Step 1. Always sample the n1 individuals from the two a% tails of the phenotype distri-
bution;

Step 2. Randomly sample n2 = n−n1 individuals from the remaining N −n1 individuals,
where n is the sample size.

1 code <- nimbleCode ({

2 beta_0 ~ dunif (-1000, 1000)

3 beta_1 ~ dunif (-1000, 1000)

4 sigma_g2 ~ dunif(0, 1000)

5 sigma_e2 ~ dunif(0, 1000)

6
7 for (i in 1:n_middle) { # sampling

8 R[middle[i]] ~ dbinom(size=1, prob=frac) # Sampling indicator of the non -extreme individuals

9 }

10
11 for (i in 1:n_rest) { # Impute missing genotype

12 indicator[i,1:4] <- c(R[FID[row_idx[i],1]],R[FID[row_idx[i],2]],R[FID[row_idx[i],3]],R[FID[row_idx[i],4]])

13 out[i,1:3] <- imputation(geno=x_raw[],FID=FID[,],indicator=indicator[i,1:4],

14 rowx=row_idx[i],colx=col_idx[i],maf=maf)

15 x[rest[i]] ~ dcat(prob=out[i ,1:3])

16 }

17
18 for (j in 1:4) {

19 for (k in 1:4) {

20 Xi[j,k] <- sigma_g2*kinship[j,k]+ sigma_e2*(j==k) # Construct the covariance matrix

21 }

22 }

23
24 for (i in 1:nf) {

25 for (j in 1:4) {

26 mu[i,j] <- beta_0 + beta_1*x[FID[i,j]]

27 }

28 y[i,1:4] ~ dmnorm(mu[i,1:4] ,cov=Xi [1:4 ,1:4]) # Fitting linear mixed model

29 }

30 })

Nevertheless, it is workable because the nuclear families are independent of one another,
so the missing genotypes of individuals from different families can be sampled independently.
Since the simulated nuclear families all have the same size and structure, it is possible to
list all the possibilities of missingness in the family (as shown in the if-else loop in the
following code). Then we can model the probability distribution of missing genotypes based
on parent-offspring, sibling relationship and population allele frequency. When the genotype
of any relatives is observed, parent and offspring share one of the two alleles, and siblings
either share one allele with a probability of 50% or share two alleles or no alleles with a
probability of 25%. When none of the relatives has the observed genotype, the genotype
frequencies p2

a, 2pa pA and p2
A are assumed to satisfy the Hardy-Weinberg equilibrium. That
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is,

p2
a +2pa pA + p2

A = 1,

where pa and pA are the frequencies of reference allele and alternative allele in the population.
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1 imputation <- nimbleFunction(

2 run = function(geno = double (1), FID = double (2), indicator = double (1),

3 rowx = double (), colx = double (), maf = double ()) {

4 # geno: observed genotypes

5 # FID: identies sorted by family

6 # indicator: sampling indicator

7 # rowx: row index of the individual with missing genotype

8 # colx: column index of the individual with missing genotype

9 # maf: minor allele frequency

10 returnType(double (1))

11 p <- numeric(length = 3)

12 if (colx ==3| colx ==4) {

13 if (indicator [1]==1&indicator [2]==0) { # Genotype of the first child is observed

14 p[1] <- ((2-( geno[FID[rowx ,1]] -1))/2)*(1-maf)

15 p[2] <- ((2-( geno[FID[rowx ,1]] -1))/2)*maf +(( geno[FID[rowx ,1]] -1)/2)*(1-maf)

16 p[3] <- ((geno[FID[rowx ,1]] -1)/2)*maf

17 return(p)

18 } else if (indicator [1]==0&indicator [2]==1) { # Genotype of the second child is observed

19 p[1] <- ((2-( geno[FID[rowx ,2]] -1))/2)*(1-maf)

20 p[2] <- ((2-( geno[FID[rowx ,2]] -1))/2)*maf +(( geno[FID[rowx ,2]] -1)/2)*(1-maf)

21 p[3] <- ((geno[FID[rowx ,2]] -1)/2)*maf

22 return(p)

23 } else if (indicator [1]==1&indicator [2]==1) { # Genotypes of both children are observed

24 p[1] <- 0.5*((2-( geno[FID[rowx ,1]] -1))/2)*(1-maf)+0.5*((2-( geno[FID[rowx ,2]] -1))/2)*(1-maf)

25 p[2] <- 0.5*(((2 -( geno[FID[rowx ,1]] -1))/2)*maf+(( geno[FID[rowx ,1]] -1)/2)*(1-maf))+

26 0.5*(((2 -( geno[FID[rowx ,2]] -1))/2)*maf+(( geno[FID[rowx ,2]] -1)/2)*(1-maf))

27 p[3] <- 0.5*((geno[FID[rowx ,1]] -1)/2)*maf +0.5*((geno[FID[rowx ,2]] -1)/2)*maf

28 return(p)

29 } else { # Genotypes of both children are missing

30 p[1] <- (1-maf)^2

31 p[2] <- 2*maf*(1-maf)

32 p[3] <- maf^2

33 return(p)

34 }

35 } else {

36 if (indicator [3]==1&indicator [4]==0) { # Genotype of the father is observed

37 p[1] <- ((2-( geno[FID[rowx ,3]] -1))/2)*(1-maf)

38 p[2] <- ((2-( geno[FID[rowx ,3]] -1))/2)*maf +(( geno[FID[rowx ,3]] -1)/2)*(1-maf)

39 p[3] <- ((geno[FID[rowx ,3]] -1)/2)*maf

40 return(p)

41 } else if (indicator [3]==0&indicator [4]==1) { # Genotype of the mother is observed

42 p[1] <- ((2-( geno[FID[rowx ,4]] -1))/2)*(1-maf)

43 p[2] <- ((2-( geno[FID[rowx ,4]] -1))/2)*maf +(( geno[FID[rowx ,4]] -1)/2)*(1-maf)

44 p[3] <- ((geno[FID[rowx ,4]] -1)/2)*maf

45 return(p)

46 } else if (indicator [3]==1&indicator [4]==1) { # Genotypes of both parents are observed

47 p[1] <- ((2-( geno[FID[rowx ,3]] -1))/2)*((2-( geno[FID[rowx ,4]] -1))/2)

48 p[2] <- ((2-( geno[FID[rowx ,3]] -1))/2)*((geno[FID[rowx ,4]] -1)/2)+(( geno[FID[rowx ,3]] -1)/2)*((2-( geno[FID[

rowx ,4]] -1))/2)

49 p[3] <- ((geno[FID[rowx ,3]] -1)/2)*((geno[FID[rowx ,4]] -1)/2)

50 return(p)

51 } else if ((colx ==1&indicator [2]==1&indicator [3]==0&indicator [4]==0)|

52 (colx ==2&indicator [1]==1&indicator [3]==0&indicator [4]==0)) {

53 # Genotypes of both parents are missing but genotype of the sibling is observed

54 p[1] <- 0.25

55 p[2] <- 0.5

56 p[3] <- 0.25

57 return(p)

58 } else { # Genotypes of the all relatives are missing

59 p[1] <- (1-maf)^2

60 p[2] <- 2*maf*(1-maf)

61 p[3] <- maf^2

62 return(p)

63 }

64 }

65 })
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For complex pedigree structures, computation of the missing genotype probabilities
would require the Lander-Green algorithm [81]. In brief, the Lander-Green algorithm
calculates: (1) the likelihood of observed genotype data given the pedigree; and (2) the
updated conditional likelihood with the missing genotype for an individual set to a specific
value. Then, the posterior probability of the missing genotype being that specific value
conditional on observed genotype data equals to the ratio of the two likelihoods.

For large complex pedigrees such as kākāpō that cannot be split into smaller pedigrees,
the computational time of the Lander-Green algorithm increases exponentially as the pedigree
size increases. The Elston-Stewart algorithm [48] may be a better option as its computational
time is linear in the pedigree size. However, the computational time of the Elston-Stewart
algorithm is exponential in the number of genetic markers. Therefore, full-likelihood methods
are not feasible for complicated pedigree, and a different approach is required.

5.1.3 Weighted maximum likelihood estimation

Assuming the kinship matrix is known for the whole population, we are then able to
calculate the log-determinant term. Let R be a N×N indicator matrix with Ri j = 1 if both the
i- and j-th individual are in the subsample and Ri j = 0 otherwise, and π be a N ×N matrix
with the (i, j)-th entry equals to the joint sampling probability of the i- and j-th individual, the
residual term in Eq 5.1 can be written as a pairwise sum. Then, the weighted log-likelihood
is

ℓ̂(θ) =−1
2

log |Ξ|− 1
2

N

∑
i=1, j=1

Ri j

πi j
(y−Xβ )i

(
Ξ
−1)

i j (y−Xβ ) j. (5.2)

Note that Xi and yi are available if Ri = 1 for the i-th individual, and Ξ−1 is defined and
available for all pairs of individuals in the population.

Eq 5.2 is implemented in the R package WLMM, and the parameter vector θ̂ is obtained by
numerical optimization using the BOBYQA (Bound Optimization by Quadratic Approxima-
tion) algorithm [109].

The proposed weighted log-likelihood is different to the pairwise composite likelihood in
Rao et al. [114] and Yi et al. [165] in Eq 4.3, which only requires the covariance matrix for
observed pairs of individuals jk within the i-th cluster.

The RSS estimator

For small datasets, it can be difficult to maximize the log-likelihood in Eq 5.2 over
all the model parameters, and the estimation is likely to be inaccurate. Profile likelihood
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is a standard approach to reduce the dimension of the likelihood function. Suppose the
heritability h2 is given. We can obtain the MLE of β as it does not depend on σ2. Let
Ĉ = ĥ2Φ+(1− ĥ2)I and then the log-likelihood is maximized by

σ̂2 =

N
∑

i=1, j=1

Ri j
πi j

(y−X β̂ )i

(
Ĉ−1

)
i j
(y−X β̂ ) j

N
, (5.3)

where the numerator is a summation over all pairs of individual i and individual j. Since the
numerator in Eq 5.3 is a weighted pairwise sum of squared residuals, it is referred to as a
Horvitz-Thompson-type (HT-type) RSS estimator in the remainder of this chapter.

The HT-type RSS estimator can be problematic for small datasets. The diagonal elements
of the pairwise sampling probability matrix are large because they are the first-order sam-
pling probabilities, so the diagonal elements of the sampling weight matrix 1/π are small.
Consequently, the HT-type RSS is not guaranteed to be positive because the sum of the
negative off-diagonal weighted terms could be larger than the diagonal positive terms. When
the RSS is negative, the profile log-likelihood

ℓ̂p(h2) =−1
2

(
log |C|+Nlog

(
N

∑
i=1, j=1

Ri j

πi j
(y−Xβ )i

(
C−1)

i j (y−Xβ ) j

))

=−1
2

(
log |C|+Nlog

(
(y−Xβ )T

(
R
π
⊙C−1

)
(y−Xβ )

))
(5.4)

is not defined. An alternative RSS estimator is inspired by the Sen-Yates-Grundy (SYG)
variance estimator (Sen 1953, Yates and Grundy 1953) of the population total,

V
[
ŶSYG

]
=

1
2 ∑

i, j∈s

Cov(Ri,R j)

πi j

(
yi

πi
−

y j

π j

)2

,

where s denote the sample. The log-likelihood with the SYG-type RSS estimator can be
written as

ℓ̂(β ,σ2,h2) =−1
2

log |Ξ|− 1
4(N −1)

N

∑
i=1, j=1

Ri j

πi j

[(
Ξ
− 1

2 (y−Xβ )
)

i
−
(

Ξ
− 1

2 (y−Xβ )
)

j

]2

,

(5.5)

where Ξ = σ2(h2Φ+(1−h2)I). The SYG-type RSS estimator is guaranteed to be positive
as it is a sum of squares and the log-likelihood in Eq 5.5 is always a concave function,
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whereas the profile log-likelihood in Eq 5.4 may not be a concave function as R
π
⊙C−1 is

not necessarily positive definite for small datasets (e.g. see Figure 5.1). Note that the peak
in the top subplot of Figure 5.1 actually goes to positive and negative infinity, because that
matrix is not positive definite at that heritability value (i.e., σ2 is negative, and the logarithm
of negative number is undefined).

Fig. 5.1 The profile log-likelihood function evaluated over heritability for a particular sample
generated from the kākāpō egg length data (see Section 5.2) by outcome-dependent sampling.
Note that the peak in the top subplot actually goes to positive and negative infinity, because
that matrix is not positive definite at that heritability value.

Let di jk = (Ĉ− 1
2 )ik − (Ĉ− 1

2 ) jk. The MLE of β is given by

β̂ =

[
β̂0

β̂1

]
=

[
t1 t2
t2 t3

]−1[
t4
t5

]
,
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where 

t1 = ∑
Ri j=1

1
πi j

(
∑

Rk=1
di jkXk1

)2

,

t2 = ∑
Ri j=1

1
πi j

(
∑

Rk=1
di jkXk1

)(
∑

Rk=1
di jkXk2

)
,

t3 = ∑
Ri j=1

1
πi j

(
∑

Rk=1
di jkXk2

)2

,

t4 = ∑
Ri j=1

1
πi j

(
∑

Rk=1
di jkXk1

)(
∑

Rk=1
di jkYk

)
,

t5 = ∑
Ri j=1

1
πi j

(
∑

Rk=1
di jkXk2

)(
∑

Rk=1
di jkYk

)
.

Since the estimated log-likelihood in Eq 5.5 is based on the difference between pairs of
individuals, it provides almost no information about the population mean β0. This can be
fixed by replacing β̂0 with a standard estimator for the population mean which is calculated
as the weighted mean of the residuals:

β̂0 =
∑

n
i

1
πi
(Yi −Xiβ̂1)

∑
n
i

1
πi

.

The new β̂0 is then used for estimation of the other parameters. The MLE of σ2 is given by

σ̂2 =
1

N(N −1) ∑
Ri j=1

1
πi j

[(
Ĉ− 1

2 (y−X β̂ )
)

i
−
(

Ĉ− 1
2 (y−X β̂ )

)
j

]2

.

And the heritability can be estimated by linear optimization over [0,1],

ĥ2 = argmax
h2∈[0,1]

ℓ̂p(h2),

where

ℓ̂p(h2) =−1
2

(
log |C|+Nlog

(
N

∑
i=1, j=1

Ri j

πi j

[(
C− 1

2 (Y −Xβ )
)

i −
(
C− 1

2 (Y −Xβ )
)

j

]2
))

.

Parametric bootstrap confidence interval

This section describes a parametric bootstrap method for computing confidence intervals
of model parameters under two-phase sampling designs.
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Let P be the population data with true parameters θ(P) = {β0,β1,σ
2,h2}, and θ̂ =

{β̂0, β̂1, σ̂2, ĥ2} be the sample weighted MLE of θ(P). The 90% bootstrap confidence
interval of θ(P) can be obtained by the following procedure.

Step 1. Simulate M new populations based on θ̂(P) = {β̂0, β̂1, σ̂ , ĥ2}.

Step 2. For each m ∈ {1,2, · · · ,M}, let Pm be the m-th population. Draw a sample from
Pm under the outcome-dependent design, and let θ ∗(Pm) = {β0

∗
m,β1

∗
m,σ

2∗
m,h

2∗
m}

be the sample weighted MLE of θ̂(P);

Step 3. For each m ∈ {1,2, · · · ,M}, let δ ∗
m = θ ∗(Pm)− θ̂(P), Q0.05 denote the 95th

percentile, and Q0.95 denote the 5th percentile of δ ∗, then the 90% confidence
interval is given by

(
θ̂(Pm)−Q0.05, θ̂(Pm)−Q0.95

)
.

If a large number of populations P are generated based on the true parameters θ(P), the
probability of the true parameter fall into the bootstrap confidence interval approaches 90%
as the population size and sample size increase. The performance of this parametric bootstrap
method is investigated by simulation. For a thousand nuclear family datasets (N = 1200)
simulated given the true parameters with samples drawn by the outcome-dependent design
described in section 5.2, 91.4% of the bootstrap confidence intervals contain β0, 91.6% of
the bootstrap confidence intervals contain β1, 90.4% of the bootstrap confidence intervals
contain σ2, and 92.5% of the bootstrap confidence intervals contain h2.

5.2 Weighted MLE inference under two-phase sampling

This section compares the performance of four methods: 1) linear regression; 2) linear
mixed model with sample unweighted MLE; 3) linear mixed model with sample weighted
MLE; and 4) linear mixed model with Bayesian inference using the full likelihood, under
two different two-phase sampling designs. The comparison is carried out using a real kākāpō
dataset and a simulated nuclear family dataset, generating a large number of samples from
each of the two populations and fitting models to each sample.

The kākāpō phenotypic data was collected as part of regular monitoring activities by
the Kākāpō Recovery Team, and access was provided by the New Zealand Department of
Conservation. The phenotype used here is egg length, which is one of the two continuous
characteristics that is measured for the most kākāpō (the other one is egg width, see Figure
5.2 for the number of phenotyped individuals for other continuous traits). Among the 104
kākāpō whose egg length was measured, besides the three kākāpō from the right-hand-side
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of Figure 5.3 who are siblings or half-siblings, the rest of the kākāpō all belonged to the same
family due to inbreeding.

Fig. 5.2 Number of phenotyped kākāpō for each continuous trait (by the 17th March 2021).

Since no genetic markers or regions are known as or carry potential causal genes, the
genotype data used here is the genotype of a single locus randomly selected on chromosome
S1, where all phenotyped kākāpō are genotyped at this locus and the genotypes have no
Mendelian inconsistency. Choosing a different locus would change the true parameters and
their estimation. Later in this section, I will show that the same conclusion can be obtained
from the proposed approach regardless of the chosen locus by varying the true parameters in
the simulated data.
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pō
pe

di
gr

ee
,w

he
re

ci
rc

le
s

re
pr

es
en

tf
em

al
es

,s
qu

ar
es

re
pr

es
en

tm
al

es
,a

nd
co

lo
re

d
on

es
ar

e
th

os
e

kā
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5.2.1 Outcome-dependent sampling design

Fig. 5.4 Inference of model parameters under outcome-dependent sampling for kākāpō egg
length data.

Consider the outcome-dependent sampling in Design 1, and generate a thousand samples
each contains half of the population (N = 104, n = 52) with individuals from the two 15%
tails are always selected. In Figure 5.4, the MLEs from lme4qtl are systematically biased
under the outcome-dependent design, but the weighted MLE is able to correct the sampling
bias by re-weighting the samples. In particular, the MLE for phenotypic variance is clearly
overestimated as the sample over-represents the proportion with extreme trait values. In
contrast to unweighted methods, the median of weighted MLEs are pretty close to the
parameter values estimated using the complete data after discarding some extreme estimates.

However, the variability of the sample estimation using the log-likelihood with HT-type
RSS estimator is very large due to the small sample size. Figure 5.5 shows the sample
estimations for the kākāpō dataset using the log-likelihood with SYG-type RSS estimator
described in section 5.1.3. Although the MLE of the log-likelihood in Eq 5.5 is biased and
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the bias in σ̂2 tends to increase as the data size increases (Figure 5.6 and Figure 5.7), it seems
to provide reasonable estimates for small datasets (Figure 5.5 and Figure 5.6).

Fig. 5.5 Inference of linear mixed model parameters under outcome-dependent sampling
using log-likelihood with HT-type RSS estimator and log-likelihood with SYG-type RSS
estimator for the kākāpō egg length data.

Fig. 5.6 Inference of linear mixed model parameters under outcome-dependent sampling
using log-likelihood with HT-type RSS estimator and log-likelihood with SYG-type RSS
estimator for the simulated nuclear family data (N = 120). The vertical dotted lines represent
the true parameters of the simulated data.
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Fig. 5.7 Inference of linear mixed model parameters under outcome-dependent sampling
using log-likelihood with HT-type RSS estimator and log-likelihood with SYG-type RSS
estimator for the simulated nuclear family data (N = 1200). The vertical dotted lines represent
the true parameters of the simulated data.

To extend the results of the HT-type RSS estimator to larger populations, I consider a
simulated dataset with N = 1200 individuals from 300 independent nuclear families, each
consisting of two unrelated parents and two offspring. As opposed to the kākāpō case, where
the majority of the individuals are related to each other, individuals in the simulated data
are only related to their family members, hence the covariance matrix Ξ is simply a block
diagonal matrix.

Figure 5.8 shows the parameter inference of a thousand samples generated by the same
outcome-dependent sampling. The results are mostly consistent with the small kākāpō
dataset, but less variable and both mean and median of the weighted MLEs agree with the
population estimates. As data size increases, the bias in heritability estimator becomes more
obvious than in 5.4, which implies that the proportion of genetic variance in total phenotypic
variance will also be overestimated under outcome-dependent sampling without weights
adjustment.
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Fig. 5.8 Inference of model parameters under outcome-dependent sampling for simulated
nuclear family data (N = 1200). The vertical dotted lines represent the true parameters of the
simulated data.

To see whether varying model parameters affects the conclusions on the proposed
weighted approach, I simulated eight nuclear family datasets with different parameter values
(β1 = −0.8 or β1 = 8, σ2 = 1 or σ2 = 5, h2 = 0 or h2 = 0.8) and the results are shown in
Figure 5.9. Each pair of datasets investigates the possible effect of varying one or more
model parameters (e.g. Dataset 1 and Dataset 2 demonstrate the effect of varying β1 only,
Dataset 1 and Dataset 8 demonstrate that the effect of varying β1, σ2, h2). Figure 5.9 shows
that varying model parameters has no effect on the conclusions, i.e., the sampling bias can
be corrected by re-weighting the samples, even when h2 = 0. On the other hand, when
the parameters are estimated without weights adjustments, βββ = (β0,β1) and σ2 are always
biased, the bias in h2 seems to be the worst when β1 is small and σ2 is large, and almost no
bias in h2 when β1 is large and σ2 is small.
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Fig. 5.9 The effect of varying model parameters (β1,σ2,h2). The eight simulated nuclear
family datasets (N = 1200) are generated with β1 = −0.8 or β1 = 8, σ2 = 1 or σ2 = 5,
h2 = 0 or h2 = 0.8. For each column, panels with the same colour have the same true value
and the same x-axis range. The samples are selected under outcome-dependent sampling.
The vertical dotted lines represent the true parameters of the simulated data and the red dots
represent the population estimates of the simulated data.



5.2 Weighted MLE inference under two-phase sampling 68

As mentioned in section 5.1.2, the Bayesian approach with the full likelihood is workable
in the simple scenario of independent nuclear families in the simulated dataset. The boxplot
in Figure 5.10 shows the comparison between weighted likelihood and the Bayesian inference
using the full likelihood, where the latter is carried out by the MCMC algorithm implemented
in NIMBLE [40]. When half of the population is sampled, there is a large variance in the
weighted MLE, but both the mean and median of the sample weighted MLE agree with the
population estimates. In contrast to the sample weighted MLE, the posterior mean of the
MCMC samples is less variable but biased, particularly for the genetic effect and heritability.
As 25% more individuals are sampled from the population, the variability in the sample
weighted MLE is roughly halved, and the posterior mean of the MCMC samples approaches
the population estimate.

The histogram in Figure 5.10 shows the distribution of the computation time of sample
weighted MLE and the Bayesian approach with the full likelihood. In this simple example,
the average computation time for the Bayesian approach using full likelihood is about 2.7
times as long as weighted likelihood. The Bayesian approach using full likelihood may
be even slower for varying family sizes, more complicated sampling designs or pedigree
structures, but it would be too complicated to implement.



5.2 Weighted MLE inference under two-phase sampling 69

Fig. 5.10 The weighted likelihood versus the Bayesian inference using full likelihood: (1)
the box plot shows the inference of model parameters under outcome-dependent sampling
for simulated nuclear family data (N = 1200), where the vertical dotted lines represent the
true parameters of the simulated data; (2) the histogram shows the computation time of the
two methods when half the population are sampled (increasing the sampling proportion does
not make a visible difference in the computation time), and the vertical dotted line are the
mean computation time.
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I also compared the proposed weighted likelihood to the pairwise pseudolikelihood, and
the code for the pairwise pseudolikelihood can be found on GitHub (https://gist.github.com/
tslumley/39b154317d6e0726ac4d138164d38a24). In contrast to the naive likelihood which
is not adjusted by sampling weights, both the weighted likelihood and the pseudolikelihood
are able to correct the sampling bias (see Figure 5.11). However, using the sample covariance
matrix does not lead to any improvement in the efficiency compared to using the pair covari-
ance matrix, particularly in the estimation of the fixed effect. Figure 5.12 investigates the
reason for the difference between the weighted likelihood and the pairwise pseudolikelihood.
The relatively low correlation between estimators of the same parameter using different
methods shows that the two methods are not extracting exactly the same information from
the data.

Fig. 5.11 The weighted likelihood versus the pairwise pseudolikelihood. The box plot shows
the inference of model parameters under outcome-dependent sampling for simulated nuclear
family data (N = 1200), where the vertical dotted lines represent the true parameters of the
simulated data.

https://gist.github.com/tslumley/39b154317d6e0726ac4d138164d38a24
https://gist.github.com/tslumley/39b154317d6e0726ac4d138164d38a24
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Fig. 5.12 Correlation between estimations of the same parameter using different method.

Here I use the parametric bootstrap method described in section 5.1.3 to compute the
90% bootstrap confidence interval of model parameters under outcome-dependent sampling
for the kākāpō data and the simulated nuclear family data.

To obtain expectations of Q0.05 and Q0.95, we can repeat the above procedure a thousand
times using the kākāpō data and the simulated nuclear family data. For a sample weighted
MLE θ̂ , the 90% bootstrap confidence interval of θ is shown in Table 5.1 and Table 5.2. The
weighted likelihood with HT-type RSS estimator gives very wide confidence intervals for all
parameters because it is difficult to maximize over multiple parameters for the small kākāpō
data. On the other hand, the weighted likelihood with SYG-type RSS estimator gives much
narrower confidence intervals for β and σ2, but the 90% bootstrap confidence interval for h2

remains uninformative as it almost contains the entire range of h2. For the simulated data,
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which is approximately ten times larger than the kākāpō data, the sample weighted MLE is
more precise as the 90% bootstrap confidence intervals are relatively narrow.

Parameter
90% Bootstrap confidence interval

The HT-type RSS estimator The SYG-type RSS estimator

β0

[
β̂0 −15.86, β̂0 +15.23

] [
β̂0 −0.76, β̂0 +0.75

]
β1

[
β̂1 −4.98, β̂1 +4.89

] [
β̂1 −0.91, β̂1 +0.92

]
σ2

[
σ̂2 −1.11, σ̂2 +4.31

] [
σ̂2 −1.42, σ̂2 +1.15

]
h2

[
ĥ2 −0.43, ĥ2 +0.47

] [
ĥ2 −0.50, ĥ2 +0.46

]
Table 5.1 The 90% bootstrap confidence interval of model parameters under outcome-
dependent sampling for the kākāpō data (N = 104), where θ̂ is the sample weighted MLE.

Parameter 90% Bootstrap confidence interval

β0

[
β̂0 −0.24, β̂0 +0.24

]
β1

[
β̂1 −0.29, β̂1 +0.29

]
σ2

[
σ̂2 −0.36, σ̂2 +0.33

]
h2

[
ĥ2 −0.16, ĥ2 +0.13

]
Table 5.2 The 90% bootstrap confidence interval of model parameters under outcome-
dependent sampling for the simulated nuclear family data (N = 1200), where θ̂ is the sample
weighted MLE.

Bootstrap can also be used to obtain the standard errors of the weighted estimation. The
variance of the weighted estimation is the sum of phase I variance and phase II variance.
While the standard error at phase I can be estimated by the square roots of the diagonal
elements of the negative Hessian, the standard error at phase II can be estimated by boot-
strapping. For example, we can generate K bootstrap samples from the same dataset by
repeating the outcome-dependent sampling K times, and obtain the weighted MLE θ̂k for
each bootstrap sample. Then, the bootstrap standard error for the weighted MLE θ̂ (of the
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original sample) is given by

SE(θ̂) =

√√√√ 1
K −1

K

∑
k=1

(θ̂k − θ̄)2,

where θ̄ = 1
K ∑

K
k=1 θ̂k denotes the mean of the weighted MLE across the K bootstrap samples.

5.2.2 Outcome-pedigree-dependent sampling

Design 2. Let N be the population size and n be the sample size, consider the following
utcome-pedigree-dependent sampling.

Step 1. Always sample the n1 individuals from the two a% tails who has at least two
relatives that are also in two a% tails of the phenotype distribution;

Step 2. Randomly sample n2 = n−n1 individuals from the rest N−n1 individuals, where
n is the sample size.

Since we are interested in estimating the proportion of genetic variance in total phenotypic
variance, it may be helpful to sample individuals based on the pedigree as well as the outcome.
Consider the outcome-pedigree-dependent sampling in Design 2, and generate a thousand
samples each contains half of the population (N = 1200, n = 600) with individuals whose
phenotype and at least two relatives’ phenotypes are from the two 25% tails are always
selected.

From Figure 5.13, the same conclusion can be made under outcome-pedigree-dependent
sampling as in outcome-dependent sampling; that is, the sampling bias can be corrected
by re-weighting the samples. However, the weighted MLE seems to be more variable than
under sampling designs based on outcome only, despite including more related individuals,
whereas MLE tends to do better under outcome-pedigree-dependent sampling. For both
two-phase designs, the weighted MLE is consistent as shown in Figure 5.14, and formal
proof is provided in Section 5.4.
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Fig. 5.13 Inference of model parameters under outcome-dependent sampling and outcome-
pedigree-dependent sampling for simulated nuclear family data (N = 1200). The vertical
dotted lines represent the true parameters of the simulated data. The top row is the same as
Figure 5.8, and it is included here for comparsion.
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Fig. 5.14 Inference of linear mixed model parameters under two-phase sampling for simulated
nuclear family data with increase data size. The vertical dotted lines represent the true
parameters of the simulated data.

5.3 Single-locus mixed models versus multi-locus mixed
models

For complex traits controlled by several loci with moderate to large effect and numerous
loci with small effect, single-locus mixed models may lead to a loss in the power of detecting
association. In contrast to single-locus mixed models, multi-locus mixed models account
for the possible confounding effects of the background loci across the genome by including
multiple loci with large effect in the model. For multiple closely linked loci, multi-locus
models can be used to estimate the effect of one locus while conditioning on the others [37].

Although multi-locus mixed models enable a power gain, fitting such a model is chal-
lenging, particularly in GWAS, because there are hundreds of thousands of genetic variants
but the sample size is typically less than tens of thousands. Furthermore, the presence of
linkage disequilibrium posed by population structure makes it more complicated to identify
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the causal variants. The multi-locus mixed model can be extended for Bayesian analysis,
which better accommodates the genetic architecture of complex traits via a flexible prior on
SNP effect sizes [89, 130, 139, 172]. However, it remains a problem to fit Bayesian mixed
models under two-phase designs.

For the kākāpō egg length data, the proposed weighted method takes approximately 5.56
hours (using an laptop with Intel(R) Core(TM) i7-8550U CPU and 16GB RAM) to fit a
single-locus linear mixed model under a two phase design to 100K loci. If the trait is assumed
to be affected by many variants with small effect, then the model can be fitted with fixed
heritability as its estimation is unlikely to vary much for a different locus [25, 74, 141, 167].
Consequently, the computation time is reduced to approximately 1.94 hours. Due to the
difficulties with multi-locus mixed models, and the fact that single-locus mixed models
have successfully identified thousands of variants in GWAS of humans, animals and plants
[7, 55, 75, 95, 136, 163], it is still worth fitting a single-locus mixed model in the kākāpō
study. Then, a multi-locus model can be used to fit the top hits in the follow-up study.

Becasue of the small size of the kākāpō data, it is difficult to fit a linear mixed model
with many loci. Another consequence is that, there may be no variation or little variation
between the sets of genotypes of a kākāpō sample at some loci. While rank deficiency
is not necessarily a problem in model fitting, it is inconvenient for comparison between
sample estimation and population estimation of the model parameters. Therefore, I will
fit a two-locus model to the kākāpō data and a ten-locus model to the simulated nuclear
family data (N=1200) to show that it is also possible to fit a multi-locus mixed model and
obtain sample weighted estimation of the model parameters. Figure 5.15 and Figure 5.16
demonstrate that the proposed weighted approach can be applied for multi-locus linear mixed
model as long as there is enough data.
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Fig. 5.15 Inference of multi-locus model parameters under outcome-dependent sampling for
the kākāpō egg length data.
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Fig. 5.16 Inference of multi-locus model parameters under outcome-dependent sampling for
the simulated nuclear family data (N = 1200). The vertical dotted lines represent the true
parameters of the simulated data.
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5.4 Consistency of the sample weighted likelihood estima-
tor

Theorem 5.4.1. (Law of Large Numbers) Let ℓN(θ) be the population log-likelihood estima-
tor

ℓN(θ) =−1
2

(
log |Ξ|+

N

∑
i=1, j=1

Vi j(θ)

)
, (5.6)

and ℓ̂n(θ) be the sample weighted log-likelihood estimator

ℓ̂n(θ) =−1
2

(
log |Ξ|+

N

∑
i=1, j=1

Ri j

πi j
Vi j(θ)

)
, (5.7)

where

Vi j(θ) = (Xβ − y)i
(
Ξ
−1)

i j (Xβ − y) j. (5.8)

Given a sequence of finite populations {FN} and an associated sequence of sample designs,
ℓ̂n(θ) is design consistent for ℓN(θ) if for every ε > 0,

lim
N→∞,

n
N →c

P
{

1
N

∣∣ℓ̂n(θ)− ℓN(θ)
∣∣> ε|FN

}
= 0, (5.9)

where c is a constant and c ∈ (0,1].

Proof. Let Vπ and Covπ denote the variance and covariance with respect to the sampling
design. Recall that πi j and πkl are the probabilities of both individual i and j, both individual
k and l are sampled respectively. Similarly, πi jkl is the probabilities of individuals i, j, k, l
are sampled.
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Vπ

[
ℓ̂n(θ)− ℓN(θ)

]
= Vπ

[
− 1

2N2

(
log |Ξ|+

N

∑
i=1, j=1

Ri j

πi j
Vi j(θ)

)
+

1
2N2

(
log |Ξ|+

N

∑
i=1, j=1

Vi j(θ)

)]

=
1

4N4Vπ

[
N

∑
i=1, j=1

Ri j

πi j
Vi j(θ)

]

=
1

4N4

N

∑
i=1, j=1

N

∑
k=1,l=1

Covπ

(
Ri j

πi j
Vi j(θ),

Rkl

πkl
Vkl(θ)

)

=
1

4N4

N

∑
i=1, j=1

N

∑
k=1,l=1

1
πi j

Vi j(θ)
1

πkl
Vkl(θ)Covπ(Ri j,Rkl)

=
1

4N4

N

∑
i=1, j=1

N

∑
k=1,l=1

1
πi j

Vi j(θ)
1

πkl
Vkl(θ)(πi jkl −πi jπkl)

=
1

4N4

N

∑
i=1, j=1

N

∑
k=1,l=1

πi jkl

πi jπkl
Vi j(θ)Vkl(θ)−Vi j(θ)Vkl(θ)

=
1

4N4

N

∑
i=1, j=1

N

∑
k=1,l=1

(
πi jkl

πi jπkl
−1
)

Vi j(θ)Vkl(θ). (5.10)

For any sampling design that satisfies

N

∑
i=1, j=1

N

∑
k=1,l=1

(
πi jkl

πi jπkl
−1
)

Vi j(θ)Vkl(θ)→ 0

as N → ∞ and n
N → c with c ∈ (0,1], ℓ̂n(θ) is design consistent for ℓN(θ).

For example, in the outcome-dependent sampling described in section 5.1.2, πi j = πiπ j,
where πi and π j equal to 1 if individual i and j are from the two extreme tails or n2

N−n1

otherwise. Similarly, πi jkl = πiπ jπkπl . Hence, Theorem 5.4.1, which is also the regularity
condition A.3 of Theorem 5.4.2, is true, and the following Theorem 5.4.2 holds.

Theorem 5.4.2. (Uniform Law of Large Numbers) Under the following regularity conditions,

A.1 The parameter Θ ⊂ Rk is compact;

A.2 ℓ̂n(θ) is differentiable at each θ ∈ Θ with bounded derivative;

A.3 1
N

(
ℓ̂n(θ)− ℓN(θ)

) P−→ 0 as N → ∞ and n
N → c with c ∈ (0,1] with respect to

design probability π (Theorem 5.4.1).

Then, supθ∈Θ
1
N

∣∣ℓ̂n(θ)−Eθ0 [ℓN(θ)]
∣∣ P−→ 0 as N → ∞ and n

N → c with c ∈ (0,1].
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Proof. See the proof of Corollary 2.2 in [102].

Definition 5.4.1. The pairwise sampling probability πi j is defined as

πi j = Eπ [Ri j|Y,Φ],

where Eπ is the expectation with respect to the sampling design, Ri j is the pairwise sampling
indicator function, response Y follows a multivariate normal distribution N (Xβ ,σ2(h2Φ+

(1− h2)I)) and Φ is the kinship matrix. Both Y and Φ are phase I information which is
available for all individuals in phase I sample.

Lemma 5.4.3. The true parameter θ0 of θ is a solution of

EY π [Un(θ)] = 0,

where EY π is the expectation with respect to the model and the sampling design, Un is the
sample weighted likelihood score.

Proof.

EY π [Un(θ0)] = EY π

[
∂

∂θ
ℓ̂n(θ)

∣∣∣∣
θ0

]

=−1
2
EY π

[
∂

∂θ
log |Ξ(θ)|

∣∣∣∣
θ0

+
∂

∂θ

N

∑
i=1, j=1

Ri j

πi j
Vi j(θ)

∣∣∣∣
θ0

]

=−1
2
EY

[
∂

∂θ
log |Ξ(θ)|

∣∣∣∣
θ0

+
∂

∂θ

N

∑
i=1, j=1

Eπ|Y [Ri j]

πi j
Vi j(θ)

∣∣∣∣
θ0

]

=−1
2
EY

[
∂

∂θ
log |Ξ(θ)|

∣∣∣∣
θ0

+
∂

∂θ

N

∑
i=1, j=1

Vi j(θ)

∣∣∣∣
θ0

]

= EY

[
∂

∂θ
ℓN(θ)

∣∣∣∣
θ0

]
= 0

Note that Eπ|Y is the expectation with respect to the sampling design given the model.

Theorem 5.4.4. (Consistency) Under the following regularity conditions,

A.1 Identifiability of the model, i.e. θ ̸= θ0 ⇔ f (Y |θ) ̸= f (Y |θ0);

A.2 The parameter Θ ⊂ Rk is compact;
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A.3 ℓ̂n(θ) is differentiable with respect to θ ∈ Θ.

The sample weighted MLE θ̂n such that EY π [Un(θ̂n)] = 0 is consistent, i.e. θ̂n
P−→ θ0.

Proof. We have

1
N2 ℓ̂n(θ) =− 1

2N2

(
log |Ξ(θ)|+

N

∑
i=1, j=1

Ri j

πi j
Vi j(θ)

)
,

where Ri j is the sampling indicator function. By the Uniform Law of Large Numbers in
Theorem 5.4.2 for correlated random variables, for each θ , we have

sup
θ∈Θ

1
N

∣∣ℓ̂n(θ)−Eθ0 [ℓN(θ)]
∣∣ P−→ 0,

where Eθ0 denotes the expectation with respect to a distribution parameterized by θ0. There-
fore,

θ̂n = argmax
θ∈Θ

ℓ̂n(θ)
P−→ argmax

θ∈Θ

Eθ0 [ℓN(θ)] .

Since log(x) is concave, and by Jensen’s inequality, we have

Eθ0[ℓN(θ)]−Eθ0 [ℓN(θ0)] = Eθ0

[
log

f (Y |θ)
f (Y |θ0)

]
≤ logEθ0

[
f (Y |θ)
f (Y |θ0)

]
= log

∫ f (y|θ)
f (y|θ0)

f (y|θ0)dy

= log
∫

f (y|θ)dy

= 0.

Therefore, Eθ0 [ℓN(θ)] is maximized at θ = θ0, and θ̂n
P−→ θ0.

The sample weighted likelihood estimator ℓ̂n(θ) is consistent under the Design 1 and
Design 2 if the true parameter θ0 of θ is a solution of EY π [Un(θ)] = 0 (as shown in Figure
5.17) and the numerator in Eq 5.10 goes to 0, i.e.,

N

∑
i=1, j=1

N

∑
k=1,l=1

(
πi jkl

πi jπkl
−1
)

Vi j(θ)Vkl(θ)→ 0. (5.11)
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Fig. 5.17 The distribution of evaluated score function of a thousand samples generated from
the simulated nuclear family datasets under the outcome-dependent and outcome-pedigree-
dependent sampling design in section 5.2.

Let S1 be the set of individuals sampled in Step 1 and S2 be the set of individuals sampled
in Step 2 in Design 1 or Design 2. Recall that n1 is the number of individuals who are
always sampled, and n2 is the number of randomly sampled individuals from the rest of the
unselected individuals. Then, we have

πi j =


1 if i, j ∈ S1

n2

N −n1
if i ∈ S1, j ∈ S2 or i ∈ S2, j ∈ S1 or i = j ∈ S2

n2

N −n1

n2 −1
N −n1 −1

if i, j ∈ S2 and i ̸= j

The calculation of the left-hand-side of Eq 5.11 can be devided into six parts.

C.1 All subjects belong to S1, i.e., {i, j,k, l} ∈ S1:

N

∑
i=1, j=1

N

∑
k=1,l=1

(
πi jkl

πi jπkl
−1
)

Vi j(θ)Vkl(θ)=
N

∑
i=1, j=1

N

∑
k=1,l=1

(1−1)Vi j(θ)Vkl(θ)= 0
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C.2 One subject belongs to S2 with the others belong to S1, i.e., i ∈ S2,{ j,k, l} ∈ S1:

N

∑
i=1, j=1

N

∑
k=1,l=1

(
πi jkl

πi jπkl
−1
)

Vi j(θ)Vkl(θ)=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
πi

πi
−1
)

Vi j(θ)Vkl(θ)= 0,

similarly for j ∈ S2,{i,k, l} ∈ S1, k ∈ S2,{i, j, l} ∈ S1, l ∈ S2,{i, j,k} ∈ S1.

C.3 One pair belongs to S1 and one pair belongs to S2, i.e., {i, j} ∈ S1,{k, l} ∈ S2:

N

∑
i=1, j=1

N

∑
k=1,l=1

(
πi jkl

πi jπkl
−1
)

Vi j(θ)Vkl(θ)=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
πkl

πkl
−1
)

Vi j(θ)Vkl(θ)= 0,

similarly for {k, l} ∈ S1,{i, j} ∈ S2.

C.4 Subjects in a pair belong to different groups, i.e., {i,k} ∈ S1,{ j, l} ∈ S2:

N

∑
i=1, j=1

N

∑
k=1,l=1

(
πi jkl

πi jπkl
−1
)

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
π jl

π jπl
−1
)

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
n2

N −n1

n2 −1
N −n1 −1

(
N −n1

n2

)2

−1

)
Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
n2 −1

N −n1 −1
N −n1

n2
−1
)

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
n2 −1

n2

N −n1

N −n1 −1
−1
)

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

((
1+O

(
1
n2

))(
1+O

(
1

N −n1

))
−1
)

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
1+O

(
1
n2

)
+O

(
1

N −n1

)
+O

(
1

n2(N −n1)

)
−1
)

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
O
(

1
n2

)
+O

(
1

N −n1

))
Vi j(θ)Vkl(θ)

→0 as n1 → ∞,n2 → ∞,N → ∞.

Similarly for { j, l} ∈ S1,{i,k} ∈ S2, { j,k} ∈ S1,{i, l} ∈ S2, {i, l} ∈ S1,{ j,k} ∈
S2.
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C.5 One subject belongs to S1 with the others belong to S2, i.e., i ∈ S1,{ j,k, l} ∈ S2:

N

∑
i=1, j=1

N

∑
k=1,l=1

(
πi jkl

πi jπkl
−1
)

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
π jkl

π jπkl
−1
)

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
n2

N −n1

n2 −1
N −n1 −1

n2 −2
N −n1 −2

(
N −n1

n2

N −n1

n2

N −n1 −1
n2 −1

)
−1
)

×Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
n2 −2

N −n1 −2
N −n1

n2
−1
)

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
n2 −2

n2

N −n1

N −n1 −2
−1
)

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
O
(

1
n2

)
+O

(
1

N −n1

))
Vi j(θ)Vkl(θ)

→0 as n1 → ∞,n2 → ∞,N → ∞.

Similarly for j ∈ S1,{i,k, l} ∈ S2, k ∈ S1,{i, j, l} ∈ S2, l ∈ S1,{i, j,k} ∈ S2.
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C.6 All subjects belong to S2, i.e., {i, j,k, l} ∈ S2:

N

∑
i=1, j=1

N

∑
k=1,l=1

(
πi jkl

πi jπkl
−1
)

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
πi jkl

πi jπkl
−1
)

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
n2

N −n1

n2 −1
N −n1 −1

n2 −2
N −n1 −2

n2 −3
N −n1 −3

×
(

N −n1

n2

N −n1 −1
n2 −1

)2

−1

)
Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
n2 −2

N −n1 −2
n2 −3

N −n1 −3
N −n1

n2

N −n1 −1
n2 −1

−1
)

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
n2 −2

n2

n2 −3
n2 −1

N −n1

N −n1 −2
N −n1 −1
N −n1 −3

−1
)

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

[(
1+O

(
1
n2

))(
1+O

(
1
n2

))(
1+O

(
1

N −n1

))
×
(

1+O
(

1
N −n1

))
−1
]

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

[(
1+O

(
1
n2

))(
1+O

(
1

N −n1

))
−1
]

Vi j(θ)Vkl(θ)

=
N

∑
i=1, j=1

N

∑
k=1,l=1

(
O
(

1
N −n1

)
+O

(
1
n2

))
Vi j(θ)Vkl(θ)

→0 as n1 → ∞,n2 → ∞,N → ∞.

Therefore,
N

∑
i=1, j=1

N

∑
k=1,l=1

(
πi jkl

πi jπkl
−1
)

Vi j(θ)Vkl(θ)→ 0,

and the sample weighted likelihood estimator ℓ̂n(θ) is consistent under the two sampling
designs in section 5.2 by Theorem 5.4.4.

5.5 Summary

So far, there are limited number of methods developed for fitting linear mixed model with
correlated individuals under complex design (e.g., [112, 114, 165]). In particular, the existing
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methods assume the sampling clusters are the same as the clusters in the random effect. This
is possible when the correlation structure is a block diagonal matrix (e.g. the right plot of
Figure 5.18), but infeasible for complex correlation structure (e.g. the left plot of Figure
5.18). Huang [68] showed in his PhD thesis that the pairwise pseudolikelihood proposed by
Rao et al. [114] and Yi et al. [165] is also valid when the sampling clusters are not the same
as the model cluster. However, there has been no published papers or available packages for
fitting linear mixed model with complex correlation structure under two-phasing sampling.
In this chapter, a weighted maximum likelihood approach that takes advantage of knowing
the population kinship structure was developed to fill in such gap in the literature.

Fig. 5.18 Comparing the correlation structure between kākāpō and the simulated nuclear
family data. As all the nuclear families have the same correlation structure, only 10% of the
families are plotted for a better view.

The case studies of kākāpō and simulated nuclear family data demonstrated that the
sampling bias can be corrected by re-weighting the samples regardless of correlation structure.
As population size and sample size increase, the weighted sample estimation of the log-
likelihood with HT-type RSS estimator converge to the population estimation, but the sample
estimation is quite variable for small datasets. On the other hand, the the log-likelihood with
SYG-type RSS estimator is not consistent but gives better inference on small datasets.

While the full likelihood approach properly accounts for covariance structure and the
missing mechanism, it cannot straightforwardly be applied to general designs and correlation
structures. In comparison to the pairwise likelihood that only account for the pairwise
correlations, it was expected that there would be a gain in the efficiency by utilizing the
sample covariance matrix in the proposed weighted likelihood. However, no improvement
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was shown in the simulation study, and the two methods do not seem to be extracting the same
information from the data. A possible future direction is to develop a likelihood estimator that
combines the information used by the weighted likelihood and the pairwise pseudolikelihood
and is more efficient than either.



Chapter 6

Generalized linear mixed models under
two-phase sampling

The aim of the chapter is to extend the proposed weighted MLE approach for linear mixed
models in Chapter 5 to fit generalized linear mixed models for binary traits (e.g. disease
status). The conventional way to analyze a binary trait is to assume that it has a continuous
normally-distributed liability that measures the susceptibility to the trait, and the binary
phenotype is determined depending on whether the liability exceeds the threshold. This is
called a liability threshold model and was first introduced into human genetics by Falconer
[50]. In non-genetic contexts, the liability threshold model is often referred to as the probit-
normal model as a class of the generalized linear mixed models. The probit link function has
several advantages over the logit link function [98]. In particular, a probit-normal model with
a single observational-level random effects term can be reduced to the usual probit model
with a different residual term. More importantly, it allows us to incorporate the sampling
information into parameter estimation.

For generalized linear mixed models, there is no closed-form solution available for the
likelihood function. Hence some approximation methods must be used to obtain parameter
estimation. Common classes of approaches include quasi-likelihood, numerical integral
(Laplace approximation and Gaussian quadrature) and Monte Carlo methods (Newton-
Raphson and the EM algorithm). Among these common approaches, it is relatively straight-
forward to re-weight the observations under informative sampling in the EM algorithm, and
it takes a very similar form to the linear mixed models for generalized linear mixed models
with a probit link function. McCulloch proposed a Monte Carlo EM algorithm with a Gibbs
sampler to maximize the likelihood of a probit-normal model with independent random
effects [98], and I will extend McCulloch’s model to allow correlated random effects in this
chapter, which is similar to the model proposed by Chan and Kuk [31].
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This chapter starts with an introduction to the liability threshold model in section 6.1
and the Monte Carlo EM algorithm with Gibbs sampler in section 6.2. Then section 6.3
illustrates the proposed weighted maximum likelihood method for probit-linear mixed models
with correlated random effects, and uses simulated data to show that the bias induced by
informative sampling can be corrected.

6.1 Liability threshold model

Similar to quantitative traits, the trait liability y∗ can be described by an additive model
that is a sum of the fixed effect of a genetic covariate X , and an error term u, which comprises
observation-level genetic random effects and random errors,

y∗ = Xβ +u, y∗ ∼N (Xβ ,Ξ),

yi = 1y∗i >t , i = 1,2, · · · ,N,

where u ∼ N (0,Ξ) and t is the liability threshold, which can be calculated by taking the
inverse of the cumulative distribution function of the trait prevalence. Let Φ denote the
kinship matrix that specifies the correlation between levels of the genetic random effect u,
and I be an identity matrix. The variance-covariance matrix of the liability y∗ can be written
as

Ξ = σ
2
g Φ+σ

2
e I.

For identifiability, we define the total phenotypic variance on the liability scale to be 1.
Hence the heritability of liability is defined by

h2 =
σ2

g

σ2
g +σ2

e
= σ

2
g ,

and the variance-covariance matrix Ξ becomes

Ξ = h2
Φ+(1−h2)I.

The heritability of liability can be converted to the heritability of the observed binary trait
with an assumption of the trait prevalence in the population. However, this chapter focus on
estimating heritability on the liability scale and more mathematical details of the conversion
between the heritability of liability and the heritability of the binary trait is described in [83].
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6.2 The Monte Carlo EM algorithm for MLE

Since the continuous liability is unobserved, to apply the EM algorithm to estimate the
model parameters, we need to take the expectation of the log-likelihood conditional on the
observed binary data, which can be computed as follows

ℓN(β ,h2;y) =E[ℓ(β ,h2;y∗)|y]

=− 1
2
(
log |Ξ|+E[(y∗− xβ )T

Ξ
−1(y∗− xβ )|y]

)
=− 1

2
(
log |Ξ|+ tr

(
E[Ξ−1(y∗− xβ )(y∗− xβ )T |y]

))
=− 1

2
(
log |Ξ|+ tr

(
Ξ
−1 (V(y∗|y)+(E[y∗|y]−Xβ )(E[y∗|y]−Xβ )T)))

=− 1
2
(
log |Ξ|+ tr

(
Ξ
−1V(y∗|y)

)
+(E[y∗|y]−Xβ )T

Ξ
−1(E[y∗|y]−Xβ )

)
.

(6.1)

Note that this equation is identical to McCulloch’s approach [98] but allows correlated
random effects. In equation 6.1, the conditional mean E[y∗|y] and variance V(y∗|y) have no
closed-form expression available, so they require extra computations either by numerical
integration or Gibbs sampling. The R package tmvtnorm [160] computes the mean vector and
covariance matrix for the truncated multivariate normal distribution by numerical integration.
Numerical integration is fast at low dimensions (e.g. the size of human families), but the
computational time climbs exponentially as the dimension increases. Since the main pedigree
in the kākāpō population includes 152 individuals, we use Gibbs sampling to compute the
conditional mean and variance as numerical integration becomes computationally infeasible.

Let N be the total number of individuals and y∗(0) = (y∗1
(0), . . . ,y∗N

(0)) be the initial values
that are consistent with the observed phenotype y, we can generate y∗(k) = (y∗1

(k), . . . ,y∗N
(k))

using the following procedure

y∗1
(k) from f (y∗1|y∗2

(k−1),y∗3
(k−1), . . . ,y∗N

(k−1),y; β̂ , ĥ2)
...

y∗i
(k) from f (y∗i |y∗1

(k),y∗2
(k), . . . ,y∗i−1

(k),y∗i+1
(k−1), . . . ,y∗N

(k−1),y; β̂ , ĥ2)
...

y∗N
(k) from f (y∗N |y∗1

(k),y∗2
(k), . . . ,y∗N−1

(k),y; β̂ , ĥ2)

where β̂ and ĥ2 are the estimates at a particular EM iteration. Since the liability y∗ is
distributed N (Xβ ,Ξ), y∗i |y∗J where J = {1, . . . , i− 1, i+ 1, . . . ,N} also follows a normal
distribution. It was shown in [27] that the conditional mean and standard deviation of y∗i |y∗J
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can be computed as

µi|J = y∗i −
[
(Ξ)−1(y∗−Xβ )

]
i

(Ξ−1)ii
, (6.2)

σi|J =
1

(Ξ−1)ii
. (6.3)

For the kākāpō data with small population size, the complicated random effects structures
does not greatly increase the computational time of the Gibbs sampling since the inverse of
variance-covariance matrix Ξ is only calculated once at every EM iteration. But computation
bottleneck becomes the matrix inversion as population size grows. We can then simulate y∗

from a truncated normal distribution to ensure it is consistent with the observed y:y∗i ∼N (µi|J ,σ
2
i|J ),−∞ ≤ y∗i ≤ t if yi = 0,

y∗i ∼N (µi|J ,σ
2
i|J ), t ≤ y∗i ≤ ∞ if yi = 1.

(6.4)

After discarding the burn-in period, we can approximate the conditional mean E[y∗|y] and
variance V(y∗|y) from the realizations of y∗ generated by the Gibbs sampler from f (y∗|y).
That is,

Ê[y∗|y] = 1
K

B+K

∑
k=B+1

y∗(k), (6.5)

V̂(y∗|y) = 1
K

B+K

∑
k=B+1

(y∗(k)− Ê[y∗|y])(y∗(k)− Ê[y∗|y])T , (6.6)

where B denotes the burn-in period, and K is the total number of iterations in the Gibbs
sampling. We are now able to maximize the log-likelihood of the generalized linear mixed
model with the probit link function using the Monte Carlo EM algorithm.

The MCEM algorithm

Let β (0) and h2(0) be the initial values. Set t = 0.

Step 1: (E-step) Given β (t) and h2(t), calculate Ê[y∗|y](t) and V̂(y∗|y)(t) using Gibbs
sampler:

Step 1.1: For k = 1, . . . ,K and i = 1, . . . ,N, generate y∗i
(k) from a truncated

normal distribution

f (y∗i |y∗1
(k),y∗2

(k), . . . ,y∗i−1
(k),y∗i+1

(k−1), . . . ,y∗N
(k−1),y;β

(t),h2(t))
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with µi|J in Eq.6.2 and σi|J in Eq.6.3, where J = {1, . . . , i−1, i+
1, . . . ,N}.

Step 1.2: Discard the burn-in period, and obtain the estimates of conditional
mean Ê[y∗|y](t) using Eq.6.5 and the conditional variance V̂(y∗|y)(t)

using Eq.6.6.

Step 2: (M-step) Set

h2(t+1)
= argmax

h2∈[0,1]
ℓN(β

(t),h2(t);y),

which is given in Eq.6.1, and

β
(t+1) =

(
XT

Ξ
(t+1)−1

X
)−1

XT
Ξ
(t+1)−1

Ê[y∗|y](t).

Step 3: Once convergence is reached, set β̂ = β (t+1), ĥ2 = h2(t+1), otherwise increase t
by 1 and return to Step 1.

6.2.1 Examples

This section demonstrates the application of the Monte Carlo EM algorithm described in
section 6.2 to the Weil data that was analyzed by McCulloch [98], and a simulated dataset
from Kim et al. [76]. The model for the Weil data only includes independent random effects,
and the model for the simulated dataset allows correlated random effects.

Model with independent random effects

In the Weil data [153], 16 pregnant rats received a control diet and 16 received a chemi-
cally treated diet, and the survival of the rats are recorded after 4 and 21 days. McCulloch
[98] assumes the following latent survival model

y∗i jk = Xi jkβi +ui j + εi jk, (6.7)

yi jk = 1y∗i jk≥0,

where i indexes treatment/control, j indexes litter, and k indexes rat within a litter, Xi jk

indicate if the rats receives treatment or control diet, βi are the treatment/control effects and
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ui j are the random litter effects. Putting Eq.6.7 in vector form, we have

y∗ = Xβ +Zu+ ε,ε ∼N (0,Ξ)

where Z is the design matrix, u ∼N (0,σ2I) and Ξ = σ2ZZT + I. Since the random litter
effects are independent, there exists a closed form solution for the variance estimator,

σ̂
2 =

E[uT u|y]
nl

,

where nl is the number of litters and

E[uT u|y] =σ
4tr
(
Ξ
−1ZZT

Ξ
−1V(y∗|y)

)
+σ

4(E[y∗|y]−Xβ )T
Ξ
−1ZZT

Ξ
−1(E[y∗|y]−Xβ )

+ tr(σ2I −σ
4ZT

Ξ
−1Z).

The comparison of the method described in section 6.2 that uses linear optimization to
McCulloch’s approach that uses closed-form expression is shown in Figure 6.1. The plot
shows that the two approaches are almost identical and converge to the same parameter
values provided in [98]. As mentioned in McCulloch’s paper, it is expected that the EM
algorithm with a closed-form solution would take more iterations for the control group when
the estimate is close to the boundary of the parameter space.
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Fig. 6.1 The Weil data: The MCEM algorithm for MLE, where the dashed lines are the
estimations in [98].

Model with correlated random effects

Kim et al. developed a method for heritability estimation based on Liability Threshold
Model for binary traits (LTMH) [76]. The parameterization in LTMH is the same as in
section 6.2, but the algorithms are slightly different, and this will be discussed later. We
use a simulated dataset to show that the Monte Carlo EM algorithm described in section 6.2
converges to the true parameter values as LTMH (see Figure 6.2). It was found in simulation
studies that the number of Gibbs samples is unimportant in early EM iterations, but increasing
the number of Gibbs samples as estimation gets closer to the true parameter value helps
to capture the correlation between samples better. As opposed to a model with correlated
random effects, McCulloch found that a larger number of Gibbs samples does not result in
any improvement for models with independent random effect [98].
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Fig. 6.2 The LTMH example dataset contains 500 families that were randomly generated
with heritability of 0.2 and prevalence of 0.1. The number of Gibbs samples is increased as
the estimate converges to the true value.

LTMH considers independent families with small family sizes, such as the human
population. Hence the conditional mean and variance can be computed separately for each
family using numerical integration in a reasonable amount of time. In contrast, the Gibbs
sampler takes longer to reach the same results as numerical integration for such datasets with
a large number of small families, but the computational time does not increase exponentially
as the family size increases. Furthermore, LTMH uses a Newton-Raphson algorithm to
maximize the log-likelihood at each maximization step, and it is not straightforward to
incorporate the sampling weights in the algorithm.

6.3 The weighted MLE

Section 6.2 described an approach for fitting linear mixed models with correlated random
effects. In this section, I will extend this approach to fit such models under two-phase
sampling.

Let R be the sampling indicator with Ri = 1 if the i-th individual is sampled in phase II,
Ri = 0 otherwise, and π be the matrix pairwise sampling probabilities. Let ⊙ denote the
symbol for element-wise matrix multiplication. Then we can re-weight the log-likelihood in
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Eq.6.1 using sampling weights,

ℓ̂n(β ,h2;y) =− 1
2

[
log |Ξ|+ tr

(
R
π
⊙Ξ

−1V(y∗|y)
)

+(E[y∗|y]−Xβ )T
(

R
π
⊙Ξ

−1
)
(E[y∗|y]−Xβ )

]
. (6.8)

When data is available for all individuals, R = 1 and π = 1, hence Eq.6.8 is equivalent to
Eq.6.1. Let O denote the phase II samples whose genotype and phenotype are observed, and
M denotes the individuals with missing data. We can reorder terms in Eq.6.8 by

y =

(
yO

yM

)
, X =

(
XO

XM

)
, E[y∗|y] =

(
E[y∗|y]O
E[y∗|y]M

)
,

R =

(
ROO ROM

RMO RMM

)
, π =

(
πOO πOM

πMO πMM

)
, Ξ

−1 =

(
(Ξ−1)OO (Ξ−1)OM

(Ξ−1)MO (Ξ−1)MM

)
,

V(y∗|y) =

(
V(y∗|y)OO V(y∗|y)OM

V(y∗|y)MO V(y∗|y)MM

)
(6.9)

Since ROO is a matrix of ones and ROM, RMO, RMM are matrices of zeros, the log-likelihood
in Eq.6.8 can be written as

ℓ̂n(β ,h2;y) =− 1
2

[
log |Ξ|+ tr

(
1

πOO
⊙
(
Ξ
−1)

OOV(y∗|y)OO

)
+(E[y∗|y]O −XOβ )T

(
1

πOO
⊙
(
Ξ
−1)

OO

)
(E[y∗|y]O −XOβ )

]
(6.10)

However, it is generally impossible to calculate E[y∗|y]O and V(y∗|y)OO in two-phase design
as they require X and y for the whole population in Eq.6.2 and Eq.6.4. Under outcome-
dependent sampling, we may know y for the whole population, but X is only obtained for the
sample. An alternative solution is to approximate E[y∗|y]O and V(y∗|y)OO using E[y∗O|yO]

and V(y∗O|yO), and express the log-likelihood as

ℓ̂n(β ,h2;y) =− 1
2

[
log |Ξ|+ tr

(
1

πOO
⊙ (Ξ−1)OOV(y∗O|yO)

)
+(E[y∗O|yO]−XOβ )T

(
1

πOO
⊙ (Ξ−1)OO

)
(E[y∗O|yO]−XOβ )

]
. (6.11)
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Then ĥ2 can be obtained by maximizing the weighted log-likelihood in Eq.6.11 with the
constraint 0 < h2 < 1, and the weighted MLE for β is given by

β̂ =

[
XT

O

(
1

πOO
⊙ (Ξ−1)OO

)
XO

]−1

XT
O

(
1

πOO
⊙ (Ξ−1)OO

)
Ê[y∗O|yO].

6.3.1 Simulation study

Since it is much harder to make inference on the generalized linear mixed model pa-
rameters than on the linear mixed model parameters, especially for small datasets, I use
simulated kākāpō datasets with known true parameters to evaluate the performance of pro-
posed weighted MLE method. The data are simulated based on the kākāpō pedigree which
reveals a high level of inbreeding in the population, thus it should still be an excellent
example to demonstrate the performance of the proposed approach for other species with
complex population structures. I also simulated datasets with population structure similar
to the human population in order to extend the results to larger populations with a simple
population structure.

Simulated kākāpō phenotype with complex pedigree structure

For some values of β and σ2, the vectors of continuous liability y∗ and disease status y
for 158 kākāpō in the first simulated dataset are generated by

y∗ = β0 +Xβ1 +u,y∗ ∼N (β0 +Xβ1,σ
2
Φ+ I),

y = 1y∗≥0.

where 1 denotes affected by disease and 0 denotes unaffected (see Figure 6.3). The second
dataset is generated with the same parameters but based on a larger pedigree (as shown in
Figure 6.4) that is simulated by connecting two subsets of the kākāpō pedigree and contains
292 individuals. This allows us to assess the performance of the method using a pedigree
that is larger but retains the complexity of the actual kākāpō pedigree.

Consider an individual-based outcome-dependent design that oversamples the cases and
undersamples the controls for both datasets. Figure 6.5 compares the generalized linear
mixed model inference under the outcome-dependent sampling using the proposed weighted
MLE approach with unweighted MLE. The unweighted MLE is computed by lme4qtl [173]
that takes the Laplace approximation of the integrand of the likelihood function.
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kā

pō
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kā
kā
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Fig. 6.5 Compare the generalized linear mixed model inference on the two simulated kākāpō
datasets under individual-based outcome-dependent using the proposed weighted MLE
approach and MLE approach. The model inference under random sampling serves as a
baseline of sample estimation. The vertical dotted lines represent the true parameters of the
simulated data.

The top row of Figure 6.5 shows the unweighted MLE by treating the samples as the
whole population. Although it is less obvious than the overestimation of the population
mean, the genetic SD is also overestimated by MLE under outcome dependent sampling
compared to random sampling. However, the method that uses the Laplace approximation
still underestimates the true genetic SD even under outcome-dependent sampling. This is
not surprising as it was shown that the Laplace approximation underestimates the variance
components, especially for binary data with small cluster sizes [17, 19].

While both Laplace approaximation and EM algorithm underestimate the population
genetic SD using sample data, the sample estimation by EM algorithm in the bottom row
of Figure 6.5 is much closer to the true parameters. For the weighted MLE, the proposed
EM algorithm tends to underestimate the genetic SD under outcome-dependent sampling
compared to random sampling, but the bias reduces as the data size increases. It is possible
to simulate data based on a larger complex pedigree to check the hypothesis and also
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reduce the variability of the weighted MLE, but it would take too long to compute of the
conditional mean and variance in Eq.6.11 using Gibbs sampling as the faster approach
numerical integration is impracticable for complex pedigree.

Large dataset with simple pedigree structure

The second set of examples contains 2251 and 10011 individuals from 500 and 2200
families with family sizes ranging from 3 to 6, where parents are considered to be genetically
unrelated. To better compare the two methods, a smaller value is chosen for the standard
deviation, so the estimator based on the Laplace approximation should be less biased [19].
Consider a family-based outcome-dependent sampling, the idea of the sampling strategy is
that families with a higher proportion of affected members have higher sampling probabilities.
For example, the distribution of the smaller dataset before and after the sampling is shown in
Figure 6.6.

Fig. 6.6 Distribution of the simulated nuclear family data (N = 2251) before and after the
family-based outcome-dependent sampling. The numbers are the counts of the families.

In contrast to Figure 6.5, it is more obvious in the top row of Figure 6.7 that the genetic
SD under outcome-dependent sampling without adjustment is overestimated. Moreover,
the sampling bias tends to increase as the data size increases, whereas the proposed EM
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algorithm corrects the bias and the accuracy improves as the data size increases (see the
bottom row of Figure 6.7).

Fig. 6.7 Compare the generalized linear mixed model inference on the two simulated nuclear
family datasets under family-based outcome-dependent using the proposed weighted MLE
approach and MLE approach. The model inference under random sampling serves as a
baseline of sample estimation. The vertical dotted lines represent the true parameters of the
simulated data.

An advantage of the family-based design is that, for the simulated nuclear family
data where the covariance matrix Ξ is a block diagonal matrix, E[y∗|y]O = E[y∗O|yO] and
V(y∗|y)OO = V(y∗O|yO), hence the log-likelihood in Eq.6.11 is the same as the log-likelihood
in Eq.6.10. On the other hand, this is not true for individual-based sampling design, which
explains the bias of the sample weighted MLE in the bottom row of Figure 6.5 beyond data
size.

To see whether varying model parameters affects the conclusions on the proposed
weighted approach for generalized linear mixed model, I simulated four nuclear family
datasets with different parameter values (β1 = 0.5 or β1 = 1, σ = 0.2 or σ = 0.5) and the
results are shown in Figure 6.8. Dataset A and B investigate the effect of varying β1 only,
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Dataset A and C investigate the effect of varying σ only, and Dataset A and D investigate the
effect of varying both β1 and σ . Figure 6.8 confirms that varying model parameters has no
effect on the sampling bias correction of the weighted approach, whereas the unweighted
estimation of all parameters are always biased, and the bias in σ seems to increase as β1 and
σ increase without weights adjustment.

Fig. 6.8 The effect of varying model parameters (β1,σ ). The four simulated nuclear family
datasets A, B, C and D (NA = NB = NC = ND = 10011) are generated with β1 = 0.5 or
β1 = 1, σ = 0.2 or σ = 0.5. The samples from datasets A, B, C and D are selected under
family-based outcome-dependent sampling (nA ≈ 2200, nB ≈ 2256, nC ≈ 2208, nD ≈ 2237).
The vertical dotted lines represent the true parameters of the simulated data and the red dots
represent the population estimates of the simulated data.

6.4 Summary

Recall the weighted log-likelihood in Eq 5.2. In general, the log-likelihood of linear
mixed models cannot be written as a pairwise sum. Hence, under informative sampling, the
sampling weights appear in the weighted estimating equation in a non-linear form and the
weighted log-likelihood is not design-unbiased. One approach to solve this is to consider
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a composite log-likelihood, which is a sum of individual components of the log-likelihood.
While the composite likelihood is an estimation of the population likelihood, Chapter 5
considered a special case of linear mixed models where the non-log-determinant part of the
population log-likelihood can be written as a sum over all pairs of individuals with pairwise
sampling indicator and weights. It was expected that this approach would be more efficient
than an estimation of the population likelihood.

This idea cannot be extended to most generalized linear mixed models except the probit
model where the probability (i.e., liability of a binary trait) follows a normal distribution
like the linear mixed model in Chapter 5. Unlike quantitative traits, the liability of a binary
trait is unobserved. Therefore, this chapter has been focusing on constructing a weighted
estimation of the log-likelihood of a generalized linear mixed model in a linear form, and
obtaining weighted estimation of model parameters using the Monte Carlo EM algorithm.

In contrast to the weighted log-likelihood of linear mixed models in Eq 5.2, the weighted
log-likelihood of generalized linear mixed models requires calculations of expectation and
variance of the latent variable conditional on the complete data either by Gibbs sampling
or numerical integration. This is achievable with sample data only when the (Ξ−1)OO =

(ΞOO)
−1, i.e., the covariance matrix Ξ is a block diagonal matrix and the design samples the

whole blocks rather than individuals. When this is not the case (e.g. under individual-based
outcome-dependent sampling), the log-likelihood in Eq.6.11 tends to underestimate the
variance component, but the bias tends to reduce as the data size increases. In conclusion,
the weighted estimation can be extended from the linear mixed models to the generalized
linear mixed models only under family-based sampling designs. Apart from the second case
study in section 6.3.1, another possible two-phase design is the proband case-control design
for the human population.



Chapter 7

Future work

In this thesis, I explored two kinds of approaches for handling incomplete data in two-
phase sampling designs: obtaining complete data through genotype imputation and model
inference using incomplete data. This chapter summarizes the work that has been done in this
thesis with respect to the two approaches, including the contribution to the field, connection
with the current literature, limitations and potential extensions and applications.

Chapter 3 investigated a few factors that are likely to influence the performance of
genotype imputation for the endangered and inbred kākāpō species, such as the type of
low-density genotype data, reference subject selection, and whether or not relatedness is
taken into account. It was found that the type of low-density genotype data is the major factor
that affects both imputation accuracy and the number of imputed genotypes. In comparison
to reference SNPs, SNPs called from low-depth GBS data had a higher error rate and a
larger proportion of missing genotypes, and therefore lead to poor performance in genotype
imputation when it is served as the low-density genotype data.

Bilton [13] developed an approach that is particularly suitable for low-depth GBS data,
that extends the existing models in genetic analyses by incorporating a binomial-type sam-
pling model for the conditional probability of read count for reference/alternative allele
given latent genotype. In contrast to using called genotypes from low-depth GBS data in
genetic analyses, the advantage of Bilton’s approach is utilizing all available information
and incorporating the uncertainty of the low-depth GBS data directly into the model for
genetic analysis. Bilton [13] extended the models to GBS data in genetic linkage maps
construction and estimation of genetic relatedness estimation. This can also be done for
genotype imputation with low-depth GBS data by developing a new model for genotype
imputation that incorporates the GBS error process using the read count information.

In Chapter 5, I proposed a weighted maximum likelihood approach for fitting linear mixed
models by taking advantage of the fact the kākāpō population relatedness structure is known,
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making it possible to incorporate the population covariance matrix rather than the sample
covariance matrix into the model. Since the population relatedness structure is often known
either exactly or approximately for endangered species, the proposed approach provides
a general solution for fitting linear mixed models under two-phase sampling designs in
complex pedigrees in conservation genetics. In other words, this allows obtaining population
parameter estimations in linear mixed models using only sample data but without sampling
bias, which can greatly reduce the genotyping/phenotyping cost in conservation studies.

The performance of the proposed weighted maximum likelihood method was also evalu-
ated using a simulated dataset containing typical human pedigrees and with a ten times larger
population size compared to the kākāpō data. The two case studies demonstrated that the
sampling bias could be corrected by re-weighting the samples regardless of relatedness struc-
ture. However, in contrast to the larger simulated dataset, the weighted sample estimation
is quite variable for the kākāpō data given there are only 104 individuals with known egg
lengths. It is expected that the proposed method will work better if all kākāpō are phenotyped
or for less endangered species.

In Chapter 6, I extended the idea of re-weighting the observations with unequal sampling
probabilities to analyze binary traits by assuming they have a continuous normally-distributed
liability that measures the susceptibility to the traits. More specifically, the weighted maxi-
mum likelihood approach for fitting generalized linear mixed models under complex sampling
design can be carried out using a Monte-Carlo EM algorithm.

However, the proposed method has some limitations when fitting a generalized linear
mixed model. Unlike the linear mixed models, the sample weighted log-likelihood for
generalized linear mixed models requires calculations of expectation and variance of the
latent variable conditional on the complete data either by Gibbs sampling or numerical
integration. As discussed in Chapter 6, this is only possible when the population covariance
matrix is a block diagonal matrix and the design samples blocks rather than individuals.
Otherwise, the variance component will be underestimated, particularly when the sample
size is small.

The proposed weighted maximum likelihood approach for fitting linear mixed models un-
der two-phase designs is available as an R package called WLMM on GitHub (https://github.com/
zoeluo15/WLMM). For generalized linear mixed models, the R code for weighted maximum
likelihood estimation via the Monte Carlo EM algorithm is also available in the same GitHub
repository.

Other possible approaches for fitting mixed models under two-phased designs include
the full likelihood approach which is infeasible to implement in general as demonstrated in
Chapter 5 and pseudolikelihood approaches. Two relatively closely related methods are the
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sample weighted pseudolikelihood proposed by Rabe-Hesketh and Skrondal [112] and the
pairwise likelihood proposed by Rao et al. [114] and Yi et al. [165] (see Section 4.3.3 for
more details). To the best of my knowledge, the sample weighted pseudolikelihood proposed
by Rabe-Hesketh and Skrondal [112] is the only method for mixed model inference under
complex sampling design with available software (see gllamm in Stata [138]). However,
Rabe-Hesketh and Skrondal [112] assumes the model cluster is the same as the sampling
unit, which is impossible for kākāpō due to a high level of inbreeding, and therefore their
pseudolikelihood approach cannot be applied to the kākāpō data. Huang [68] showed that
this assumption could be relaxed for the pairwise likelihood proposed by Rao et al. [114] and
Yi et al. [165], but it is expected that there will be an efficiency loss as a result of considering
only pairs.

It is then natural to ask whether the proposed approach that utilizes the sample covariance
matrix will lead to a gain of efficiency compared to the pairwise likelihood. Unfortunately, a
similar loss of efficiency as pairwise likelihood was found for the proposed sample weighted
log-likelihood for reasons that are not fully understood. Therefore, another direction of
future work is to improve the efficiency by calibration that takes advantage of knowing the
genotype information for some individuals. Breslow et al. [20, 21] use calibrated weights to
improve the asymptotic efficiency for the target parameter and describe a general strategy
for constructing an auxiliary variable that is linearly correlated with the estimator of the
target parameter. In brief, their strategy involves: (1) developing an imputation model for
the partially observed phase II variable from the fully observed phase I variables; (2) using
this model used to predict the values of the phase II variable for all phase I individuals; (3)
estimating the influence functions from the outcome model using the complete data; (4) using
the influence functions as auxiliary variables in calibration.

For unrelated individuals, it is relatively straightforward to predict the missing genotypes
from observed genotypes. On the other hand, building an imputation model for related
individuals can be much more complicated because the imputed genotypes need to be
consistent with the inheritance pattern. Nevertheless, calibration does not require an error
model to achieve high imputation accuracy, and it is helpful as long as the auxiliary variables
are correlated with the variable of interest.

As a summary, this thesis explored the two classes of approaches to handling incomplete
data in two-phasing sampling designs under different situations. For both class of approaches,
there are more works can be done in the future. To achieve high accuracy in genotype
imputation using low-depth GBS data, a new model for genotype imputation that incorporates
the GBS error process needed to be developed. For the maximum likelihood estimator, there
is a loss in efficiency using either the weighted likelihood or the pairwise pseudolikelihood,
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hence a new likelihood estimator that combines the information used by both methods is
needed.
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