
Designing Lightweight Cryptographic
Primitives for Securing Industrial

Control Systems

Shalini Banerjee

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy in Computer Science,

The University of Auckland, 2024.





Abstract

The risk of cyber attacks against Industrial Control Systems (ICS) has marked a signifi-
cant growth over the past few years. Given ICS has large-scale applications in critical
infrastructures such as nuclear-enrichment facilities, oil and gas, etc., the consequences
of such attacks have been fatal, leading to damage of critical equipment, economic
crisis and loss of human life. Investigation into the high-profile attacks reported against
industrial infrastructures indicate that legacy equipment and proprietary protocols are
the primary cause behind their evolving threat surface. Quite evidently, the cost-benefit
analysis inhibits device-level hardening, and the ICS security practitioners resolve to
patch management, compliance-based regimes, and retrofitting IT security protocols
with bump-in-the-wire techniques.

In this work, we focus upon the security threats and vulnerabilities that exist in ICS, and
emphasize upon the significance of lightweight cryptographic primitives in defending
against ICS focused cyber attacks. In particular, we perform a detailed analysis of the
attack progression framework, along with the threat surface exploited to deliver the
attacks. Thereafter, we identify the security essentials and design lightweight crypto-
graphic implementations to increase adversary’s cost of attack at various stages of the
attack framework. In particular, we design (a) a framework that accurately identifies the

manipulation of process parameters without compromising the network bandwidth used

for communicating control information, (b) a framework that aims to achieve application-

specific security while incurring significantly low overhead, and (c) a platform that employs

cryptographic obfuscation to prevent extraction of process semantics. Our obfuscation
platform takes inspiration from our construction of (d) an efficient virtual black-box

obfuscator for binary decision trees. Finally, we design (e) verifiable schemes for defending

against malicious obfuscators that incorporate trigger-based initiation of malicious payloads

to manipulate critical control parameters. The last two constructions are of independent
interest, and have much wider applicability in software obfuscation.

3





Dedicated to my parents - Ajoy and Chameli.

5





Acknowledgements

In the following, I attempt to express my acknowledgements towards all those who have
been a part of this memorable journey.

To begin with, I express my deep sense of respect and gratitude towards my supervisors
Prof. Giovanni Russello and Prof. Steven D. Galbraith. I convey my most heartfelt thanks
to them for their invaluable guidance in every aspect of academic life, assisting with
the necessary setup for implementing the proposed approaches, bringing out in me
the analytical and critical perspective towards conducting research and giving me the
freedom to pursue my own interests. I consider myself fortunate to have the opportunity
to work with such wonderful persons.

I would like to extend my gratitude to Dr. Tariq Khan for helping me implement the
prototypes of some of the proposed approaches.

I would like to thank Emeritus Prof. Gosta Pada Biswas from Indian Institute of Technology,
Dhanbad, who has been my inspiration behind pursuing research.

I am profoundly grateful to Ram Venkatesalu, Jianli Bai and Judith Perera for mak-
ing Auckland a home away from home for me, extending their support whenever and
wherever possible. I consider myself lucky to find best friends in them. I cannot thank
enough my colleagues Zhijie Li, Lukas Zobernig and all the PhD students in the School
of Computer Science at the University of Auckland for making my office the most warm,
welcoming and engaging place.

I express my acknowledgement towards my family members who are the warmest
persons I have known Tapas Mukherjee, Tushar Mukherjee, Mahua Mukherjee and Shirini

Banerjee for their endless support and faith in me.

I thank my parents for always believing in me and supporting me pursue my dreams
through all thick and thin. Without your kind words and encouragement, this journey

would not have been possible. I dedicate this thesis to you, with all my love and respect.

7



8

Finally, I thank the Marsden Fund of the Royal Society of New Zealand for funding my
stay in this beautiful country.



Contents

Abstract 3

Acknowledgements 7

Contents 9

List of Figures 12

List of Tables 15

List of Acronyms 17

1 Introduction 19
1.1 Proprietary Industrial Control Framework . . . . . . . . . . . . . . . . 19
1.2 Evolving Threat Surface in ICS . . . . . . . . . . . . . . . . . . . . . . . 21
1.3 Implementing Security Controls . . . . . . . . . . . . . . . . . . . . . . 26
1.4 Objectives of the Research . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.7 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Preliminaries 33
2.1 Control System Architecture . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Overview of Key Components . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Analyzing the Threat Surfaces . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Recommended Security Controls . . . . . . . . . . . . . . . . . . . . . . 45
2.5 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Literature Review 57
3.1 Defending Against Targeted Attacks . . . . . . . . . . . . . . . . . . . . 57

9



10 Contents

3.2 Advances in Program Obfuscation . . . . . . . . . . . . . . . . . . . . . 65

4 TaDeT: Towards Efficient Tamper Detection 69
4.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Proposed Framework for Detecting False-Data Injection Attacks . . . . 74
4.4 Attack Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5 Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 SelEnc: A Selective Encryption Framework for Securing ICS Payloads 89
5.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Proprietary Products in Industrial Automation . . . . . . . . . . . . . . 93
5.4 Proposed Framework for Securing Communication at ICS Supervision

Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Privacy-Preserving Classification Using Cryptographic Obfuscation 105
6.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4 Formalizing Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.5 Obfuscating Evasive Decision Trees . . . . . . . . . . . . . . . . . . . . 118
6.6 Correctness and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.7 Proof of VBB Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.8 Comparison Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 ObfCP: Platform to Prevent Reverse Engineering of Control Programs135
7.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3 Modeling Control Programs . . . . . . . . . . . . . . . . . . . . . . . . 139
7.4 Obfuscating Control Programs . . . . . . . . . . . . . . . . . . . . . . . 144
7.5 Correctness and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.6 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.7 Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 154



Contents 11

7.8 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 165

8 Towards Verifiability of Cryptographic Obfuscators 167
8.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.3 Notions of Verifiability in Obfuscators . . . . . . . . . . . . . . . . . . . 170
8.4 Reviewing the [30] Construction . . . . . . . . . . . . . . . . . . . . . . 174
8.5 Reviewing the [27] Construction . . . . . . . . . . . . . . . . . . . . . . 183
8.6 Verifiable Control Program Obfuscation . . . . . . . . . . . . . . . . . . 191
8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

9 Conclusions and Future Work 195
9.1 Summary Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.2 Future Directions of Research . . . . . . . . . . . . . . . . . . . . . . . 196
9.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Bibliography 1



List of Figures

1.1 Modular attack framework for Targeted Attacks. . . . . . . . . . . . . . . . 25

2.1 High level schematics of ICS distributed process control framework. . . . . 35
2.2 Control Program Engineering: Control programs are downloaded to the PLC

using dedicated industrial buses on top of ICS network protocols. . . . . . 39
2.3 Market shares of industrial communication protocols based on 2022 report

by ISSUU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Attack points of an adversary at the supervision and configuration layers of

an ICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Experimental Testbed: Schematics of an Industrial Steam Boiler Application 73
4.2 Block diagram of TaDeT architecture. . . . . . . . . . . . . . . . . . . . . . 75
4.3 High level schematics of the MiTM adversary who manipulates read/write

requests via unauthorized network access to the supervision layer. . . . . . 77
4.4 Add-on software modules executed in the back-up PLC during the run of

TaDeTread and TaDeTwrite protocols. X κ denotes the process image table
updated from primary PLC during scan-cycle. . . . . . . . . . . . . . . . . 78

4.5 Scenario that leads to false positive during execution of TaDeTwrite. . . . . 79
4.6 Recorded screenshots for each of the devices during the run of an experiment

for Case C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.7 Time components calculated for Case A. We do not show σ3 as the time

taken to execute the encryption module by SCADA unit is approximated to
zero for all the 14 trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Delay in attack detection for Case A B and C. . . . . . . . . . . . . . . . . 85

5.1 Experimental Testbed: Schematics of a Chemical Mixing Facility . . . . . . 92
5.2 High level schematics of an MiTM adversary who eavesdrops the traffic via

unauthorized network access to the supervision layer. . . . . . . . . . . . . 93
5.3 Encapsulation packet format in EtherNet/IP. . . . . . . . . . . . . . . . . . 94

12



List of Figures 13

5.4 EtherNet/IP device modelled as a collection of objects . . . . . . . . . . . . 95
5.5 Schematics of SelEnc execution flow in the supervision layer. . . . . . . . . 97
5.6 Screenshot showing the unique Instance IDs for I/O and internal tags: the

highlighted tag Low_Level_Sensor has an Instance ID = 14. . . . . . . . . . 99
5.7 Performance benchmark of SelEnc against encrypting entire traffic (for

dataset 4) using independent implementations of AES and ChaCha-20. . . 103

6.1 Privacy-preserving classification with Decision Tree. (a) Interactive protocol
with encrypted model outsourced to cloud server. (b) Non-interactive protocol
with obfuscated model sent directly to the user. . . . . . . . . . . . . . . . . 107

6.2 Binary classification with a decision tree: the circular nodes represent deci-
sion nodes, and the square nodes represent terminal nodes. Decision nodes
are numbered in level-order sequence. The path in orange represents the
accepting path with terminal node labeled 1. . . . . . . . . . . . . . . . . . 113

6.3 Decision tree model specifying the classification function C . . . . . . . . 114
6.4 Two example cases of distributions which lead towards non-evasiveness: (a)

Decision region h1 is very big. (b) Overlapping decision regions h1, h2 and h3. 115

7.1 Experimental Testbed: (a) Schematics of an example Water Distribution
System (b) Control Program written in Structured Text describing the opera-
tional behavior of the application. . . . . . . . . . . . . . . . . . . . . . . . 138

7.2 Entry points for a potential adversary to interact with the system for obtain-
ing a copy of control program. . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3 Structural representation of the control logic derived from the process de-
scription of the example testbed (see Section 7.2.1). . . . . . . . . . . . . . 140

7.4 Representation of integer s ∈ [0, 2ℓ) in the number line: (a) x ≤ s ; (b) x > s. 148
7.5 Block Diagram of the ObfCP platform. The Obfuscate module is imple-

mented in the Engineering Workstation, and the Encode module is added to
the control loop between the sensors and the PLC. . . . . . . . . . . . . . 149

7.6 State tree corresponding to real-world ICS application on controlling speed
of a motor using proximity sensors PS_1 and PS _2. . . . . . . . . . . . . . 154

7.7 State Tree Πpressure for Case Study # 1. . . . . . . . . . . . . . . . . . . . 157
7.8 Experimental Testbed: (a) Schematics of an Industrial Steam Boiler Ap-

plication (b) Control Program written in Structured Text describing the
operational behavior of the application. . . . . . . . . . . . . . . . . . . . . 159

7.9 Optimized state trees corresponding to the manipulated variables v1 and v2:
(a) Πv1 and (b) Πv2 for Case Study # 2. . . . . . . . . . . . . . . . . . . . . . 161



14 List of Figures

7.10 Obfuscated encodings generated by Algorithm 7.3 using both MD5 and
SHA-256 implementations from the hashlib library. . . . . . . . . . . . . . 164

7.11 Performance benchmark of ObfCP using MD5 and SHA-256 implementa-
tions for the example testbeds. . . . . . . . . . . . . . . . . . . . . . . . . . 166



List of Tables

4.1 Implementation Details of the Raspberry Pi’s used as PLC, back-up PLC, and
MiTM adversary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Components for Delay Calculation . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Table Showing mapping of Tags and Instance IDs . . . . . . . . . . . . . . 96
5.2 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3 Experimental Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 Experimental Results (Case A) . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5 Experimental Results (Case B) . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Example parameter sets for an obfuscated decision tree with wmax ≤ 2ℓ−
λ
n .

For q = 512 bits and one accepting path (q is the output size of hash function
Hc), we calculate the size of the obfuscated program and the cost of the
evaluation (Algorithms 6.5 and 6.6). . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Comparison summary with state-of-art protocols: AHE stands for Additive
Homomorphic Encryption, ASS stands for Additive Secret Sharing. . . . . 133

7.1 Implementation Details of Raspberry Pi (as PLC) . . . . . . . . . . . . . . . 155
7.2 System configurations while implementing Encode and ObfuscateModule 156
7.3 Experimentation Parameters for Case Study # 2 . . . . . . . . . . . . . . . 161
7.4 ObfCP Performance Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . 165

15





List of Acronyms

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

ANSI American National Standards Institute

CI Critical Infrastructures

CISA Cybersecurity and Infrastructure Security Agency

CRC Cyclic Redundancy Check

CPU Central Processing Unit

DTLS Datagram Transport Layer Security

GE Gate Equivalent

IEC International Electrotechnical Commission

ICS Industrial Control Systems

ISA International Society of Automation

ISO International Organization for Standardization

IT Information Technology

TCP Transmission Control Protocol

TLS Transport Layer Security

PERA Purdue Enterprise Reference Architecture

PDU Protocol Data Unit

17



18 List of Tables

PLC Programmable Logic Controllers

RAM Random Access Memory

ROM Read Only Memory

OT Operational Technology

SCADA Supervisory Control And Data Acquisition



Chapter 1

Introduction

Industrial Control Systems (ICS) have incorporated a distributed monitoring and
control paradigm into the industrial objectives of production and manufacturing,
with implementations spanning critical infrastructures, such as nuclear enrich-
ment facilities, power grids, oil and gas, water treatment and distribution, telecom-
munication, transportation, process manufacturing and discrete manufacturing
industries [50, 186]. With the advent of Industry 4.0, there has been a huge impact
on global production and supply networks of ICS through large-scale machine-to-
machine communication. Unsurprisingly, the integration of the physical processes
with embedded components over a layered plant-wide network, further connected
to an enterprise network through IT/OT1 vertical integration support, has magni-
fied the ICS threat-surface, where an adversary, by exploiting the digital security
vulnerabilities, can disrupt the normal operations of the physical processes. The
consequences of these disruptive events are fatal, leading to economic crisis, dam-
age of critical equipment, loss of human life, etc. [106, 136, 196]. Exploration
and examination of the infamous ICS attacks are necessary in comprehending
a "complete kill chain" approach to the strategies taken towards executing such
influential disruptive events to safety-critical systems, such that solutions could
be formulated and implemented for defending against these attacks.

1.1 Proprietary Industrial Control Framework

In this section, we discuss the limitations that restrict industrial control applica-
tions from achieving the security goals required to defend against influential cyber

1OT comprises of software and hardware modules that control physical processes in industrial infras-
tructures.

19



20 Introduction

attacks.

The distributed nature of industrial control is enabled through legacy controllers,
that regulate real-world processes through pre-configured control logic on top of
proprietary ICS networks [186]. The embedded engineers have attributed availabil-
ity and time-criticality as central to the functioning of the safety-critical systems,
disregarding the need for implementing the security essentials [33]. Though
the traditional "air-gap" principle, along with poorly documented technologies
have protected ICS by a security-through-obscurity approach, the requirement of
monitoring and advanced control via increased connectivity to corporate and IT
networks, along with the Internet, have exposed the insecure control framework
to the risk of cyber-threats.

The industrial controllers are legacy deviceswith no provisions for built-in-security
[156, 77]. In particular, an adversary can use the documented features to change the
control behavior, leading to unpredictable and unstable responses in safety-critical
applications. Moreover, majority of the controllers have limited supply of memory
and computational capabilities for accommodating security implementations [173].
Finally, the vendors do not incorporate security essentials during design and
development of the industrial equipment [77], and restrict access to the memory
and implementation details of the proprietary hardware architectures [167].

Furthering on the insecurities in industrial control, the ICS specific network
protocols specialize in features, such as real-time control, noise immunity, and
reliability in harsh environments, and do not include provisions for security
[33, 97, 194]. Interestingly, industrial communication protocols such as Modbus
[189], DNP3 [84], EtherNet/IP [82], etc. carry critical control and configuration
information in clear text [97]. More specifically, these application-specific protocols
do not have provisions for imparting confidentiality, integrity and authentication to
the critical control communication, and as such, modifications done to control and
configuration parameters via network access cannot be detected by the monitoring
units.

Given that the ICS products are not inherently resilient towards cyber-attacks,
the ICS research community and industrial security practitioners recommend
predictive passive intrusion detection and prevention techniques or authentica-
tion/encryption implementations on commercial-off-the-shelf (COTS) products,
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using bump-in-the-wire techniques [28, 48, 194, 212]. However, the predictive
techniques for detection and defence are inaccurate, and the cryptographic rec-
ommendations are too ambitious in complying with the real-time requirements
of generic time-invariant critical applications (depending on the sampling and
response rates for ICS field devices [3]). Finally, efforts from ICS vendors to inte-
grate cyber-security directly into ICS equipment is an expensive alternative for
customers who have a number of ICS devices deployed at their production site
[216].

1.2 Evolving Threat Surface in ICS

In this section, we investigate the reported high-profile cyber-attacks in ICS space
to bring forward their distinguishing aspects. In particular, we aim to analyze
adversary’s intent, pre-requisites for achieving attack objectives, tools and tech-
niques employed to deliver the attacks, and severity of the attacks. We argue
that such explorations are necessary in both understanding future attacks trends
against industrial infrastructures, as well as designing strategies and roadmaps to
safeguarding the infrastructures.

1.2.1 Taxonomy of ICS Attacks

While the digital transformation of industrial infrastructures is appealing,
analysing the cyber threats of growing complexity and severity is important
in identifying tools, techniques and procedures employed for delivering and exe-
cuting ICS disruptive events.

The threats in ICS space could be basic, such as generic phishing scams against
industrial infrastructures with no security implementations, to Advanced Persis-
tent Threats (APTs)2 such as data extraction or extortion using custom tools and
techniques [216]. The "Industrial Control System Cyber Kill Chain" [9] categorizes
targeted attacks to be the most sophisticated and impactful attacks against an ICS
[121, 115], and as such our study focuses on analyzing and strengthening defence
against this class of attacks. In what follows, we provide an abstraction of the
generic attributes of reported targeted attacks against industrial facilities.

2NIST defines APTs as threats where adversaries possess sophisticated levels of expertise and significant
resources which allow to create opportunities for achieving their objectives using multiple attack vectors
[174].
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Targeted Attacks. Attacks against industrial control infrastructures, character-
ized by the following features:

• Purpose of Attack. Adversaries are motivated by the objective of perform-
ing either of the following:

– Process Manipulation: ICS security community identifies them as
false-data injection, where an adversary overrides the desired control
values leading to unstable responses in the control application, with the
most impactful consequences [159].

– Cyber Espionage: This class of attacks target theft of intellectual prop-
erty or monetary gain through extortion [216].

• Evidence of Target Selection. Attacks show a clear evidence of selection
of target control parameters within the control infrastructures, exploiting
which can cause predictive outcomes, catered to the requirements of the
adversaries [192].

• Knowledge of Process Control. Adversaries perform a campaign of efforts
to gain pre-requisite knowledge of process control and engineering designs
of the target control application.

• Attack Methodologies. Attack methodologies are unique, advanced and
specific for the victim ICS. Adversaries spend considerable amount of budget
and time in developing zero-day tools for the specified targets.

1.2.2 Infamous ICS Attacks

In this section we explore the high-profile targeted attacks reported against critical
infrastructures in order to understand the evolving trend in adversary tradecraft
and its implications.

Maroochy Shire Sewage Spill Event [201] in 2000 at Queensland in Australia
demonstrated the capability of a knowledgeable adversary in releasing millions
of gallons of untreated sewage in local parks and rivers by modifying control
commands via unauthorized access to the insecure control network between
controllers and monitoring units.

The Stuxnet malware [106] uncovered by the Kaspersky lab demonstrates the
power of a resourceful and knowledgeable adversary in sabotaging 1000 cen-
trifuges of a Natanz nuclear-enrichment facility of Iran in 2010. Manifesting
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sophisticated capabilities of four zero-day exploits, Windows rootkits, first dis-
covered PLC rootkits, peer-to-peer communication with infected devices, Stuxnet
is considered to be the first targeted cyber weapon against an industrial facility
[190].

Havex/Dragonfly [22] targeted utilities, transport and manufacturing systems,
extracting sensitive information using ICS network protocols. As per Kaspersky
report [171], the motivation behind installing the malware was solely industrial
espionage. In 2011, Duqu [206], a malware similar to Stuxnet, infected the control
applications to gather intelligence on the process control design.

German Steel Mill Event [116] in 2014, indicates the massive damage caused to a
steel plant by modifying control parameters, that prevented a blast furnace from
shutting down. The attackers initially gained access to the enterprise network,
and worked their way through the production network, causing multiple failures
of control systems.

BlackEnergy malware [65] caused massive outages in three regional electricity
distribution management systems of Ukraine in 2015. The adversaries gained
knowledge on the operational semantics of the process, along with the engineering
design of the control framework by infecting the corporate enterprise network.
The malware is also reported to have infected other critical infrastructures of
Ukraine.

Crashoverride malware [184] took down an electrical distribution equipment
at Ukraine in 2016, where the adversary gathered knowledge of the victim ICS
through network protocols, codified them in software and, finally enabled it to
disrupt the process control. The malware execution occurred in multiple stages,
starting with gathering knowledge on the control behavior of the application,
identifying the control parameters to be modified, initiating unauthorized con-
nection to controllers to manipulate the identified parameters. Unsurprisingly,
subsequent detection and defence suffered due to limitations on deployment of
security services within the victim ICS environment [184].

Trisis [105], the first known malware targeting safety instrumentation systems,
caused a massive shutdown of a petrochemical plant in Saudi Arabia in 2017. The
malware framework included a rootkit designed to change control parameters in
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Schneider Electric’s Triconex safety instrumented system (SIS), with abilities to
codify the potential unsafe states, design multiple conditions on safety tolerances
for causing massive shutdowns, and to death of individuals [184].

The industrial infrastructure of a water treatment and distribution system in
Florida was hacked in 2021, where the adversaries modified the level of sodium
peroxide in drinking water by exploiting the poor digital security controls [80].

Chernovite’s Pipedream [71], the seventh-known ICS-specific malware identified
and analysed by Dragos in 2022 and yet to be employed, is a modular attack frame-
work designed to cause disruption, degradation and destruction to target control
environment. The malware is a collection of utilities, including tools for reconnais-
sance, manipulation and disruption of wide-variety of controllers and ubiquitous
industrial technologies. Pipedream enumerates an industrial environment, and
utilizes controller implants to execute untrusted code, with the capability to hide
its existence for years.

Along the line of events, other targeted attacks, such as [144, 222] contribute to
our strong inference on the advances in ICS-specific capabilities of adversaries in
codifying attack methodologies for causing disruption and destruction of critical
utilities. Reports by Dragos show an alarming growth in ICS targeted attacks, with
vulnerabilities doubling in 2021 compared to 2020 [72]. As per the 2022 X-Force
Threat Intelligence Report [80] and other sources [145], critical infrastructures are
the primary target of cyber-adversaries, who are more inclined towards targeted
attacks, compared to low-budget script-kiddie attacks. Gartner predicts that 30%
the mission-critical control systems will experience massive shutdowns by 2025,
with cyber-adversaries weaponizing OT environments to successfully harm and
even kill individuals [61].

1.2.3 Analysing Attack Methodologies

Though there has been a noticeable shift towards commodified technologies for in-
trusion techniques in industrial infrastructures, breaking down the components of
the modular attack framework enables an expanded view of the attack progression.

Modular Attack Framework. A targeted attack in an ICS is a process with

inter-linked modules, executing all of which renders an adversary in achieving
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Figure 1.1: Modular attack framework for Targeted Attacks.

predictive and desired outcomes. Understanding how these modules work is vital
to designing solutions that increase adversary’s cost of attack. Such an attack
framework incorporates an adversary who has an understanding of the elements
of a generic process control paradigm, and has tools and techniques for interfacing
and interacting with ICS equipment and/or protocols. The attack framework
consists of two distinct modules:

(a) Reconnaissance: By executing this module, an adversary extracts oper-
ational semantics of the target control application, and corresponding en-
gineering designs and practices employed at the plant site. This helps in
learning the control parameters central to the safe functionality of the appli-
cation, such that tactics and techniques could be designed for disruption and
destruction of the facility, or for gaining an in-depth knowledge of process
control for cyber-espionage campaigns.

(b) Attack Execution: By executing this module, an adversary delivers his
capability, which could be Intellectual Property theft for political or eco-
nomic reasons, or manipulation of critical control parameters (false-data
injection). This module may include sub-modules for enabling other support
functionalities that trigger necessary conditions needed for modifying the
parameters.

The efforts of an adversary in gaining accurate and in-depth knowledge of process
control and delivering custom-made exploitation are simplified due to insecure
nature of the legacy controllers and proprietary protocols (see Section 1.1). Also,the
adversarial attempts to eavesdrop or modify critical control data over the insecure
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network cannot be detected by the computers employed to monitor the control
activities.

From the above discussions, it can be safely conjectured that security controls in
industrial infrastructures need to address the following:

(i) Prevent an adversary from extracting the operational semantics of target
control application.

(ii) Prevent an adversary frommanipulating process control parameters of target
control application.

(iii) Prevent an adversary from evading detection by the monitoring units de-
ployed at the target control facilities.

1.3 Implementing Security Controls

As discussed in Section 1.1, securing industrial infrastructures from targeted
attacks bears its challenges from the use of legacy ICS products and limitations
in employing cryptographic implementations due to time-invariant nature of the
applications. Furthermore, limited system resources and diversity in configurations
of specialized industrial systems restrict designing all-in-one solutions. Finally,
the differences in how similar technologies are employed in ICS and enterprise IT
environments, and the corresponding complexity penalties restrict the wholesale
import of IT security technologies [184].

The high demand of availability and being uptime have pushed the ICS security
community towards a "detection-over-prevention" approach for minimizing com-
plexity penalties [136]. In particular, emphasis is given upon detecting adversarial
techniques for enumeration, data-gathering and process manipulation using IDS
and machine-learning models with signature and anomaly based predictive tech-
niques [90]. However, these methodologies are inaccurate and inadequate against
zero-day exploits and other custom-made techniques of adversaries.

In addition, the state-of-art recommendations for detection and defence with
cryptographic implementations are not suitable for complying with the latency
requirements of the target control application.
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The other important concern is that the existing solutions for imparting integrity,
authentication and confidentiality are not suitable for achieving application-
specific security required at the target control environment. More specifically, the
current recommendations rely upon the security services offered at the transport,
network and data-link layers. A typical control framework might have application-
specific security requirements such as ‘provide confidentiality/integrity/authenti-
cation if read/write request about valve v is being communicated ’. Implementing
protocols such as TLS 1.3, IPSec introduce unacceptable overhead, with mandatory
encryption of all control parameters, and unwanted features such as AEAD, perfect
secrecy, etc. which are not a defacto requirement in generic ICS facilities.

Finally, ICS security community has no implementations for preventing adver-
sarial attempts of extracting operational semantics of target application. The
risk-assessment matrices calculated by the individual organizations categorize
targeted attacks as disruptive events with lowest probability and highest damage

potential, prioritizing designing strategies for mitigating high probability low
damage potential events [121].

SANS 2022 survey indicates the importance attributed to increased cyber-security
consultation for designing security policies for OT environments, regular security
assessment within control infrastructures and increased cyber-security awareness
program for employees [101, 153]. With an aspiring ambition of Industry 5.0,
which visions both societal and industrial progress, countermeasures to defend
against targeted attacks should not be limited to approaches that address people
and policies. Emphasis should also be upon reconsidering security essentials with
custom-made implementations that rely upon lightweight cryptographic primitives3.
Finally, ICS security practitioners and research community need to be mindful of
the fact that solutions for defending against targeted attacks should be aimed at a
holistic end-to-end approach, one that addresses the diverse security goals (see
Section 1.2.3) essential for effectively dealing with identification, prevention and
mitigation of malicious actions of ICS adversaries.

3Cryptographic primitives that incur low computational complexity, and are particularly well-suited
for implementations limited by size, power-consumption and processing-speed [76].
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1.4 Objectives of the Research

This research identifies a comprehensive approach towards defending against
targeted attacks, with methodologies that rely upon rigorous cryptographic primi-
tives. The overall objective of this study is given as follows:

(1) Design tools and techniques for accurate detection of false-data injection
attackswithin ICS, such that the proposed solutions comply with the latency
requirements of the target control environment.

(2) Design tools and techniques for achieving application-specific security
in detecting and preventing false-data injection attacks, while incurring
low computational complexity.

(3) Design tools and techniques for preventing extraction of operational
semantics of target control application.

1.5 Main Contributions

To achieve the objectives discussed in Section 1.4, we make the following contri-
butions:

• We design an efficient tamper-detection framework that accurately identi-
fies manipulation of process control parameters without compromising the
network bandwidth required for critical control communication.

• We design a general-purpose modular framework that considers security
implementations at the application-level. In particular, we propose a tech-
nique that prevents false-data injection attacks by encrypting a set of ICS
payloads that are critical to the control behavior of the application, while
incurring minimal overhead compared to the state-of-art methodologies.
Our framework helps envision how minimal application-level access to the
vendor-specific controller devices could enable the customers define their
respective benchmarks for security. Our methodology applies to achieving
integrity/authentication in communicating critical ICS payloads.

• We identify an adversary who aims at extracting the operational semantics
of the target control application through static analysis of control program.
Our goal is to prevent such efforts of the adversary by making use of cryp-
tographic obfuscation, a tool that transforms a program to its semantically
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equivalent counterpart, such that access to the transformed version does
not give away the assets (secret values within a program). To this end, we
formalize the abstraction of control programs, and define its assets, the se-
cret values in the program that give away the operational semantics of the
process. Since control programs function as the "decision-making layer" of
the process control framework, we employ binary decision trees to develop a
structured representation. Our formalism is generic, and applies to all types
of control programs implemented in industrial environment. Following this,
we design an efficient virtual-black box (VBB) obfuscator for binary decision

trees, and use the random oracle paradigm to analyze the security of our
construction.

• We design a general purpose platform that makes use of cryptographic
obfuscation to prevent reverse-engineering of control programs. We take
inspiration from our construction of VBB obfuscator for binary decision trees,
which we leverage to design a lightweight practical solution for obfuscating
control programs that prevents extraction of process semantics.

• We discuss the theoretical possibility of a malicious obfuscator that causes an
obfuscated program to have some undesirable behaviour. Obfuscating control
programs with a malicious obfuscator could trigger conditions to manipulate
a critical control parameter, leading to fatal consequences. We show that
some of the published obfuscation techniques in the theoretical literature
can have this malicious functionality. Next, we propose a new definitional
framework for verifiable obfuscation, which aims to provide security against
malicious obfuscators, and follow this with proposals of verifiable schemes
for a number of existing cryptographic constructions, that either apply to

control programs or are subjects of independent interest.

1.6 Organization of the Thesis

The thesis is organized into nine chapters, an overview of which given as follows:

Chapter 1 provides an introduction to the research problem addressed in this
thesis, and the motivation behind this work. In particular, it highlights the legacy
design of ICS that is inextricably linked to insecure equipment and protocols,
modular attack framework of high-profile targeted attacks reported against indus-
trial infrastructures, preparedness of industry in defending against such attacks
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and, finally the objectives of this research, along with an outline of the main and
specific contributions made towards addressing the research problem.

Chapter 2 provides a general description of the key components of an industrial
process control framework, an in-depth analysis of the insecurities in industrial
equipment and protocols, and the threat surfaces exploited to cause targeted attacks
against industrial infrastructures. Following this, the chapter gives a detailed
overview on the security essentials and controls adopted to prevent, detect and
deter targeted attacks. Finally, the chapter discusses the cryptographic ciphers
used in our implementations, with a special focus on program obfuscation.

Chapter 3 looks into the efforts by ICS security research community in detecting
and preventing targeted attacks against industrial infrastructures. This is followed
by a broad-level discussion on the state-of-art in cryptographic obfuscation.

Chapter 4 presents the first of our contributionsTaDeT, a general-purpose tamper
detection framework that accurately detects tampering of control data without
compromising the bandwidth for critical control communication.

Chapter 5 introduces SelEnc, a selective encryption framework that aims to
achieve security at application-level within a process control system.

Chapter 6 introduces our efficient VBB obfuscator for encoding evasive binary
decision trees, which also includes the description of our new cryptographic
primitive for encoding parameters in an interval-membership problem.

Chapter 7 presents a formalization of abstraction of control programs and its
assets, introduces a new threat model (to the best of the authors’ knowledge) and
finally proposes ObfCP, a legacy-compliant platform for preventing reconnais-
sance of process control. As far as we can tell, this is the first attempt to prevent
extraction of process semantics in industrial control applications.

Chapter 8 introduces the notion ofmalicious obfuscation, and proves the existence
of undetectable malicious obfuscators for a number of obfuscation schemes in the
theoretical literature. This is followed by formulating verifiable obfuscation, along
with a proof-of-concept of the developed notions.
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Chapter 2

Preliminaries

This chapter provides a detailed description of control flow execution in generic
ICS facilities, along with the key components necessary for implementing a process
control framework. Following this, we discuss the various threat surfaces exploited
by a cyber adversary in bringing about targeted attacks. We study in detail the
insecurities of industrial controllers and communication protocols, and the defense
and policy responses adopted by the industry for combating targeted attacks. We
take a deeper look into the security goals that the ICS practitioners prioritize
while implementing security controls, keeping in mind the real-time constraints
of control applications. Finally, we survey lightweight cryptographic primitives,
with a special focus on cryptographic obfuscation, a good understanding of which
is necessary to get introduced to our constructions.

Without loss of generality, we use the term ’process’ to refer to industrial processes,

that are a systematic series of physical, chemical, mechanical, or operations of similar

kind, to produce a result [182]. By ’state’ of a process, we mean the various control

values defined for the actuators within a process [92].

2.1 Control System Architecture

ICS is a collective term used to refer to diverse control system types and associated
instrumentation, including devices, networks and controls required to operate
and/or automate processes. Modeling a process control framework is guided by
the aim of achieving a distributed nature of monitoring and control over the state
of a process.

33



34 Preliminaries

The key elements of industrial control are: (a) control loop (b) SCADA monitoring
units, remote diagnostics and engineering workstations, and (c) plant communica-
tion networks [186].

Control loop comprises of PLC and the field devices (sensors, actuators) connected
to the process. Sensors sense analog or digital values such as distance, proximity,
level, pressure, temperature, flow, magnetic sensors, LED lights, push button
signals, etc., and actuators operate on control elements, such as pumps, valves,
switches or motors. PLCs are the programmable industrial computers containing
pre-configured control programs that act as the decision-making layer for the
target control application. PLCs collect process measurements from the sensors
in form of process variables, execute control program, and output manipulated
variables for controlling the state of the process [4]. This operation is carried out in
repeating cycles at discrete time intervals to preserve the real-time requirements of
the process, and is referred to as scan cycle of the control application. A summary
description of the process variables and manipulated variables is given in Section
2.2.1.

Most basic control systems define four main components featuring a control loop
[4]:

(i) A measurement of the state of the process which is collected through sensors

(ii) A PLC computing an action based on comparing measured value against a
preset or desired value, usually called a setpoint (embedded within a control
program)

(iii) An output signal resulting from the computations performed by PLC, which
manipulates the process action through some actuators

(iv) The process itself reacting to this signal, and changing its state or condition

PLCs connect to SCADA units for advanced control and monitoring, where Human
Machine Interface (HMI) programs allow a process engineer to make adjustments
to the physical processes by overriding the manipulated variables output by PLC.
The PLCs are programmed by engineeringworkstations, which provides IEC 61131-
3 [99] compliant Integrated Development Environments (IDEs) for developing
control programs, which are transferred to the PLCs using a procedure called
program download.
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Figure 2.1: High level schematics of ICS distributed process control framework.

The complex nature of distributed control is accomplished through integrating
computational units and physical processes, and deploying them over industrial
communication protocols. Based on functionality and control, we identify three dis-
tinct layers constituting a process control framework: (a) control layer constituting
the control loop, (b) supervision layer consisting of SCADA command, monitoring
and maintenance facilities, and (c) configuration layer involving software develop-
ment for PLC. The high-level schematics of control, configuration and monitoring
in an ICS framework is given in Figure 2.1.

2.2 Overview of Key Components

In this section, we present an elaborate discussion on the key components of a
generic process control framework.

2.2.1 Field Devices

Field devices are the industrial equipment that communicate control I/O signals
between a process and PLC. Two of the most important signals used in process
control are as follows:
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(a) Process Variables - In industrial process control, a process variable is
measured by an industrial equipment called sensors, and acts as input to PLC.
Precisely, a sensor converts physical, biological and chemical quantity into
electrical signals that can be measured or interpreted, and sends them to the
PLC.

(b) Manipulated Variables - The variable that needs to be manipulated in
order to have control over a process variables is called a manipulated vari-
able. Actuators are transducers that convert electrical signals acquired from
the PLC to mechanical motion, and communicate them to the process to
manipulate its state.

The field devices can communicate both analog and discrete signals. Analog signals
are continuous values, such as pressure or temperature. Analog sensors produce
voltage signals or current signals, which is proportional to the quantity being
measured, and the value perceived by the PLC depends on its configuration. For
example, some Allen Bradley SLC PLC models return any integer between 0 to
8191 for an input of 0 to 5 volts. Examples are flow transducers, humidity sensors,
load cell sensors, potentiometers, pressure transducers, vibration transducers and
temperature sensors. Analog output interfaces translates the discrete values of the
PLC into continuous analog output signals. Examples include modulating control
valves, chart recorders, motor drives, analog meters, etc. For instance, say a PLC
decides to send a 50% open command to a control modulating valve, this command
signal is transmitted in form of a 4-20 mA DC electric current.

Discrete sensors send high/low signals to PLC corresponding to some physical pro-
cess parameter. Examples include limit switches, proximity switches, photoelectric
sensors, etc. Discrete actuators are usually used to turn on/off motors, wipers,
pistons, heating elements, etc. and examples include magnetic valves, solenoids,
relays and contactors, etc.

2.2.2 Programmable Logic Controllers

PLCs act as the nucleus of industrial automation controlling a multitude of pro-
cesses of varying levels of complexity. PLCs are specialized computers preferred
in industrial environment due to their multiple input-output arrangements, resis-
tance to high temperature and electrical noise, capability of executing real-time
tasks with high efficiency, electromagnetic interference and mechanical vibrations.
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Some of the major advantages of using PLCs over PCs and COTS devices are as
follows:

• Easy to connect to different hardware modules.

• Easy replacement of malfunctioning circuits.

• Easy to program and re-program.

• Easy to maintain and repair.

• Shelf life of at least 20 years.

• Real-time control software.

• Capable of acting as an edge device, i.e. PLC connects to field devices over
the control layer, SCADA/HMI devices over the supervision layer and engi-
neering workstations over the configuration layer.

PLCs are microprocessor-based computer units that controls multi-variable pro-
cesses through the coordination of the following modules: (a) processor, (b) I/O
modules, and (c) power supply. The processor contains CPU andmemory. A typical
processor implements the logic and controls the communication among different
modules. In addition, it contains at least one interface to the engineering work-
station and many interfaces to remote I/O and other communication modules for
connecting with HMIs. The controller memory is divided into program and data

memory. The program memory contains the control program, and accounts for
most of the memory of the device. A typical Allen Bradley ControlLogix 1756-
L74 assigns 16 MB for housing the control program, while as little as 0.98 MB
is allocated for storing the rest. The data memory stores I/O signals acquired
through the field devices in process image tables, status of timers, counters, data
storage, firmware, system administration modules, etc. The I/O modules condi-
tion the signals from the sensors and actuators and does the interfacing with
the process image tables. As programmable devices, PLCs offer the flexibility for
re-engineering of control programs when there is a change in mechanical setup
of the manufacturing system or some other requirement that mandates on-the-fly
changes to program code.

During operation in RUN mode, a PLC repeatedly executes a scan, during which
input channels from from all input modules are copied to the process image tables,
the control program is scanned, and the outputs held in the internal memory are
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updated and finally copied into the actual output modules. The scan cycle time,
depending upon the size of control program and the number of I/O channels, is of
the order of milliseconds to minutes [186].

For serving today’s expanding demands of industrial controllers, leading automa-
tion companies have come up with new set of industrial controllers called Pro-
grammable Automation Controllers (PACs) with advanced features in terms of
communication, data logging, process control in a single programming environ-
ment. Allen Bradley series of PACs are one of the most featured set of controllers
[136] and include various models such as ControlLogix, Compactlogix, FlexLogix,
MicroLogix. These controllers follow a tag-based approach for memory addressing
where tags represent data and identify the areas in the memory where they are
stored, which makes it flexible to program data as per the needs of the application.
The 1756-ENBT and 1756-EWEB modules provide ethernet connectivity to the
controllers, supporting a wide variety of control system protocols such as Eth-
erNet/IP, Modbus TCP, etc. Other popular PLC manufacturers such as Siemens,
ABB, Omron, Delta, Honeywell, Schneider Electric follow a similar architecture
and protocol space.

2.2.3 Control Programs

Control Programs incorporate the logic for controlling the factory processes, and
in essence act as the ’decision-making layer’ for the process control framework.

The programs consist of a sequence of instructions, that constitute high-level
abstraction of the process descriptions specific to the industrial application. Control
programs employ digital sequential logic circuits to make decisions and calculate
the value of manipulated variables, based on values of process variables. Different
PLC vendors offer dedicated tools for development and compilation of control
programs, such as Simatic STEP 7 by Siemens, Studio 5000 by Rockwell Automation,
Software Unity Pro by Schneider Electric, etc. Based on control narratives by
operations engineers, control programs are developed at engineering workstations
by process engineers in programming languages compliant with IEC 61131-3
standards [99] on software architecture and PLC programming guidelines, and
are downloaded to the PLC over industrial communication protocols.

• Structured Text (ST): This is a text-based high-level language that mimics
classical programming languages C, PASCAL with the flexibility to perform
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Figure 2.2: Control Program Engineering: Control programs are downloaded to the PLC
using dedicated industrial buses on top of ICS network protocols.

complex arithmetic calculations, table manipulations that can be performed
over a single command line.

• Function Block Diagram (FBD): This is a graphical programming language
that uses a set of elementary blocks as functions, with multiple input-output
arrangements.

• Ladder Diagram (LD): Based upon an industrial evaluation, this is the
most popular language among ICS engineers and technicians. This is a
graphical language resembling traditional electrical wiring diagrams that
uses fundamental components such as rungs, contacts and coils to execute
basic control functions, such as logic, time-control, counting, etc.

• Instruction List (IL): It is a low-level textual language that resembles as-
sembly language and most of IEC compatible development tools translate
codes written in other languages to IL before generating compiled binaries.

• Sequential Function Chart (SFC): This is mostly a graphical approach for
structuring the program using a flow-chart based construct.

2.2.4 Industrial Communication Protocols

The complex nature of distributed control in industrial infrastructures requires a
set of communication schemes to tie the various system modules together. Some
distinct features that set it apart from IT networks include: (a) real-time or nearly
real-time control, (b) data integrity, (c) high noise immunity, (d) reliability in
harsh industrial environments [33]. Initially the PLC manufacturers designed
their own control networks, called data highways, which were proprietary in
every sense, which made it difficult to integrate PLCs, I/O devices, HMIs that
are designed by different manufacturers. Today, most manufacturers of PLC and
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control equipment support open communication networks, based on intermediate
standards developed through industry associations.

Industrial communication networks can be categorized into three types, of which
we discuss the first two, as the third one is out of the scope of this study.

• I/O Networks - I/O networks work at the lowest level of the process control
framework, and provide communication links between the field devices and
PLCs at the control layer. The industrial communication protocols at this
layer are typically characterized by relatively small data packet sizes, ring
topologies, high degree of reliability, fault-tolerance, real-time and deter-
ministic operation [33]. These networks carry device-dependent messages
following non-standard formats of fixed lengths, which is defined by vendors
and process engineers of the control application [196].

• Distributed Control Networks - Distributed control networks work at the
middle layer of the process control framework, providing communication
link between PLC and HMIs, data historians and engineering workstations
constituting both supervision and configuration layers. In a nutshell, this
network allows exchanging messages that helps control message requests,
monitor and manipulate tags and device parameter specifics and device
configurations. The messages contain rich semantics about the information
being exchanged, with characteristics such as high speed, star topologies,
high degree of reliability, etc.

For wired communication networks, the industrial control framework adheres
mostly to the standards: Fieldbus and Industrial Ethernet [160]. A careful analysis
of these standards is essential for designing the control framework of an industrial
application.

Fieldbus, standardized as IEC 61158 [59], provides deterministic, reliable, real-time
networking solutions [19] but at a maximum of 10-12 Mbps, fails to provide the fast
connectivity that Industrial Ethernet offers. Again, Ethernet connectivity provides
high bandwidth and marks a significant increase in the speed of data-transfer
(sometimes, at the speed of 100 Mbps), however it lacks intrinsic deterministic
control due to collision domain (intrinsic property of ethernet networks). The size
of data packets are larger with ethernet, and architectural variants allow easier
integration of cyber security.
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Due to availability and high performance of the ethernet products, unlike Fieldbus
systems, with a significantly bigger consumer electronics and IT market, the price
of ethernet devices are low, with high interoperability and performance. From a
user perspective, the pool of talent on ethernet technologies, along with the easily
available tools, make it easier to deploy than fieldbus technologies.

Ethernet connectivity also restricts the designer to limit the distance between
various system modules, which Fieldbus systems can avoid. Fieldbus has multiple
physical layers, such as RS-485, CAN, RS-232, whereas, the Ethernet networks
use the same physical layer based on the standard 802.3, with the flexibility to
operate using cat5e cables, making it simpler for implementing. Ethernet supports
vertical integration, making the OT and IT networks integrate for overall control
and monitoring in industrial automation. Ethernet requires no extra hardware,
typically integrated into the CPU itself, whereas, Fieldbus requires an additional
network interface card.

Examples of fieldbus includes Profibus [210], Modbus [209], DeviceNet [205],
CANopen [203], ControlNet [204], etc. Examples of Industrial Ethernet include
Profinet [211], EtherNet/IP [208], Ethernet CAT [207], Modbus TCP [16].

The 2022 annual report by ISSUU (see Figure 2.3) estimates Industrial Ethernet
standards occupying around 66% of the global market of newly installed nodes
compared to fieldbus technologies at 27% [103]. EtherNet/IP is the most popu-
lar and best in-class ethernet communication protocol [78], and the adoption
is increasing at a fast rate globally. There are a set of arguments behind Eth-
erNet/IP emerging as the most popular protocol among the industrial control
systems. EtherNet/IP follows the CIP standards, where all devices are represented
as a series of objects that decrease the training and start-up required when new
devices are brought online. Also, Ethernet/IP provides improved response time
and greater data throughput compared to other CIP implementations, such as
DeviceNet and ControlNet [15]. EtherNet/IP can also connect devices in all the
three layers of a model ICS, along with a consistent application layer interface.
EtherNet/IP provides the best vendor support, flexibility and total architecture
support as compared to all its competitors in the market, including Modbus/TCP
from Groupe Schneider, Profinet from Siemens, and EtherCAT from Beckhoff [15].
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Figure 2.3: Market shares of industrial communication protocols based on 2022 report
by ISSUU.

2.3 Analyzing the Threat Surfaces

In this section, we present an in-depth analysis of the threat surfaces for targeted
attacks against industrial infrastructures, a brief overview of which has already
been presented in Chapter 1 (see Section 1.1). Our discussion follows from the
large-scale adversary tradecraft undertaken in infamous targeted attacks reported
against critical infrastructures. The significance of this survey is in identifying
and designing specific and accurate countermeasures targeted towards a secure
ICS framework.

2.3.1 ICS design flaws

Infamous cyber-attacks plaguing the ICS domain mostly stem from the insecure-
by-design industrial controllers and proprietary communication protocols that
carry critical control and configuration information in cleartext.

The recent years have marked a significant increase in the number of ICS vulner-
abilities [155]. CISA disclosed 681 vulnerabilities, with more than 22% assigned
critical and 42% rated with high severity [114]. Nevertheless, it is essential to real-
ize that even if the industrial control establishments eliminate all these vulnerabilities,

an adversary can still exploit the design flaws to cause targeted attacks.

PLCs constitute one of the weakest links in ICS security [199]. Being an edge-
device operating at the control, supervision and configuration layers, PLCs serve
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as the most preferred attack point towards targeted attacks. The blueprint of a
generic PLC does not include any modules for security; in particular, the embedded
engineers did not incorporate security provisions during its design phase as they
were developed with the sole purpose of achieving automation. PLCs are insecure-
by-design, i.e. an adversary can use the documented features to stop a valve
by writing commands to the PLC and need not exploit any vulnerabilities. Of
additional note, the PLC vendors limit access to its memory to its protocol address
space, and do not share the implementation details of the proprietary hardware
architectures, which makes it harder for the customers, who do not have the
provisions for installing security modules within the controller.

The ICS communication protocols do not include inherent provisions for security.
Interestingly, application-specific protocols, such as Modbus , DNP3, EtherNet/IP
carry critical control/configuration information cleartext. In particular, the ICS
protocols are not designed with achieving the security goals of integrity, authen-
tication and encryption. This indicates that any unauthorized network access
(control plane) for eavesdropping/manipulating the process parameters or logic is
not visible to engineering and security staff at the monitoring units.

An important takeaway is that till security controls are put to effect against the
design flaws of ICS, no amount of defence and policy responses to prevent, detect
or deter targeted attacks would be effective against industrial infrastructures.
Correcting ICS protocol vulnerabilities is an ambitious goal as they are open
communication standards, working perfectly for what they are designed and not
specific to the ICS vendors. A convenient and feasible approach would be the ICS
vendors taking the following initiatives:

• Integrate cyber security features directly into the PLC platform, and address
the corresponding threat model to be shared with the customers.

• Allow some application-level access to the PLCs, so that the customers can
define and deploy the necessary security features specific to the target control
application.

• Integrate cyber security in the development life cycle, such that the customers
are able to do regular audits for the SDL at FAT/SAT.

Viewed along these lines, long lifetimes of the legacy controllers imply living with
the security risks for decades/years.
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2.3.2 Heterogeneous ICS Networks

In what follows, we study the heterogeneous ICS networks to bring to light the
most vulnerable layer in ICS framework that account for bringing about majority
of the targeted attacks.

The control layer exchanges real-time signals, and the commands are preset in
the hardware configuration of the devices. The messages at this layer follow non-
standard application-level semantics, partially defined by the vendors and process
engineers [196]. An adversary who has unauthorized access to the network at this
layer, requires detailed understanding of the process design and implementation
specifications for parsing and manipulating the packets. More specifically, the
adversary needs access to device specifications, electrical and installation layouts.

However, packets at the supervision and configuration layers contain rich semantic
application-specific information, making it less arduous for an adversary interpret
the payloads. To see this, we refer to [196], where the authors discuss the challenges
that come with parsing device-dependent implicit messages at the control layer,
compared to the explicit messages at the supervision and configuration layers of
Secure Water Treatment (SWaT) testbed [129].

2.3.3 Threat Surface

In this section, we analyze the various attack points in the ICS supervision and
configuration layers, assuming that an adversary does not have to the control
layer. This is admissible, as the attack vectors with lower relative likelihood could be

ignored [185]. Several attacks are possible, if the adversary gets physical access
to the cyber system, while a wide range of other attacks are possible by adding
networked cyber-dimension, increasing the scope of what could be attacked.

We begin the section by introducing an adversary, who can be a person, program or

a computing system (running in time polynomial in the security parameter of the

system). The adversary has a basic understanding of how ICS control, configuration,
and diagnostic data moves between the PLCs and HMI/engineering workstations.
The ultimate goal of the adversary is to intercept the information exchanged
between these devices and cause false data injection attacks or industrial espionage.
We note that it might also be necessary to protect an ICS from threats such as
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Figure 2.4: Attack points of an adversary at the supervision and configuration layers of
an ICS.

phishing, denial-of-service attacks, etc., which is out of the scope of this study.
The adversary is deployed in one of the following settings:

1. The adversary has unauthorized access to plant communication network at
the supervision layer of the process control framework. We consider that the
adversary can set up a physical device at any point in this network and has
tools to interact with the ICS protocols and interpret the semantics of the ICS
payloads. Such an adversary can leverage the access to perform interception
and modification of critical control parameters exchanged between PLC and
HMI.

2. The adversary has unauthorized access to the PLC and the plant communi-
cation network at the configuration layer of the process control framework.
This gives him an advantage to recover the clear text control program imple-
mentation for the target control application and reverse engineer to perform
reconnaissance of process control.

Of note, we do not consider the adversary to have access to HMI/engineering work-

stations, as these devices are usually sophisticated and high-end reliable computing

platforms, and thus could be deployed with device-level security.

2.4 Recommended Security Controls

With no application-level security support provided by the PLC vendors and inse-
cure nature of open communication standards, securing process control framework
is solely dependent on bump-in-the-wire techniques using COTS hardware and
software modules, that provides cryptographic implementations at the transport,
network and data-link layers of the OSI model.
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Nevertheless, it is important to consider the real-time nature of the industrial
control applications. A control application with unacceptable delay is no longer
time-invariant, and the maximum permissible delay is directly proportional to
the response rate of the field devices [3]. While applications such as food pro-
cessing could allow delay of up to 8 milliseconds, safety-critical applications,
such as turbo-machinery, magnetic suspension systems allow up to 1 millisecond
delay [96]. Lightweight cryptographic primitives as discussed in [107] could be
implemented in real time running environments, provided their running time
is within the latency requirements of the application, to avoid disrupting the
normal physical operations of the industrial processes. Simulation experiments
have been performed on PLC networks [194] with symmetric ciphers, and Rijn-
dael AES has shown the best results in terms of speed of encryption and size of
input data. However, using AES in a real PLC network can be very challenging
as AES requires cryptographic hardware support and binary fields for Sbox and
Mixcolumns computations with look-up tables for efficiency. With stream ciphers,
simplicity in design and speed in hardware is a major advantage, however the
initialization phase before the protocol starts is mostly time consuming. All these
factors make it important to select cryptographic primitives by considering a
careful trade-off between performance, cost and security. Considering safe opti-
mizations of existing cryptographic algorithms is discussed in [173] has risks, as
the embedded designer needs to extremely familiar with the algorithm he chooses
to optimize with even a small mistake leading to expensive security breaches.
Less expensive techniques, such as hashing can be used to provide authentication
between PLC devices, however confidentiality cannot be implemented with such
an arrangement. While the domain of cyber threats in the existing PLC networks
is huge, a proper risk-analysis can lead to identification and development of a
sophisticated security framework for integration into the ICS networks.

2.4.1 Defense and Policy Responses

In this section, we discuss the various defense and policy responses prepared by
the industry in combating targeted attacks against critical infrastructures [101,
153].

• Making a Clear Distinction between ICS and IT Security. Visualizing
how the security requirements of ICS deviate from that of an IT, is important
in designing security paradigms, catered to the requirements of a control



Recommended Security Controls 47

application. ICS deals with real-time data, tampering which could lead to
fatal consequences such as economic crisis or loss of human life. A high de-
mand of availability and responsiveness of these time-invariant applications
require cryptographic implementations that incur significantly low time
and space overheads, and thus coping with the latency requirements imply
lower security guarantees. In particular, IT security protocols, such as TLS,
IPSec etc. fail to meet the aforementioned objectives. Furthermore, features
mandated by IT security protocols might not be a defacto requirement for
generic ICS facilities. What is more significant is that the IT protocols fail to
provide application specific security in ICS-centric settings. As opposed to
the CIA triad that bolster IT security, ICS focuses on availability to be the
most significant aspect, followed by integrity, while attributing the lowest
priority to confidentiality.

• Creating Demilitarized Zones. ANSI/ISA - 99 standard [5] suggests par-
titioning the ICS network into various logical DeMilitarized Zones (DMZ)
according to the Purdue Enterprise Reference Architecture (PERA) model
[125]. Within a zone, all the devices have similar level of security, based on
parameters such as criticality and potential implications. Such segmenta-
tions help in deploying additional layer of security, preventing a threat to
propagate once it infiltrates and infects one of the zones [177].

• Implementing Anomaly and Intrusion Detection Tools on ICS Net-
works. Prioritization of availability and being uptime has led to understating
active or preventive solutions, and shifting towards a detection and response
paradigm. ICS security practitioners recommend implementing signature
and anomaly based IDS in the industrial communication networks, a detailed
discussion on which is presented in Chapter 3 (see Section 3.1.1).

• Investing in Cyber Security Education and Training for IT, OT, and
Hybrid IT/OT Personnel. All employees authorized to access OT/IT assets
associated with a target control application are recommended to receive
appropriate cyber security training to lower the risk of security breaches.
Furthermore, management authorities at the enterprise level are given aware-
ness training to make secure transactions at the IT-OT convergence level.
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2.5 Cryptographic Primitives

In this section, we discuss about cryptographic primitives, which we make use of
in the proposed constructions (covered in the upcoming chapters).

2.5.1 Cryptographic Implementations

The scope of our cryptographic implementations is limited to ciphers that incur
low computational overhead, and in this section we present a brief overview of the
cryptographic primitives used in our proposals. We have aimed to implement the
proposed methodologies using cryptographic ciphers that are ideal for deploying
in environment with tight cost and implementation constraints: (a) limitedmemory
(registers, RAM, ROM), (b) reduced computing power, (c) low battery power, and
(d) real-time response [191].

Block Cipher. Among the popular lightweight block ciphers, we have imple-
mented one of our constructions using AES (considered in ISO/IEC 29192), with
a 128 bit key and block size, throughput of 12.40 and 3400 GEs, encrypting a
plaintext within 1032 clock cycles. Though AES could be challenging to implement
in real PLC networks, our justification behind using AES-128, is that it is considered

as one of the most suitable variants in NIST-approved cryptographic primitives for

constrained environments [131] and its speed in software implementations makes it a

suitable choice for our simulation setups. We note that the results of our experiments
are expected to improve when implemented with lightweight ciphers that are
faster than AES-128. For information on how AES works, interested readers can
refer to [95].

Stream Cipher.We have implemented two of our constructions with ChaCha-20,
a lightweight stream cipher [49] developed by DJ Bernstein, and compared their
performances with AES. With stream ciphers, simplicity in design and speed
in hardware is a major advantage, however the initialization phase before the
algorithm starts is mostly time consuming. ChaCha-20 uses a 256-bit key, with
block size of 64 bytes, and a throughput of 111.3. A detailed description of the
algorithm can be found in [130].

2.5.2 Program Obfuscation

In this section, we present a survey on program obfuscation [142], a tool to
protect intellectual property of software programs. The topic is extensively studied
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by the research community under two broad categories, code obfuscation and
cryptographic obfuscation. We explore the obfuscation techniques employed by
real-world applications (broadly classified as code obfuscation) and follow this
with a discussion on black hat obfuscation scenarios, where malicious obfuscators
propagate malwares in computer software. Finally, we study the standard notions
used in cryptographic obfuscation, the last of which is the highlight of this discussion.

Obfuscation is a powerful tool that aims to achieve security against reverse engi-
neering of classified information in a program from a Man-At-The-End (MATE)
adversary who has complete control over the program and its execution environ-
ment [8].

We give a brief intuition to the security guarantees provided by program obfus-
cation towards software protection through the following motivating context:
Suppose a software developer designs an application program that solves an im-
portant problem and wishes to commercialize his work by selling his program.
However, he is now challenged by the fact that his customers can extract the valu-
able information proprietary to the software and gain some economic advantage
through it. Such an extreme threat environment, where the software implemen-
tation of a program is available to an untrusted host, standard cryptographic
solutions with encryption algorithms do not apply, as the program needs to be
decrypted and then executed. This leads to a compelling yet general question: how

would the software developer ensure that the intellectual property of the application

program in not extracted by his customers?

To answer the above, the software developer could obfuscate the program before
distributing it to his customers, such that the secrets within the program are
protected (heuristically or provably), yet facilitating correct functionality. Though
an ambitious goal, as we will see in the upcoming sections, this could be achieved
for a broad class of programs.

Program obfuscation protects the assets, which are the secrets within a software
program. The assets are defined by the owner of a program, which could be
proprietary algorithms, strings (cryptographic keys), designs (data structures,
modules), regular expressions, etc. and needs to be kept hidden from anyone who
has access to the source code or binaries. An obfuscator transforms a program
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to its semantically equivalent counterpart, such that access to the obfuscated
version does not give away assets, yet preserves the functionality. Depending
upon the security properties a program desires to achieve, obfuscation can be
a powerful tool to defend against both static analysis (analysing the code) and
dynamic analysis (learning the assets from the input/output behaviour of the
program) by PPT algorithms.

In the following, we look into the various obfuscating code transformations imple-
mented in real-world applications 1, and analyze the security provided by these
techniques.

Code Obfuscation

Code obfuscation refers to the modification of the source code or compiled code
such that comprehension and interpretation of the assets through static and
dynamic analysis are "hard" to perform [142]. Though there are no rigorous
definitions as to security guarantees provided by such modifications, the authors
in [57] identify four valuable criteria for evaluating the strength of the obfuscating
code transformations:

• Potency - The obfuscating transformations should introduce enough confu-
sion to the original code by hiding its intent. To achieve this, the following
methodologies are suggested: introducing new methods and functions, in-
creasing nesting level of conditional and looping constructs [55, 57, 58, 162],
method arguments, variable dependencies [94], etc. such that overall program
size increases, leading to deliberate addition of ambiguous information.

• Cost - The obfuscating transformations should not introducemuch overhead
in time and space.

• Stealth - The obfuscated code should be indistinguishable from the origi-
nal code, i.e. it should be hard for an adversary to determine whether an
obfuscating transformation has been applied to the original code.

• Resilience - An automated deobfuscator should expend more resources to
extract the assets from the obfuscated code, compared to the effort put in for
constructing the deobfuscator.

1Real-world applications of code obfuscation include Digital Rights Management, Mobile Agent Com-
puting, Grid Computing, Artificial Diversity, Malicious Reverse Engineering, etc. [142]
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In [57], the authors identify four main classes of obfuscating code transformations:

(a) Abstraction Transformations - These transformations break down the
structural representation of the program. Obfuscation techniques include ex-
pression equivalence [187], reordering code and data [142], function inlining
and outlining [56], identifier renaming [52], etc.

(b) Data Transformations - These transformations modify the form in which
data is stored in a program. Encoding integers and strings [142], arrays
(array permutation [74], array restructuring [73] are very prevalent in high
performance code), etc. are fairly common approaches towards obfuscating
hard-coded data in a software program.

(c) Control Transformations - These transformations modify the control
structures (if and while statements), such that an adversary finds it difficult
to reconstruct the original control flow graph. The most stealthy, low-cost
and thus prevalent control flow obfuscation method is opaque predicate
obfuscation [215]. Conceptually, opaque predicates are Boolean valued ex-
pressions, whose values are either true or false for all possible input values,
and are fixed while applying the obfuscating transformations. The intuition
is to introduce superfluous branches that will never be taken at runtime
(for example, an opaquely true predicate forces the control flow execution
towards the true path). However an attacker finds it difficult to distinguish
them from predicates that lead to original path conditions. Due to its popular-
ity in a wide array of applications (software diversification [62], metamorphic
malware mutation [38, 39], software watermarking [6], Android Apps ob-
fuscation [113]), opaque predicates have been an area of active research.
Other control flow obfuscation techniques are control-flow flattening [198],
call-stack tampering [175], loop transformations [20], etc.

(d) Dynamic Transformations - These transformations cause the program
to continuously transform at the runtime. Packing and encryption [45],
hardware-assisted code obfuscation [227], etc. are some example methodolo-
gies.

An important takeaway from the above discussion is that the notion of code ob-

fuscation does not quantify (a) the theoretical limits of time and resources to be

expended by an adversary in performing deobfuscation, (b) success of an adversary in
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attempting to deobfuscate an obfuscated program. The threat models for these trans-
formations are vague and based upon the goal that an adversary should use more
resources to reveal the assets in the obfuscated program, as compared to the assets
used in the original program. This provides sufficient reasons to move to crypto-
graphic obfuscation, where the assets are protected by some cryptographically
hard problems, which however is rarely used in practical implementations.

We now review black hat obfuscation, a scenario where obfuscators hide the
malicious functionality within programs. Our sole purpose behind this discussion
is to bring to attention the significance of designing verifiable obfuscators, which
we introduce in Chapter 8.

Unsurprisingly, the powerful essence of program obfuscation has found spectacular
success in black hat scenarios [143], where the obfuscators hide undesirable
functionality within software programs. Obfuscation is used by malware writers
to protect their viruses, worms, Trojans and rootkits from detection.

Obfuscation conceals characterizing features of malware, undermine anti-malware
software, and thwarts malware analysis [150]. Polymorphic and metamorphic
malwares make use of various obfuscation transformations such as dead-code
insertion, register reassignment, subroutine ordering, instruction substitution,
code transposition and integration to evade detection [219]. However, the most
widespread and popular of the existing approaches incorporate trigger-based
initiation of malicious payloads based on conditions satisfied by a specific set of
inputs [141] (for example, malicious actions are made to hide behind some condi-
tional expressions such as a particular day, presence of a certain file, keyloggers,
bot-command inputs, etc), followed by obfuscating the conditional expressions.
In [180], the authors design a conditional code obfuscation technique that relies
upon one-way hash functions, such that it is hard to identify the set of inputs for
which the conditions are satisfied. In particular, the authors obfuscate the equality
conditions to inject some malicious functionality and develop a compiler level
tool written in C/C++.

The most important line of defense against such malicious codes are scanners

(static analysis), that rely upon a database of signatures characterizing malware
instances, and debuggers (dynamic analysis), that study the behavior of a program
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by executing the binaries on restricted environment. Of note, the static analysis
methods are inaccurate in detecting the zero-day exploitations using techniques
such as structure and pattern identification [141], and the dynamic analysis meth-
ods, such as fuzzy testing schemes lead to high false positive rates due to low
coverage of inputs [215]. Interestingly, the cryptographic community has not been
much attentive towards dealing with malicious obfuscators that inject undesirable
functionality in programs.

Cryptographic Obfuscation

Program obfuscation has received considerable recognition in the cryptographic
community over the recent years. An obfuscator O is a probabilistic polynomial-
time algorithm that transforms a program C to its semantically equivalent coun-
terpart C̃ , such that a secret, that is efficiently computable from C , is hard to
extract, given C̃ .

The definitional framework of program obfuscation was established by Barak et

al. in their seminal work [24] using a simulation-based security paradigm. They
established the notion of virtual black-box (VBB) obfuscation, where a polynomial
adversary A having access to C̃ has but a negligible advantage in extracting a
desirable property over a polynomial simulator S , who only has oracle access to
C ; in short, anything that is efficiently computable from C̃ , can also be computed
efficiently from the input-output access of the program. Their main results rule out
the possibility of designing efficient obfuscators for all class of programs. However,
obfuscators for specific families of programs may be achievable.

We recall some basic concepts used in theoretical cryptography so that the readers
can refer to them while going through the standard notions used in cryptographic
obfuscation (defined in the subsequent segments).

Probabilistic Polynomial Time (PPT) Adversaries [108]. They are efficient
randomized algorithms running in time, polynomial in the security parameter
λ ∈ N of the system. We equate the notion of "small probability of success" with
probabilities smaller than inverse polynomial in λ. We say that a scheme is secure,
if a PPT adversary cannot break the scheme, except with negligible probability in
λ. For real-world efficiency, we require the honest parties to run in polynomial
time in λ, while the adversaries are allowed to be much more powerful.
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Definition 2.5.1 (Distributional Virtual Black-Box Obfuscator (DVBB) [24, 23]).
Let λ ∈ N be the security parameter. Let C = {Cλ} be the family of polynomial-size

programs parameterized by inputs of length n(λ), and let D = {Dλ} be the class of
distribution ensembles, where Dλ is a distribution over Cλ . A PPT algorithm O is a

VBB obfuscator for the family C and the distribution D, if it satisfies the following
conditions:

• Functionality Preservation : For every λ ∈ N and for every C ∈ Cλ, there exists
a negligible function µ(λ), such that:

Pr
O

[ ∀x ∈ {0, 1}n(λ) : O(C)(x) = C(x) ] > 1− µ(λ)

where the probability is over the coin tosses of O.

• Polynomial Slowdown : For every λ ∈ N and for every C ∈ Cλ, there exists a
polynomial q such that the running time ofO(C) is bounded by q (|C|), where
|C| is the average running time of the program.

• Virtual Black-box : For every (non-uniform) polynomial size adversaryA, there
exists a (non-uniform) polynomial size simulator S with oracle access to C ,

such that for every distribution D ∈ Dλ:∣∣∣ Pr
C←Dλ,O,A

[A(O(C)) = 1]− Pr
C←Dλ,S

[SC(1λ) = 1]
∣∣∣ ≤ µ(λ)

where µ(λ) is a negligible function.

To summarize, if there exists a non-uniform PPT algorithm that computes a predi-
cate from an obfuscated function, then there exists a non-uniform PPT algorithm
that computes the same predicate from oracle access to the function with almost
same probability.

In [41], Canetti shows the construction of an efficient obfuscator for point functions
(a point function evaluates to 1, if and only if the input equals to a particular value,
e.g. password check) that achieves a relaxed notion of virtual black-box using a
probabilistic hashing algorithmR that imitates the ’useful’ properties of a random
oracle. The obfuscated program storesR(x), where x is sampled uniformly from
a superlogarithmic min-entropy distribution, such that on input y, outputs 1, if
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R(x) = R(y). Access to the obfuscated program does not give away the hard
coded hashed secret, yet facilitates in correlating it with a given input value.
Additionally, it does not allow a PPT adversary to identify the secret, except with
negligible probability, as it is computationally hard to find an accepting input, a
property defined for evasive functions (see Definition 2.5.2).

Since then, there has been a multitude of research works towards constructing
special-purpose obfuscators that restrict to a special class of functions for which
it is hard to find an accepting input from the black-box access to the program.
Obfuscating these functions gives a strong intuition that learning assets of a
program by identifying the accepting inputs within modeled time-complexities is
computationally hard.

In what follows, we define evasive functions, which we will restrict to in our
proposed constructions. They are a special class of Boolean functions with the
condition that for a random circuit from the collection, a PPT algorithm finds it
hard to map an accepting input. For these functions, it makes sense to consider an
input-hiding obfuscator (introduced by Barak et al. in [41]), the intuition behind
which is that given an obfuscated program produced by an input-hiding obfuscator,
it should be hard to find an accepting input for the program.

Definition 2.5.2 (Evasive Circuit Collection [41]). A collection of circuits C =

{Cλ}λ∈N parameterized by inputs of length n(λ) is called evasive, if there exists a

negligible function µ(λ), such that for every λ ∈ N and every input x ∈ {0, 1}n(λ):

Pr
C←Cλ

[C(x) = 1] ≤ µ(λ)

where the oracle access to the circuit allows at most p(n) queries.

Definition 2.5.3 (Input-Hiding Obfuscator [41]). An obfuscator O for a collection

of evasive programs C is input-hiding, if for every PPT adversary A, every λ ∈ N
and every auxiliary input z ∈ {0, 1}poly(n) toA, there exists a negligible function µ,
such that:

Pr
C←Cλ

[C(A(z,O(C)) = 1] ≤ µ(λ)

where the probability is also over the randomness of O.

To summarize, the above definition signifies that, given an obfuscated program
O(C), it is hard to find an input that evaluates to 1.
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A weaker security notion introduced by authors in [24], known as indistinguisha-
bility obfuscation (iO), states that obfuscations of two functionally equivalent
programs should be computationally indistinguishable from each other.

Definition 2.5.4 (Indistinguishability Obfuscator (iO) [24]). A uniform PPT al-

gorithm O is called an indistinguishability obfuscator (iO) for a class of programs

C = {Cn}n∈N, if it satisfies the following properties:

• Functionality Preservation : For every λ ∈ N and for every C ∈ C, there exists
a negligible function µ(λ), such that:

Pr
O

[ ∀x ∈ {0, 1}n(λ) : O(C)(x) = C(x) ] > 1− µ(λ)

where the probability is over the coin tosses of O.

• For any (not necessarily uniform) PPT distinguisher D, there exists a negligible
function µ(λ), such that the following holds: For every security parameter

λ ∈ N, and for all pairs of programs C , F ∈ Cλ, if C(x) = F (x) for all inputs

x ∈ {0, 1}n(λ, then∣∣∣Pr[D(O(C)) = 1]− Pr[D(O(F )) = 1]
∣∣∣ ≤ µ(λ)

In short, the above definition states that any two programs that are "functionally
equivalent", their obfuscation should be computationally indistinguishable.



Chapter 3

Literature Review

This chapter explores the existing state-of-art on addressing the security goals
identified in Chapter 1. The oncoming discussion is divided into two distinct parts.

The first part looks into the efforts by the ICS security research community in
detecting and preventing false-data injection attacks. In addition, it highlights the
importance attributed to the knowledge of process behavior in bringing about
influential and sophisticated attacks on ICS facilities, and analyzes the existing
literature that explores the efforts of an adversary, who uses various tools and
techniques to learn the operational semantics of target control application. Finally,
it presents an investigation on the existing attempts towards formalizing control
program abstraction.

The second part gives a detailed overview on the advances in program obfuscation.
In particular, it highlights upon the general and special purpose obfuscators in
the literature. Our intention behind this broad-level discussion on state-of-art
in cryptographic obfuscation is that not only does it address one of the security

objectives (not addressed prior to this work, to the best of our knowledge) in defending

ICS against targeted attacks, but also the contributions are of independent interest,

and have wider applicability in software program obfuscation.

3.1 Defending Against Targeted Attacks

In this section, we elaborate on the methodologies employed by the state-of-art
in achieving the security goals discussed in Section 1.2.3. Before we review the
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related work in this domain, we would like to draw the attention of the readers
to the fact that performing academic research in ICS security is largely hindered by

limitations in accessing a fully functional ICS facility, and majority of the published

algorithms rely upon simulations and emulations to test the effectiveness of the

designed approaches.

3.1.1 Detecting False-Data Injection Attacks

The existing methodologies for detecting false-data injection attacks either in-
volve inaccurate passive predictive modeling techniques using Intrusion Detection
Systems (IDS) [90, 104] or bump-in-the-wire approaches [48, 194] with expen-
sive cryptographic implementations that introduce heavy overhead in the critical
control path.

IDSs are categorized with signature and anomaly based detection techniques
[139]. Signature-based IDS contains a large database of attack signatures and
correlates them with the data being monitored, nevertheless are ineffective against
custom-made and zero-day exploits prevalent in targeted attacks [139].

Anomaly-based IDS models the intricate knowledge of target control application
into a set of rules that specify ideal behaviour, and flag any deviations [137]. Along
the same line, authors of [91] use auto-regression modelling techniques to design
a variable-specific forecasting model by monitoring the process variables, and
distinguish unobserved values as potential false-data injection attack.

In [137], Mitchel et al. design an IDS defining three states as secure, warning
and insecure, based on the behaviour of sensors and actuators. They model sys-
tem behaviour as a probabilistic finite automaton and use compliance degree to
distinguish between normal and attack scenarios.

However, anomaly-based predictive models are mostly inaccurate with high false-
positive rates [98], and designing them require in-depth knowledge of the process
control, which a process engineer might be unwilling to disclose to a security
personnel. As per SANS 2022 survey [153], only 7% of the ICS facilities allow an
external security provider to be acquainted with the control framework, while
rest of the organizations do not allow anyone but the owner of the operator or
the engineering manager.
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IDS can further be categorized as host and network based systems, depending on
the data source [98]. Host IDS (HIDS) such as Alienvault [66] monitors individual
systems by analyzing OS files, software logs and network connections, and can
distinguish based on privilege escalation, modification of critical files, known
malware rootkits, critical services that may have been stopped, and used access to
the system and applications [128]. However, HIDS are not suitable to be deployed
in ICS environment due to its nature of interfering with the processes [197]. On
the contrary, Network IDS (NIDS) such as Snort [172] uses adapters to examine
network capture, defines desired stages with parameters such as traffic alert, packet
size, etc. and flags warnings if it detects any changes in the baseline [168].

Several approaches towards designing NIDS are based upon analyzing industrial
communication protocols using syntax and grammatical verification rules [51, 119,
140]. Morris et al. design an IDS based on Modbus protocol specification, that uses
the rules of Snort [140]. Similarly, Lin et al. design an IDS with a protocol parser
that supports DNP3 and analyze legal values of different fields in the message using
Zeek [154] policies. In [51], the authors explore the ICS protocol specifications
and analyse communication patterns in diverse control applications to identify
patterns for tamper detection. In [120], Linda et al.mirror the network traffic under
stable conditions, and correlate them with ongoing packets to flag discrepancies.
Caselli et al. in [47] discuss the limitations of such network based IDS in detecting
covert Stuxnet-like custom-made attacks and zero-day attacks.

Other approaches [28, 48, 196] implement cryptographic primitives using COTS
modules, deployed in the critical control path, to perform accurate detection of
false-data injection attacks.

The authors in [177] discuss how an ICS adversary causes false-data injection
attacks by exploiting the existing vulnerabilities in ICS networks. They discuss
the significance of modifying the communication protocols, and employing SHA2
and a public-key/private key primitive for imparting data integrity and device
authentication. However, deploying such constructions would incur unacceptable
overhead for time-critical applications.

In [28], Batke et al. discuss an integrity profile for integrity assessment of ICS
payloads using TLS, which is an expensive solution, in terms of complexities
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involved, and thus not suitable for time-critical applications. In [48], John et al.

suggest adding a signature to the ICS payloads using ECDSA and HMAC, which
introduces significant overhead in the network bandwidth.

In [212], the authors use additional hardware modules on top of serial links to
encrypt control messages and append a Message Authentication Code (MAC) to
it. Such solutions are not custom-made for time-invariant critical applications
and thus not feasible to be deployed in control environment with high sampling
frequencies.

In [64], the authors deploy a low-cost device parallel to the controllers, which
transparently intercepts the control commands and correlates them with the status
of the physical I/O, such that potential inconsistencies due to false-data injection
are correctly detected. However, the authors do not discuss the threat surface
introduced due to the passive channel, i.e. how likely it is for an adversary to
compromise the communication in the supplementary pathway to render the
approach ineffective.

We aim to design solutions for detecting false-data injection attacks, that are neither

based on inaccurate and predictive intrusion detection methodologies, nor do they

impact the bandwidth used for critical control communication.

3.1.2 Preventing False-Data Injection Attacks

In this section, we review the state-of-art methodologies to prevent false-data
injection by encrypting ICS control and configuration messages. We also look into
the recommendations by ICS security practitioners for implementing security at

the application-level in industrial control applications. We start the discussion by
noting that existing solutions to impart confidentiality come in form of bump-in-
the-wire approaches that rely upon security offered by transport [28], network
[194] and data-link layers [194] .

Batke et al. [28] were the first to suggest wrapping the ICS application layer payload
in TLS/DTLS protocols by using a confidentiality profile. This was followed by
standardizing TLS in ICS network communication by IEC 62351-3 [157]. CISA
critical infrastructure security requires all ICS facilities to employ end-to-end
encryption using TLS [53].
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Though TLS is effective in securing IT communications, its features are not optimal
for use in ICS settings [14]. A typical control framework might have requirements
such as ‘provide confidentiality/integrity/authentication if read/write request about

valve v is being communicated’. TLS 1.3 imposes mandatory encryption, and as
such cannot be used for addressing such customized security requirements. Also,
features mandatory in TLS, such as AEAD and perfect secrecy [149] are not defacto
requirements in a generic ICS facility. Finally, TLS is an expensive solution, in terms
of the complexities involved, and thus not suitable for deploying in time-critical
applications [14].

In [194], the authors suggest a bump-in-the-wire solution that provides confiden-
tiality using AES_CTR to encrypt frames (link-layer implementation), along with
a CRC-based detection method, which is mainly for serial-based communication
systems and does not provide customized application-level security.

Secure DNP3 [127], a sophisticated ICS protocol that provides optional encryption
support with TLS, incurring noticeable overhead, does not take into account the
customized security requirements of an ICS facility.

A recent noteworthy development SSP-21 [14] provides optional encryption sup-
port by allowing encrypted sessions using an authenticated encryption mode.
Such expensive AEAD implementations are adequate for violating the real-time
requirements of a safety-critical application, and thus we claim are not suitable
for generic ICS facilities. Furthermore, the authors include a timestamp in session
messages (a feature not provided by TLS) and claim to impart purpose-built se-
curity. However, we argue that such a solution, though beneficial in thwarting
replay attacks, does not capture the custom-made security essentials of a control
application.

We aim to design solutions that provide defence against false-data injection attacks

within control infrastructures, that not only incur minimal overhead, but also aim

to achieve application-level security, in line with the demands of an ICS application

environment.
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3.1.3 Towards Reconnaissance of Process Control

This section highlights the importance attributed to the knowledge of process
behaviour in bringing about influential and sophisticated attacks, and analyses
the existing literature that explores the efforts of an adversary, who uses various
tools and techniques to learn the operational semantics of a target control system.

In [121], Line et. al. explain the role of motivation, resources and competencies of
well-organized adversaries in causing catastrophic consequences to the process
control, and argue that targeted attacks are more powerful than low-budget kiddie
scripts, that can be mitigated using off-the-shelf security products.

The "Industrial Control System Cyber Kill Chain" [9] emphasizes adversary’s
intimate familiarization of the target process in causing reliable and predictable
harm on systems. In [13], the author mentions different tools and techniques to
perform reconnaissance over ICS network protocols.

In [132] McLaughlin shows that process analysis could be done by obtaining the
control program which could further be used for process manipulation, resulting
into targeted attacks on the victim ICS.

In [91], the authors describe how awareness information containing regular and
critical updates to the supervisory infrastructure by the PLCs, collected from the
network traces, could be leveraged to design variable-specific forecasting model
corresponding to the process variables. They indicate that by parsing the header
and data segment of the application-layer protocol data unit (PDU) and using
techniques such as auto regression modelling and control limits, a behavioural
model for each process variable can be constructed, which eventually leads to
extracting the process control design. However, their threat model does not include
an adversary who leverages unauthorized network/PLC access to acquire control
programs, followed by reverse-engineering the program to extract ICS process
semantics.

Keliris and Maniatakos [109] propose a framework (ICSREF) to extract PLC control
logic by reverse engineering compiled control programs, followed by building
knowledge databases and reconstructing control flow graphs (CFGs). They discuss
how this design can facilitate an adversary in dynamic process-aware payload
generation.
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Authors in [161] show how to perform dynamic analysis of the reactive behaviour
of PLC control framework by recording the trace logs of the control program run
in the original execution environment and re-running the values collected from
the trace log in the host simulation environment, followed by building transition
graphs and identifying recurring patterns.

In [165], the authors develop a tool (Similo) for automated recovery of control
logic from ICS network traffic dump of control program downloads. They make
use of decompiler within ICS engineering software and reconstruct the high-level
source code.

The authors of [133] present a tool (SABOT) that (a) recovers the semantics of the
PLC memory locations mapped to the physical devices by comparing adversary’s
specification on process control design with unauthorized copy of control pro-
grams downloaded from PLC, and (b) generates malicious payloads for the target
ICS. The authors impose a strong requirement by allowing powerful adversaries
with accurate knowledge specification on the target plant behaviour obtained
from sources such as vulnerable HMIs, control plane protocols, etc. However, the
authors are imprecise about how HMIs help in identification of process design
with full accuracy, as it is but a reflection of the high level abstraction of the status
of process variables or control logic found in the PLC. It is also unclear how the
network traces aid in accurate target specification as predictive models can be only
be partially accurate, and also SABOT allows adversaries to be unfamiliar with
communication protocols. Finally, the authors suggest countermeasures against
such attacks using control logic obfuscation with no details whatsoever in how to
achieve the same.

In [179], the authors specify that a hard-coded value (for example, a program
snippet comparing the value of a sensor against a hard-coded threshold) in the
control program could be dangerous in view of contextual code manipulations.
However, they do not provide any detailed solutions to contain such attempts of
the adversary.

On further explorations, we observe that most of the existing works in ICS security
research focus on analysing false data injection attacks [46, 112, 123, 214] between
ICS equipment and corresponding propositions on ’detecting and preventing’ such
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attacks by adding cryptographic solutions with goals of integrity, authentication
and confidentiality [28, 48, 136, 196], while a very little attention has been given
on constraining the adversary in extracting the process control design. We argue
that the latter deserves significant attention by the research community as the
consequences of false data injection attacks could be escalated severely when pre-
ceded by reconnaissance of process control. To the best of our knowledge, none of
the existing works propose detailed methodologies for containing reconnaissance
of process control in ICS environments.

We aim to design solutions that prevent the adversarial efforts of extracting the

operational semantics of a process control system from a recovered implementation

of a control program for the target environment.

3.1.4 Formalization of Control Programs

The existing literature on formalizing control programs derives its motivation
from the need for software re-engineering and formal verification of PLC codes
[40, 87].

Falcoine and Krogh, in [79], model control programs as functions of the form
B : U × Q → Q, where U and Q denote the set of input and output variables
respectively. Nevertheless, the formalization does not specify the details on control
flow graph of the application. Adding to that, the authors do not consider PLC
analog control engineering by restricting the variables to be boolean.

In [124], the authors present Reusable Automation Component (RAC) containing
implementation details and formal specification of control programs. However,
not only that the formalization is complicated in terms of the specifications used
within RAC, but also it does not include the formal description of how the control
function reacts with the process.

In [220], Younis et al. develop an abstraction of low-level IL program into a high-
level form by line-wise conversion of the existing code into the form IF <

expression > THEN < statement 1 > ELSE < statement 2 > and convert it
into state automaton using SVG.
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A careful analysis of the state-of-art methodologies for developing formal models
of control program shows that such formalization captures the abstraction of
various components of the program, but does not capture the control flow, i.e. how
the control function interacts with the target system. This is admissible, as the
inspiration behind formalizing the control function is to identify the erroneous
behaviour of the program and check whether the program follows the structured
representation as defined by the process engineer [81].

To conclude, a methodical approach, that not only details the interaction of input

and output variables with the system, but also captures accurate control flow, which

is an area of active research [79], will be a significant step in designing solutions

for efficient software recovery, verification, as well as increasing adversary’s cost of

attack in extracting process semantics, the last of which is the focus of this work.

3.2 Advances in Program Obfuscation

In this section, we study the state-of-art general and special purpose obfuscators.

3.2.1 General and Special Purpose Obfuscation

The ideal notion of obfuscation requires "perfect" correctness, where the obfuscated
program C̃ computes the exact same function as C . A weaker, yet practicable
variation allows C̃ to approximate C with overwhelming probability over the coin

tosses of the obfuscator. Barak et al. [24] show that VBB obfuscation is impossible
for generic function family with exact functionality, and extend the impossibility
results for obfuscators preserving approximate functionality. In particular, they
show that given one-way functions exist, there exists a family of inherently
unobfuscatable functions F and a predicate φ : F → {0, 1}, such that

(i) Given any program that computes a function f ∈ F , the value φ(f) can be
efficiently calculated.

(ii) Given oracle access to f ∈ F , no efficient algorithm can compute φ(f).

Nevertheless, the authors leave open the possibility that large classes of programs
could still be obfuscated, referring to [41] as a form of special purpose obfuscation.
Such favoring assertions were followed by designing efficient obfuscators for
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evasive functions such as compute-and-compare programs [88, 202], pattern-
matching with wildcards [27, 30], fuzzy matching for Hamming distance [85], etc.
We remind the readers that evasive functions are the programs for which it is hard
to find an accepting input from the oracle access to the program (see Definition
2.5.2).

In [41], Canetti shows the construction of an efficient obfuscator for point functions
(point function evaluates to 1, if and only if the input equals to a particular value,
e.g. password check) that achieves a relaxed notion of virtual black-box using a
probabilistic hashing algorithm. In [200], Wee designed a VBB obfuscator for point
functions with multi-bit outputs.

In [30], Bishop et al. design an efficient DVBB obfuscator (see Definition 2.5.1) for
evasive conjunction functions using Lagrange’s interpolation, while proving its
security in the generic group model. Their security goal roughly states that, a PPT
adversary cannot distinguish the obfuscation of C from obfuscation of a function
that always outputs 0. The construction satisfies "approximate" functionality
preservation for an ensemble of uniform distributions. A formal description of
their obfuscator is given in Algorithm 8.1. The evaluation procedure (see Algorithm
8.2) takes x ∈ {0, 1}n as input and outputs 1, if it matches the pattern pat and 0

otherwise.

In [88, 202], the authors propose a DVBB obfuscator for compute-and-compare
programs under the learning-with-errors (LWE) assumption, parameterized by
a polynomial time evasive function f and a target value y, such that on input x
the function outputs 1, if f(x) = y. As a building block, they encode branching
programs based upon directed-encoding scheme inspired by [89].

In [42], authors design a DVBB obfuscator that checks for membership in a
hyperplane of constant dimension and analyze its security under a strong variant
of decisional Diffie-Hellman problem.

In [63], Crescenzo describes an obfuscator for functions of the form Cϕ,s1,...,sm ,
where s1, . . . , sm are secret strings and ϕ denotes a monotone formula. Along
with hiding the formula gates, the obfuscator hides the secret strings and checks
whether an input x1, . . . , xm satisfies ϕ((x1 = s1), . . . , (xm = sm)). The con-
struction depends on indistinguishability notion and a newly introduced formula

indistinguishability notion for formalizing security.
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In [85], Zobernig et al. design an efficient DVBB and input-hiding obfuscator for
fuzzy matching for Hamming distance, based on a new computational assumption
"decisional distributional modular subset product problem". In particular, they
obfuscate evasive hamming ball membership programs parameterized by x ∈
{0, 1}n, such that on input y ∈ {0, 1}n, the obfuscator outputs 1 if and only if y
has a hamming distance at most r, where r < n

2 determines the actual security
level of the obfuscator.

We aim to design special-purpose obfuscators for encoding branching programs, that

would be applicable to obfuscating ICS control programs.





Chapter 4

TaDeT: Towards Efficient
Tamper Detection

As discussed in Chapter 1, false-data injection is the primary objective of ICS
targeted attacks. We consider a threat model, where an MiTM adversary with
unauthorized access to ICS network at the supervision layer modifies control pa-
rameters exchanged between PLCs and monitoring units/HMIs. Such adversarial
attempts are not detected by the HMIs due to lack of built-in security provi-
sions in ICS equipment and protocols. Existing passive IDS techniques are mostly
inaccurate (see discussion in Chapter 3), and bump-in-the-wire cryptographic
implementations violate the latency requirements of the time-invariant control
application. We propose a novel general-purpose framework TaDeT, that exploits
the analytical redundancies of the control environment to detect false-data injec-
tion attempts of the modeled adversary. Our construction relies upon lightweight
cryptographic primitives, and does not utilize the network bandwidth employed
for communicating critical control information. Furthermore, TaDeT framework
does not require a security personnel to be acquainted with the control design of
the target application. We provide a prototype implementation of the proposed
construction over an example testbed, launch a series of false-data injection at-
tacks against sensor/actuator readings communicated over the ICS network, and
record the delay in attack-detection to determine the efficacy of the proposed
construction.

69
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4.1 Rationale

An in-depth analysis of the most powerful and sophisticated cyber-attacks in
ICS domain shows that process manipulation or false-data injection is the most
dominant objective in targeted attacks, with prominent and impactful conse-
quences [159]. False-data injection attacks are mostly delivered by exploiting the
insecurities of the industrial communication protocols [9].

As discussed in Chapter 3, the state-of-art methodologies for detecting control
data tampering either involve inaccurate predictive modelling techniques with
Intrusion Detection Systems (IDS) [90, 104] or expensive bump-in-the-wire [194,
48] approaches that violate real-time requirements. We are motivated to find

solutions that accurately identify data tampering in control applications without

compromising the network bandwidth used for communicating control information,
which is a scarce resource for constrained time-critical applications. This indeed
is our problem statement.

Our Contributions. Our emphasis is upon methodologies that perform accurate
tamper-detection, such that sophisticated adversarial techniques to evade detection
can be effectively captured. To address this concern, we exploit the analytical
redundancies of industrial components that are usually deployed in ICS facilities
to reduce the impact of potential failures [146]. We leverage the use of customary
back-up PLCs [1, 129] (fail-over devices used for the purpose of availability and
resilience) and heterogeneous ICS networks with separate threat surfaces [177], to
design a tamper-detection framework suitable for constrained control applications.
Our framework is (a) non-intrusive, requiring minimal changes to the existing
architecture, (b) passive, not interrupting the critical control communication, (c)
low-cost, involving minimal additional cost, (d) accurate under some assumptions,
and (e) flexible, independent of vendor specifications, protocol implementations
and the nature of the application. Furthermore, we take into account the scenario,
where a process engineer is reluctant in providing a security personnel with the access

to control design of the application; this is admissible and plausible, as control and
configuration information are proprietary to an ICS facility, and hence should be
secured from industrial espionage. As per [153], 93% of the ICS facilities do not
allow a security personnel to be acquainted with the control framework, and our
tamper-detection framework is in line with such requirements. In particular, we
make the following contributions:
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• We introduce a general-purpose framework TaDeT that accurately detects
of false-data injection attacks, without compromising the bandwidth used
for control data communication.

• We study the performance restrictions necessary for handling errors (false-
positives/negatives) in TaDeT. Our proof-of-concept implementation indi-
cates adding a correction parameter δ evaluated empirically in the experi-
mental setup.

• We propose an alternate solution to remove evaluation errors keeping in
mind the ICS facilities that do not comply with the stringent performance
restrictions imposed by TaDeT.

To the best of our knowledge, this is the first attempt to provide accurate detec-
tion of false-data injection attacks without introducing delay in critical control
communication.

Organization. This chapter is organized into the following sections. Section
4.2 introduces our threat model, followed by a brief overview of our example
testbed. Section 4.3 details the proposed construction. Section 4.4 analyzes the
scenarios that lead to false-positives and false-negatives, and presents a broad-level
discussion on the stringent performance requirements of the proposed framework.
An overall conclusion is given in Section 4.6.

4.2 Preliminaries

In this section, we discuss the motivation behind this research and introduce the
threat model that we consider for this study. Furthermore, we give a brief descrip-
tion of our example testbed, which we use as a running example to demonstrate
our approach.

4.2.1 Problem Formulation

In this section, we analyze the threat surfaces of heterogeneous ICS networks and
bring to light the most vulnerable network segment for false-data injection attacks.
We also discuss the acceptable sampling rates in diverse control applications, and
the incapacities of the existing recommendations to fit into such time-constrained
paradigm.
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The Purdue model is used for segmenting the ICS networks based on functionality
and nature of control [125]. We remind the readers that control layers exchange
real-time signals, and the control commands are preset in the hardware configura-
tion of the devices. For an adversary who has unauthorized access to the network
at this layer, require detailed understanding of the process design and implemen-
tation specifications for parsing and manipulating the packets. However, packets
at the supervision layer contain rich semantic application-specific information,
making it less arduous for an adversary interpret the payloads. Thus, it is safe
to establish that ICS network at the supervision layer is more vulnerable to be-
ing compromised, and hence we focus on a threat model where adversary has
unauthorized access to the network at this layer.

A control application with unacceptable delay is no longer time-invariant. While
applications such as food processing could allow delay of up to 8 milliseconds,
safety-critical applications, such as turbo-machinery, magnetic suspension systems
allow up to 1 millisecond delay [96]. Thus, an interesting question to ask is how
feasible are the existing accurate tamper-detection techniques with cryptographic
implementations in complying with the aforementioned constraints?

This encourages us to investigate into practical and achievable solutions for generic
ICS applications, who have their supervision layer susceptible to false-data injection

attacks.

4.2.2 Threat Model

Our threat model incorporates a Man-in-the-Middle (MitM) adversary who has a
basic understanding of how ICS control, configuration, and diagnostic data moves
between the PLCs and SCADA systems. The adversary is present at the industrial
site and has access to the plant communication network at the supervision layer.
The adversary can set up a physical device at any point in this network and has
tools to interact with the ICS protocols and interpret the semantics of the ICS
payloads. The ultimate goal of the adversary is to intercept the information ex-
changed between these devices and cause false data injection attacks. Furthermore,
we assume that the adversary does not have access to the control layer; this is
admissible, as attack vectors with a lower relative likelihood (see Section 4.2.1)
could be ignored [185].



Preliminaries 73

Outlet Valve

Inlet Valve

Burner

Temperature
Sensor

Boiler Tank

v1

v2

Figure 4.1: Experimental Testbed: Schematics of an Industrial Steam Boiler Application

4.2.3 A Plausible Scenario

In this section, we introduce a simple experimental steam boiler application, which
we use as a running example to evaluate our approach.

Industrial Steam Boiler Application. We design a simple realistic steam boiler
application, which is key to critical industrial utilities such as thermal power
plants, chemical manufacturing, etc. As evident from Figure 4.1, a steam boiling
tank is connected to valve v2, which supplies cool water to the tank, and a burner
which heats the water in the tank to its boiling point. When water vaporizes,
the outlet valve v1 releases the steam from the tank. A temperature sensor with
a transmitter measures the temperature inside the tank. When the temperature
(temp) reaches the level t1, valve v1 is opened to allow the steam to be released.
Again when temp reaches t2, valve v2 closes immediately to prevent inflow of
water, otherwise the cold air can lead to the boiler flashing into steam, followed
by an explosion.

Composing Attack Vectors. We discuss an example attack scenario, where the
modeled adversary explodes the steam boiler with fatal consequences. SCADA
unit explicitly requests for the value of the temperature sensor, and based on
the status, sends command to the PLC to stop inflow of water through valve v2
(v2 = 0). The adversary intercepts the packet, overrides the value (v2 = 1) and
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sends the modified command to the PLC. This eventually causes the steam boiler
to explode causing severe consequences.

4.3 Proposed Framework for Detecting False-Data
Injection Attacks

In this section, we introduce TaDeT, a novel general-purpose framework for
accurate tamper detection at the supervision layer of a process control framework.

4.3.1 Brief Overview

TaDeT is designed for addressing the challenges that come with implementing
state-of-art recommendations on accurate tamper detection (see Section 3.1.2). The
starting point of this construction is the customary back-up PLCs that get periodic
updates from primary PLCs. For ICS facilities with limitations on redundant PLCs,
an identical functionality can be achieved using commercial off-the-shelf hardware
modules, such as Raspberry Pi [169], Arduino [163], etc. The other important
consideration that we take advantage of, is the fast computations supported by
SCADA units, which are usually deployed using sophisticated high-end reliable
computing platform.

TaDeT is built on top of the basic process control framework described in Sec-
tion 2.1. TaDeT provides a parallel computing platform due to an added network
module between the SCADA unit and back-up PLC, supporting cryptographic
operations. This enables the possibility of designing a tamper detection system,
which gets its accuracy and efficiency from the lightweight cryptographic prim-
itives introduced over a parallel computing environment, while incurring no
overhead in the critical control path. The high-level schematics of TaDeT archi-
tecture is given in Figure 4.2. The proposed framework is completely agnostic to
the underlying ICS protocols, vendor implementations of ICS equipment, and the
nature of control applications. Furthermore, TaDeT requires minimum changes
to the existing architecture, restricting a security personnel to be oblivious to the
functional behaviour of the process control.

4.3.2 System Architecture

Consider a process control framework Π, where sensors are time-driven, and
actuators, controllers and SCADA units are event-driven. Let the control layer
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Figure 4.2: Block diagram of TaDeT architecture.

of Π contains n control elements (sensors and actuators), a primary PLC and a
back-up PLC, denoted by Pa and Pb respectively, all connected in a ring topology.
At cycle κ, Pa stores the sequence X κ = (xκ1 , . . . , x

κ
n), where xκi denotes the

value of ith control element at the κth cycle, and forwards X κ to Pb. Let S denote
the SCADA unit, which is connected to Pa over the supervision layer of Π. S
queries Pa with Read and Write requests on X κ over the critical control path,
denoted by Pa ⇔ S . This topology is inspired by the network segmentation of
SWaT testbed [129], an experimental facility that imitates a real ICS.

TaDeT extends the basic control architecture by adding a separate networkmodule
between Pb and S , denoted by Pb

e⇐⇒ S , that allows implementing cryptographic
operations. Let λ be the security parameter of the system. Let (Enc, Dec) be a
symmetric encryption scheme, and let k← Gen(1λ)whereGen is a key generation
algorithm to generate the secret key shared between Pb and S .

TaDeT implements the protocols TaDeTread and TaDeTwrite for efficient and
accurate tamper detection during Read andWrite requests onX κ. We first present
a high-level survey of the protocols, followed by their formal description. Note
that, any run of the protocols starts with S . We assume that, at the start of the
protocols, Pa and Pb are in the κth cycle, storing a copy of X κ.

TaDeTread: For reading a specific control element, say xκi , S makes two simulta-
neous Read requests to Pa and Pb. While Pa replies with xκi over Pa ⇔ S , Pb
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returns Enck(xκi ) overPb
e⇐⇒ S . S issues an alert signal if there is a data mismatch.

The formal description is given in Protocol 4.1.

Protocol 4.1 TaDeTread

1: S queries Pa and Pb simultaneously for reading the ith control element.

S Read(i)−−−−→ Pa
S Read(i)−−−−→ Pb

2: Pa and Pb reply to S .

S
δa= xκ

i←−−−− Pa
S

δb= Enck(x
κ
i )←−−−−−−−− Pb

3: S correlates the control values.
(1) S : δ′b ← Deck(δb)

(2) S : if (δa == δ′b) return ⊥
else issue SYSTEM.ALERT

TaDeTwrite: S sendsWrite requests to Pa and Pb simultaneously, by sending x̃iκ

and Enck(x̃i
κ) respectively. Pa updates X κ with x̃i

κ, call it X̃ κ, and forwards it
to Pb. Pb decrypts Enc(x̃iκ) received over Pb

e⇐⇒ S , and correlates it with the ith
entry of X̃ κ. We formally describe the procedure in Protocol 4.2.

Protocol 4.2 TaDeTwrite

1: S sends x̃iκ to Pa and Enck(x̃i
κ) to Pb simultaneously for writing the ith control

element.
S Write(x̃i

κ)−−−−−−→ Pa
S Write(Enck(x̃i

κ))−−−−−−−−−−→ Pb
2: Pa updates X κ to X̃ κ and forwards it to Pb.

Pa
X̃κ

−−→ Pb
3: Pb decrypts Enck(x̃iκ) and correlates it with the ith element in X̃ κ.

(1) Pb : γa ← x̃i
κ ∈ X̃ κ

(2) Pb : γb ← Deck(Enck(x̃i
κ))

(3) Pb : if (γa == γb) return ⊥
else issue SYSTEM.ALERT
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Figure 4.3: High level schematics of the MiTM adversary who manipulates read/write
requests via unauthorized network access to the supervision layer.

Our key management paradigm is loosely based on the Industrial Key Infrastruc-
ture (IKI) concept considered in [14]. We assume the existence of a Trust Center,
an authority completely controlled by the control infrastructure. The Trust Center
configures a secret key in the PLC and SCADA devices using a secure network,
where an adversary does not have access.

4.3.3 Add-on Software Modules

TaDeT requires incorporating additional software components in back-up PLC
and SCADA units to facilitate proper execution of TaDeTread and TaDeTwrite

protocols. Furthermore, the add-on modules need to coordinate with the basic
software components discussed in Section 2.1, without introducing delay in critical
control communication. We discuss the extension modules for back-up PLCs,
though a similar design needs to be incorporated in SCADA units.

Back-up PLCs are central to the design of proposed construction, acting as edge-
devices that connect with primary PLCs over the control layer and SCADA units
over the supervision layer. These devices have limited storage and computational
capabilities due to vendor restrictions, and hence proper care needs to be taken
while configuring them. In what follows, we discuss the extended software archi-
tecture of back-up PLCs.

As evident from Figure 4.4, the extended architecture of back-up PLCs comprises
of five add-on software components. The encryption module encrypts control
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Figure 4.4: Add-on software modules executed in the back-up PLC during the run of
TaDeTread and TaDeTwrite protocols.X κ denotes the process image table updated from
primary PLC during scan-cycle.

elements requested by SCADA unit during the run of TaDeTread protocol and
sends them to network module, that acts as an interface between back-up PLC
and the SCADA unit. During the execution of TaDeTwrite protocol, the decryp-
tion module decrypts the encrypted control elements received from SCADA unit
through network module, and forwards it to the compare module, which then
correlates the values with the corresponding control elements in process image
table. The reporting module generates system alert, if data mismatch occurs.

4.4 Attack Detection

As discussed in Section 4.2.2, the modeled adversary focuses on destabilizing
critical control applications by falsification of control commands. Our construction
detects such efforts of an adversary, who modifies commands that control the
state of the physical system. In an ideal scenario, the attack detection should take
place instantaneously. A serious hurdle that prevents this strategy is the delay
introduced due to the computations in the extension modules. The other important
concern to keep in mind is that an MiTM attack involves change in response time

due to delay added by the adversary who intercepts, processes and re-transmits each

packet communicated between the two parties [221].

Let A be an instance of the modeled adversary, who has unauthorized access to
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Figure 4.5: Scenario that leads to false positive during execution of TaDeTwrite.

Pa ⇔ S . Note that, during the run of the Protocols 4.1 and 4.2, Pa and Pb are in
the κth cycle and contains a copy of X κ.

Remark 4.1 Consider Protocol 4.1. SupposeAmodifies δa at Step 2 of the protocol i.e.

A δa=y−−−→ S . Let∆a be the delay introduced byA due to the modification, and let∆b

be the time taken for executing for S
δb= Enck(x

κ
i )←−−−−−−−− Pb and Step 3 of Protocol 4.1. Then

TaDeTread accurately detects an attack with an overall delay of ∆ = |∆b −∆a|.

Remark 4.2 Consider Protocol 4.2. Suppose A modifies x̃κi over Pa ⇔ S , and let

σa be the delay introduced by A. Let σb be the time taken by Pa and Pb to update
X̃ , and let σc be the time for Step 2 and Step 3 of Protocol 4.2 respectively. Then

TaDeTwrite detects an attack with an overall delay of σ = |σc − (σa + σb)|.

4.4.1 Necessary Conditions for Accurate Attack Detection

We avoid delay introduced due to physical components and electrical/electronic
noise in our calculation. In what follows, we discuss the scenario that leads to
false positives.

At the start of Protocol 4.2, consider Pa and Pb to be at the κth cycle, as demon-
strated in Figure 4.5. LetAmodifies x̃κi at time instant t2. Let (κ+1)th cycle starts
at time instant t3. X̃ κ is overwritten by X κ+1 and Pa forwards X κ+1 to Pb.

• If x̃κi = xκ+1
i , TaDeTwrite does not detect an attack. This can be disregarded

as A does not succeed in modifying the control value at the control layer.
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• If x̃κi ̸= xκ+1
i , TaDeTwrite correctly detects an attack. However, this is not

due to the spoofed control value by the adversary, but due to the acquired
periodic update during the scan-cycle.

Consider there is no attack, i.e.A does not modify x̃κi and let (κ+1)th cycle starts
at time instant t3.

• If x̃κi = xκ+1
i , TaDeTwrite correctly issues no alert.

• If x̃κi ̸= xκ+1
i , TaDeTwrite incorrectly detects an attack, which is a false

positive.

Thus for TaDeT to accurately detect an MiTM attack, we need to avoid the situ-

ation where X̃ κ is overwritten by X κ+1. Throughout the rest of the chapter, we
assume that during the entire run of TaDeT and the MiTM adversary, the control
application is in its κth scan-cycle.

4.5 Prototype Implementation

In this section, we present a prototype implementation of the proposed approach
over an experimental testbed (introduced in Section 4.2.3) and an in-depth analysis
of our empirical evaluation.

4.5.1 Experimentation Setup

We implement the proposed TaDeT framework using a simulation setup in three

Raspberry Pi 4 Model B [170] devices, whose specifications are listed in Table 4.1.
The Raspberry Pi’s are used to model the PLC, back-up PLC and the modeledMiTM
adversary (see Section 4.2.2). We implement the SCADA monitoring unit in a com-
puter with an Intel(R) Core(TM) i7-9750H CPU rated at 2.60 GHz, 8 GB RAM (see
Table 7.2 for configuration details). We setup TCP and UDP socket programming
[134] (following the network configurations used in SWaT testbed [129], which
imitates a real-world ICS facility) in Python 3.8.2 [164] (tags/v3.8.2:7b3ab59, Feb 25
2020, 23:03:10) [MSC v.1916 64 bit (AMD64)] on win32 between the devices listed
above, following the design in Figure 4.3, in wireless mode. We use ChaCha-20
[147] implementation from PyCryptodome cryptographic library to establish the
encrypted communication between back-up PLC and SCADA monitoring unit.
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Table 4.1: Implementation Details of the Raspberry Pi’s used as PLC, back-up PLC, and
MiTM adversary

Artifact Configuration
Platform Raspberry Pi 4 Model B
Hardware Broadcom BCM2711
Connection 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless
Processor Quad core Cortex-A72 (ARM v8)

Operating System Raspbian GNU Linux 10 (buster)

4.5.2 Methodologies

We make use of the example application introduced in Section 4.4 to measure
the effectiveness of the proposed TaDeT framework. In particular, we aim to
determine if TaDeT accurately detects an MiTM attack. However, there could be
subtleties involved: the delay added by the adversary due to processing, parsing
andmodifying the packets could lead to false-negatives, where the comparemodule
compares out-of-sync data with the freshly decrypted packets forwarded from the
network module. In our experiments, we execute TaDeTwrite over the simulated
environment and deploy the add-on extension modules in the back-up PLC. We
design three test-cases to determine if there are false-negatives due to additional
delay introduced by the MiTM adversary. Note that, we assume that the entire
run of TaDeTwriteis within tκ+1 − tκ, where tκ and tκ+1 be the time instances at
the start of κth and (κ + 1)th cycle respectively. This ensures that there are no
false-positives due to X̃ κ being overwritten by X κ+1 (see discussions in Section
4.4.1). Empirical evaluations with TaDeTread require a similar procedure with the
add-on extension modules deployed in the SCADA unit.

We start with describing the functional requirements of our experimental testbed.
The industrial steam boiler application introduced in Section 4.2.3 comprises of
two control elements: a temperature sensor temp, and an actuating valve v1. The
functional requirement of the application is given as follows:

I F temp > 120 THEN v1 := 0 ELSE v1 : = 1 ;

We execute the TaDeTwrite protocol and launch MiTM attacks during the run of
the protocol in the following settings:



82 TaDeT: Towards Efficient Tamper Detection

• Case A : S sends control data to Pa over Pa ⇔ S and Pb over Pb
e⇐⇒ S

simultaneously.

• Case B : S sends control data to Pa over Pa ⇔ S , adds delay = 0.1 seconds
delay, and then sends data to Pb over Pb

e⇐⇒ S .

• Case C : S sends control data to Pa over Pa ⇔ S , adds delay = 0.2 seconds
delay, and then sends data to Pb over Pb

e⇐⇒ S .

In Case A, we do not add any delay in sending control data to the Pa and Pb, i.e.
S sends the control data x̃i and Enck(x̃i) simultaneously. For Case B and Case C,
we add 0.1 and 0.2 seconds of delay. Our objective is to identify if TaDeTwrite

accurately detects whether there is an MiTM attack for all the test-cases.

For the timing experiment, we calculate the delay added by the MiTM adversary
and the extension modules, while we do not include the time taken for communi-
cating the control updates between the devices. Table 4.2 shows the specific delays
we have considered for generating our results.

Table 4.2: Components for Delay Calculation

Delay Description
σ0 A processes, parses and modifies control data in a packet
σ1 Pa processes a packet and updates X̃ κ.
σ2 Pb processes the updated X̃ κ forwarded by Pa.
σ3 S executes encryption module
σ4 Pb executes decryption module

We consider a simple scenario (depicted in Figure 4.6), where S sends the request
to update v1 = 0 to Pa and Pb. We launch an MiTM attack over Pa ⇔ S , where
A modifies v1 to 1. Pa receives v1 = 1, updates X κ to X̃ κ and forwards it to Pb.
Pb decrypts Enck(0) sent by S , processes X̃ κ sent by Pa, correlates the values.

We conduct 14 individual trials (approximated by Experiment ID) for each of the
above test-cases and calculate the timing components described in Table 4.2 to
empirically evaluate the suitable conditions for accurate attack detection by the
TaDeTwrite protocol.
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Figure 4.6: Recorded screenshots for each of the devices during the run of an experiment
for Case C.
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Figure 4.7: Time components calculated for Case A. We do not show σ3 as the time taken
to execute the encryption module by SCADA unit is approximated to zero for all the 14
trials.

4.5.3 Results

We now present the experimental outputs, along with an in-depth analysis of our
evaluations.

Our results indicate that TaDeTwrite accurately detects an MiTM attack for Case
C, 0.07% of the attacks for Case B, while all the test trials for Case A generate
inaccurate results. Note that when (σ0+σ1+σ2 > σ3+σ4),TaDeTwrite produces
inaccurate results. To see why, Pb compares Deck(Enck(0)) with the correspond-
ing value in X κ, rather than the updated table X̃ κ, generating a false-negative if
v1 = 1 in X κ.

As can be seen from Figure 4.8, the delays corresponding to the 14 test trials in
CaseA are represented along the negative x-axis, indicating inaccurate results. For
Case B, one of the trials generate inaccurate output. Finally, for Case C, the delays
corresponding to all the trials are plotted along the positive x-axis, indicating that
the generated outputs are accurate.

We do a closer inspection on the results generated by Case A to identify the time
component that primarily contributes to the inconsistencies. As can be seen from
Figure 4.7, σ0 accounts formore than 98% of σ0+σ1+σ2. Furthermore, σ0 is around
80% of the overall time for executing encryption and decryption modules for Case
A, 98.8% for Case B and 97% for Case C. This invariably indicates the significance
of adding delay in generating accurate results by the proposed framework. We
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Figure 4.8: Delay in attack detection for Case A B and C.
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note that on implementing the TaDeT framework in a real-world ICS setup with
PLCs and back-up PLCs, the presented numbers are expected to vary.

Of note, that for accurate tamper detection, a suitable value for delaywould depend
upon the specific choice of lightweight ciphers and their implementations, scan-
cycle time of the control application, and configuration of PLC and back-up PLC
deployed in the control environment.

4.5.4 Discussions

As evident from our experimental results, the proposedTaDeT framework imposes
stringent performance restrictions for accurate detection of false-data injection at-
tacks. In particular, for handling the scenarios that lead to false-positives/negatives,
we essentially require the back-up PLC / SCADA to correlate correct values during
the execution of TaDeTWrite / TaDeTRead protocol. This is our intuition behind
adding delay parameter σ/δ evaluated empirically in the experimental setup,
conditional to the availability of the following:

• Lightweight cryptographic ciphers

• SCADA’s ability to perform fast computations

• Back-up PLC’s ability to perform fast computations

A number of free and open-source cryptographic libraries offering lightweight
implementations (e.g. Crypto++, libsodium) are available. Additionally, SCADA
is generally deployed with a high-end reliable fast computing platform. For our
SCADA implementation with an Intel(R) Core(TM) i7-9750H, the encryption/de-
cryption time is approximated to be zero for all the 14 trials.

The only caveat is the availability of a back-up PLC with fast computational
capabilities (see Section 1.2). Allowing the back-up PLC to be flexible in terms of
performance requirements, we propose an alternate solution for accurate detection
of the false-data injection attacks : given the back-up PLC does not host the control
program, the program memory (accounting for over 95% of the PLC memory) is
free, and hence registers could be allocated to store the correct values, such that
correlation is effectively performed by the back-up PLC.
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4.6 Conclusion

In this chapter, we have presented a framework TaDeT that identifies control data
tampering at the supervision layer of an industrial control infrastructure. Our
solution is generic, in the sense that it is agnostic to the specific implementations
of ICS protocols, equipment, and nature of control applications. Our construc-
tion employs lightweight cryptographic primitives, and does not compromise
the bandwidth used for critical control communication. Our experimental eval-
uations indicate that the proposed framework gives accurate results based on a
careful selection of the delay parameter. As our future initiative, we aim to extend
our framework in detecting interception of control data exchanged over the ICS
network at the supervision layer.





Chapter 5

SelEnc: A Selective Encryption
Framework for Securing ICS
Payloads

ICS implement a distributed process control framework with legacy controllers
and proprietary protocols, enabling a wide range of cyber-attacks. The ICS re-
search community and industrial security practitioners recommend implement-
ing TLS/DTLS or bump-in-the-wire techniques for communicating confidential
information. In this chapter, we discuss how such techniques fail to provide
application-level security required in control applications. We examine the pro-
prietary application-layer protocols and how they access controller memory for
performing read/write operations on the process control parameters, and claim
that custom-made ICS security solutions require application-level access to the
controller. To this end, we propose SelEnc, a general-purpose modular framework
that provides application-specific security while incurring significantly low over-
head. We provide a proof-of-concept implementation of the proposed framework
over an example testbed and evaluate our construction with two use cases and
five different datasets. Our micro-benchmarks indicate a significant reduction
in computational overhead (less than 1.5% of the overhead incurred due to TLS
and other state-of-art approaches), with guarantees of application-level security
acknowledged at the target control environment.

89
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5.1 Rationale

The efforts by the ICS research community in imparting cryptographic solutions
come in the form of bump-in-the-wire techniques that rely upon the security
services offered at transport, network, and data-link layers [97, 48]. IEC 62351-
3 standardizes using TLS/DTLS in ICS network communication [157]. Though
TLS/DTLS is effective in securing IT communications, its features are not optimal
for use in a generic ICS settings [14]. A typical control framework might have
customized application-level security requirements such as ‘perform encryption

only if read/write request about valve v is being communicated’. TLS 1.3 imposes
mandatory encryption for all application-layer payloads, and hence not applicable
in this scenario. Also, features such as AEAD and perfect secrecy are not a defacto
requirement in a generic ICS facility [149]. Finally, TLS is an expensive solution,
in terms of the complexities involved, and thus not suitable for deploying in
time-critical applications [14].

Our Contributions. We emphasize upon the importance of ICS security imple-
mentations at the application-level of the OSI model. Given that the vendors do
not provide application-level access in the PLC, there are no solutions for imple-
menting customized security controls in ICS environment. Through our work, we
imply that if vendors provide some minimal controller-level access, then not only
application-level security could be achieved, but also would incur an overhead
which is less than 1.5% of the complexity introduced due to TLS, IPSec and other
existing solutions. A summary of our contributions is given as follows:

• We discuss the significance of application-specific security in ICS facilities,
and the downsides of the existing solutions in achieving the same.

• We perform an in-depth analysis of the message format of EtherNet/IP [102],
one of the most popular ICS protocols1. [151]

• We study the memory structure and communication interfaces in Allen
Bradley controllers [17] (one of the most popular controllers [136]) to under-
stand how EtherNet/IP accesses its memory to perform read/write operations
on the process 1.

1We note that though there are documents on how the EtherNet/IP protocol works and how Allen
Bradley controllers are accessed, they have not been explored before in the context of securing ICS
communication, to the best of our knowledge.
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• We introduce SelEnc, a general-purpose modular framework that filters
critical information at the application level, bypasses the critical information
over an unused TCP port, and encrypts the traffic at the network layer.

• We evaluate our approach over an example chemical mixing facility with
two use cases and five different datasets (demonstrating the scalability of our
construction).

Our solution can be extended to other ICS protocols, with little modifications. Our
exclusive goal behind this work is to indicate the significance of the proposed solution
to the PLC vendors, to imply that minimal application-level filtering capabilities

could not only allow the customers to implement purpose-built security solutions for

their target control applications, but also incur around 1.5% of the overheads caused

due to TLS/IPSec and other existing technologies.

Organization. This chapter is organized into the following sections. Section 5.2
provides a brief description of the example testbed, followed by an introduction
to the threat model. Section 5.3 provides a general overview of message format
of EtherNet/IP and protocol address space of Allen-Bradley controllers. Section
5.4 details the proposed construction. Section 5.5 provides a proof-of-concept
implementation of our design. An overall conclusion is given in Section 5.6.

5.2 Preliminaries

We start the section with a brief description of a chemical mixing facility, which
we use as a running example to demonstrate our approach. We follow this with
an overview of the problem statement and the threat model that we consider for
this study.

5.2.1 Example Testbed

Figure 1 illustrates the process for mixing two chemicals, A and B. When the
START button is pressed, valve v1 opens and chemical A fills the tank till the
level reaches the L2. Thereafter, valve v2 opens and chemical B fills the tank till
it reaches level L1. This is followed by an agitator v3 mixing the two chemicals
for 60 seconds, after which a mixture outlet valve v4 drains out the mixture for a
duration of 120 seconds. When an error occurs, an Emergency Stop button stops
the entire process.
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Figure 5.1: Experimental Testbed: Schematics of a Chemical Mixing Facility

5.2.2 Problem Formulation

As discussed in Section 2.1, PLC communicates the I/O values to the HMI systems
at the supervision layer of process control framework for advanced control and
monitoring of the target control application. The packets exchanged at this layer
contain rich semantic information on the control parameters, whereas the packets
at the control layer follow non-standard application-level semantics defined by
vendors and process engineers that is preset in the hardware configuration of the
devices. Thus, a MitM adversary finds it more challenging to recover the semantics
of the ICS payload in the control layer, as it requires a detailed understanding
of the process design and implementation specifications [196]. The aim of this
study is to design legacy-compliant solutions for achieving application-specific
security in exchanging confidential messages at the supervision layer of a generic
ICS framework.

5.2.3 Threat Model

Our threat model incorporates a MitM adversary who has a basic understanding of
how ICS control, configuration, and diagnostic data moves between the PLCs and
SCADA systems. The adversary is present at the industrial site and has access to the
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Figure 5.2: High level schematics of an MiTM adversary who eavesdrops the traffic via
unauthorized network access to the supervision layer.

wired plant communication network at the supervision layer. The adversary can
set up a physical device at any point in this network and has tools to interact with
the ICS protocols and interpret the semantics of the ICS payloads. The ultimate
goal of the adversary is to intercept the information exchanged between these
devices and cause false data injection attacks or industrial espionage. Furthermore,
we assume that the adversary does not have access to the control layer; this is
admissible, as attack vectors with a lower relative likelihood (see Section 5.2.2)
could be ignored [185].

5.3 Proprietary Products in Industrial Automation

In this section, we present a brief discussion on how EtherNet/IP protocol ac-
cesses the memory of the Logix family of controllers for performing read/write
operations.

5.3.1 EtherNet/IP Message Format

EtherNet/IP stands for Industrial Ethernet and is considered one of the most widely
deployed wired communication protocols for the industrial environment. Devel-
oped by Rockwell Automation, its adoption rate is the highest of all industrial
ethernet protocols [7], serving critical infrastructures such as chemical processing,
power generation, oil and gas, water distribution, etc. with a multitude of advan-
tages over other industrial protocols [135]. EtherNet/IP is an application layer
protocol and integrates CIP object libraries and device profiles [11] with standard
TCP/IP and 803.2 technologies, allowing integration with the enterprise network.
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Figure 5.3: Encapsulation packet format in EtherNet/IP.

CIP follows an abstract object modelling, i.e. the network devices, such as PLCs and
SCADA units, represent information in form of a series of objects and accessing
their memory for performing read/write operations, is equivalent to accessing
specific object instances for required attribute vales using defined services codes,
as per the standard specification [102]. Each class of object has a defined set of
attributes and services and the EtherNet/IP explicit messaging protocol mandates
the use of the required Class ID, Instance ID, Attribute ID and Service Code
to be mentioned explicitly in the encapsulation packet, while trying to access
information in any connected network component.

The EtherNet/IP specification defines a number of objects [75] with the associated
codes for their respective instances, attributes and services. Along with that, an in-
teger ID is assigned to each of the network components in the Ethernet/IP network.
For example, reading the vendor ID in a ControlLogix device (Allen Bradley PLC)
using EtherNet/IP protocol, the ICS payload follows the standards defined in the
specification: Class ID = [0x01], Instance ID = [0x01], Attribute ID = [0x01],
and Service Code = [0x0E]. Each Ethernet/IP device is modeled as a collection of
objects with the standard addressing format Class/Instance/Attribute/Service, and
the objects not found in the profile for a device class are vendor-specific objects.

EtherNet/IP Encapsulation Packet. EtherNet/IP uses a standard encapsulation packet
format to send CIP packets over TCP/IP network and specifies reserved TCP and
UDP ports to transfer data that should be supported by all the EtherNet/IP devices
[10]. The encapsulation packet structure can be broadly divided into two parts: (a)
Encapsulation Header, and (b) Command Specific Data. Figure 5.3 illustrates the
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Figure 5.4: EtherNet/IP device modelled as a collection of objects

encapsulation packet format with a fixed-length header of 24 bytes that contains
six fields specifying commands and other session-specific information required for
the packet identification and transfer between two EtherNet/IP devices. We mainly
focus on the command specific data portion that uses Common Packet Format
to give a standard structure to the data exchanged between the two EtherNet/IP
devices.

EtherNet/IP Messaging. EtherNet/IP supports two types of messaging for exchange
of data between the network components. Implicit messaging refers to the time-
critical control information that is exchanged at a specified periodic rate between
the EtherNet/IP devices using the services of the UDP/IP/MAC protocol stack.With
Explicit messaging, the client requests the server for some information which is
explicitly stated in the message request using the TCP/IP/MAC protocol stack and
the object model framework of the CIP standards. At the supervision layer of an
ICS, EtherNet/IP follows explicit messaging standard, where the application layer
PDU includes Class ID, Instance ID, Attribute ID, Service Code in the Command
Specific Data of the encapsulation packet [11].

5.3.2 Protocol Address Space of Logix Controllers

It is important to note that vendors limit access to the PLC memory to its protocol
address space and do not share the implementation details of the proprietary hard-
ware architectures [167]. A typical ControlLogix controller organizes accessible
memory in form of tags [158], and the client application interacts with the objects
associated with the tags [18]. Tags are application objects, used for assigning and
referencing memory in Allen Bradley controllers. For example, an object corre-
sponding to the profile of a valve is essential for controlling the valve. A closer
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look into the flagship products of Allen Bradley controllers shows that creating a
tag creates an instance of Symbol Class in the controller memory, with a unique
Instance ID assigned to it, with Rockwell-specific services such as Read Tag Service
[0x4c] and Write Tag Service [0x4d] for performing read/write operations.

Table 5.1: Table Showing mapping of Tags and Instance IDs

Alias Tag Base Tag Instance ID
Low_Level_Sensor <Local:2:I.Data.1> 0x0E
Liquid_A_Inlet <Local:2:I.Data.3> 0x10
Mixture_Outlet Internal Tag 0x16

To illustrate this, we code the operational semantics of the use-case in a Con-
trolLogix (Logix 5571) using Ladder Diagram in Studio 5000. Table 5.1 shows the
tag names and memory locations, along with the Instance IDs (extracted using
pycomm3) of an input, output and internal tag.

5.4 Proposed Framework for Securing
Communication at ICS Supervision Layer

In this section, we present a general description of SelEnc, a selective encryption
framework that aims to provide purpose-built security in communicating confi-
dential control/configuration information exchanged at the supervision layer of a
control application.

System Architecture. SelEnc constitutes three distinct modules that provide
a clear separation between functions, based on three layers of Open Systems
Interconnection (OSI) model: a filter module that filters critical ICS payload, a
bypass module that assigns a dynamic TCP port to the critical payloads, and a
security module that performs encryption and decryption of critical payloads. We
assume that, within a process, sensors are time-driven, and actuators, controllers,
and SCADA systems are event-driven. Furthermore, we assume that the controller
and SCADA systems are EtherNet/IP-enabled devices. Note that the scope could
be extended towards other ICS products, with little modifications.
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Figure 5.5: Schematics of SelEnc execution flow in the supervision layer.

5.4.1 Filter Module

This layer operates at the application layer and is responsible for filtering critical
information to be exchanged at the supervision layer. Based on risk analysis, where
threats range from basic, advanced to Advanced Persistent Threats (APTs), we
claim that I/O values corresponding to the sensor and actuator signals could be
safely established as critical, as identifying or modifying these values could lead to

industrial espionage [216] or false data injection [159]. However, a process engineer
can use his own discretion to identify any subset of I/O values as critical to the
functionality of the application.

Let ξ = (ξa, ξb, ξc) be an ICS payload, where ξa, ξb and ξc denote the Class
ID, Instance ID, and Service Code of ξ. The filter module implements a function
FilMod that takes as input ξ and a filtering specification F and outputs 1, if ξ
agrees with the specification. The formal description of the function algorithm is
given in Algorithm 5.1.

Definition 5.1 (Filtering Specification). Let X = (x1, . . . , xn) be the sequence

of n I/O tags and I = (id1, . . . , idn) be the corresponding Instance IDs of Class

ID: q assigned to the tags. Let Y = (y1, . . . , ym) be the sequence of m services

defined on the class instances. Let X c ⊆ X be the set of critical tags defined for the

target application. Let Yc ⊆ Y be the services required for performing filtering. Then,

filtering specification is defined asF = (Class ID : q, Instance ID : Ic = {idi : xi ∈ X c},
Service Code : Yc).
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We illustrate the above with a concrete setting: On implementing the operational
semantics of the chemical mixing facility (see Section 5.2.1), all the I/O, internal
values, etc. are assigned unique Instance IDs of Symbol Class [0x6B]. Let tags
Emergency_Stop[0x0F] and Liquid_A_Inlet[0x16] be critical, and are filtered
only when a write operation is performed on them, then F = (Class ID : [0x6B],
Instance ID : [0x0F, 0x16], Service Code : [0x4d]). Note that, Service Code
[0xcc] is the reply service for a Read Tag Service request[0x4c], and [0x4d]

is the Write Tag Service request, proprietary to Rockwell Automation.

Algorithm 5.1 FilMod (with embedded data F)
Input: ξ
Output: 1 or 0
1: if (ξa == q) AND (ξb ∈ Ic) AND (ξc ∈ Yc) then
2: return 1
3: else
4: return 0
5: end if

5.4.2 Bypass Module

This module operates at the transport layer and bypasses the critical payload iden-
tified by the filter module through an ephemeral TCP port. Note that, EtherNet/IP
uses the standard port [44818] to create a TCP connection. A dynamic port
can be selected from the ICANN registry by the network engineer of the control
application.

5.4.3 Security Module

The security module is responsible for encrypting critical payload and operates at
the network layer. To minimize the time delay, we consider lightweight symmetric
ciphers for implementing the module. Our key management paradigm is loosely
based on the Industrial Key Infrastructure (IKI) concept considered in [14]. We
assume the existence of a Trust Center, an authority completely controlled by the
control infrastructure. The Trust Center configures a secret key in the PLC and
SCADA devices using a secure network, where an adversary does not have access.

Execution Flow. The high-level schematics of the execution flow of SelEnc is
given in Figure 5.5. Consider two EtherNet/IP devices, an explicit server S and an
explicit client C, sharing a secret key k. C executes filter module that triggers the
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Figure 5.6: Screenshot showing the unique Instance IDs for I/O and internal tags: the
highlighted tag Low_Level_Sensor has an Instance ID = 14.

execution of bypass module. If a critical payload is identified, the security module
implements a function Enc that encrypts the critical payload at C and an inverse
function Dec that decrypts the encrypted packets at S .

Note that a control application with unacceptable delay is no longer time-invariant,
and the maximum permissible delay is directly proportional to the response rate
of the field devices [3]. A control engineer should calculate this value during the
design phase to maintain system stability. Let ∆P be the maximum permissible
delay of control system P . Let τP and δP be the computation delay introduced
due to the proposed framework at C and S respectively, then τP + δP ≤ ∆P

should hold in order to maintain the stability of P . We ignore the delays due to
physical components and electrical/electronic noises, along with communication
delays.

5.5 Prototype Implementation

In this section, we present a proof-of-concept implementation of the proposed
framework over our example testbed and an in-depth analysis of our empirical
evaluation.

5.5.1 Experimentation Setup

We use an Allen-Bradley 1756 ControlLogix 5571 with a 2 MB processor, 32-slot
digital I/O, and an EN2T ethernet connectivity module. We use a computer with an
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Intel(R) Core(TM) i9-9900 processor, 32 GB RAM, and 64-bit operating system to
design the Ladder Logic codes describing the operational semantics of the chemical
mixing facility in Studio 5000, and download it in the controller using EtherNet/IP
connectivity. We implement a SCADA monitoring/control unit using pylogix,
perform read/write operations on the controller values, and capture the network
traffic usingWireshark 3.4.6. We collect five real datasets from the network capture
and design a simulation setup in a Raspberry Pi 3 Model B [169], with an ARMv7
rev 4 (v7l) processor and Raspbian GNU Linux 10 (buster) operating system for
implementing the proposed framework using Python 3.7.3. We use two different
lightweight symmetric ciphers, AES (block cipher) [67] and ChaCha-20 (stream
cipher) [147] implementations from the PyCryptodome cryptographic library.

5.5.2 Methodologies

We study how ControlLogix assigns memory to the I/O tags and extract the unique
Instance IDs of the Symbol class assigned to these tags (see Figure 5.6). We use th
Raspberry Pi for implementing SelEnc, as access to the controller memory is made
restrictive by the vendors, and thus the filter module at the application-level could
not be implemented at a PLC. We define two use cases to evaluate the performance
of our construction. The sets have a different number of critical tags. Case A
considers all I/O tags as critical, while case B only takes two tags as critical (see
Table 5.2).

Table 5.2: Use Cases

CASE A CASE B

We observe all the I/O tags as critical,
and implement the Filter modulewith
F defined as follows:

We observe Emergency_Stop and Liq-
uid_A_Inlet tags as critical. F is de-
fined as follows:

Class ID: [0x6B] Class ID: [0x6B]
Instance ID: [0x6B, 0x0E,
0x0F, 0x11, 0x10, 0x12,
0x13, 0x16]

Instance ID: [0x0F, 0x16]

Service Code: [0xcc, 0x4d] Service Code: [0xcc]

To assess the scalability of our construction, we evaluate the performance of the
proposed framework over five different datasets (see Table 5.3). Datasets 1 and 2
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capture the packets exchanged while performing a single read/write operation on
a critical tag. Dataset 3 constitutes the network traffic generated for reading all
the tags (corresponding to the program name, task name, internal variables, I/O
values, etc.) Dataset 4 captures the packets while reading all the I/O tags for 30
seconds. Finally, dataset 5 contains the packets generated while exchanging both
configuration and control information.

We determine the total number of CIP packets in the captured traffic and the
number of CIP packets filtered (using the criteria defined in Case A and Case B).
We measure the delay introduced due to the proposed framework (this includes
the time required for performing filtering, bypassing, encryption and decryption).
We benchmark the performance of AES and ChaCha-20 when implemented indi-
vidually in SelEnc, as these are lightweight ciphers well-suited for constrained
control environments. Furthermore, we encrypt the entire network traffic and
compare the overhead with our approach of encrypting filtered traffic. Finally, we
evaluate the overhead introduced due to SelEnc over the unencrypted traffic.

Table 5.3: Experimental Datasets

Dataset Description
1 Read Low_Level_Sensor tag
2 Write Liquid_A_Inlet tag
3 Read all tags
4 Read all I/O tags for 30 seconds
5 Download configuration data and read all tags for 30 seconds

5.5.3 Results

Table 5.4 depicts the performance of our construction over the captured datasets in
relation to Case A, where the filtering specification specifies read/write operation
on all the I/O tags.

As clear from Table 5.4, only 1.2% of the entire traffic is encrypted for reading/writ-
ing a single I/O tag. Dataset 3 reads all tags (including the I/O tags) from the PLC
memory, while the filter module considers only 6.66% of the traffic. Reading only
the I/O tags for 30 seconds requires only 33.3% of the traffic to be filtered. Table
5.5 shows the summary of results for Case B, where F describes a read opera-

tion on two I/O tags. For datasets 4 and 5, an average of 5.9% of the entire traffic
corresponds to reading the two specified I/O tags.
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Table 5.4: Experimental Results (Case A)

Dataset
Packets Time (in ms.)

CIP Filtered Total Enc. Unenc.AES ChaCha-20
1 20 1 79 1.8 1.7 0.5

2 19 1 81 2.2 1.8 0.4

3 38 7 105 5.8 4.7 0.6

4 18765 9373 28194 3778 2614 2342

Table 5.5: Experimental Results (Case B)

Dataset
Packets Time (in sec.)

CIP Filtered Total Enc. Unenc.AES ChaCha-20
4 18765 1562 28194 0.99 0.79 0.234

5 24605 2314 38295 1.46 1.16 0.31

5.5.4 Discussions

An interesting observation to make is that ChaCha-20 outperforms AES, intro-
ducing less than 44% (Case A) and 20% (Case B) delay. Existing bump-in-the-wire
techniques mainly rely upon AES, however using ChaCha-20 for our implemen-
tation was inspired due to its simpler design and speed in hardware. Also, the
proposed SelEnc framework reflects an average decrease in the delay of 79%
and 84% over encrypting the entire traffic, which is followed in TLS and existing
bump-in-the-wire approaches. Figure 5.7 shows the performance benchmark of
the proposed framework over encrypting entire traffic using AES and ChaCha-20
implementations independently. As clear from the figure, with only two I/O tags
as critical (Case B), SelEnc introduces 26% decrease in delay over Case A.

5.6 Conclusion

In this chapter, we have discussed the significance of application-level security
implementations in industrial control applications and the downsides of the ex-
isting approaches in providing the same. Following this, we have introduced a
framework that achieves such security in communicating confidential information
with significantly lower overhead compared to the current approaches.
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Figure 5.7: Performance benchmark of SelEnc against encrypting entire traffic (for dataset
4) using independent implementations of AES and ChaCha-20.

Our design helps envision howminimal controller-access would allow customers to
define their respective benchmarks of security. Our solution can be easily extended
to provide customized integrity and authentication in ICS communication. As our
future work, we would examine other ICS products and protocols, and analyze
customer requirements based on user stories such that a standard paradigm of
application-specific security for ICS platforms could be designed.





Chapter 6

Privacy-Preserving
Classification Using
Cryptographic Obfuscation

Based on our discussion in Chapter 1, one of the essential pre-requisites in deliver-
ing targeted attacks against industrial infrastructures is reconnaissance, where an
adversary learns the operational semantics of the process control framework to
develop custom zero-day exploits. We consider a MATE adversary, who retrieves
the software implementation of a control program. Our objective is to prevent
the adversarial attempts to reverse engineer the recovered implementation of the
control program by employing cryptographic obfuscation. This necessitates for-
malizing control programs and defining its assets, the secret values in the program
that give away the process semantics.

This chapter focuses on binary decision trees, the data structure we employ to
formalize control programs in Chapter 7. We give a formal definition of binary
decision trees along with their assets. Thereafter, we design an efficient VBB obfus-
cator for a special family of binary decision trees and use the random oracle model
to analyze the security of our construction. Furthermore, we design an encoder
for hiding parameters in an interval membership function, which we use as the
primary building block for developing the proposed VBB obfuscator. We note that,
our contribution is of independent interest and has wider applicability in software
program obfuscation. Our exclusive goal behind designing the obfuscator is that,

not only will the solution increase the class of functions that has cryptographically

105
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secure obfuscators, but also address the open problem of non-interactive prediction in

privacy-preserving classification using computationally inexpensive cryptographic

hash functions, along with preventing adversarial attempts of extracting operational

semantics of target control applications, the last of which is the ultimate aim of this

work.

6.1 Rationale

The focus of this chapter is in presenting a new technique for encoding interval
membership functions. We find an interesting and important application in design-
ing an efficient virtual black-box obfuscator for evasive decision trees (see Definition
6.4.1). In the following, we present our intuition behind obfuscating decision trees.

6.1.1 Privacy-Preserving Classification with Decision Trees

In the interest of establishing the usefulness and significance of obfuscating deci-
sion trees, we provide a brief overview on privacy-preserving classification using
decision tree classifiers.

Decision tree classifiers are extensively used for prediction and analysis in sensitive
applications such as spam detection, medical or genomics, stock investment, etc.
[183, 32, 70, 176]. Consider an example of a medical facility (model-provider) who

designs a model from sensitive profiles of patients to diagnose a certain disease. The

model is then outsourced to a cloud server to provide classification to a user who wants

to make a prediction about her health. If the model is leaked, the sensitive training

data will be disclosed [12, 83], breaching the HIPAA1 compliance. What’s more, the

user does not want to reveal her queries and classification results to the cloud server.

This calls for privacy-preserving classification techniques, where the model is hidden

from anyone but the model-provider and prediction queries/classification remain

private to the user, such that no leakage of useful information happens during the

classification phase.

Related Work on Privacy-Preserving Classification. The existing solutions
for safeguarding model and user queries/classification usually follow a paradigm,
where the model is encrypted and outsourced to a server, where it processes the
encrypted input and forwards encrypted classification to the user [225, 122].

1Health Insurance Portability and Accountability Act of 1996
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Obfuscated Model

Model Provider User

Model Provider User

Cloud Server

(a) (b)

Figure 6.1: Privacy-preserving classification with Decision Tree. (a) Interactive protocol
with encrypted model outsourced to cloud server. (b) Non-interactive protocol with
obfuscated model sent directly to the user.

The state-of-art privacy-preserving classification solutions employ an interactive

approach: encrypt and outsource the model to cloud server, where it processes
encrypted queries and forwards encrypted classification to the users. The con-
structions involve multiple rounds of communication and rely upon expensive
cryptographic computations using fully-homomorphic encryption (FHE) ([34, 35]),
garbled circuits ([26, 25]), etc.

Brickell et al. [37] suggest an interactive two-party protocol employing additive
homomorphic encryption and ml oblivious transfers (where l is the bit-length of
each input feature and m is the number of decision nodes), restricting the user
from performing multiple queries on the encrypted tree. In their well-known work,
Bost et al. [35] present a comparison protocol between model-provider and the
user for each node in the decision tree using FHE method.

Tai et al. [188] make use of multiple communication rounds to transfer the path
costs and encrypted labels to the client. Tueno et al. in [195] claim designing a
non-interactive FHE/SHE based proposal, where entire evaluation takes place at
the server. However, we believe that the protocol is interactive as the user needs
to communicate with the server to submit encrypted query and receive encrypted
classification.
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In [118], Liang et al. design a method for efficient privacy-preserving decision
tree classification by transforming a classifier to a Boolean vector, then using
symmetric ciphers, PRFs and pseudo-random permutations to encrypt the vector
and generate encrypted tokens. Finally evaluation is an interactive protocol with
overall communication cost in the order of O

(
m(s + s′ + n)

)
, where m, s, s′

and n are the number of leaf noes, pseudo-random functions, pseudo-random
permutations and internal nodes respectively.

In order to reduce the high computation and communication costs introduced
by the FHE techniques, the authors of [60] design a solution (SortingHat) that
secures the prediction queries and classification results, but does not guarantee the
privacy of the model. They propose a homomorphic comparison algorithm that
takes encrypted prediction queries as input and compares them with the model
in plaintext, claiming the practicability of their design in terms of the overheads
incurred. However taking into account the potential attack vectors, we argue that
deploying such a design is infeasible.

Our motivation behind obfuscating decision trees is to eliminate interaction be-
tween user and model-provider/cloud server. In particular, we aim to construct an
efficient non-interactive solution to privacy-preserving classification with evasive
decision trees. We now explain why we do not consider obfuscating arbitrary
decision trees. If a decision tree could be learned from the input-output behaviour
of the model, then protecting the privacy of the model would be impossible. Note
that, learning a decision tree means identifying the decision nodes and input
attributes associated with them, and identifying the accepting nodes. Tramer et
al. [193] show that a decision tree could be learned throughm · log2(b/ϵ) oracle
queries, where m is the number of internal nodes, b is the minimum width of
an interval in a node, and ϵ is the specified precision value; they call it model

extraction attack. To prevent such attacks, the existing literature observes API
calls to issue warnings [110, 166] or adds perturbations [117, 224]. However, since
there are no theoretical restrictions on the number of prediction queries made by
a user [152], limiting them is not reasonable approach towards thwarting such
attacks. We define a special class of decision trees, for which it is hard to find an
accepting input, such that an efficient algorithm cannot extract the model except
with negligible probability; we call such decision trees as evasive, and claim that if
a decision tree is not evasive, then it is impossible to protect the privacy of the
model, and hence there is no choice but to restrict to evasive decision trees.
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Lockable obfuscation (also called compute-and-compare obfuscation) [88, 202] is a
very general tool that encodes a class of branching programs under the learning-
with-errors (LWE) assumption. It could be employed to build a decision tree
obfuscator, by writing the decision tree as a circuit. Nevertheless, we focus on solu-
tions that are simpler and potentially more practical. In [36], the authors initiate a
theoretical investigation on decision tree obfuscation based on indistinguishability
obfuscation (see Definition 2.5.4) which is the ‘best-possible’ obfuscation from the
point of view of VBB, but does not guarantee the privacy of the decision tree. We
aim to achieve stronger notions of security that allow us to protect the privacy of
the model.

6.2 Our Contributions

On the whole, we contribute towards designing a new technique for encoding
interval membership functions, and as an application we construct an efficient
VBB obfuscator for evasive decision trees (see Definition 6.4.4). We focus on trees
of bounded number of inputs and depth, but the techniques will apply to more
general classes of decision trees. Note that, we do not consider privacy-preserving
methods to construct the model and how the model is obtained is out of the scope
of this study. A technical briefing of our construction is as follows:

Technical Overview.We consider decision trees that perform binary classification
based on the values of n attributes. Attributes are represented as ℓ-bit strings xi,
and are interpreted as integers in [0, 2ℓ). A decision tree is a full binary tree of
depth d. Internal node vj (also called decision node) associates threshold tj , where
tj is an integer between 0 and 2ℓ − 1. Each decision node tests xi ≤ tj for some i.
The leaf nodes (s1, . . . , s2d) are labelled 0 (reject) or 1 (accept). Hence the decision
tree is represented by the pairs [[tj , i]], and the labels on the leaf nodes.

Without loss of generality we may assume that, for any specific path from the
root to an accepting leaf, xi is compared at most twice. Hence each accepting path
corresponds to a sequence of interval membership predicates xi ∈ (ci, ci + wi].
The key observation is that membership xi ∈ (ci, ci + wi] can be expressed as
a union of distinct predicates xi ∈ [a, a+ 2p) for certain pairs (a, p). Each such
predicate can be turned into a point function predicate and hence be obfuscated
using hashing. We explain the details in the next paragraph.
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Let fi : {0, 1}ℓ → {0, 1}ℓ−i such that fi(y) = ⌊ y
2i
⌋ for i ∈ {0, 1, . . . , ℓ − 1}.

Calculate intersection of sub-intervals Ii corresponding to (ci, ci+wi] (of the form
[a, a+2p)). Encode each entry in Ii usingH(fp(a)), whereH : {0, 1}∗→ {0, 1}ω

is a cryptographic hash function; call the set Bi. Note that, this method converts
interval membership predicate xi ∈ [a, a+2p) into a point function predicate that
determines whether H(fp(a)) is equal to H(fq(xi)) for some q ∈ {0, . . . , ℓ− 1}.
Finally, for each encoding in Bi, concatenate n entries sorted in the order of i,
apply cryptographic hash function Hc : {0, 1}∗ → {0, 1}q , and publish the set of
hashes. Reordering the nodes in the order of i along each accepting path hides the
structure, though the size of the obfuscated program may reveal the number of
different accepting paths. To classify input (xi)i∈[n], compute the set of encodings
E i by calculating H(fq(xi)), where q ∈ {0, . . . , ℓ − 1} and for each encoding,
concatenate n entries sorted in order of i, and apply Hc. For an accepting input,
one of the hashes computed by the evaluation procedure will be contained in the
set of hashes published by the obfuscator.

Organization. This chapter is organized into the following sections. Section 6.3
briefly discusses the preliminaries. Section 6.4 introduces the formal definitions of
decision trees along with conditions for evasiveness. Section 6.5 gives a description
of the proposed construction. Section 6.6 provides the proof for VBB security of
our proposal. An overall conclusion is presented in Section 6.7.

6.3 Preliminaries

Below are the standard notations and terminologies that will be used throughout
the chapter.

6.3.1 Notation

Let S be a set defined by an integer interval as S = {x ∈ N : 1 ≤ x ≤ n}. We
denote by |S|, size of the set S. We use the standard notations to denote intervals
as (a, b), (a, b], [a, b) and [a, b], for a, b ∈ N. We denote by ⌊x⌋ the integral part of
x, where x ∈ R. We use log2(n) to denote the power to which 2 should be raised
to obtain the value n ∈ N.

We denote l-bit binary encoding of n as rℓ−1.2ℓ−1 + · · · + r0.2
0 for n ∈ N+,

where ri ∈ {0, 1}. We denote hamming weight of n as wt(n) =
∑ℓ−1

i=0 ri. For a
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program C , we denote its size by |C|. We rely upon the notion of computational

security and follow the asymptotic approach throughout the paper. We provide the
honest parties and the adversaries with a security parameter λ ∈ N. We model the
adversaries as a family of probabilistic polynomial time (PPT) programs, running
in time a.λc, for some constants a, c. A function µ : N→ R+ is called negligible

in n, if is grows slower than n−c, for every constant c. We measure negligibility
with respect to the security parameter λ. We use ∥ni=1 ai to denote concatenation
of a sequence of strings (a1, . . . , an).

6.3.2 Standard Definitions

We state some standard definitions that will be used for the construction of our
obfuscator.

Definition 6.3.1 (Integer Intervals). Let a, b ∈ N. A closed integer interval [a, b]

is defined by the set S = {x ∈ N : a ≤ x ≤ b}, whereas an open integer interval

(a, b) refers to S = {x ∈ N : a+ 1 ≤ x ≤ b− 1}, where a and b denote lower and

upper bounds of the intervals respectively. Width of interval, denoted by w(S) is the

cardinal number of the set S defined by the interval.

Definition 6.3.2 (Interval Membership Function). Let S be a set defined by an

integer interval. An interval membership function ΠS : N → {0, 1} is defined by
ΠS(x) = 1 if x ∈ S and 0 otherwise.

Cryptographic Hash Functions.Hash functions are deterministic functions that
compresses binary strings of arbitrary length and produces fixed-length strings
(digests), with a property that it is computationally hard to invert the function and
retrieve the input strings from the digests.

Definition 6.3.3 (Hash Functions). A pair of polynomial-time algorithms (key, H)

that satisfies the following requirements:

• key is a probabilistic algorithm that outputs a key s on a security parameter

λ ∈ N.

• There exists a polynomial ℓ, such thatH is a deterministic polynomial-time al-

gorithm that on input s and x ∈ {0, 1}∗, produces a stringHs(x) ∈ {0, 1}ℓ(λ).

We are interested in collision-resistant hash functions, with a property that it
is computationally hard to find a collision in the function Hs on a pair of distinct
inputs x, x′ ∈ {0, 1}∗, where collision happens when Hs(x) = Hs(x′).
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Definition 6.3.4 (Collision-Resistant Hash Functions). A hash function (Key,H)

is collision-resistant, if for all polynomial-time adversaries A with s← Key(1λ),

all (x, x′)← A such that x ̸= x′, there exists a negligible function µ, such that

Pr[Hs(x) = Hs(x′)] ≤ µ(λ)

6.4 Formalizing Decision Trees

In this section, we formalize binary decision trees. Without loss of generality, we
define decision trees to be full binary trees and restrict to binary classification.
Following this, we introduce evasive decision trees and what it means to learn a
decision tree.

A decision tree classifier exploits the tree structure to build a model where the
internal nodes of the tree represent the decision nodes, that compares the input
set of attributes against some conditions, the edges represent the outcomes of the
comparison and finally the leaf nodes represent the final decision or classification
corresponding to the set of input attributes.

Definition 6.4.1 (Decision Trees). Let n, d, ℓ ∈ N and (xi)
n
i=1 = (x1, . . . xn) ∈

Nn be a finite sequence of input elements, where xi is an integer between 0 and 2ℓ−1

that represents the value of some attribute.

A decision tree is a representation of a function C : [0, 2ℓ)n → {0, 1}. It is a
full binary tree of depth d with internal nodes (v1, . . . , v2d−1) (where v1 is the root,

v2, v3 are nodes at the second level, and so on) and leaf nodes (s1, . . . , s2d). Leaf

node sk ∈ {0, 1} gives the value of the function C . Internal nodes vj are labelled

by a pair [[tj , i]] that defines a predicate gj as gj(xi) = 1 if and only if xi ≤ tj . To

evaluate the tree on an input (x1, . . . , xn), one follows a path from the root to a leaf,

by taking the left child if gj = 0 and the right child if gj = 1. The output is the

value of the leaf sk at the end point of this walk in the tree.

To define model extraction resistance we define the assets of a decision tree. Note
that a decision tree does not necessarily have a unique representation.

Definition 6.4.2 (Asset of Decision Tree). Let C be the function represented by a

decision tree. We define asset(C) to be a sequence of pairs [[tj , i]] and a sequence of

leaf nodes (s1, . . . , s2d) such that the corresponding decision tree fromDefinition 6.4.1

defines the same function C .
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Figure 6.2: Binary classification with a decision tree: the circular nodes represent decision
nodes, and the square nodes represent terminal nodes. Decision nodes are numbered in
level-order sequence. The path in orange represents the accepting path with terminal
node labeled 1.

Without loss of generality, we assume xi to be compared at most twice along an
accepting path. Let wmax ∈ N and ci, ci + wi be integers between 0 and 2ℓ − 1

and wi ∈ (0, wmax]. Consider xi ≤ ci + wi and xi > ci along a path from root at
level 0 till terminal nodes at level d− 1. The collection of inequalities define an
interval (ci, ci+wi], where xi is true. Finally,C((xi)i∈[n]) = 1 if xi ∈ (ci, ci+wi]

for every i ∈ [n]. We stress that different accepting paths may arise from different
comparisons of xi. As we now explain, for evasiveness we need the wi to be not
too large, so we introduce an upper bound wmax ∈ N.

Definition 6.4.3 (Decision Region). Let n, ℓ, wmax ∈ N. Let ci, ci +wi be integers

between 0 and 2ℓ − 1 and wi ∈ (0, wmax]. Define a decision region as the hyper-

rectangle formed by n intervals (ci, ci + wi].

Consider a classification function defined as:

C(x1, x2) =

{
1, if x1 ∈ (a1, b1] and x2 ∈ (a2, b2]

0, otherwise
(6.1)

where x1, x2 ∈ [0,M ] for some large integerM .

Figure 6.3 indicates the decision tree that specifies the classification function in
Equation 6.1. The decision region h is a rectangular region in a two-dimensional
space.
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f1 : x1 ≤b1

f6 : x2≤b2

f13 : x2≤a2

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Yes

f3 : x1 ≤a1

No

Yes

No

Figure 6.3: Decision tree model specifying the classification function C

Evasive Function Family. As stated in Definition 6.4.1, a binary classification
program maps input (xi)i∈[n] to one of the classes {0, 1}. From [193], it is evident
that an adversary, by identifying the accepting/rejecting inputs, can extract the
model (learn the assets in the classification program using binary search) within
polynomial attempts. From our discussion in Section 6.1, we can conjecture that it
is impossible to protect the privacy of the model from generic model-extraction
attacks, and this is our intuition behind restricting to a special class of decision
trees (for which it is computationally hard to find an accepting input). We call this
evasive collection which states that for every input, a random program selected
from this collection evaluates to 0with overwhelming probability. In what follows,
we define evasive decision tree collection, with the exclusive goal of obfuscating
this class of programs, such that adversary cannot learn the assets from the
input/output behavior of the programs. Throughout the paper, we assume that an
adversary knows the domain of inputs, but not the accepting inputs.

Definition 6.4.4 (Evasive Decision Tree Distribution). Let D = {Dλ}λ∈N be a

distribution of polynomial-size classification functions represented as decision trees

of depth d(λ) on n(λ) variables. We say D is evasive, if there exists a negligible

function µ such that for every λ ∈ N, for every input (xi)i∈[n(λ)]

Pr
C←Dλ

[ C((xi)i∈[n(λ)]) = 1] ≤ µ(λ)

In short, Definition 6.4.4 requires that for every (xi)i∈[n], a program C chosen
randomly from the distribution evaluates to 1 with negligible probability.
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h1

h2

h3
h

(a) (b)

Figure 6.4: Two example cases of distributions which lead towards non-evasiveness: (a)
Decision region h1 is very big. (b) Overlapping decision regions h1, h2 and h3.

A distribution Xn ∈ [0, 2ℓ)n defines a distribution Dλ, such that C ← Dλ

computes whether an input (xi)i∈[n] is accepted or not as follows: sample
(c1, . . . , cn) ← Xn and (w1, . . . , wn) ← (0, wmax]

n. The accepted inputs sat-
isfy xi ∈ (ci, ci + wi] for every i ∈ [n]. For the program collection to be eva-
sive, it is necessary that, for fixed (x1, . . . , xn), the probability is negligible that
xi ∈ (ci, ci + wi] for every i. Thus we require Xn to have large entropy. As
uniform distributions provide the highest entropy, this is the best case. However,
real-world applications may have accepting regions that are less uniform. The
scenarios that lead to non-evasiveness are: (1) the decision regions are too big (so
a random x is likely to be in the set); (2) the number of points in the space [0, 2l)n

representing (c1, . . . , cn) is too few (not enough entropy); (3) the decision regions
overlap each other (so one can choose x from the intersection of the regions).
Figure 6.4 shows two example distributions that give non-evasive decision trees.

Hence for an evasive collection, the distributionXn needs to have a large number
of points representing (c1, . . . , cn). Adding to that, the distribution needs to be
’well-spread’ (meaning that a set of randomly chosen accepting regions should
have empty intersection). We further this discussion with the calculation of the
required parameters for identifying an evasive program collection. We start with
uniform distribution on [0, 2l)

n, where n, ℓ are polynomials in λ.

Lemma 6.4.1. Let n, ℓ ∈ N. Let ci is integer between 0 and 2ℓ − 1 and wi is

an integer between 0 and wmax. The number of elements in the decision region

(c1, c1 + w1]× · · · × (cn, cn + wn] is at most (wmax)
n.
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Proof. For a ci selected uniformly in [0, 2ℓ), wi has to be selected such that wi <

wmax, for some wmax ∈ N. It can be readily seen that the number of ways of
selecting the elements along an interval is wmax. For all the n intervals chosen
uniformly and independently of each other, the number of possible ways is at
most (wmax)

n.

Lemma 6.4.2. Let λ ∈ N be the security parameter and n, ℓ, wmax ∈ N, where
wmax ≤ 2(ℓ−

λ
n
). Fix an input (xi)i∈[n]. Choose uniformly ci ∈ [0, 2ℓ) and wi ∈

(0, wmax]. Then the probability that (xi)i∈[n] belongs to the decision region defined

by (ci, ci + wi], for i ∈ [n], is not more than 2−λ.

Proof. The total number of points in the space [0, 2ℓ)n is given by 2ℓn. The input
(xi)i∈[n] is contained in the decision region defined by (ci, ci + wi], i ∈ [n], when
xi ∈ (ci, ci + wi] for every i ∈ [n], where ci and wi are chosen uniformly from
[0, 2ℓ) and [0, wmax) respectively.

Now, for a fixed input (x1, . . . , xn) to be contained in the decision region, the
ci’s need to be selected such that ci ∈ (xi − wi, xi], for every i ∈ [n]. It can be
readily seen from Lemma 6.4.1 that the number of ways of selecting (c1, . . . , cn)

such that the wi’s are less than wmax are (wmax)
n, and thus the probability that

(xi)i∈[n] belongs to the decision region defined by (ci, ci+wi) is given by (wmax)n

2ℓn
.

For wmax ≤ 2(ℓ−
λ
n
), the above probability is at most 2−λ (negligible function in

λ).

The result shows that if the intervals (ci, ci+wi]’s are uniformly chosen withwi ≤
2(ℓ−

λ
n
), then the probability that an input (fixed a priori) belongs to the decision

region is negligible in λ. We now prove that the class of decision tree functions
defined by uniform distributions that follow the above mentioned parameter
restrictions, forms an evasive program collection.

Lemma 6.4.3. Let λ be the security parameter and ℓ, n be polynomials in λ. Let

wmax = wmax(λ) be some function such that wmax(λ) ≤ 2
ℓ(λ)− λ

n(λ) . Let 2−λ be

a negligible function. Let Xn be an uniform distribution on [0, 2ℓ)n and let Dλ be

the corresponding distribution on decision trees that checks if (xi)i∈[n] belongs to

the decision region defined by the ci’s and wi’s. Then Dλ is an evasive program

distribution.
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Proof.A uniform distribution on [0, 2ℓ)n defines aDλ, and we need to show that for
every λ ∈ N and every (xi)i∈[n], Pr

C←Dλ

[C((xi)i∈[n]) = 1] ≤ µ(λ). For C ← Dλ,

the probability that (xi)i∈[n] is accepted by C is equal to the probability that (xi)
lies in the product of uniformly chosen intervals (ci, ci+wi] as above. It is evident
from Lemma 6.4.2 that this probability is at most 2−λ.

Definition 6.4.5 (Computational Indistinguishabiliy). Let X = {Xλ}λ∈N and

Y = {Yλ}λ∈N be two probability ensembles. We say they are computationally

indistinguishable, denoted by X ∼= Y , if for every non-uniform PPT algorithm A,
there exists a negligible function µ(λ), such that the following holds:

| Pr
x←Xλ

[A(x) = 1]− Pr
x←Yλ

[A(x) = 1] | ≤ µ(λ)

Next we explore general distributions. As discussed beforehand, we do not want
the support of the distribution to have ’few’ points and the decision regions to be
clustered along the distribution (clumped distribution) so that we can eliminate
the possibilities of non-evasiveness. We require a distribution to have ’sufficient’
randomness. An important metric for quantifying the randomness of a distribution
is min-entropy, which measures the difficulty of correctly guessing a sample from
a given distribution.

Definition 6.4.6 (Min-entropy). A random variable X has a min-entropy, de-

fined by H∞(X) = − log [ maxx Pr [X = x]] and an average (conditional) min-

entropy on a (possibly) correlated random variable Y defined by H∞(X|Y ) =

− log ( Ey←Y [ maxx Pr [X = x|Y = y]].

Definition 6.4.7 (Decision Tree Min-entropy). Let ℓ, n are polynomials in the

security parameter λ ∈ N. Let wmax ≤ 2(ℓ−
λ
n
). Let X be a random variable on

[0, 2ℓ)n. Then the decision tree min-entropy of X is defined as:

HD,∞(X) = − log [ max
(xi)ni=1∈ Nn

Pr [X ∈
n∏

i=1

(xi − wmax, xi]]

Lemma 6.4.4. Let λ ∈ N be the security parameter and letD = Dλ be an ensemble

of distributions over [0, 2ℓ(λ))n(λ). For wmax(λ) ≤ 2
ℓ(λ)− λ

n(λ) , Dλ is decision tree

evasive distribution if min-entropy of Dλ is at least λ.

We next discuss what it means to learn an evasive decision tree. If a decision tree
is unlearnable, then there is no model extraction attack.
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Definition 6.4.8 (Unlearnable Decision Trees). A collection of classification func-

tions C is unlearnable, if for every polynomial time algorithm A with oracle access

to C , there exists a negligible function µ, such that for every λ ∈ N:

Pr
C←Dλ

[AC(1λ) = asset(C)] ≤ µ(λ)

Remark 6.4.1. Note that evasiveness implies unlearnability, because evaluating

an evasive function always returns 0 with overwhelming probability and hence no

information about the function is provided by these queries.

6.5 Obfuscating Evasive Decision Trees

In this section, we introduce a new technique for encoding interval membership

functions. We follow this with a description of our decision tree obfuscator.

6.5.1 Setup.

Without loss of generality, we assume decision trees to be full binary trees that
perform binary classification on an input (xi)i∈[n], wherexi ∈ {0, 1}ℓ.We consider
a decision tree function C ∈ Dλ with a depth d. We denote decision nodes by
(v1, . . . , v2d−1) and terminal nodes by S = (s1, . . . , s2d). An accepting path Psτ

is defined as the sequence of tuples [[tj , i, b]], such that vj is an ancestor node of
sτ ∈ S with sτ = 1, and b ∈ {0, 1} denotes the output of Boolean function gj(xi).
We assume each element in the input sequence to be used at most twice along an
accepting path. This assumption in reasonable, since any collection of inequalities
in the form xi ≤ tj and xi > tj defines an interval and so is defined by a pair of
comparisons. This implies the depth is at most twice the number of input elements.
We assume that Evaluation procedure (Algorithm 6.6) is oblivious to the tuples in
Psτ (and is only allowed to know d, and hence n).

6.5.2 Building Blocks

We want the obfuscated tree to be unlearnable i.e. we aim to hide asset(C) from
a PPT adversary. To achieve the same, we develop a library of building blocks
that enables encoding arbitrary integer intervals, which we leverage to build our
obfuscator.
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6.5.2.1 Converting Inequality into Intervals

A decision node associates function g : {0, 1}ℓ → {0, 1}, such that g(x) = 1,
if x ≤ t and 0 otherwise, where t is any integer between 0 and 2ℓ − 1. Thus,
the Boolean function splits the integer interval [0, 2ℓ) at each node into two
distinct partitions, call it X = [0, t+ 1) and X ′ = [t+ 1, 2ℓ), where each interval
contains ℓ-bit binary encoding of the integers. We further divide intervals X and
X ′ into a sequence of disjoint sub-intervals of the form [a, a+ 2p), which is the
primary building block of our construction. We present the formal descriptions in
Algorithm 6.1 and Algorithm 6.2.

Algorithm 6.1 GenIntX (t)

Input: ℓ ∈ N, t ∈ [0, 2ℓ)
Output: IX = {[aj , aj + 2pj )}j∈[k]
1: IX = ∅ ; temp = 0
2: Compute k = wt(t+ 1)
3: Compute p1, . . . , pk, such that t+ 1 =

∑k
j=1 2

pj and pj < pj−1
4: IX = {[0, 2p1)}
5: for j = 2 to k do
6: aj = temp+ 2pj−1

7: IX = IX ∪ {[aj , aj + 2pj )}
8: temp = aj
9: end for
10: return IX

Algorithm 6.2 GenIntX ′(t)

Input: ℓ ∈ N, t ∈ [0, 2ℓ)

Output: IX ′ = {[bj , bj + 2p
′
j )}j∈[k′]

1: IX ′ = ∅ ; temp = t+ 1
2: Compute k′ = wt(2ℓ − t− 1)

3: Compute p′1, . . . , p′k′ , such that 2ℓ − t− 1 =
∑k′

j=1 2
p′j and p′j > p′j−1

4: IX ′ = [temp, 2p
′
1)

5: for j = 2 to k′ do
6: bj = temp+ 2p

′
j−1

7: IX ′ = IX ′ ∪ {[bj , bj + 2p
′
j )}

8: temp = bj
9: end for
10: return IX ′

Lemma 6.5.1. Let ℓ ∈ N and t ∈ [0, 2ℓ). Consider algorithms GenIntX (Algorithm

6.1) and GenIntX ′ (Algorithm 6.2). Let IX ← GenIntX (t) and IX ′ ← GenIntX ′ .
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Then IX defines sub-intervals of the form [a, a+ 2p) for some a and p, whose union

is [0, t+ 1), and IX ′ defines sub-intervals of the form [b, b+ 2p
′
) for some b and p′,

whose union is [t+ 1, 2ℓ).

Proof. GenIntX (t) divides [0, t + 1) into k disjoint sub-intervals {[aj , aj +

2pj )}j∈[k] such that
∑k

j=1 2
pj = t+ 1 and pj < pj−1. Since a1 = 0, aj = aj−1 +

2pj−1 , the output is IX = {[0, 2p1), [2p1 , 2p1 + 2p2), . . . , [
∑k−1

j=1 2
pj ,

∑k
j=1 2

pj )}
and the union of these intervals is [0, t+ 1).

GenIntX ′(t) divides [t+ 1, 2ℓ) into k′ disjoint sub-intervals {[bj , bj + 2p
′
j )}j∈[k′]

such that
∑k′

j=1 2
p′j = 2ℓ−t−1 and p′j > p′j−1. Since b1 = t+1, bj = bj−1+2p

′
j−1 ,

the output is IX ′ = {[t+1, t+1+2p
′
1), [t+1+2p

′
1 , t+1+2p

′
1+2p

′
2), . . . , [t+1+∑k′−1

j=1 2p
′
j , t+ 1+

∑k′

j=1 2
p′j )} and the union of these intervals is [t+ 1, 2ℓ).

6.5.2.2 Intersection of Intervals

Let IX be a set of sub-intervals, all of the form [a, a+ 2j) for some a and j. Let
IX ′ be a set of sub-intervals, all of the form [b, b+ 2r) for some b and r. Define
intersection of IX and IX ′ as I = {I ∩ J : I ∈ IX , J ∈ IX ′} \ ∅.

Lemma 6.5.2. Let ℓ ∈ N. Consider algorithms GenIntX (Algorithm 6.1) and

GenIntX ′ (Algorithm 6.2). Let c, c+ w ∈ Z be such that 0 ≤ c < c+ w < 2ℓ. Let

IX ← GenIntX (c + w), IX ′ ← GenIntX ′(c). Let I = IX ∩ IX ′ = {I ∩ J : I ∈
IX , J ∈ IX ′} \ ∅. Then every interval in I is of the form [a, a+2i), for some i, and

|I| ≤ 2ℓ− 2.

Proof. We will prove that if I ∈ IX and J ∈ IX′ are such that IJ ̸=, then
IJ or JI . GenIntX (c + w) divides [0, c + w + 1) into k disjoint sub-intervals
[aj , aj + 2pj ), where k is the Hamming weight of ℓ-bit binary encoding of c +
w + 1. Since pj < pj−1, we can conclude that 2p1 ≤ c + w + 1 < 2p1+1 and
IX = {[0, 2p1), . . . , [2p1 + · · · + 2pk−1 , 2p1 + · · · + 2pk)}, where ℓ > p1. Since
c ∈ [0, c+ w + 1), we consider the following:

• If c+ 1 = 2q , where q ≤ p1, then IX ′ = {[2i, 2i+1)}i∈{q,q+1,...,ℓ−1}, and it
can be clearly seen that for every non-empty intersection I ∩J , either I ⊆ J

or J ⊆ I .
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• If 2q−1 < c+ 1 < 2q , where q ≤ p1. Let k′ be the Hamming weight of ℓ-bit
binary encoding of 2q− (c+1). Then, for J ∈ {[c+1, c+1+2p

′
1), . . . , [c+

1+ · · ·+2
p′
k′−1 , c+1+ · · ·+2p

′
k′ )}, where 2q = c+1+ · · ·+2p

′
k′ , J ⊆ I ,

where I = [0, 2p1). Also note, for J = [2p1 , 2p1+1) and I ∈ IX \ {[0, 2p1)},
I ⊆ J .

• If 2p1 + · · · + 2pm−1 ≤ c + 1 < 2p1 + · · · + 2pm , where m ≤ k. Since
GenIntX ′(c) divides [c + 1, 2ℓ) into k′ sub-intervals {[br, br + 2p

′
r)}r∈[k′],

then let p′1 < · · · < p′s ≤ pm < p′s+1 < · · · < p′k′ for some s < k′. Let
I = [2p1 + · · · + 2pm−1 , 2p1 + . . . ,+2pm) ∈ IX . Then, for a non-empty
intersection J , let J ∈ IX ′ be such that I ∩ J ̸= ϕ. Then J is an element of
the set {[c+1, c+1+2p

′
1), . . . , [c+1+ · · ·+2p

′
s−1 , c+1+ · · ·+2p

′
s)}. Note

that, 2p1 + · · ·+2pm = c+1+ · · ·+2p
′
s as 0 tom−1 bits of 2ℓ− (c+1) and

2p1 + · · ·+2pm − (c+1) are equal, and thus J ⊆ I . For all other non-empty
intersections, I ⊆ J .

It is clear from Algorithms 6.1 and 6.2 that |IX |, |IX ′ | ≤ ℓ (when the Hamming
weight of |X | and |X ′| are ℓ). Let I = IX ∩ IX ′ and consider any H ∈ I . By
the above, either H = I for some I ∈ IX or H = J for some J ∈ IX ′ . It
follows that |I| ≤ |IX |+ |IX ′ |. In the case H = I , there is some J ∈ IX ′ such
that I ⊆ J , and so J itself is not counted in |I|. Similarly in the case H = J

there is some I ∈ IX such that J ⊆ I , and so I is not counted in |I|. Hence
|I| ≤ |IX |+ |IX ′ | − 2 ≤ 2ℓ− 2.

6.5.2.3 Calculating the Encodings

Let I be a set of sub-intervals, all of the form [a, a+2j). The encoder (Algorithm 6.3)
receives I as input and outputs the set of encodings {h1, . . . , h|I|}. Define a family
of functions F as follows: F = {f0, . . . , fℓ−1} where fi(y) : {0, 1}ℓ → {0, 1}ℓ−i

such that fi(y) = ⌊ y
2i
⌋. Let H : {0, 1}∗ → {0, 1}ω be a cryptographic hash

function with ω > 2ℓ so that H is injective when restricted to inputs of length at
most ℓ. A random oracle is not generally injective, but when the output length is
large enough compared to the input then it will be. Our argument behind imposing
this additional constraint onH is that every|⌊ y

2i
⌋| ≤ ℓ maps to a unique encoding

inE. Algorithm 6.4 receives as inputE ← IntEnc(I) and x ∈ {0, 1}ℓ and outputs
1, if x belongs to any of the sub-intervals in I .
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Algorithm 6.3 IntEnc({[aj , aj + 2pj )}j∈[k])

1: E = ∅
2: for j = 1 to k do
3: Compute µj = fpj (aj)
4: Compute hj = H(µj).
5: E = E ∪ {hj}
6: end for
7: return E

Decoding. The decoding algorithm 6.4 receives as input E ← IntEnc (I) and
x ∈ {0, 1}ℓ and outputs 1 if x belongs to any of the sub-intervals in I .

Algorithm 6.4 Dec (with embedded data E)
Input: ℓ ∈ N, x ∈ {0, 1}ℓ
Output: 0 or 1.
1: for i = 0 to ℓ− 1 do
2: Compute H(fi(x))
3: if H(fi(x)) ∈ E then
4: return 1
5: end if
6: end for
7: return 0

Lemma 6.5.3 (Correctness). Let c, c+ w ∈ [0, 2ℓ). Consider algorithms GenIntX
(Algorithm 6.1), GenIntX ′ (Algorithm 6.2), IntEnc (Algorithm 6.3), Dec (Algorithm

6.4) and input x ∈ {0, 1}ℓ. Let IX ← GenIntX (c+w) and IX ′ ← GenIntX (c) and

I ← IX ∩ IX ′ . Let H : {0, 1}∗ → {0, 1}ω be injective when restricted to inputs of

length at most ℓ (e.g. ω > 2ℓ). Then x ∈ (c, c+ w] if and only if Dec outputs 1.

Proof. Let I = {[aj , aj + 2pj )}j∈[k], then from Lemma 6.5.2, we can say that⋃k
j=1[aj , aj + 2pj ) contains all sub-intervals in (c, c+ w]. Let x be an integer in

(c, c+ w], then it must belong to at least one of the sub-intervals in I . Algorithm
6.3 computes fpj (y) = µj , for every [aj , aj + 2pj ) ∈ I . If x ∈ [aj , aj + 2pj ),
then there exists an i ∈ {0, . . . , ℓ − 1} such that fi(x) = fpj (aj) = µj . Hence
H(fi(x)) ∈ {h1, . . . , h|I|} ← IntEnc(I) and Dec outputs 1. If x ̸∈ [aj , aj + 2pj ),
∄ i = {1, . . . , ℓ− 1}, such that fi(x) ∈ (µj)

|I|
j=1 and therefore, (h1, . . . , h|I|) will

not contain H(fi(x)). Finally, Dec will correctly reject the input.

Example Parameters.We illustrate the interval encoding technique with the fol-
lowing concrete setting: consider the interval membership predicate x ∈ (10, 14].
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To encode the interval, calculate IX ← GenIntX (14) and IX ′ ← GenIntX ′(10)

which gives the set of sub-intervals in [0, 15) and [15, 256) for ℓ = 8. Finally,
calculate IntEnc(I), where I ← IX ∩ IX ′ . The sets are indicated as follows:

IX = {[0, 8), [8, 12), [12, 14), [14, 15)}

IX ′ = {[11, 12), [12, 16), [16, 32), [32, 64), [64, 128), [128, 256)}

I = {[11, 12), [12, 14), [14, 15)}

IntEnc(I) = {H(f0(00001011), H(f1(00001100), H(f0(00001110))} =

{H(0000 1011), H(0000110), H(00001110)}

6.5.3 Obfuscator O

We now present our decision tree obfuscator O. We remind the readers that S is
the set of terminal nodes, and sτ = 1 denotes an accepting path through the tree
(from root to leaf).

Each accepting path is a conjunction of inequalities, and our objective is the
obfuscate the conjunctions using our encoding technique for interval membership
functions. Note that, our construction uses the fact that the terms in a conjunction
can be reordered. Recall that xi is compared at most twice along an accepting path,
and hence the accepting path corresponds to xi ∈ (ci, ci + wi] for every i ∈ [n].

Precisely, the obfuscator works as follows: to encode (ci, ci +wi], calculate IiX ←
GenIntX (ci + wi) and IiX ′ ← GenIntX ′(ci), which gives the set of sub-intervals
in [0, ci + wi + 1) and [ci + 1, 2ℓ). Next, determine Ii ← IiX ∩ IiX ′ which is
a set of sub-intervals whose union is (ci, ci + wi]. To encode each sub-interval
in Ii, calculate encodings Bi ← IntEnc(Ii). Let Hc : {0, 1}∗ → {0, 1}q be a
cryptographic hash function with q ≥ 2ωn (and hence injective on restricted
inputs). The main idea is to concatenate each combination of n hashes sorted in
ascending order of i for each entry in Bi, and applyHc ; call the set of hashes B. If
|B| < 2d(2ℓ− 2)n, add dummy entries drawn uniformly at random from {0, 1}q .
Finally, output B. We give the formal details in Algorithm 6.5.
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Algorithm 6.5 O (d, n, ℓ ∈ N, asset(C))

1: B = ∅
2: α = 2d(2ℓ− 2)n

3: for all τ such that sτ = 1 do
4: Compute Psτ = ([[tj , i, b]] : vj is an ancestor of sτ , and b = gj(tj))
5: for i = 1 to n do
6: IiX = IiX ′ = [0, 2ℓ)
7: if [[tj1 , i, 1]] ∈ pathsτ then
8: IiX ← GenIntX (tj1)
9: end if
10: if [[tj2 , i, 0]] ∈ pathsτ then
11: IiX ′ ← GenIntX ′(tj2)
12: end if
13: Ii ← IiX ∩ IiX ′

14: if (Ii == [0, 2ℓ)) then
15: Bi = {1ℓ}
16: else
17: Bi ← IntEnc(Ii)
18: end if
19: end for
20: Denote Bi = (hi1, . . . , h

i
σi
), where σi ≤ 2ℓ− 2 for each i.

21: for all ((q1, . . . , qn) ∈ [σ1]× · · · × [σn]) do
22: B = B ∪ {Hc(∥ni=1h

i
qi)}

23: end for
24: end for
25: while (|B| < α) do
26: r←$ {0, 1}q
27: B = B ∪ {r}
28: end while
29: return B

6.5.4 Obfuscated Decision Tree Evaluation

On input (xi)i∈[n], the evaluation procedure calculates all possible encodings
by evaluating H(fp(xi)) for every p ∈ {0, . . . , ℓ− 1}; call it E i = {hi1, . . . , hiσ}.
Finally compute all possibleHc(∥i∈[n]hiqi), where encodings are listed in ascending
order of i. For an accepting input, one of the computed hash values belongs to the
set B published byO. Formally, the evaluation procedure is specified in Algorithm
6.6.
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Algorithm 6.6 Eval (B with |B| = 2d(2ℓ− 2)n)
Input: (x1, . . . , xn), ℓ, d
Output: 0 or 1
1: for i = 1 to n do
2: E i ← {1ℓ} ∪ {H(f0(xi)), . . . ,H(fℓ−1(xi))}
3: end for
4: E i = {hi1, . . . , hiσ}, σ ≤ ℓ+ 1
5: for all (q1, ..., qi) ∈ [σ1]× · · · × [σn] do
6: if Hc(∥i∈[n]hiqi) ∈ B then
7: return 1
8: end if
9: end for
10: return 0

6.6 Correctness and Efficiency

In this section we analyze the correctness and efficiency of the obfuscator.

Lemma 6.6.1 (Correctness). Let λ ∈ N be the security parameter, and let n, ℓ, ω and

q be polynomials in λ. Consider Algorithms O (Algorithm 6.5) and Eval (Algorithm

6.6), and an input (xi)i∈[n] with xi ∈ {0, 1}ℓ. Let H : {0, 1}∗ → {0, 1}ω with ω >

2ℓ, and let Hc : {0, 1}∗ → {0, 1}q with q > 2ωn. Then for every [[tj , i, b]] ∈ Psτ ,

where tj ∈ [0, 2ℓ), i ∈ {1, . . . , n}, b ∈ {0, 1}, for every S = (s1, . . . , s2d) with

sτ ∈ {0, 1}, for every B ← O, and for every input (xi)i∈[n], if C((xi)i∈[n]) = 1,

then Eval outputs 1, else it outputs 0 with overwhelming probability in λ.

Proof. Algorithm 6.5 calculates set of encodingsBi ← IntEnc(Ii) for every i ∈ [n].
If there is some i such that [[tj , i, b]] ̸∈ Psτ (which means xi is not compared in the
path) then Bi = {1ℓ}. Let (xi)i∈[n] be an accepting input. From Definition 6.4.3,
xi ∈ (ci, ci + wi], for every i ∈ [n]. From Lemma 6.5.3, if xi ∈ (ci, ci + wi], then
there exists a unique hik ∈ E i, such that hik ∈ Bi. If ∃ i, such that [[tj , i, b]] ̸∈ Psτ ,
then hik = 1ℓ ∈ Bi. Thus, for an accepting input (xi)i∈[n], there exists a unique
(h1k1 , . . . , h

n
kn
), where hiki ∈ E

i and Hc(h
1
k1
∥ . . . ∥nkn) will be contained in B, and

Algorithm 6.6 will correctly output 1.

If C((xi)i∈[n]) ̸= 1, then by Lemma 6.5.3, hash values computed from (xi) will
not match the hash values input to Hc. As we choose parameters such that Hc is
injective, Hc(h

1
k1
∥ . . . ∥hnkn) will not be contained in B, except if it equals to one
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of its dummy entries. Since the number of possible encodings (in Eval) input to
Hc is 2(ℓ+1)n, and w > 2ℓ, q > 2ωn, the probability that Eval incorrectly accepts
the input is given by 2(ℓ+1)n

2q = 1
23ℓn

. Finally, the probability that the α hash values
output by O are good is given by (1− 1

23ℓn
)α ≈ 1− negl(λ).

Efficiency.We now discuss the size complexity of the obfuscated decision tree.
Let λ ∈ N, and ℓ, q be polynomials in λ.

Along an accepting path, the upper bound on the size of Bi is 2ℓ− 2 (see Lemma
6.5.2). There are n such set of encodings, hence the total number of possible
encodings input toHc is (2ℓ− 2)n. Since, the number of accepting paths isO

(
2d
)
,

the overall complexity of storing the obfuscated tree isO
(
2d+n · ℓn · q

)
, where q is

the output size ofHc. Note that the upper bound α = 2d(2ℓ− 2)n on the number
of hashes is much larger than will be needed for most evasive decision trees, so
in practice this parameter could be chosen a lot smaller to get a more compact
obfuscated program.

Next, we analyze the time complexity of the evaluation procedure (Algorithm 6.6).
Each node corresponds to set of encodings E i, where |E i| = ℓ + 1. For n input
attributes, the overall running time of the evaluation algorithm is of the order
O
(
ℓn log(α)

)
operations. Since the query response time is exponential in n, we

restrict to decision trees of constant number of input elements.

We now prove polynomial slowdown only for some special cases.

Lemma 6.6.2 (Polynomial Slowdown). Let λ ∈ N be the security parameter and ℓ

be a polynomial in λ. Define Tλ to be a special family of evasive decision trees, where

d = 5, n ≤ 4 and ℓ = λ
4 . Then for every C ← Tλ, there exists a polynomial p such

that the running time of O(C) is bounded by O
(
p(λ)

)
.

Proof. Let C ← Tλ computes whether an input (xi)ni=1 is contained in the decision
region defined by intervals (ci, ci + wi], where wi ∈ (0, wmax]. From Lemma
6.4.2, wmax ≤ 2ℓ−

λ
n , which specifies the maximum width of the intervals. For

evasiveness, we require ℓ − λ
n ≥ 0, which gives ℓn ≥ λ. Now, for ℓ = λ

4 and
n = 4, we get ℓn = λ, which is a feasible condition for evasiveness. The cost of
evaluating O is given by ℓn = (λ4 )

4.
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d ℓ n λ Program size Evaluation cost
5 64 4 128 1264 × 512 654 × 512

3 64 2 64 1262 × 512 652 × 512

Table 6.1: Example parameter sets for an obfuscated decision tree with wmax ≤ 2ℓ−
λ
n .

For q = 512 bits and one accepting path (q is the output size of hash function Hc), we
calculate the size of the obfuscated program and the cost of the evaluation (Algorithms
6.5 and 6.6).

Parameters for Secure Construction ofOD. The aim of this section is to explain
how to choose the necessary parameters that adhere to the restrictions of a secure
and efficient obfuscator.

Our a priori knowledge on the parameters are as follows: ℓ = ℓ(λ), d = d(λ), n =

n(λ), where λ ∈ N is the security parameter. For evasiveness, the maximum width
of the intervals representing the decision regions should be wmax(λ) ≤ 2

ℓ(λ)− λ
n(λ)

keeping to Lemma 6.4.2. Adding to that, we require d ≤ n+ 1.

We give some example parameters along with their bit-security in Table 6.1.

6.7 Proof of VBB Security

We prove VBB security in the random oracle model. For simplicity we restrict to
decision trees with one accepting path, and let α = (2ℓ− 2)n be an upper bound
on the number of hash values required for the obfuscated program. We start with
a brief introduction to the random oracle model, followed by the proof of VBB
security.

Random Oracle Model. The model is introduced by Mihir Bellare and Phillip
Rogaway as a methodology for designing and validating cryptographic schemes,
that cannot be proven secure in the standard model (under any computational
hardness assumptions) and has found applications in a number of security proofs.
Random oracle is an abstraction of an idealized model that incorporates a public
random functionR, with all the parties (obfuscator, adversary, etc.) having oracle
access toR. These proofs are elegant in a way that it provides confidence in the
’soundness’ of the designed scheme as the possible attacks can only stem out of the
weaknesses in the real-world instantiation of the random oracle. The functionality
of ROM is as follows:
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Functionality of ROM (FRO). A random functionR is chosen uniformly from
the set of all functions and all the parties are given oracle access to the function.
Let E be the domain and K be the co-domain of R. Let L be the list of pairs in
E × K, which is initially empty. When queried with x, the oracle returns y, if
(x, y) ∈ L, otherwise it stores and returns a string selected uniformly from the
co-domain K.

The security of our construction relies upon the existence of cryptographic hash
functions H : {0, 1}∗ → {0, 1}ω and Hc : {0, 1}∗ → {0, 1}q , which we model as
random oracles in our security proof. Our objective is to show that a PPT adversary
having access to the obfuscated function has no advantage over a simulator having
oracle access to the function. This is achieved by a simulating the adversary in
execution and outputting what the adversary does, such that the adversary cannot
distinguish between the simulation and the real environment, a notion called
simulation-based obfuscation. We first give a brief intuition to our security proof.

Consider a simulator S who samples parameters ℓ, n following the conditions in
Lemma 6.6.2, and sends them to adversary A. A now samples C and provides
S oracle access to C . Since S does not know the program C , it simulates the
obfuscated program and random oracles and provides answers to A’s queries.

If an adversary never queries the circuit with an accepting input, the everything
is a correct simulation. However, if the adversary does query the circuit with
an accepting input, then the security reduction immediately uses this clue to
mount a model-extraction attack, and hence learn the corresponding accepting
path in the decision tree. The security reduction can run the obfuscator correctly
for that accepting path, and program the random oracles to be consistent with
the simulated O (the reduction does not learn anything about the other possible
accepting paths). Hence, again everything is a correct simulation.

Theorem 6.7.1. Let λ ∈ N be the security parameter Let ℓ = ℓ(λ) and α = α(λ)

satisfy the conditions required for Lemma 6.6.2. Let Dλ be a distribution of evasive

decision trees. Then for random oracles H : {0, 1}∗ → {0, 1}ω and Hc : {0, 1}∗ →
{0, 1}q , the decision tree obfuscator O is a VBB obfuscator.

Proof. As evident from Lemma 6.6.1,O satisfies functionality preservation. Lemma
6.6.2 shows that the obfuscator causes polynomial slowdown. Thus it suffices to
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show that there exists a (non-uniform) PPT simulator S for every (non-uniform)
PPT adversary A, such that for an ensemble of decision tree evasive distributions
Dλ, the following holds:

∣∣∣ Pr
C←Dλ

[A(O(1λ, C)) = 1]− Pr
C←Dλ

[ SC(1λ) = 1]
∣∣∣ ≤ µ(λ)

Every C ← Dλ identifies unique (c1, . . . , cn) ← Xn and (w1, . . . , wn) ←
(0, wmax]

n, and on input (x1, . . . , xn) determines if xi ∈ (ci, ci + wi] for all
i ∈ [n]. Let O(1λ, C) = {h1, . . . , hα} denote the correct obfuscation of C . Let A
be a PPT adversary that takes as input O(1λ, C). We use this adversary to design
a PPT simulator S that simulates an execution of A.

SinceA expects the oraclesH andHc, S provides a simulation of both the oracles.
In order to record the choices of the random oracles, S maintains two tables : T1
to record responses for queries to H and T2 to record responses for queries to Hc.
Since S does not have access to O(1λ, C), it prepares a purported obfuscation of
C as follows: S samples α values uniformly at random from the co-domain of Hc,
and sends {h′1, . . . , h′α} to A.

We assume that A makes polynomially many queries to both the random oracles.
When A queries oracle H with u∗, S looks for v such that (u∗, v) ∈ T1 and
returns it to the adversary. If no such v exists, then the simulation samples a
distinct v ∈ {0, 1}ω uniformly at random, adds (u∗, v) to T1, and returns v to A.

When A makes a query h∗ to the random oracleHc, the simulator looks for a val
such that (h∗, val) ∈ T2 and returns it to A. If there are no entries corresponding
to h∗, the simulator parses h∗ as (h∗1, . . . , h∗n) and looks up table T1 to find an
entry corresponding to each parsed string. If there does not exist such an entry
in T1, then a distinct val ∈ {0, 1}q is chosen uniformly at random, (h∗, val) is
added to T2, and val is returned it A.

If there exists a unique u such that (u, h∗i ) ∈ T1, then the simulator calculates
j ← ℓ − |u|, where |u| denotes the bit length of u, and xi ← u × 2j . Since u

corresponds to µj (for a correct input), adding j zeroes yields an accepting input
forC . Eventually, the simulator queries the oracleC with the (xi)i∈[n]. IfC returns
1, S determines the ci’s and wi’s by doing standard model extraction attack for
that single accepting path, calculates pairs (u, v) and registers the entries in T1.
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Note that we do not learn anything about other possible accepting paths. Thereafter
the simulator calculates the α input entries of T2, defines them to be α entries
from the already published set {h′1, . . . , h′α}, registers the pairs in T2 and returns
val to the adversary. If there are multiple entries in T1, the simulation halts.

We describe the simulation in form of pseudo code in Algorithm 6.7 and 6.8.

Algorithm 6.7 OracleH(u∗)

1: Find all v such that (u∗, v) ∈ T1
2: if no such v exists then
3: v←$ {0, 1}ω
4: T1 ← T1 ∪ (u∗, v)
5: else
6: if ∃ w (u∗ ̸= w), such that (u∗, v) ∈ T1 and (w, v) ∈ T1 then
7: return ⊥
8: end if
9: end if
10: return v
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Algorithm 6.8 OracleHc(h∗)

1: Find all val such that (h∗, val) ∈ T2
2: if no such val exists then
3: Parse h∗ = (h∗i )i∈[n]
4: counter = 0
5: for i = 1 to n do
6: if (u, h∗i ) ∈ T1 then
7: counter← counter ++
8: j ← ℓ− |u|
9: xi ← u× 2j

10: end if
11: end for
12: if (counter == n) then
13: b← SC(x1, . . . , xn)
14: if (b == 1) then
15: Calculate (ci, wi)i∈[n] using model-extraction attack
16: Run Algorithm 6.5 and calculate (u, v), h
17: T1 ← T1 ∪ (u, v)
18: if ∃ u1, u2 (u1 ̸= u2), such that (u1, v) ∈ T1 and (u2, v) ∈ T1 then
19: return ⊥
20: else
21: for i = 1 to α do
22: vali ← h′i
23: T2 ← T2 ∪ (hi, vali)
24: end for
25: end if
26: end if
27: val←$ {0, 1}q
28: T2 ← T2 ∪ (h∗, val)
29: end if
30: end if
31: return val

At any point, the simulated view is identical to the real view such that the adversary
cannot distinguish between the real and purported obfuscation.

We now analyze the scenario where the simulator fails due to conflicts in table T1
and show that the probability of such conflicts is negligible in λ.

Lemma 6.7.1. Let λ ∈ N be the security parameter, and let ℓ, α be polynomials in

λ. Let Dλ be an ensemble of evasive decision tree distributions, and let O(1λ, C) be

the obfuscation of C ← Dλ. Consider Algorithms 6.7 and 6.8 and random oracles
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H : {0, 1}∗ → {0, 1}ω andHc : {0, 1}∗ → {0, 1}q(λ). Let η = η(λ) be the number

of entries in T1, then there exists a negligible function µ(λ) such that

Pr
C←Dλ

[ SC(1λ) =⊥] ≤ µ(λ)

where S is a PPT algorithm with oracle access to C .

Proof. The simulation fails when there is a conflict in table T1 and S halts. Con-
flicts may arise when S has responded to a random oracle query u∗ to H with
v ←$ {0, 1}ω and later, on the hash query h∗ to Hc, it makes a call to oracle
C and populates T1 with a pair (w, v) such that w ̸= u∗. Let η = η(λ) be the
number of entries in T1. The probability that a conflict occurs in T1 is equal to the
probability that a hash value is same as at least one of the η values in table T1.
Since H : {0, 1}∗ → {0, 1}ω(λ), there are 2ω(λ) choices for a hash value. When
there are no entries in T1, the collision probability is 0, when there is one entry in
T1, the collision probability is 1

2ω(λ) and continuing the same way, when there are
η − 1 entries in T1, the probability of collision is (η−1)

2ω(λ) . Assuming all the samples
are independent, the probability with which SC(1λ, π) fails is given by:

Pr
C←Cλ

[ SC(1λ, π) =⊥ ] =
1 + · · ·+ (η − 1)

2ω(λ)

=
η2 − η

2ω(λ)+1

≤ µ(λ)

6.8 Comparison Analysis

In this section, we present a comparative analysis of our solution with the state-of-
art protocols for securing the privacy of the decision tree and user data. In what
follows, we identify three main factors that contribute as our comparison criteria.

To start with, we identify that almost all decision trees are susceptible to model-
extraction attacks, and all the previous works that claim privacy of generic decision
trees[2, 188, 225] (to name a few) from a PPT adversary, fail to do so [193] (oracle
calls suffice for learning the assets). With this, we base our construction only for
a subset of decision trees, which we call evasive. We define the properties that
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Scheme Communication Rounds Method
[35] ≥ 6 Leveled FHE
[69] 9 ASS
[122] 1 AHE, ASS

Proposed Scheme 0 Cryptographic Hash Functions

Table 6.2: Comparison summary with state-of-art protocols: AHE stands for Additive
Homomorphic Encryption, ASS stands for Additive Secret Sharing.

makes a decision tree evasive, and provide computational security guarantees
for this class of decision trees, as it is impossible to preserve the privacy of generic

decision trees.

We next claim that our solution is completely non-interactive. The existing works
in privacy-preserving classification in outsourced settings require more than one
round of communication at the minimum [2, 122, 26, 195]. For generic two-party
protocols, multiple rounds of interaction between the model-provider and the user
are required to achieve private comparison at each node of the decision tree [26,
35, 37, 213]. We eliminate interaction between the user and the model-provider (0
round of communication), such that the evaluation is done locally by the user.

Finally, our solution relies upon computationally inexpensive hash functions
as opposed to the prevalent heavyweight approaches based on homomorphic
encryption [213, 35, 188], which incur heavy costs due to multiplication operations,
imposes computational limitations on the degree of the evaluated polynomial,
etc. Adding to that, such methods add noise, which results in the increase in size
of the ciphertexts. In [60], the authors manage to bring down the overhead, by
introducing a homomorphic calculation method that compares a plaintext decision
tree model with the encrypted user-queries. We design an encoder for interval-
membership function using a hash function H , which we then use as a building
block for obfuscating a decision tree classification program, using another hash
function Hc.

6.9 Conclusion

In this chapter, we have introduced a new special-purpose VBB obfuscator for
evasive binary decision trees. While doing so, we have presented an encoder for
hiding parameters in interval-membership functions. Our security analysis follows
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the random oracle paradigm [29, 126, 86, 111]. To the best of our knowledge, our
construction provides the first non-interactive solution for privacy-preserving clas-
sification with decision trees. Furthermore, our methods rely upon hash functions
as opposed to computationally expensive cryptographic primitives used by state-
of-art protocols, and provides computational security against model-extraction
attacks for decision trees that are evasive in nature. Our obfuscation construction
blows up exponentially in the depth of the tree, hence an interesting problem
would be to investigate solutions that work for more general class of evasive
decision trees.



Chapter 7

ObfCP: Platform to Prevent
Reverse Engineering of Control
Programs

PLCs automate industrial processes, with control programs constituting the
decision-making layer that bring about desirable changes in the process mea-
surements. In this chapter, we introduce a new adversarial model with a MATE
adversary who aims at extracting the operational semantics of the process con-
trol framework by obtaining a copy of the control program downloaded from an
engineering workstation to a PLC. We focus on preventing such efforts of the
adversary, and present a formalization of control program abstraction and its
assets, the secret values in the program that give away the operational seman-
tics of the process. Our formalism is generic, in the sense that it captures all the
comparison operations standardized in IEC 61131-3 [99]. Finally, we introduce
ObfCP, a platform that makes use of cryptographic obfuscation to secure assets in
a control program. We demonstrate an end-to-end case study of control program
formalization and present a proof-of-concept implementation over two realistic
ICS testbeds. Our micro-benchmarks indicate that the proposed platform incurs an
overall increase of 3% in the execution time for a single scan cycle, with guarantees
of computational security. To the best of our knowledge, this is the first attempt
to prevent extraction of process semantics by reverse engineering a recovered
implementation of control program.

135
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7.1 Rationale

As discussed in Section 2.1, a PLC interprets input signals from sensors, executes
control program pre-configured via engineering workstation, and outputs manip-
ulated variables, which are then transmitted to actuators on top of a plant-wide
integration network. Given PLCs and ICS-specific communication protocols do
not have provisions for in-built security, a control program can be recovered via
unauthorized access to vulnerable ICS equipment, which can then be reverse
engineered to recover the process semantics to deliver targeted attacks. We are
motivated to look for solutions that prevent such attempts of an adversary, and in
this chapter we design a platform that makes use of cryptographic obfuscation to
address the aforementioned concern.

Our Contributions. This chapter focuses on preventing an adversary, who obtains
a copy of the control program by gaining unauthorized access to the target PLC
or ICS network at the configuration layer (see Section 2.1), from extracting the
operational semantics of the control application. The existing literature highlights
how an adversary, with the knowledge of engineering concepts and practices
applied within the target domain, extracts the control logic of the target control
system by reverse-engineering the high-level process descriptions. However, none
of the prior works, to the best of our knowledge, attempt to prevent such efforts of
an adversary. To this end, we make use of program obfuscation, a tool that protects
assets [142] by transforming a program to its semantically equivalent counterpart,
such that access to the transformed version does not give away the assets, yet
preserves the functionality. A summary of our offerings is given as follows:

• We formalize the abstraction of control programs and define its assets (see
Definition 7.3.2), learning which, an adversary is able to extract the opera-
tional semantics of the control applications.

• We propose a new adversarial model, where an adversary obtains a control
program, either via gaining access to the PLC or the ICS configuration
network used for downloading the control program. As far as we are aware,
none of the existing works have put forward similar threat models.

• We introduce ObfCP, a novel legacy-compliant platform for securing assets
in a control program by making use of cryptographic obfuscation. A part
of the proposed platform executes inside a trusted execution environment
introduced in the control loop of the target control system.
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• We demonstrate an end-to-end case study of our formalization approach and
a proof-of-concept implementation of our platform over two realistic ICS
control applications.

Overall, our work could be considered as the first attempt towards restraining an
adversary in extracting the operational semantics of industrial processes, such that
the risk of the targeted attacks could be mitigated. We believe that our efforts to
put forward this research direction and formalize the control program abstraction
would encourage the industrial practitioners and security research community
in furthering stronger solutions that prevent reconnaissance of process control
within environmental constraints of an ICS.

Organization. This chapter is organized into the following sections. Section
7.2 provides a brief description of the example testbed used to demonstrate our
approaches, followed by an introduction to our threat model. Section 7.3 introduces
the formal definitions of control programs, along with its assets. Section 7.4 gives
a description of the proposed ObfCP platform. Section 7.5 provides a proof-of-
concept implementation of our design. An overall conclusion is presented in
Section 7.6.

7.2 Preliminaries

We start the section with an experimental water distribution system, which we
use as a running example to demonstrate our approach. We follow this with a
brief introduction to the threat model that we consider for this study.

7.2.1 Case Study

As complicated as the nature of a full-scale ICS could be, we consider a simple
realistic water distribution system for demonstrating our approach. The water
reservoir in Figure 7.1 (a) supplies chemically-treated water to consumers. A
differential pressure sensor calculates the level of water, and a chlorine sensor
measures the amount of chlorine in the tank. The water reservoir is connected to
a pressure modulating valve that regulates outflow of water from the reservoir
through a pump that allows precise control of water-flow rate. Mechanics of how
the reservoir is filled and how chlorination level within the reservoir is maintained,
is out of the scope of this study. The functional requirement for controlling pressure
at the outlet of valve is described in Figure 7.1 (b).
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Water Reservoir

Control Valve Differential
Pressure Sensor

Chlorine
Sensor

(a) (b)

>

Figure 7.1: Experimental Testbed: (a) Schematics of an exampleWater Distribution System
(b) Control Program written in Structured Text describing the operational behavior of
the application.

7.2.2 Threat Model

Our threat model incorporates a MATE adversary (running in time, polynomial

in the security parameter of the system), who has an understanding of the basic
elements of a generic process control framework. The adversary has access to the
software implementation of the control program in the PLC [129], as well as the ICS
plant communication network at the configuration layer. The adversary is able
to set up a physical device at any point in this network and is assumed to have
tools to interact with the industrial protocols and interpret the semantics of the
ICS payloads. We assume that the adversary does not have access to the control
layer; this is admissible as attacks vectors with lower relative likelihood could
be ignored [185]. Furthermore, we assume that the adversary does not have any
knowledge about the target plant behaviour, the analog/discrete nature of signals
used by sensors and type of sensors such as, temperature sensor, inductive sensor,
ultrasonic sensor, etc. used in the control loop of the process.

Adversarial Goal: Reverse engineer the recovered implementation of the control
program obtained through the attack surface of the system and learn its assets.

Dynamic analysis of control program is out of the scope of this study, as the
adversary does not interact with the control layer of the process control framework.
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Programmable Logic Controller
Engineering Workstation

ICS Control Network

Figure 7.2: Entry points for a potential adversary to interact with the system for obtaining
a copy of control program.

This distinguishes our threat model from the one described in [161], where the
adversary derives the reactive behaviour of the process control system by recording
the traces of control program in the production environment and re-running them
in the host simulation environment. In particular, the adversary can monitor the
control program execution in the PLC, but cannot modify the process variables to
observe the change in values of manipulated variables. Our threat model is different
from [133], where the adversary obtains a priori information on the behaviour and
control flow of the target control system from electrical installations, compromised
HMIs or low-ranking insiders.

7.3 Modeling Control Programs

In this section, we highlight the distinguishing features of a control program to
develop an abstraction, and present an approach towards formalizing the derived
abstraction. Following this, we define assets in a control program and what is
meant by learning a control program.

7.3.1 Abstraction of Control Programs

Designing cryptographic solutions for preventing reverse engineering of control
programs require formalizing them, followed by rigorous mathematical proofs of
correctness of the composed solutions, a direction which has not been explored
by the state-of-art protocols, to the best of our knowledge. In this section, we
discuss the distinguishing features of control programs to develop an unambitious
abstraction, independent of IEC 61131-3 specified implementations [99], such that
a standardized definition of control programs could be formulated.

Software development of control programs is a step-by-step process that starts
with obtaining process descriptions by an operations engineer. A list of field de-
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Figure 7.3: Structural representation of the control logic derived from the process de-
scription of the example testbed (see Section 7.2.1).

vices, containing the input (process variables) and output (manipulated variables)
that need to be connected to the PLC, is prepared. This is followed by develop-
ing a structured representation of the program logic to get an initial intuitive
understanding of control flow within the process control framework. A model,
specifying how the process will react to all possible values of the input, defined
within the scope of the system, is developed. Finally control program is written
by a process engineer, which is but a mapping of process variables to manipulated
variables, based on the derived model of the framework.

A structured representation of the functional requirements for regulating the
pressure modulating valve is illustrated in Figure 7.3. Process variables gathered
from the description include readings from the differential pressure sensor indi-
cating the level of water in the reservoir, and readings from the chlorine sensor.
The pressure to be regulated at the outlet of valve constitutes the manipulated
variable. Such a representation could be translated to programming languages
specified in IEC 61131-3 using selection construct IF-THEN-ELSE, comparison func-
tion LE(), and logic function AND() [99, 220]. Figure 7.1 (b) demonstrates the ST
implementation of the control flow described in Figure 7.3.

7.3.2 Formalization of Control Programs

In this section, we present an approach towards formalizing control program
abstraction, along with a briefing on the basic assumptions. We employ the use
case presented in Section 7.2.1 to illustrate the idea central to our formalization.
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As discussed beforehand, control program acts as the ’decision-making layer’ in a
process control framework, and as such, we use binary decision trees to develop a
structured representation of the defined values of the manipulated variables, for
all possible values of the process variables.

Consider the control loop of a process control system, which consists of a pro-
cess, n sensors, m actuators, and a PLC. The sensors send process measurements
(x1, . . . , xn) to the PLC, who in turn generates and sends the manipulated vari-
ables (y1, . . . , ym) to the actuators. We assume xi, yj to be integers in [0, 2ℓ), for
some ℓ ∈ N. This assumption is reasonable as I/O signals can be both analog and

digital. We assume that the manipulated variables are initialized to zero at the
beginning of the program execution, based on the standard initialization process
of the commercial PLCs [79]. Also, internal variables and how they interact with
the process, are out of the scope of this study. An informal description of our
formalization follows:

A control program takes (x1, . . . , xn) as input, and outputs (y1, . . . , ym) based on
state trees. For each j ∈ [m], there exists a state treeΠj : a binary tree of maximum
depth 2n, where internal nodes associate Boolean functions that compare the
process variables against desired setpoints, with the outcomes deciding which
branch to walk, while terminal nodes output the different values of yj . Note that,
we consider along each path from root to the leaf node, xi can be compared at
most twice, and this is the intuition behind the depth 2n for the state trees.

Definition 7.3.1 (Control Program). Let there be n sensors and m actuators in a

process control system, where n, m ∈ N. Let (x1, . . . , xn) be the sequence of process
variables, where xi represents the value of ith sensor. Let (y1, . . . , ym) be the sequence

of manipulated variables, where yj represents the value of jth actuator. Let xi and

yj be integers between 0 and 2ℓ − 1, for some ℓ ∈ N. For every yj ∈ (y1, . . . , ym),

classification of an input (x1, . . . , xn) is defined as evaluation of the function Cj :
Nn → {0, 1}ℓ based on a state tree Πj defined as follows:

A binary tree of maximum depth 2n, where each internal node vτ associates a Boolean

threshold function tτ : {0, 1}ℓ → {0, 1}, (xi) 7→ tτ (xi), such that tτ (xi) = 1 if

xi ≤ sτ , which specifies which branch to walk, where sτ ∈ [0, 2ℓ) denotes the

setpoint at node vτ . At input (x1, . . . , xn), the function iterates from root to the leaf,

and the output is the value of the leaf yj at the end point of this walk in the tree.
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A control program P is the defined as evaluation of the functions (C1, . . . , Cm) on

the process variables (x1, . . . , xn).

To illustrate this, consider the use-case in Section 7.2.1. The function Cpressure

takes as input the process variables (chlorine_level , water_level) and outputs the
manipulated variable (pressure) based on the state tree Πpressure.

To understand the intuition behind comparing a process variable twice along a
path, consider a scenario where temperature (temp) of water in a tank should
be within the integer interval [121, 125] for a certain valve to be opened, i.e. the
condition (temp≤ 125 and temp> 120) needs to hold. To align with our formalism,
we write temp > 120 as temp ! ≤ 120 and compare temp with two setpoints along
a specific path in Πv2 (interested readers can refer to Figure 7.9).

It is noteworthy to mention that our formalization, in essence, captures all comparison

operations defined in the IEC 61131-3 standard [99], with the operators >, <, ≥, ≤,
= and ̸=.

7.3.3 Assets of Control Programs

Guided by our objective to prevent the modeled adversary from achieving his goal
(see Threat Model in Section 7.2.2), we make an effort to define assets of a control
program. Informally, assets could be some secret algorithms, cryptographic keys or
some data structures within a program that a MATE adversary aims at extracting
[178]. Also, the choice of assets depends upon the context and the malicious intent
of the adversary [8].

In a process control system, it is important to maintain the correct system state,
failure to achieve which could lead to catastrophic consequences. The challenge
is to maintain process variables at the desired setpoints, in order to meet the
production or manufacturing needs [4, 100]. We identify the setpoints to be critical
to maintaining a stable state of the system, and are thus central to the operational
behaviour of the system. This is our intuition behind defining setpoints as assets of
a control program.

We do not consider manipulated variables to be secrets of a control program, as by the

nature of distributed monitoring and control, manipulated variables can be obtained

through other methods [46, 123, 169, 214].
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Definition 7.3.2 (Assets of Control Program). For state tree Πj , there exists tuple

Sj = [[sj1, . . . , s
j
22n

]], where sjτ denotes the desired setpoint at node vjτ . Asset of a

control program EP is defined as the sequence of tuples (S1, . . . ,Sm) for all the state

trees defined in a control program P .

In short, we consider setpoints to be the assets of a control program. Next, we
define what it means to learn a control program. A MATE adversary aims to
reverse-engineer a control program to identify EP , and thus unlearnibility means
that the adversary with access to the the control program, cannot learn EP , except
with a negligible probability.

Definition 7.3.3 (Unlearnable Control Programs). Let λ ∈ N be the security

parameter. A control programP is unlearnable, if for every polynomial time adversary

A with access to the implementation of P , there exists a negligible function µ, such

that for every λ ∈ N:
Pr [AP(1λ) = EP ] ≤ µ(λ)

7.3.4 Composing Attack Vectors

In the following, we discuss three scenarios based on the example use-case (see
Section 7.2.2) to elaborate on the importance of making control programs un-
learnable, as an adversary can leverage his knowledge of the assets to cause fatal
consequences. In the given scenarios, we assume that the tank is filled with water
during the time of the attack. To the best of our knowledge, none of the existing
works has put forward similar threat models.

Scenario 1. In this scenario, we assume that the adversary has the ultimate goal
of cutting off the water supply to the consumers. The adversary alters the setpoint
from s2 to s′2, where s′2 > s2. The outcome of the attack is that, even when the
water level in the tank is significantly high, pressure at the outlet of the valve v is
set to 0 and water supply to the consumers is stopped.

Scenario 2. In this scenario, The goal of the adversary is toxicating the water
supplied to the consumers, by increasing the concentration of chlorine in the
water, which is achieved by changing s1 to s′1, where s′1 > s1.

Scenario 3. An adversary is simply motivated to perform industrial espionage
and wants to learn the control logic of the process control system.
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We aim at making a control program unlearnable, so that the adversary cannot
extract the process semantics of the target control system.

7.4 Obfuscating Control Programs

In this section, we present our construction that makes use of cryptographic
obfuscation to prevent assets of a control program from being learned by the
modeled adversary (see Section 7.2.2).

7.4.1 Feasible Cryptographic Solutions

As evident from our prior discussion (refer to Section 2.3.1) , the choice of cryp-
tographic solutions to secure assets in a control program is highly restricted by
the constrained nature of a process control system. Our threat model allows an
adversary to obtain unauthorized access to both network and host (PLC). Such
an extreme threat environment, where the software implementation of control
program is on an untrusted host, standard cryptographic solutions with encryp-
tion algorithms are not adequate. This is because the control program needs to be
decrypted and then executed in the PLC. This drives us to seek for cryptographic
implementations for such extremely exposed context, that provide practical and
achievable security in the face of aforementioned constraints. The properties of
program obfuscation (see Definition 2.5.1), where a program is transformed to its
semantically equivalent counterpart, such that access to the transformed version
does not give away the assets, yet preserves the functionality of the program, is
promising in the light of the security guarantees that we want to achieve.

The primary idea behind our construction is to use cryptographic obfuscation to
transform a control program P to O(P) and download it to PLC, such that access
to O(P) does not allow the modeled adversary to learn EP , yet preserving the
functionality.

7.4.2 Setup

We consider a process control system with n sensors, m actuators, a PLC and
a process that needs to be controlled. The PLC is connected to the engineering
workstation, where control program P is developed, which is then downloaded to
the PLC using ICS configuration network.
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The sensors sample process variables and send them to the PLC, where they are
stored in input image table [33]. PLC evaluates the control program on the process
variables by querying the input image table, and outputs manipulated variables,
which are then stored in output image table. Finally the output signals are sent to
actuators to act upon the process.

7.4.3 Building Blocks

As discussed beforehand, we want to hide the setpoints in the state trees of a
control program. Each node in a state tree associates a Boolean function describing
the inequality x ≤ s and our objective is to check whether the input x satisfies the
inequality, with access to only an encoded version of s. To achieve this, we use our
construction in Chapter 6 for encoding Equation (7.1), where we transform the
inequality into a sequence of equalities, such that x satisfies one of the equalities
if, x ≤ s holds.

f(x) =

1 , if x ≤ s

0 , otherwise
(7.1)

where x and s are integers between 0 and 2ℓ − 1, for some ℓ ∈ N.

An informal description of our construction is given in the following. For details on
formal proofs of correctness and security, interested readers can refer to Chapter
6.

Review of the VBB Obfuscator from Chapter 6. Let F = {f0, . . . , fℓ−1}
where fi(y) : {0, 1}ℓ → {0, 1}ℓ−i such that fi(y) = ⌊ y

2i
⌋. Let H : {0, 1}∗ →

{0, 1}ω be a hash function with ω > 2ℓ such that H is injective on the set of
all strings of length less than or equal to ℓ. Let X = [0, s + 1) be an interval
containing ℓ bit binary encoding of integers.

Encoding. Compute the hamming weight k = w(X ), and partition X into k

disjoint sub-intervals [aj , aj + 2pj ), such that aj = aj−1 + 2pj−1 and a1 = 0,
where p1, . . . , pk ( p1 > p2 > · · · > pk) denote the bit positions of the 1’s in
the binary encoding of w(X ). Next, calculate H(fpj (aj)) for every j ∈ [k] and
publish the set of k hashes.
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Decoding. For an input x ∈ {0, 1}ℓ, evaluateH(fi(x)), for every i ∈ {0, . . . , ℓ−1}
and check if any of the ℓ hashes are included in the set of k hashes published by
the encoder.

One of the key observations from the above discussion is that for correct func-
tionality, each node needs to store k hashes, and decoding requires a computation
of ℓ hashes. However, it is important to note that such a solution is infeasible for
implementing in our setup due to the overhead incurred by the computations.
This is our inspiration behind modifying the construction in Chapter 6, such that
the solution is lightweight and viable for achieving practical level of protection
under the constraints discussed in Chapter 1.

Modifying the Construction in Chapter 6. We do not seek perfect protection
or long-term security guarantees, rather our goal is to provide practical level
of protection. We rely upon some assumptions, where the encoding algorithm
(Algorithm 7.1) generates some secret parameters (r, q) and shares them with the
decoding algorithm (Algorithm 7.2).

We leverage this seemingweakness in the construction (due to such an assumption)
to develop a framework for hiding assets in a control program. We now present a
high-level survey of our encoding and decoding algorithm, along with their formal
descriptions (Algorithm 7.1 and Algorithm 7.2).

The idea is to transform the inequality x ≤ s into one equality, such that x
satisfies the equality, if the condition holds. To achieve this, the encoding procedure
(Algorithm 7.1) randomly samples q, where 0 ≤ q < ℓ, such that 2α < s < 2α+1 ≤
2q and publishes the hash h = H(fq(2

q − 1)). We assume that r = 2q − 1 − s

and q is secret shared with the decoding procedure.

Algorithm 7.1 Enc (s ∈ [0, 2ℓ))

1: Sample 0 ≤ q < ℓ, such that 2α < s < 2α+1 ≤ 2q

2: Compute r = 2q − 1− s
3: Compute µ = fq(2

q − 1)
4: Compute h = H(µ)
5: return h
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The decoding procedure (Algorithm 7.2) receives as input x ∈ {0, 1}ℓ and the
embedded hash value h. It adds r to the input, i.e. x′ = x + r and evaluates
g = H(fq(x

′)). Note that, if x ≤ s, then h = g always holds.

Algorithm 7.2 Dec (r, q, h)

Input: ℓ ∈ N, x ∈ {0, 1}ℓ
Output: 0 or 1.
1: Compute x′ = x+ r
2: Compute µ′ = fq(x

′).
3: Compute g = H(µ′).
4: if (g == h) then
5: return 1
6: else
7: return 0
8: end if

Lemma 7.4.1 (Correctness.). Let ℓ ∈ N. Consider Algorithms Enc (Algorithm 7.1),

Dec (Algorithm 7.2) and input x ∈ {0, 1}ℓ. Let H : {0, 1}∗ → {0, 1}ω be injective

on the set of all strings of length less than or equal to ℓ, where ω > 2ℓ. Then for every

integer s ∈ [0, 2ℓ), for every (h, r, q)← Enc (s), if x ≤ s then Dec(h, r, q) outputs

1, else it outputs 0.

Proof. From Chapter 6, it is evident that an integer s ∈ [0, 2ℓ) could be represented
in either of the two forms : (a) s = 2q − 1 ( 0 ≤ q < ℓ ), then all integers in the
interval [0, s+ 1) could be encoded with the hash value H(fq(2

q − 1)), and (b)
2α < s + 1 < 2α+1 ≤ 2q ( 0 ≤ q < ℓ ), then we encode interval [0, 2α) with
the value H(fα(2

α − 1)), and we encode [2α, s+ 1) with k′ hash values, where
k′ = w(s+ 1− 2α). Thus, the number of hashes generated in Case (b) is k′ + 1,
for some k′ ∈ N.

If x ≤ s, then for any r ∈ N+, x + r ≤ s + r = 2q − 1 (equality holds when
x = s).

The interval [0, s+ r + 1) can be encoded with the hash value H(fq(2
q − 1)) as

s+ r+1 = 2q . For an x ∈ [0, s+1), x′ = x+ r will belong to the interval [0, 2q)
and for an (h, r, q)← Enc(s), H(fq(x

′)) will always be equal to h, and the Dec
(Algorithm 7.2) will correctly output 1.



148 ObfCP: Platform to Prevent Reverse Engineering of Control Programs
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Figure 7.4: Representation of integer s ∈ [0, 2ℓ) in the number line: (a) x ≤ s ; (b) x > s.

If x > s, then x + r > s + r, for some r ∈ N+. This implies x + r > 2q and
H(fq(x

′)) ̸= H(fq(2
q − 1)), and Dec(h, r, q) correctly outputs 0.

Example Parameters. We illustrate the above with a concrete setting: Let ℓ = 8,
then x and s are integers between 0 and 28 − 1. Let s = 10. We encode 10

using Enc(10) and identify whether the condition x ≤ 10 holds by evaluating
Algorithm 7.2 on the encoding. Algorithm 7.1 samples 0 ≤ q ≤ 8, such that
23 < 10 < 24 ≤ 2q . Let q = 4, then r = 5 and µ = f4(15). The 8- bit binary
representation of 15 is 00001111 and f4(00001111) = 0000. Finally h = H(0000)

is published by the algorithm.

Let x = 8, then Dec(5, 4, h) (Algorithm 7.2) calculates x′ = 13. The 8-bit binary
representation of 13 is 00001011, and thus µ′ = f4(00001011) = 0000 = µ.
Finally, H(µ′) = h, and the algorithm outputs 1. For an x = 12, x′ = 17 and
µ′ = f4(00010001) = 0001 ̸= µ, and thus the hashes will not match.

7.4.4 Proposed Platform for Securing Assets in Control Programs

We now put forward the proposed platform that secures assets EP in a control
program P , from the modeled adversary. In what follows, we implement the
building blocks in our setup environment by adding an Encode module and an
Obfuscate module to the basic control loop and engineering architecture of a
process control system.

Technical Overview. The Obfuscate module is implemented in the Engineering
Workstation, which takes as input a control programP and outputs the obfuscated
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Actuators

Engineering
workstation

P

Process

PLC

Cleartext comm.Encrypted comm.

Input Image Table

Output Image Table

Obfuscate ModuleEncode Module

Figure 7.5: Block Diagram of theObfCP platform. TheObfuscatemodule is implemented
in the Engineering Workstation, and the Encode module is added to the control loop
between the sensors and the PLC.

program O(P) and parameters Param using Algorithm 7.3. O(P) is downloaded
to the PLC over the insecure configuration network, and Param is sent over an
encrypted channel to the Encode module, which is installed in the control loop
between sensors and PLC. The Encode module captures process variables from
the sensors, and based on the embedded data Param, outputs encoded values
using Algorithm 7.4 and sends them to the PLC. Note that, the Encode module
is implemented in a Trusted Execution Environment (TEE) that is available with
the modern processors (e.g. Raspberry Pi). Finally, PLC evaluates the obfuscated
control program on the encoded inputs, and outputs manipulated variables (see
Algorithm 7.5). An overall schematic design of the proposed framework is given
in Figure 7.5.

Remark 7.1. One may wonder, why we cannot push the execution of obfuscated

control program O(P) within the same host used for deploying the Encode module,

i.e. within the secure enclaves. This could be problematic due to the following:

(a) The TEEs do not have the required library support and will require significant

engineering effort to execute the real-time tasks, thus increasing the possibility of

introducing vulnerabilities and bugs. Also, lack of real-time OS cannot guarantee

the responsiveness of the TEEs towards changing inputs [4].

(b) Our initial claim that compromising the network module in the control loop is

challenging due to the device-dependent nature of the control messages [196].
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Next, we present a description of the Obfuscate module and the Encode module,
along with how the obfuscated function is evaluated in the PLC.

Obfuscate Module. The idea behind obfuscating P is as follows: For each ma-
nipulated variable j ∈ [m], there exists a state tree Πj , and for each such Πj ,
there exists a maximum of 22n paths from the root (at level 0) to the terminal
nodes. If a process variable is compared less than twice along a path, we set the
corresponding setpoint(s) to 0 (we call them dummy nodes) and allow execution
along any one direction.

Let [[sκ1 , . . . , sκ2n]] denote the 2n setpoints along κth path in the tree. Let Y =

(yκ)κ∈[22n] and Z = (zκ)κ∈[22n], where yκ ∈ {0, 1}ℓ denotes label of the terminal
node for κth path, and zκ is an 2n-bit vector defined as zκiγ = 1 if xi ≤ sκiγ , and 0

otherwise.

For every state tree Πj and for every i ∈ [n], κ ∈ [22n], and γ ∈ {0, 1}, the
Obfuscate module sends O(P) to the PLC, in form of hκiγ ← Enc(sκiγ ), Y and Z
over insecure ICS network and sends Param = (rκiγ , q

κ
iγ
)γ∈{0,1},i∈[n],κ∈[22n] to the

Encode module over an encrypted channel.

Algorithm 7.3 Obfuscate (P)
Input: ℓ, n,m ∈ N, P
Output: O(P), Param
1: for j = 1 to m do
2: for κ = 1 to 22n do
3: for i = 1 to n do
4: for γ = 1 to 2 do
5: return ((hκiγ )

j , (rκiγ )
j , (qκiγ )

j)← Enc((sκiγ )
j)

6: end for
7: end for
8: return (yκ)j {Label of leaf node in κth path }
9: return (zκ)j {2n-bit vector }
10: end for
11: end for

Encode Module. This module is assumed to be able to interpret with ICS network
protocols and is deployed in between the sensors and the PLC. It captures the
process variables (x1, . . . , xn) from the sensors and outputs encoded values using
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Algorithm 7.4. Note that the modeled adversary does not have access to the Encode
module.

Algorithm 7.4 Encode (with embedded data Param)
Input: ℓ, n,m ∈ N, (x1, . . . , xn) ∈ Nn

Output: ((gκiγ )
j)γ∈{0,1},i∈[n],j∈[m],κ∈[22n]

1: for j = 1 to m do
2: for κ = 1 to 22n do
3: for i = 1 to n do
4: for γ = 1 to 2 do
5: return (gκiγ )

j) = H(f(qκiγ )
j (xi + (rκiγ )

j))

6: end for
7: end for
8: end for
9: end for

Obfuscated Program Evaluation. We now discuss how to evalu-
ate the obfuscated program O(P) on the encoded process variables
((gκiγ )

j)γ∈{0,1},i∈[n],j∈[m],κ∈[22n].

The PLC starts its scan-cycle by reading the encoded process variables from the
input image table. For every state tree Πj , and every path κ in the tree, if zkiγ = 1,
the evaluation algorithm checks if gκiγ = hκiγ , and if zkiγ = 0, the algorithm checks
if gκiγ ̸= hκiγ . Finally, if all the 2n conditions are correct along the path κ, then the
algorithm assigns yκ to the jth manipulated variable. The formal description of
the same is given in Algorithm 7.5.
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Algorithm 7.5 Evaluation (with embedded data O(P))
Input: ((gκiγ )

j)γ∈{0,1},i∈[n],j∈[m],κ∈[22n]
Output: (y1, . . . , ym)
1: for j = 1 to m do
2: for κ = 1 to 22n do
3: for i = 1 to n do
4: for γ = 1 to 2 do
5: if (zkiγ )

j = 1 AND (gκiγ )
j == (hκiγ )

j then
6: t = t+ 1
7: end if
8: if (zkiγ )

j = 0 AND (gκiγ )
j ! = (hκiγ )

j then
9: t′ = t′ + 1
10: end if
11: if (t+ t′) == 2n then
12: return yj = (yκ)j

13: else
14: return yj = 0
15: end if
16: end for
17: end for
18: end for
19: end for

Remark 7.2. Note that, an Engineering Workstation is usually deployed using
a high-end reliable computing platform that supports both ICS and IT protocols.
The Encode module could be deployed in a factory settings using a Raspberry Pi
(in a TEE) which supports both ICS and IT communication, and this is our intuition
behind using an encrypted channel between the Obfuscate module and the Encode

module.

7.5 Correctness and Efficiency

We now analyze the correctness and efficiency of the proposed platform.

Lemma 7.5.1 (Correctness.). Let ℓ, m, n ∈ N. Consider Algorithms 7.3, 7.4, 7.5

and an input (xi)i∈[n], where xi ∈ {0, 1}ℓ. Then for every (O(P), Param) ←
Obfuscate(P), for every ((gκiγ )

j)i∈[n],j∈[m],κ∈[2n],γ∈{0,1} ← Encode(Param), Al-

gorithm 7.5 correctly outputs (yj)j∈[m].

Proof. Algorithm 7.3 calculates ((hκiγ )
j , (rκiγ )

j , (qκiγ )
j) ← Enc ((sκiγ )

j), for every
j ∈ [m], k ∈ [22n], i ∈ [n], γ ∈ {0, 1}. For an input (xi)i∈[n], Algorithm 7.4
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calculates (gκiγ )
j (using steps 1, 2, 3 of Algorithm 7.2). From Lemma 7.4.1, it is

evident that, for every integer s ∈ {0, 1}ℓ, for every (h, r, q)← Enc(s), and for
every g ← Dec(h, r, q), g = h if x ≤ s holds.

Thus, for every path κ of the state tree Πj , and every 2n-bit vector (zκ)j , (gκi )j

will always be equal to (hκi )
j , for (zκi )j = 1 and (gκi )

j ̸= (hκi )
j , otherwise, and

Algorithm 7.5 will correctly output yj .

Complexity Analysis. We now analyze the efficiency of the proposed construc-
tion. As given in Definition 7.3.1, state tree is a binary tree of maximum depth
2n. Evaluation at each internal node is of order O

(
ℓ
)
. Given a manipulated vari-

able is set to zero at the beginning of program execution, we are interested in
paths, where terminal nodes are assigned non-zero values; we call them accepting

paths. Each accepting path requires a total of 2nℓ computations. Note that, a "suf-
ficiently" large number of accepting paths would lead to computations incurring
exponential complexity. Thus, it remains to determine the conditions that make
our construction efficient.

Lemma 7.5.2 (Polynomial Slowdown). Let λ ∈ N be the security parameter of

the system, and let n, ℓ, ω be polynomials in λ. Let Tλ be a special family of control

programs where number of accepting paths are of order O
(
n log ℓ

)
. Then, for every

P ← Tλ, there exists a polynomial p, such that the running time ofO(P) is bounded
by p(|P |, λ).

To get a rough approximation on the number of accepting paths in state trees
corresponding to real PLC control programs, we examined programs available in
public code repositories corresponding to varied sectors of industrial automation.
Note that, our study of control programs is limited to the publicly available codes,
due to restrictions in accessing a fully functioning ICS facility. Our analysis indi-
cates that a majority of the control programs could be efficiently obfuscated using
our scheme. For example, an ICS application to control the speed of an AC motor
using proximity sensors, would form a state tree as given in Figure 7.6. For ℓ = 64,
the proposed ObfCP platform would efficiently obfuscate the control application,
while achieving computational security.
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Figure 7.6: State tree corresponding to real-world ICS application on controlling speed
of a motor using proximity sensors PS_1 and PS _2.

7.6 Security Analysis

The goal of control program obfuscation is to hide EP of a control program P

from the modeled adversary. We now present the security analysis of the proposed
ObfCP platform.

Lemma 7.6.1. Let λ, n,m, ℓ and Tλ satisfy the conditions in Lemma 7.5.2. Then for

every P ← Tλ, there is no brute-force attack on O(P ) to learn EP .

Proof. For a control program P , O(P ) consists of hashed encodings (hκiγ )
j corre-

sponding to setpoints (sκiγ )
j , where γ ∈ {0, 1}, i ∈ [n], j ∈ [m], κ ∈ [22n]. Given

the hashed encodings are of the form H(0), H(00), . . . ,H(00 . . . 0)(ℓ times), the
adversary can compute the ℓ + 1 hash values, compare them with (hκiγ )

j and
learn (qκiγ )

j . Since (sκiγ )
j < (qκiγ )

j , the adversary can identify the upper bound
(if zkiγ = 1) or lower bound (if zkiγ = 0) of skiγ . However, since (r

κ
iγ
)j is hidden

from the adversary’s view, he cannot learn (sκiγ )
j as any value that satisfies the

upper or lower bound, could also have led to the same (hκiγ )
j . Thus there is no

brute-force attack on O(P ).

7.7 Prototype Implementation

In this section, we provide a proof-of-concept of the proposed ObfCP platform
over two realistic real-time ICS platforms, and an in-depth analysis of our empirical
evaluations.
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7.7.1 Experimentation Setup

We implemented a prototype of the proposed ObfCP platform using a simulation
setup in a Raspberry Pi 3 Model B [169]. The Obfuscate and Encode modules are
developed using Python 2.7.7 on a device with an Intel(R) Core(TM) i7-9750H
CPU rated at 2.60 GHz (see Table 7.2 for specification details). We designed the ST
codes describing the obfuscated control programs corresponding to the example
testbeds in Codesys v3.5 (script engine 4.0.0.0). We used the SHA-256 and MD5
implementations (available in Python 2.7.7) from the hashlib cryptographic library
[93] to generate the respective hash values for the encodings. We note that our
implementation using Raspberry Pi and Codesys serves as a good proof-of-concept
and can be extended with other suitable hardware modules, without loss of gen-
erality. A summary of the system configurations and implementation details are
given in Table 7.1 and Table 7.2.

Table 7.1: Implementation Details of Raspberry Pi (as PLC)

Artifact Configuration
Platform Raspberry Pi 3 Model B
Hardware BCM2835
Revision a22082
Processor ARMv7 Processor rev 4 (v7l)

Operating System Raspbian GNU Linux 10 (buster)

7.7.2 Experiments over ICS platforms

Wemake use of two realistic real-time ICS platforms as case studies to demonstrate
the efficacy of ObfCP: (1) Water Distribution System, and (2) Industrial Steam
Boiler Application. The first case study requires comparing each process variable

against a desired setpoint. While on the contrary, the second case study imposes an
additional requirement; it necessitates checking whether a process variable belongs
to a particular integer interval. We limit ourselves to the above two applications, as
the control programs describing their operational behavior cover all the standard
"selection and comparison" functions described in IEC 61131-3 standard [99],
and thus should suffice to demonstrate the significance of our approach. Our
construction applies to both analog and digital control signals used in industrial
control environment, and employs bit-wise comparisons and bit-shift functions

specified by the IEC standard, thus making the proposed construction available
for generic ICS applications.
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Table 7.2: System configurations while implementing Encode and Obfuscate Module

Artifact Configuration
Device name MSI
Installed RAM 8.00 GB (7.85 GB usable)
Device ID B5E83B2B-14EC-4832-BB29-6FCF5EBE9798
Product ID 00325-81471-80538-AAOEM @ 2.60GHz
Processor Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz

System type 64-bit operating system, x64-based processor

Case Study # 1 - Water Distribution System

Our first experimental testbed is introduced earlier in Section 7.2.1. Let PLC_PRG

be the control program describing the functional requirements of the water
distribution system. Then, following Definition 7.3.1, PLC_PRG takes as input
the process variables (chlorine_level , water_level), and outputs the manipulated
variable (pressure). Note that the setpoints corresponding to chlorine and water
levels are instantiated following the concrete settings in real-world applications.
The ST code for the control program is given as follows:

PROGRAM PLC_PRG ( Case Study # 1 )
VAR

c h l o r i n e _ l e v e l : INT ;
w a t e r _ l e v e l : INT ;
p r e s s u r e : INT ;

END_VAR

IF ( c h l o r i n e _ l e v e l <= 5 and wa t e r _ l e v e l > 3 5 ) THEN
p r e s s u r e : = 1 5 ;

ELSE
p r e s s u r e : = 0 ;

END_IF

Obfuscate Module: For the program PLC_PRG, this module generates Param
and O(PLC_PRG).

Figure 7.7 shows the optimized state tree Πpressure (without adding the dummy
nodes). Since none of the process variables are compared twice, we conduct the
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Figure 7.7: State Tree Πpressure for Case Study # 1.

experiment with the optimized tree as this approach would lead to better efficiency.
The leaf nodes yκ = 0 for κ = {1, 2, 3}. For κ = 4, yκ = 15 and zκ = 11, with
the corresponding setpoints [[5, 35]]. Instantiating ℓ = 16, Algorithm 7.3 generates
Param and O(PLC_PRG) as follows:

Param = {(q41 = 5, r41 = 26), (q42 = 6, r42 = 28)}

The q and r values are generated using Enc(s1) and Enc(s2) (see Algorithm
7.1), where s1 = 5 and s2 = 35. The obfuscated encodings generated by the
module are: h41 = chlorine_level_ob and h42 = water_level_ob, where the values are
generated with MD5 and SHA-256. The obfuscated control programO(PLC_PRG)
is downloaded to the Raspberry Pi (used as a PLC).

The obfuscated encodings generated by the module are as follows: h41 =

chlorine_level_ob and h42 = water_level_ob.

where chlorine_level_ob = ’c6f057b86584942e415435ffb1fa9

3d4’ and water_level_ob = ’b4b147bc522828731f1a016bfa72c

073’ denote the obfuscated encodings, corresponding to the setpoints 5 and 35

respectively ( generated using Algorithm 7.1).
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The obfuscated control program O(PLC_PRG) is downloaded to the Raspberry
Pi (used as a PLC) using an ethernet cat 6 cable. The intuition is that if (chlo-

rine_level <= 5 and water_level <= 35) in PLC_PRG holds, then

(chlorine_level == chlorine_level_ob and water_level

== water_level_ob) in O(PLC_PRG) will always be true. In what fol-
lows, we write the ST code corresponding to the obfuscated control program.

PROGRAM O( PLC_PRG ) ( Case Study # 1 )
VAR

c h l o r i n e _ l e v e l : INT ;
w a t e r _ l e v e l : INT ;
p r e s s u r e : INT ;
c h l o r i n e _ l e v e l _ o b : STRING ( INT # 6 5 ) ;
wa t e r _ l e v e l _ o b : STRING ( INT # 6 5 ) ;

END_VAR

IF ( c h l o r i n e _ l e v e l == c h l o r i n e _ l e v e l _ o b and
wa t e r _ l e v e l <> wa t e r _ l e v e l _ o b ) THEN

p r e s s u r e : = 1 5 ;
ELSE

p r e s s u r e : = 0 ;
END_IF

Encode Module: We execute Algorithm 7.4 corresponding to 100 individual
trials. In particular, we generate test values corresponding to chlorine_level as
[13, 11, 5, 3, 15, 12, 1, 8, 4, 2] and water_level as [30, 23,

45, 10, 35, 50, 20, 40, 28, 37], and execute 10 runs each. The en-
codings generated are sent to the Raspberry Pi over ethernet adapter and compared
to chlorine_level_ob and water_level_ob in the obfuscated control
program O(PLC_PRG).

Case Study # 2 - Industrial Steam Boiler Application

We design a simple realistic steam boiler application, which is key to critical
industrial utilities such as thermal power plants, chemical manufacturing, etc.
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Figure 7.8: Experimental Testbed: (a) Schematics of an Industrial Steam Boiler Application
(b) Control Program written in Structured Text describing the operational behavior of
the application.

As evident from Figure 7.8, a water tank is connected to a feed-water valve v1,
which supplies chemically treated cool water to the tank, and a burner which heats
the water in the tank to its boiling point. When water vaporizes, the steam outlet
valve v2 releases the steam from the tank. The tank is connected to a temperature
sensor, which measures the temperature of water in the tank, a pH sensor, which
checks the pH level of the chemically treated water and a differential pressure
sensor which determines the water level in the tank. Mechanics of how the burner
is operated, and how the pH level is maintained is out of the scope of this study.
The functional requirements of the control application are specified in Figure
7.8(b).

As indicated in the description of the application, the process variables are
(pH_level, water_level, temp) and manipulated variables are (v1, v2).

The ST code for this application is given as follows:

PROGRAM PLC_PRG ( Case Study # 2 )
VAR
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pH_ leve l : INT ;
w a t e r _ l e v e l : INT ;
temp : INT ;
v1 : BOOL ;
v2 : BOOL ;

END_VAR
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ ∗ Fun c t i o n a l r equ i r emen t f o r c o n t r o l l i n g va l v e v1 ∗ /

I F ( pH_ l eve l > 10 and pH_ leve l <= 12 and
wa t e r _ l e v e l <= 20 and temp <= 130 ) THEN
v1 := TRUE ;

ELSE
v1 : = FALSE ;

END_IF
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ ∗ Fun c t i o n a l r equ i r emen t f o r c o n t r o l l i n g va l v e v2 ∗ /

I F ( w a t e r _ l e v e l <= 40 and temp > 120 and temp <= 125 )
THEN

v2 := TRUE ;
ELSE

v2 : = FALSE ;
END_IF

An important observation to make is that the collection of inequalities pH_level

> 10 and pH_level <= 12 is equivalent to comparing whether pH_level

belongs to the integer interval [11,12]. Similarly, temp > 120 and temp

<= 125 is equivalent to checking whether temp belongs to [121, 125]. In
other words, the control program PLC_PRG checks whether process variables
belong to particular integer intervals for actuating the manipulated variables.

Given that the building blocks for the proposedObfCP platform is developed upon
inequalities of the form x ≤ s (see Section 7.4.3), we transform x > s to the form
x ̸≤ s ( x not less than or equal to s). In particular, we transform pH_level >

10 to the form pH_level !<= 10 and temp > 120 to the form temp !<=
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Figure 7.9: Optimized state trees corresponding to the manipulated variables v1 and v2:
(a) Πv1 and (b) Πv2 for Case Study # 2.

120. Figure 7.9 demonstrates the state trees Πv1 , and Πv2 for the control program
PLC_PRG corresponding to the industrial steam boiler application.

Obfuscate Module: For the control program PLC_PRG, the Obfuscate module
outputs Param and O(PLC_PRG). As clear from Figure 7.9, the state tree Πv1 has
16 paths. For κ = 8, yκ = 1 and zκ = 0111, with the corresponding setpoints

[[10, 12, 20, 130]]. Similarly, state tree Πv2 has 8 paths, and for κ = 4, yκ = 1

and zκ = 011, with the corresponding setpoints as [[120, 125, 40]]. Instantiating
ℓ = 16, Algorithm 7.3 generates Param (see Table 7.3) and obfuscated encodings
(see Figure 7.10).

Table 7.3: Experimentation Parameters for Case Study # 2

q-value (q81)
1 (q82)

1 (q83)
1 (q84)

1 (q41)
2 (q42)

2 (q43)
2

5 5 7 8 6 8 7

r-value (r81)
1 (r82)

1 (r83)
1 (r84)

1 (r41)
2 (r42)

2 (r43)
2

21 19 107 125 23 130 7
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The obfuscated control program is given as follows:

PROGRAM O( PLC_PRG ) ( Case Study # 2 )
VAR

ph_ l e v e l _ c 1 : INT ;
ph_ l e v e l _ c 1_ob : STRING ( INT # 6 5 ) ;
p h _ l e v e l _ c 2 : INT ;
ph_ l e v e l _ c 2_ob : STRING ( INT # 6 5 ) ;

w a t e r _ l e v e l _ c 1 : INT ;
wa t e r _ l e v e l _ c 1 _ob : STRING ( INT # 6 5 ) ;

temp_c1 : INT ;
temp_c1_ob : STRING ( INT # 6 5 ) ;

w a t e r _ l e v e l _ c 2 : INT ;
wa t e r _ l e v e l _ c 2 _ob : STRING ( INT # 6 5 ) ;

temp_c2 : INT ;
temp_c2_ob : STRING ( INT # 6 5 ) ;

temp_c3 : INT ;
temp_c3_ob : STRING ( INT # 6 5 ) ;

v1 : BOOL ;
v2 : BOOL ;

END_VAR
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ ∗ Fun c t i o n a l r equ i r emen t f o r c o n t r o l l i n g va l v e v1 ∗ /

I F ( pH_ l eve l _ c1 <> ph_ l e v e l _ c 1_ob and
ph_ l e v e l _ c 2 = ph_ l e v e l _ c 2_ob and
wa t e r _ l e v e l _ c 1 = wa t e r _ l e v e l _ c 1 _ob and
temp_c1 = temp_c1_ob )

THEN
v1 := TRUE ;
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ELSE
v1 : = FALSE ;

END_IF
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ ∗ Fun c t i o n a l r equ i r emen t f o r c o n t r o l l i n g va l v e v2 ∗ /

I F ( w a t e r _ l e v e l _ c 2 = wa t e r _ l e v e l _ c 2 _ob and
temp_c2 = temp_c2_ob and
temp_c3 <>temp_c3_ob )

THEN
v2 := TRUE ;

ELSE
v2 : = FALSE ;

END_IF

Encode Module: To make it analogous to the methodologies adopted for the
previous case study, we execute Algorithm 7.4 corresponding to 100 individual
trials.

7.7.3 Performance Analysis

We now provide an in-depth analysis of feasibility and scalability of the proposed
construction. The goal of our empirical evaluation is to study the performance
impacts and runtime overheads due to ObfCP in order to estimate the trade-offs
between security and real-time requirements of industrial control applications.
In particular, we compare the execution times for scan cycles with and without
implementing the obfuscation platform to identify the delay introduced due to
ObfCP (this includes the time required for running the Encode module (see Al-
gorithm 7.1) and obfuscated control program evaluation (see Algorithm 7.5) at
the Raspberry Pi). Furthermore, we benchmark the performance of ObfCP when
implemented individually with MD5 and SHA-256. We note that, using lightweight
hashing algorithms over the standard cryptographic implementations used in our
experiments, the presented numbers are expected to improve.

Table 7.4 shows a comparison of the scan cycle times for unobfuscated control
program PLC_PRG and obfuscated program O(PLC_PRG) corresponding to the
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 MD5 implementation

SHA-256 implementation

Figure 7.10: Obfuscated encodings generated by Algorithm 7.3 using both MD5 and
SHA-256 implementations from the hashlib library.

case studies. We note that the scan cycle time with the obfuscated control program
is the average of execution times using MD5 and SHA-256. Elaborating on the
task instances, we conduct 100 trials, with 10 test values generated for each of the
process variables and execute 10 runs each (approximated by Experiment IDs).

Our results indicate that the proposedObfCP adds an overall delay of 20% (approx)
for Case Study # 1 and 14% (approx) for Case Study # 2 to the scan cycle time. For
instance, a single task requires 17.1 milliseconds (scan cycle time), while with the
proposed implementation it takes 17.8 milliseconds.

In Figure 7.11, we compare the running time of ObfCP with independent im-
plementations of MD5 and SHA-256. An interesting takeout is that SHA-256
outperforms MD5, introducing less than 5.8% (approx) delay for Case Study 1 and
2.4% (approx) delay for Case Study 2.

We have used ℓ = 16 for conducting the experiments as the micro-benchmarking
helps envision how the proposed platform works. However, to increase the ad-
versary’s cost of attack, the recommended value of ℓ is 64. We note that, the delay
introduced due to ObfCP could be unacceptable for some ICS applications (e.g.
turbo-machinery, magnetic suspension systems allowing up to 1millisecond delay),
which invariably implies choosing lower values of ℓ for minimizing complexity
penalties, nevertheless lowering the security guarantees. Hence, for increasing ad-
versary’s cost of attack, the engineering workstation could execute the Obfuscate
module (Algorithm 7.5) with new Param values at regular/random intervals.
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Table 7.4: ObfCP Performance Evaluation.

Exp. Scan Cycle Time (in ms.)
Case Study # 1 Case Study # 2

ID PLC_PRG O(PLC_PRG) PLC_PRG O(PLC_PRG)
0 17.9 15.6 18.2 22.2

1 13.4 16.3 18.4 19.5

2 10 16.8 16.6 21.2

3 13.3 15.5 17.3 18.2

4 17.1 18.1 17.8 18.7

5 13.3 16.6 15.9 21.4

6 14.3 20 19.6 19.3

7 13.9 14.6 15.7 19.1

8 11.0 16.1 16.8 20.7

9 13.1 15.4 18.4 20

We remind the readers that industrial control infrastructures are time-invariant,
with deviations in terms of added delay leading to fatal consequences, where
the maximum permissible delay directly proportional to the response rate of the
field devices. Let ∆ be the maximum permissible delay of a control infrastructure,
and let δ be overall execution time of a scan cycle with the proposed ObfCP

implementation, then δ ≤ ∆ should hold in order to maintain the stability of the
system.

7.8 Discussion and Conclusion

The extreme threat environment with real-time requirements, along with the
potential consequences quite naturally point at the limits to the practical and
achievable security, and thus is our aim to make use of cryptography viable
under the constraints of critical control infrastructures (see discussion in Section
1.1). Our work can be considered as the first attempt to secure the operational

semantics of an industrial control infrastructure from a polynomial adversary, who
attempts to reverse engineer a recovered implementation of control program
through the threat surface specified in Section 7.2.2. We have introduced a novel
legacy-compliant platform to secure assets in a control program, by making use
of cryptographic obfuscation. We have considered a strong and practical threat
model, where the software implementation of a control program is on an untrusted
host, such that use of encryption algorithms fails in achieving the desired security
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Figure 7.11: Performance benchmark ofObfCP usingMD5 and SHA-256 implementations
for the example testbeds.

goals. Our threat model along with the defined attack scenarios (see Section 7.3.4)
has not been introduced before, to the best of our knowledge.



Chapter 8

Towards Verifiability of
Cryptographic Obfuscators

In this chapter, we introduce a new variant of malicious obfuscation. Our formalism
is incomparable to the existing definitions by Canetti and Varia (TCC 2010), Canetti
et al. (EUROCRYPT 2022) and Badrinarayanan et al. (ASIACRYPT 2016). We show
that this concept is natural and applicable to obfuscation-as-a-service platforms.
We next define a new notion called verifiable obfuscation which provides security
against malicious obfuscation. We demonstrate undetectable malicious obfuscators
for some obfuscation schemes in the theoretical literature, and follow this with a
general approach to verifiable obfuscation. Our exclusive goal behind pursuing
this direction is two-fold: (1) provide security against malicious control program

obfuscation, and (2) prove the existence of malicious obfuscators in literature, leading

to rigorous foundations of black hat obfuscation, and subsequent constructions that

provide security against such obfuscators, which is a subject of independent interest

and has much wider applicability in malware obfuscation [219].

8.1 Rationale

As discussed in Chapter 2, program obfuscation is widely used in black hat sce-
narios, where obfuscators hide malicious behavior of software programs. There
have been instances where obfuscation concealed malicious Android APKs from
evading detection by anti-virus scanners. In this chapter, we look into another
interesting problem where obfuscators inject malicious functionality in software
programs. This issue has not received attention in the past, to the best of the
authors’ knowledge.

167



168 Towards Verifiability of Cryptographic Obfuscators

In the interest of establishing the usefulness and significance of the developed
notions, we explain the following scenario: Consider an app-store that distributes
software programs, and wants to maintain a reputation as a trusted supplier of
good apps. Due to intellectual property reasons, the app-store may be selling
obfuscated programs, for which it employs third-party tools/platforms (such as
Tigress [54]). This leads to the theoretical possibility of malicious obfuscators that
cause the obfuscated programs to have malicious functionality. Of note, we do
not imply that the current tools/platforms are malicious. The malicious behaviour
could range from simple errors that were not present in the original program,
to inserting a master backdoor that allows access to the program when running
on user devices. This leads to a compelling and general question: how can the

app-store know that these programs are not malicious for users? Surprisingly, the
cryptographic community has neglected the study of such obfuscators, which is

the central focus of this chapter.

Note that the app-store knows the intended behaviour of the program, so onemight
think that they could easily verify the obfuscated program by simply running the
program on some chosen test inputs. However, the task of checking correctness
of a program can often be much more complex than this. Also, as we will show in
our examples, there are situations where a malicious obfuscator can introduce a
secret hard-to-guess master password that unlocks every program, and there is
no way for the app-store to be able to guess such a password. Hence, black-box
testing the obfuscated code might not be enough to solve the problem.

We consider obfuscation of evasive programs (a randomprogram from the program-
family evaluates to 0with outstanding probability for a fixed input). An obfuscator
is supposed to have correctness, meaning the good inputs are still accepted and
the others are rejected. Our main conceptual contribution is that malicious obfus-
cators do not satisfy the same correctness, but are indistinguishable from honest
obfuscators. Defending against such malicious obfuscators by ensuring correctness
of obfuscation is the goal of this study. In particular, we require a verification
property that proves that the obfuscated program satisfies the same correctness
as output of the honest obfuscator; we call them verifiable obfuscators.

Our Contributions. On the whole, we initialize a theoretical investigation towards
a new variant of verifiability in obfuscators. In what follows, we summarize the
main contributions of this work.
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• The first contribution of this work is introducing a new and powerful notion
of malicious obfuscators, that inject malicious functionality in the program in
a way that is undetectable even by the app-store. We argue that this concept
is natural, since most app-stores use third party obfuscation tools/platforms
[223].

• Our next contribution is in formulating the definitional framework of verifi-
ability in obfuscators, which provides security against malicious obfuscators.
Our formalism builds on existing security definitions of obfuscation, while
adding a verifiability property. As a proof of concept, we provide a general
approach to verifiable obfuscation, however this proof of concept is not very
efficient as it essentially requires the verifier to re-do the obfuscation process.
We leave as an open problem for future work the development of more efficient

methods.

• Finally, we demonstrate malicious obfuscators for several well-known theo-
retical obfuscation proposals with strong security guarantees. In particular,
we show malicious obfuscators for the conjunction obfuscators by Bishop,
Kowalczyk, Malkin, Pastro, Raykova and Shi [30] and Bartesuk, Lepoint, Ma
and Zhandry [27].

Organization. This chapter is organized into the following sections. Section
8.2 discusses the prior work in verifiable obfuscation. Section 8.3 introduces the
formal definitions of malicious obfuscation and verifiable obfuscation. Section 8.4
demonstrates undetectable malicious obfuscators for the conjunction obfuscator by
Bishop, Kowalczyk, Malkin, Pastro, Raykova and Shi [30]. Section 8.5 demonstrates
undetectable malicious obfuscators for the conjunction obfuscator by Bartesuk,
Lepoint, Ma and Zhandry [27]. Section 8.6 presents a broad-level discussion on
verifiable control program obfuscation. Section 8.7 provides an overall conclusion.

8.2 Prior Work

In this section, we discuss the efforts by the cryptographic community in designing
obfuscators that allow verifying the correctness of obfuscation.

The notion of verifiable obfuscation was introduced by Canetti and Varia [43]. They
mention the significance of a verifiability property in proving that an obfuscator
does not inject any malicious scripts in the program. Our approach to verifiable
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obfuscation allows the app-store to verify the obfuscation process, as long as
the app-store knows the original unobfuscated source code. This is because our
verification concept requires verifying the steps taken by the obfuscator to convert
the original source into the obfuscated code. This is where we deviate from [43],
which do not require a verifier to know the un-obfuscated source.

In [228], Zobernig, Galbraith and Russello present a construction for verifying
whether a seemingly opaque predicate is triggered by a secret input known to
the obfuscator such that some potentially malicious code gets activated. Their
verification algorithm relies upon cryptographic hash functions, and provides
an appealing intuitive towards furthering research in formalizing definitional
framework for verifiability in obfuscators and subsequent efficient constructions
for verifiable obfuscators.

Badrinarayanan, Goyal, Jain and Sahai [21] consider the case of a malicious obfus-
cator and aim to provide assurance to the user running the protocol, by allowing
the user to check a predicate on the program. They give a solution for iO that
triples the overhead (the user has to run three versions of the obfuscated program).

Canetti, Chakraborty, Khurana, Kumar, Poburinnaya and Prabhakaran [44] follow
a similar notion where they use a perfectly binding commitment that attests some
property of the unobfuscated circuit. The obfuscator returns a semi-functional cir-
cuit allowing the user to run a verification procedure and derive a fully-functional
obfuscated circuit that satisfies the attested property using subexponentially-
secure iO.

To the best of our knowledge, none of the existing notions of verifiability consider
verifying the correctness of obfuscation, when provided with the original unobfus-
cated program. Additionally, we believe we are the first to point out undetectable
malicious obfuscators for schemes in the theoretical literature, which is in fact
our main technical contribution.

8.3 Notions of Verifiability in Obfuscators

In this section, we present background definitions for obfuscation from the litera-
ture, and introduce the definitional framework of malicious obfuscators. Following
this, we formally define verifiable obfuscation. We use the circuit model for pro-
gram, although the programs will be written in pseudo-code.
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Ideally, obfuscation entails perfect correctness, where the obfuscated program C̃

computes the exact same function as C . While this is an ambitious goal, a weaker
yet practical variation allows C̃ to approximate C with overwhelming probability
over the coin tosses of the obfuscator [186]. A number of subsequent studies [3, 28,
106] impose different variations of approximate correctness. Bitansky and Paneth
[31] introduce a weaker variant, where C̃ is allowed to err on poly many inputs,
with high enough probability over inputs drawn from some distribution.

We recall the definition of distributional VBB obfuscator [24], with three variations
of approximate functionality requirements prevalent in the obfuscation literature,
which we call ϕ1, ϕ2 and ϕ3.

Definition 8.3.1 (Distributional Virtual Black-Box Obfuscator (DVBB) [24] [23]).
Let λ ∈ N be the security parameter. Let C = {Cλ} be a family of polynomial-size

programs parameterized by inputs of length n(λ), and let D = {Dλ} be a class of
distribution ensembles, where Dλ is a distribution over Cλ. A PPT algorithm O for

the family C and the distribution D with correctness ϕi should satisfy the correctness

condition ϕi:

• Correctness (ϕ) :

- ϕ1 : For every λ ∈ N and for every C ∈ Cλ, and for every C̃ = O(C)

∀x ∈ {0, 1}n(λ) : C̃(x) = C(x)

- ϕ2 : For every λ ∈ N and every C ∈ Cλ, there exists a negligible function
µ(λ), such that:

Pr
O

[ ∀x ∈ {0, 1}n(λ) : C̃(x) = C(x) ] > 1− µ(λ)

where the probability is over the coin tosses ofO in computing C̃ = O(C).

This is formulated in Definition 3.1 of [202].

- ϕ3 : For every λ ∈ N, every C ∈ Cλ, and for every x ∈ {0, 1}n(λ) to C ,

there exists a negligible function µ(λ), such that:

Pr
O

[ C̃(x) = C(x) ] > 1− µ(λ)

where the probability is over the coin tosses of O. This is called “weak

functionality preservation” in [27].



172 Towards Verifiability of Cryptographic Obfuscators

• Polynomial Slowdown : For every λ ∈ N and for every C ∈ Cλ, there exists a
polynomial q such that the running time of C̃ = O(C) is bounded by q (|C|),
where |C| denotes the size of the program.

• Virtual Black-box : For every (non-uniform) polynomial size adversaryA, there
exists a (non-uniform) polynomial size simulator S with oracle access to C ,

such that for every distribution D ∈ Dλ:∣∣∣ Pr
C←Dλ,O,A

[A(O(C)) = 1]− Pr
C←Dλ,S

[SC(1λ) = 1]
∣∣∣ ≤ µ(λ)

where µ(λ) is a negligible function.

8.3.1 Defining Malicious Obfuscators

Our formalism of malicious obfuscators is that the output program does not have
the same correctness guarantee as the honestly obfuscated program. For example,
suppose the malicious obfuscator inserts a master backdoor y that is accepted
by every program it obfuscates. Then correctness ϕ1 and ϕ2 are not possible (a
program is never correct on all inputs) and correctness ϕ3 is also not possible (for
the specific input y, we have C(y) = 0 but C̃(y) = 1).

In addition, we require that a polynomial distinguisher cannot detect the fact that
C̃ is maliciously generated, either by inspecting the source code of C̃ , running it
on chosen inputs, or both.

Given an obfuscation tool is used by many users to obfuscate many programs, we
require a malicious obfuscator to be undetectable even when used to obfuscate
many programs. Therefore our security definition allows the distinguisher to
receive obfuscations of polynomially many chosen programsC , including repeated
obfuscations of the same program. We do this by providing oracle access to the
obfuscator. We also consider the case where the malicious obfuscator may be
introducing amaster backdoor that is the same for every execution. This is modeled
in our formalism as a fixed auxiliary input aux (that is used for all executions)
which represents some randomly generated secret data that is known to the
malicious obfuscator, such as the value of a master backdoor.

Definition 8.3.2 (Malicious Obfuscation). Let λ, n satisfy the conditions as given

in Definition 8.3.1. For any family of programs C and distribution class D over C,
let O be an obfuscator that satisfies the conditions given in Definition 8.3.1 with
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correctness ϕi. Then a malicious obfuscator for the family C and distribution D is a

PPT algorithm A that takes an auxiliary input aux ∈ {0, 1}λ, such that:

• (Correctness violation) : For any choice of aux,A(1λ, ·, aux) does not satisfy ϕi.

• (Indistinguishability) : There exists a negligible function µ(λ), such that for

every PPT distinguisher B that has oracle access to an obfuscator (so can adap-

tively ask for obfuscations of polynomially many adaptively chosen P ∈ Pλ)∣∣∣ Pr
aux,B,A

[ BA(1λ,·,aux) = 1]− Pr
B,O

[ BO(1λ,·) = 1]
∣∣∣ ≤ µ(λ)

where the first probability is taken over the choice of aux and the coin tosses of

B, A, and the second probability is taken over the coin tosses of B, O.

A distinguisher can request and receive many obfuscations of C . We write BO(·)

to indicate that B has oracle access to O that can be queried on any C (but with
respect to fixed aux in the malicious case). The distinguisher has to decide if it is
interacting with the honest obfuscator or a malicious one.

8.3.2 Formalizing Verifiability in Obfuscators

We now present the notion of verifiable obfuscation. Verifiability is to defend
against malicious obfuscation. Furthermore, we restrict to an efficient verifier who
has a priori knowledge of the program being obfuscated. Crucially, we require
the verifiable obfuscation scheme to inherit the properties given in Definition
8.3.1, while incorporating a verifiability property that proves the correctness of
obfuscation.

At a high-level, verifiable obfuscation (VO) is a two-step process: The first step is
carried out by an obfuscator, who runs an efficient algorithm VO.Obf , that takes
as input a program C , and outputs the obfuscated program C̃ along with a proof
π. Informally, π allows the verifier (app-store) in determining the correctness of
the obfuscation.

The second step is performed by a verifier, who knows C . Precisely, VO.Verify
is an efficient algorithm, such that VO.Verify (1λ, C, C̃, π) = 1, if C̃ is a correct
obfuscation of C . We consider an honest obfuscator O with correctness ϕi and
we require: (i) if C̃ satisfies ϕi, then VO.Verify (1λ, C, C̃, π) = 1, and (ii) given a
purported obfuscation (C̃, π)← A(1λ, C), if VO.Verify (1λ, C, C̃, π) = 1, then
C̃ satisfies ϕi.
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We now present the formal definition of verifiable obfuscation.

Definition 8.3.3 (Verifiable Obfuscation). Let λ ∈ N be the security parameter

of the system. For any family of polynomial-size programs C = {Cλ} and dis-

tribution ensembles D = {Dλ}, let O be an honest obfuscator that satisfies the

conditions as given in Definition 8.3.1 with correctness ϕi ∈ ϕ. Then verifiable ob-

fuscation VO for the family C and distribution class D is a pair of PPT algorithms

(VO.Obf,VO.Verify) such that for every λ ∈ N and every C ∈ Cλ and every ϕi:

• For every (C̃, π)← VO.Obf (1λ, C), VO.Verify (1λ, C, C̃, π)→ {0, 1}.

• (Soundness) : For every PPT adversary A, if [(C̃, π) ← A (1λ, C)] ∧ [1 ←
VO.Verify (1λ, C, C̃, π)], then C̃ satisfies ϕi.

We now show that some of the published obfuscation schemes could be leveraged
to inject malicious functionality.

8.4 Reviewing the [30] Construction

In this section, we review the construction by Bishop et al. [30] for obfuscating
conjunctions (alternatively called pattern matching with wildcards). We first recall
the definition of conjunctions.

Definition 8.4.1 (Conjunctions). Let n ∈ N and let pat ∈ {0, 1, ⋆}n be a pattern,

where ⋆ is a wildcard character. Let W = {i : pati = ⋆} be the set of wildcard
positions in pat. A conjunction function C : {0, 1}n → {0, 1}, x 7→ C(x) on an

input x ∈ {0, 1}n is defined as

C(x) =

1 , if ∀ pati ̸= ⋆ ∧ xi = pati

0 , otherwise.

8.4.1 The [30] Obfuscation Scheme

Bishop et al. designed an efficient DVBB obfuscator for conjunction functions using
Lagrange interpolation, while proving its security in the generic group model. In
particular, they assume that the discrete log problem is hard in a group G of order
q. Hence we need q > 22λ where λ is the security parameter. Their security goal
roughly states that, a PPT adversary cannot distinguish the obfuscation of C from
obfuscation of a function that always outputs 0.
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The high-level overview of their construction is as follows: to obfuscate a pattern
pat ∈ {0, 1, ⋆}n with |W | many wildcards, define a degree n − 1 polynomial
F (t) =

∑n−1
k=1 akt

k ∈ Fq[t], with F (0) = 0. The coefficients a1, . . . , an−1 are
sampled uniformly random in Fq , where q is exponential in n. If the ith bit of
the pattern is j, where j ∈ {0, 1} or if pati = ⋆, then evaluate the polynomial
at 2i+ j, otherwise sample a uniformly random element from Fq . The final step
is to publish the 2n field elements in the exponent of a group G = ⟨g⟩. The
formal description of the obfuscator is given in Algorithm 8.1. Note that, sampling
C ← C is equivalent to choosing pat← D, and hence we assume that it is easy to
determine pat from C .

Algorithm 8.1 Obfuscator OCon(1
λ, C)

Input: n = n(λ)
Output: (hi,j)i∈[n],j∈{0,1}

1: Sample large prime q > 22λ

2: Select G = ⟨g⟩ of order q
3: Sample (a1, . . . , an−1)

R←− Fq uniformly
4: Let F (t) = a1t

1 + · · ·+ an−1t
n−1

5: for i = 1 to n do
6: for j = 0 to 1 do
7: if (pati = ⋆ ∨ pati = j) then
8: hi,j ← gF (2i+j)

9: else
10: hi,j

R←− Fq uniformly
11: end if
12: end for
13: end for
14: return (hi,j)

Interpolating the polynomial in the exponent with n Lagrange’s coefficients cor-
responding to a correct input x ∈ {0, 1}n gives g0, and the evaluation algorithm
correctly accepts the input. For an input that does not match the pattern, a uni-
formly random field element in the exponent is returned by the algorithm, and the
evaluator correctly rejects the input with overwhelming probability. The procedure
is formally described in Algorithm 8.2.
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Algorithm 8.2 Evaluation Eval (with 2n embedded values (hi,j)i∈[n],j∈[2])

Input: n ∈ N, x ∈ {0, 1}n
Output: 0 or 1.

1: for i = 1 to n do
2: γi :=

∏
j ̸=i

2j−xj

2i−xi−xj+2j

3: end for
4: Compute T :=

∏n−1
i=0 (hi,xi)

γi

5: if T = g0 then
6: return 1
7: else
8: return 0
9: end if

The above construction satisfies ‘approximate’correctness (ϕ3 in Definition 8.3.1),
which at high-level requires the obfuscation to be correct for some fixed C and x,
with overwhelming probability over randomness of the obfuscator.

8.4.2 Designing Malicious Obfuscator for [30]

A conjunction function C for a pattern pat ∈ {0, 1, ⋆}n with |W | many wildcard
characters has 2|W | accepting inputs. Our goal is to design a malicious obfuscator
that accepts a certain input string that does not match the pattern. Furthermore,
we require that any poly-time distinguisher B with a priori knowledge on pat,
cannot distinguish between honest and purported obfuscation instances.

Constructing such an obfuscator involves many subtleties. Firstly, it has to accept
the 2|W | inputs strings that correctly match the pattern. This means that for every
i ∈ W or pati = j, the hi,js should be correctly structured elements. Given we
require the obfuscator to accept bad inputs, a naïve solution would be to output
hi,j ← gF (2i+j) for every i ∈ [n] and j ∈ {0, 1}, as the obfuscator would then
accept all strings of length n. Such malicious behaviour can be detected by the
distinguisher.

Similarly, one might expect to find a solution by allowing the obfuscator to output
hi,(1−j) ← gF (2i+(1−j)) for some i ̸∈W . This essentially turns pati into awildcard.
However, a PPT distinguisher who knows pat can simply flip the n− |W | non-
wildcard bits one by one, and check if any of the inputs are accepted, to detect
the malicious behaviour in O

(
n
)
time. Hence it is easy to detect this malicious
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behaviour. Thus it remains to construct an un-detectable malicious obfuscator
around the apparent constraints

To design a malicious obfuscator, we start with a string y ∈ {0, 1}n that does
not satisfy the pattern, and so C(y) = 0. Given y is fixed and independent of C ,
it might well be the case that y is an accepting input. In such case, there is no
malicious behavior and the original obfuscation works. So we start with a string
y ∈ {0, 1}n such that C(y) = 0 and y does not match the pattern in at least two
positions. Note that such a string would be correctly rejected with overwhelming
probability by the [30] construction. We require the malicious obfuscator to agree
with the honest obfuscator except for the input y.

To achieve this, we choose a random degree n−1 polynomial F (t) following Algo-
rithm 8.1, while we define another polynomial H(t) ∈ Fq[t], such that H(0) = 0,
and H(2i + yi) = F (2i + yi), if either pati = ⋆ or pati = yi. Since y is a bad
input and there exists at least two positions where it does not match the pattern,
there are at most n− 1 conditions on H . Hence it is possible to choose a degree
n− 1 polynomial H(t) ∈ Fq[t] such that H ̸= F .

Our justification behind not allowing y to differ by only one position is that
this would imply H = F , which would be equivalent to turning the position
to a wildcard. In this case it is impossible to have an obfuscated program that
accepts y but that can’t be detected by a distinguisher who checks the wildcard
positions.Requiring that H is not equal to F means that y is accepted but other
strings close to y are probably not accepted.

Next, we compute hi,j = gF (2i+j), if pati = ⋆ or pati = j, for every i ∈ [n], for
j ∈ {0, 1}. Else, if yi = j then hi,j = gH(2i+yi), else hi,j is sampled randomly
from Fq . This ensures that the newly designed obfuscator accepts correct inputs,
along with y. The formal description follows in Algorithm 8.3.
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Algorithm 8.3Malicious Obfuscator ACon(1
λ, C, y ∈ {0, 1}n s.t. C(y) = 0 and yi ̸=

pati for at least two non-wildcard positions)
Input: n = n(λ)
Output: (h∗i,j)i∈[n],j∈{0,1}

1: Sample large prime q > 22λ

2: Select G = ⟨g⟩ of order q
3: if (C(y) == 1) then
4: return OCon(1

λ, C)
5: else
6: Sample (a1, . . . , an−1)

R←− Fq uniformly
7: Let F (t) = a1t

1 + · · ·+ an−1t
n−1

8: Randomly choose n − 1 polynomial H(t) ∈ Fq[t] s.t. H(0) = 0, H ̸= F , and
H(2i+ yi) = F (2i+ yi) if pati = ⋆ or pati = yi for all i ∈ [n], j ∈ {0, 1}

9: for i = 1 to n do
10: for j = 0 to 1 do
11: if (pati = ⋆ ∨ pati = j) then
12: h∗i,j ← gF (2i+j)

13: else
14: if yi = j then
15: h∗i,j ← gH(2i+yi)

16: end if
17: else
18: h∗i,j

R←− Fq uniformly
19: end if
20: end for
21: end for
22: end if
23: return (h∗i,j)

Theorem 8.4.1. ACon violates ϕ3.

Proof. As stated before, Bishop’s construction [30] satisfies correctness ϕ3. Con-
cretely, for a conjunction function C defined by a pattern pat sampled from
{0, 1, ⋆}n, Algorithm 8.1 satisfies the following for every x ∈ {0, 1}n:

Pr
OCon,C

[OCon(1
λ, C)(x) = C(x) ] > 1− µ(λ)

where µ(λ) is a negligible function in λ. Determining whether ACon violates ϕ3

is equivalent to finding whether ACon(1
λ, C, y) gives noticeable advantage in

accepting an input that does not satisfy the pattern pat.
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Fix an input string y ∈ {0, 1}n. Then

Pr
OCon,C

[OCon(1
λ, C)(y) = C(y) ] > 1− µ(λ)

Consider the correctness ϕ3 experiment for ACon on the fixed y. The experiment
samplesC from Cλ, which implies sampling pat fromDλ. SinceDλ is a distribution
on evasive conjunction functions, C(y) = 0 with overwhelming probability in
λ. However, we need to augment ACon so that it can also handle the case when
C(y) = 1. We explain this next.

If C(y) = 1, then setACon(1
λ, C, y) = OCon(1

λ, C). If y differs from pat in only
one position pati ̸= yi, then set ACon(1

λ, C, y) to O(1λ, C∗), where C∗ is the
circuit for the pattern pat∗, where pat∗k = patk for all k ̸= i and pat∗i = ⋆.

If y differs from pat in two positions or more, then executing Algorithm 8.3 on
input y returns correctly structured elements of the polynomial H for all the
positions where yi ̸= pati, while for the positions where pati = yi, the algorithm
returns elements of F . This ensures that evaluating the obfuscated program on y

returns 1.

Since Acon(1
λ, C, y)(y) = 1 for all C , we have

Pr
ACon,C

[ACon(1
λ, C, y)(y) ̸= C(y) ] > 1− µ(λ)

where µ(λ) is negligible in λ. This proves that ACon violates ϕ3.

8.4.3 Indistinguishability of Obfuscators

In the previous section, we have proved thatACon(1
λ, C, y) does not satisfy ϕ3. In

this section, we give an ‘informal’explanation of indistinguishability of honest and
malicious obfuscators in the generic group model, which generally implies that
the malicious obfuscator is distributional VBB secure under the same conditions
as in [30].

We consider a distinguisher B that can request polynomially many obfuscated
programs from the obfuscation oracle, and determine whether it is interacting
with an honest or malicious obfuscator. We remind the readers that B knows pat.
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Theorem 8.4.2. Let λ ∈ N be the security parameter and let n,w be polynomials

in λ with w = n− ω(log n). Let G be a group of prime order q > 22λ. Then for all

PPT distinguishers B in the generic group model, there exists a negligible function

µ(λ), such that for all λ ∈ N, the following holds:∣∣∣ Pr
y,B,ACon

[ BACon(1
λ,·,y) = 1] − Pr

B,OCon

[ BOCon(1
λ,·) = 1]

∣∣∣ ≤ µ(λ)

Informal argument. We consider distinguisher B can make polynomially many
adaptive queries to the obfuscation oracle, including repeated obfuscations of the
same circuit. For simplicity, we assume that all the queries are with respect to
the same parameters n, |W | and q. The malicious input y ∈ {0, 1}n represents
the choice of aux in Definition 8.3.2. Since there are polynomially many chosen
C , each corresponding to some evasive pattern pat, y does not satisfy any of the
patterns with overwhelming probability.

For B to distinguish between ACon(1
λ, ·, y) and OCon(1

λ, ·), B has to determine
the input y which is accepted which is accepted by the obfuscated programs, for
all choices of C . But B does not know y and recovering F is hard due to the
assumed hardness of discrete log, thus determining H is hard (for each choice
of C). Since there are exponentially many choices for F and inputs that do not
match pat, B cannot distinguish between the malicious and honest obfuscation
with overwhelming probability in λ.

8.4.4 Verifiable Obfuscator for [30]

Our objective is to design a verifiable obfuscation scheme that provides security
against the malicious obfuscator described in Section 8.4.2. More specifically, we
require the verifiable scheme to provide a proof that the obfuscated program
satisfies ϕ3.

For a y ∈ {0, 1}n, where yi ̸= pati at m positions ( 2 ≤ m ≤ n − 1),
ACon(1

λ, C, y) outputs m specially chosen group elements depending on the
polynomial H , instead of following the honest computations and returning uni-
formly random group elements (Step 10 of Algorithm 8.1).
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Therefore, to prove that the obfuscated program is not maliciously constructed,
we require the verifiable obfuscator to show that for all i ∈ [n] and j ∈ {0, 1} if
pati ̸= ⋆ and pati ̸= j, hi,j ’s are uniformly random in Fq .

To achieve this, we define a pseudo-random generator PRGseed : {0, 1}⌈log 2n⌉ →
Fq indexed by seed seed ∈ Fq . We construct the n − 1 degree polynomial F (t)

with coefficients generated using PRGseed. Next, instead of sampling uniformly
random field elements, the verifiable obfuscator generates hi,j using the PRGseed.
Finally, the verifiable obfuscator outputs (hi,j) and the proof seed. The formal
description follows in Algorithm 8.5.

Algorithm 8.4 Obfuscator VOCon(1
λ, C)

Input: n = n(λ)
Output: (ĥi,j)i∈[n],j∈{0,1}, seed
1: Sample large prime q > 22λ

2: Select G = ⟨g⟩ of order q
3: Sample seed R←− Fq

4: for k = 1 to n− 1 do
5: ak ← PRGseed(k)
6: end for
7: Let F (t) = a1t

1 + · · ·+ an−1t
n−1

8: for i = 1 to n do
9: for j = 0 to 1 do
10: if (pati = ⋆ ∨ pati = j) then
11: ĥi,j ← gF (2i+j)

12: else
13: ĥi,j ← PRGseed(n+ i− 1)
14: end if
15: end for
16: end for
17: return (ĥi,j), seed

We now give the description of VOCon.Verify, which takes as input the pattern pat
and ((ĥi,j)i∈[n],j∈{0,1}, seed)← VOCon(1

λ, C) and outputs 1 if the obfuscation
is correct. Note that, VOCon(1

λ, C) is deterministic once the seed is chosen and
so the verifier simply re-runs the obfuscation and checks whether the output is
equal to the obfuscated program.
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Algorithm 8.5 VOCon.Verify (with embedded values (ĥi,j)i∈[n],j∈{0,1}, seed)

Input: n = n(λ), pat ∈ {0, 1, ⋆}n
Output: 1 or ⊥
1: for k = 1 to n− 1 do
2: a′k ← PRGseed(k)
3: end for
4: Let F ′(t) = a′1t

1 + · · ·+ a′n−1t
n−1

5: for i = 1 to n do
6: for j = 0 to 1 do
7: if (pati = ⋆ ∨ pati = j) then
8: bi,j ← gF

′(2i+j)

9: if ĥi,j ̸= bi,j then
10: return ⊥; EXIT ()
11: end if
12: else
13: b′i,j ← PRGseed(n+ i− 1)

14: if ĥi,j ̸= b′i,j then
15: return ⊥; EXIT ()
16: end if
17: end if
18: end for
19: end for
20: return 1

Theorem 8.4.3. Let PRG be indistinguishable from uniform. Then for

every PPT adversary A and every ((hi,j), seed) ← A(1λ, C, y), if

VOCon.Verify(1
λ, pat, (hi,j), seed) = 1, then (hi,j) satisfies ϕ3.

Proof. Towards a contradiction, we suppose the obfuscated program (hi,j) does
not satisfy ϕ3, and there exists a y ∈ {0, 1}n such that the following holds:

Pr
A,C

[A(1λ, C, y)(y) ̸= C(y) ] > ϵ(λ)

where ϵ(λ) = λ−O
(
1
)
is a noticeable function in λ.

Since the output of A is accepted by VOCon.Verify, this implies that the same
output could also have been generated by the honest obfuscatorO for some choice
of seed. But,A could have tried at most polynomially many seeds, say p(λ), which
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means the honest obfuscator could also have generated the same output asA with
probability at least 1

p(λ) . This implies that running O once yields

Pr
O,C

[O(1λ, C)(y) ̸= C(y) ] >
ϵ(λ)

p(λ)

which is still a noticeable function in λ. This contradicts the result of Bishop et al.

[30] that for every input, O(1λ, C) is correct with overwhelming probability over
the coin tosses of the obfuscator and the program (see Definition 8.3.1).

8.5 Reviewing the [27] Construction

We now recall the dual interpretation [27] of conjunction obfuscation by Bartusek,
Lepoint, Ma and Zhandry, which is more efficient than the [30] construction.

8.5.1 The [27] Obfuscation Scheme

The dual scheme takes into account evasive conjunctions with patterns of length
n, and achieves distributional virtual black box security for n−ω(log n)wildcards
in the generic group model with n+ 1 group elements, rather than 2n. We start
with a high-level overview of the scheme, followed by their formal descriptions
(Algorithms 8.6 and 8.7).

Definition 8.5.1. Let B be a (n+ 1)× 2n dimensional matrix defined as follows:


1 2 . . . 2n

1 22 . . . (2n)2

...
...

...
...

1 2n+1 . . . (2n)n+1


Then matrix B has the property that any of its n + 1 columns form a full rank
matrix.

To encode a pattern pat ∈ {0, 1, ⋆}n, compute a 2n dimensional error vector e
structured as follows: if the ith bit of the pattern is b, then e2i−b = 0, while
e2i−(1−b) is sampled randomly from Zq . If pati = ⋆, then e2i−1 = e2i = 0. Finally,
the obfuscator outputs the encoding of the vector B.e in the exponent of the group
G = ⟨g⟩, as gB.e ∈ G2n, which is tested by computing in the group.
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On input string x ∈ {0, 1}n, the evaluation procedure solves for a vector t, such
that t.B = 0 at positions 2i + xi − 1, for every i ∈ [n]. Finally, x is accepted if
t.B.e = 0.

Algorithm 8.6 Obfuscator ODual(1
λ, C)

Input: n = n(λ)
Output: B, v = gB.e

1: Sample large prime q > 22λ.
2: Select G = ⟨g⟩ of order q.
3: Let B ∈ Z(n+1)×2n

q as in Definition 8.5.1.
4: Initialize error vector e← Z2n×1

q

5: for i = 1 to n do
6: if pati = ⋆ then
7: e2i−1 = e2i = 0
8: end if
9: if pati = b then
10: e2i−b = 0 ; e2i−(1−b)

R←− Zq

11: end if
12: end for
13: return B, v = gB.e

Algorithm 8.7 Evaluation Eval (with embedded data 1λ,B, v)
Input: x ∈ {0, 1}n
Output: 0 or 1

1: Define Bx ∈ Z(n+1)×n
q , where column j is set to (Bx)j = B2j−xj

2: Initialize error vector e← Z1×(n+1)
q

3: Solve for non-zero vector t ∈ Z1×(n+1)
q such that t.Bx = 0

4: if
∏n+1

i=1 vtii = g0 then
5: return 1
6: else
7: return 0
8: end if

Bartusek et al. [27] claim to achieve correctness ϕ3, which informally states that
for a given program and an input, obfuscation is correct with overwhelming
probability over the coins of the obfuscator (see Definition 8.3.1).
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8.5.2 Designing Malicious Obfuscator for [27]

Designing a malicious obfuscator for the [27] scheme has several challenges. Recall
from Definition 8.3.2, the malicious obfuscation instance need to be "sufficiently
similar" in correctness preservation such that a poly-time verifier with a priori
knowledge onC cannot distinguish between the honest and purported obfuscation
instances. This naturally puts a constraint on replacing the zero elements in e
with non-zero entries, as the obfuscated program might then reject correct inputs.

Elaborating on this, for i ∈ [n], if both {e2i−1, e2i−1} are non-zero, then this
corresponds to a position where the input string can neither be 0 nor 1, and the
obfuscator would reject all inputs with overwhelming probability. Furthermore,
we cannot replace the non-zero entries in e with zero elements, as a poly-time
verifier, who knows pat, can flip the non-wildcard bits one by one and determine
if an incorrect input is accepted.

To construct an obfuscated program that accepts the bad input y ∈ {0, 1}n with
noticeable advantage, we again replace random values with specially chosen values.
We assume y does not match pat (i.e. C(y) = 0 in Definition 8.4.1) otherwise we
just have to return an honest obfuscation. Hence we may assume that y does not
match the pattern in at least one entry. Recall that any n+ 1 columns of B are
linearly independent, thus By ∈ Z(n+1)×n

q will have rank n and there would be
exactly one vector t up to scalar multiplication, such that t.By = 0 (by rank-nullity
theorem). Recall that the 2n dimensional vector e has n + |W | zero entries by
construction. To design a purported error vector e∗ that accepts y, along with the
correct inputs, we fix the n+ |W | positions with zero entries (corresponding to e).
Computing e∗ is done by finding a non-zero vector in the (2n− 1)-dimensional
subspace orthogonal to the vector t.B that also has the correctly structured zero
entries.

Let E ∈ Z2n×1
q be the subspace of vectors with basis {e2i−(1−b) : pati = b}. Let

E′ = {w : w ∈ E ∧ t.B.w = 0}. Since n + |W | are fixed zero entries, the
dimension of E′ is n − |W | − 1. Thus, for an input y that does not match the
pattern pat, if the obfuscator selects a vector e∗ from E′ and publishes B.e∗, the
evaluation algorithm will accept y as t.B. e∗ = 0. We now describe the procedure
formally in Algorithm 8.8.
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Algorithm 8.8Malicious Obfuscator ADual(1
λ, C, y ∈ {0, 1}n, such that C(y) = 0)

Input: n = n(λ)
Output: B, v∗ = gB.e

∗

1: Sample large prime q > 22λ.
2: Select G = ⟨g⟩ of order q.
3: Define fixed matrix B ∈ Z(n+1)×2n

q as given in Definition 8.5.1.
4: if (C(y) == 1) then
5: return ODual(1

λ, C)
6: else
7: Define By ∈ Z(n+1)×n

q , where column j is set to (By)j = B2j−yj

8: Solve for non-zero vector t ∈ Z1×(n+1)
q such that t.By = 0

9: Compute E ∈ Z2n×1
q with the basis {e2i−(1−b) : pati = b}

10: Compute E′ = {w : w ∈ E ∧ t.B.w = 0}
11: Sample e∗ R←− E′

12: return B, v∗ = gB.e
∗

13: end if

Theorem 8.5.1. ADual violates ϕ3.

Proof. The dual scheme satisfies ϕ3, i.e. the following holds for every x ∈ {0, 1}:

Pr
ODual,C

[ODual(1
λ, C)(x) = C(x) ] > 1− µ(λ)

where µ(λ) is a negligible function in λ. To see if ADual violates ϕ3, we need to
determine whether it allows any bad input with noticeable probability.

Consider a fixed master backdoor y ∈ {0, 1}n. Then

Pr
ODual,C

[ODual(1
λ, C)(y) = C(y) ] > 1− µ(λ)

Consider correctnessϕ3 experiment forADual on the fixed input y. The experiment
samplesC from Cλ, which implies sampling pat fromDλ. SinceDλ is a distribution
on evasive conjunction functions, C(y) = 0 with overwhelming probability in λ.

If C(y) = 1, then set ADual(1
λ, C, y) = ODual(1

λ, C). If y does not satisfy the
pattern pat, then execute Algorithm 8.8 on y, which calculates t such that t.B is
zero at the entries 2i+ yi− 1, and computes e∗ such that t.B.e∗ = 0. This ensures
that evaluation procedure Eval(1λ,B, v∗ = gB.e

∗
) accepts y.
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Since ADual(1
λ, C, y)(y) = 1 for all C , we have

Pr
ADual,C

[ADual(1
λ, C, y)(y) ̸= C(y) ] > 1− µ(λ)

where µ(λ) is negligible in λ. This proves that ADual violates ϕ3.

8.5.3 Indistinguishability of Obfuscators

We now present an informal explanation for computational indistinguishability of
the malicious and honest obfuscators for the dual scheme in the generic group
model.

Theorem 8.5.2. Let λ ∈ N be the security parameter and let n,w be polynomials

in λ with w = n− ω(log n). Let G be a group of prime order q > 22λ. Then for all

PPT distinguishers B in the generic group model, there exists a negligible function

µ(λ), such that for all λ ∈ N, the following holds:∣∣∣ Pr
y,B,ADual

[ BADual(1
λ,·,y) = 1] − Pr

B,ODual

[ BODual(1
λ,·) = 1]

∣∣∣ ≤ µ(λ)

Informal argument. We assume that the distinguisher B makes T = T (λ) many
adaptive queries to the obfuscation oracle, including repeated obfuscations of the
same circuit. For simplicity, we assume that all the queries are with respect to
the same parameters n, |W | and q. The malicious input y ∈ {0, 1}n represents
the choice of aux in Definition 8.3.2. Since there are polynomially many chosen
C , each corresponding to some evasive pattern pat, y does not satisfy any of the
patterns with overwhelming probability.

To distinguish between ADual(1
λ, ·, y) and ODual(1

λ, ·), B has to determine the
input y which is accepted which is accepted by the obfuscated programs, for all
choices of C . But B does not know y.

Let (êt)t={1,...,T} be the sequence returned byADual(1
λ, ·, y), and let (et)t={1,...,T}

be the sequence returned by ODual(1
λ, ·) for the same choices of C . Based on the

assumed hardness of solving discrete log in the group G, B can only recover the
group elements raised to the exponent with negligible probability in λ. Since y is
not known and (et) is random, (êt) behaves as random. Hence, B cannot decide if
it is interacting with the malicious oracle or the honest one.
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8.5.4 Verifiable Obfuscator for [27]

We now design the verifiable obfuscator VODual(1
λ, C) that provides security

against the malicious obfuscator ADual(1
λ, C, y).

We want the obfuscator to give evidence that it samples the non-zero entries in the
structured error vector uniformly at random, and not in an adversarially generated
way.

We start by defining a pseudo-random generator P̂RGseed : {0, 1}logn → Zq

indexed by seed seed ∈ Zq . Note that the 2n-dimensional structured vector e∗

generated maliciously by ADual(1
λ, C, y) and e generated by ODual(1

λ, C) are
elements of the subspace defined by {e2i−(1−b) : pati = b} such that the n+ |W |
fixed zeroes allow inputs that match the pattern pat.

While ODual(1
λ, C) chooses the non-zero entries randomly from Zq ,

ADual(1
λ, C, y) chooses w, such that w ∈ E ∧ t.B.w = 0, where t.B is

zero at positions 2i + yi − 1 for every i ∈ [n]. To prove that the error vector
is some randomly selected element of E, and not some maliciously chosen w
following the above discussion, our construction of verifiable obfuscator generates
the non-zero entries using P̂RGseed.

We now describe the construction formally in Algorithm 8.9.
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Algorithm 8.9 Obfuscator VODual(1
λ, C)

Input: n = n(λ)
Output: B, v̂ = gB.ê, seed

1: Sample large prime q > 22λ.
2: Select G = ⟨g⟩ of order q.
3: Sample seed R←− Zq

4: Define fixed matrix B ∈ Z(n+1)×2n
q as given in Definition 8.5.1.

5: Initialize error vector ê← Z2n×1
q

6: for i = 1 to n do
7: if pati = ⋆ then
8: ê2i−1 = e2i = 0
9: end if
10: if pati = b then
11: ê2i−b = 0

12: ê2i−(1−b) ← P̂RGseed(i)
13: end if
14: end for
15: return B, v̂ = gB.ê, seed

We now explain the construction of VODual.Verify(1
λ, pat,B, gB.ê, seed), which

outputs 1, if gB.ê is the correct obfuscation for the pattern pat.

VODual.Verify constructs the 2n-dimensional structured error vector ẽ using
P̂RG indexed by seed seed, with zero entries fixed as follows: ẽ2i−1 = ẽ2i = 0 if
pati = ⋆, and ẽ2i−b = 0 if pati = b. The non-zero entries in ẽ are generated using
P̂RGseed.

Since P̂RG is a deterministic function, for the fixed seed seed, ẽ will be exactly
same as ê. Finally, the verifier outputs 1, if the values match. The formal description
is given in Algorithm 8.10.
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Algorithm 8.10 VODual.Verify (with embedded values B, gB.ê, seed)
Input: n = n(λ), pat ∈ {0, 1, ⋆}n
Output: 1 or ⊥
1: Initialize error vector ẽ← Z2n×1

q

2: for i = 1 to n do
3: if pati = ⋆ then
4: ẽ2i−1 = ẽ2i = 0
5: end if
6: if pati = b then
7: ẽ2i−b = 0

8: ẽ2i−(1−b) ← P̂RGseed(i)
9: end if
10: end for
11: Compute gB.ẽ
12: if gB.ẽ == gB.ê then
13: return 1
14: else
15: return ⊥
16: end if

Theorem 8.5.3. Let P̂RG be indistinguishable from uniform. Then for

every PPT adversary A and every (B, gB.e, seed) ← A(1λ, C, y), if

VODual.Verify(1
λ, pat,B, gB.e, seed) = 1, then gB.e satisfies ϕ3.

Proof. Towards a contradiction, we suppose the obfuscated program gB.e does not
satisfy ϕ3, and there exists a y ∈ {0, 1}n such that the following holds:

Pr
A,C

[A(1λ, C, y)(y) ̸= C(y) ] > ϵ(λ)

where ϵ(λ) = λ−O
(
1
)
is a noticeable function in λ.

Since the purported obfuscation (gB.e, seed) is accepted by VODual.Verify, this
implies that the honest obfuscatorO could have generated the same error vector e
by choosing the same seed seed. But,A could have tried at most polynomiallymany
seeds, say p(λ), which means the honest obfuscator could also have generated the
same output with probability 1

p(λ) . This implies that running O once yields

Pr
O,C

[O(1λ, C)(y) ̸= C(y) ] >
ϵ(λ)

p(λ)
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which is still a noticeable function in λ. This contradicts the results of Bartusek et

al. [27] that for every input, O(1λ, C) is correct with overwhelming probability
over the coin tosses of the obfuscator and the program (see Definition 8.3.1).

8.6 Verifiable Control Program Obfuscation

In Chapter 1 we have discussed the significance of preventing adversarial attempts
of extracting the operational semantics of an industrial control application in
defending against targeted attacks. In Chapter 7 we have introduced a MATE
adversary who aims at reverse-engineering a recovered implementation of control
program to learn the process semantics of a target control application, and pre-
sented the proposed ObfCP platform that prevents such adversarial attempts by
making use of cryptographic obfuscation. However, there exists obfuscators that
inject malicious functionality to manipulate critical control parameters, leading to
fatal consequences. In what follows, we elaborate on malicious control program

obfuscation, and verification techniques that provide security against such malicious

obfuscators.

8.6.1 Malicious Obfuscator for the Proposed ObfCP Construction

In this section, we discuss how a malicious obfuscator could trigger conditions
to manipulate a critical control parameter. We start with a brief intuition to the
importance of verifiability of control program obfuscation through the following
motivating scenario.

Consider the example Water Distribution System introduced in Section 7.2.1. The
control program describing its operational behaviour is given as follows:

PROGRAM PLC_PRG
I F ( c h l o r i n e _ l e v e l <= s1 and wa t e r _ l e v e l > s2 ) THEN

p r e s s u r e : = 1 5 ;
ELSE

p r e s s u r e : = 0 ;
END_IF

To obfuscate PLC_PRG, the proposed ObfCP platform encodes the setpoints
[[s1, s2]], such that it is well hidden from the MATE adversary introduced in Section
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7.2.2. Now consider a malicious obfuscatorAwho requires the obfuscated program
to allow inputs that do not satisfy the condition in PLC_PRG, in a way that the
purported obfuscation is hard to distinguish from the honest obfuscation instance
to a verifier who has a priori knowledge on PLC_PRG. To illustrate this, suppose
A modifies the setpoint s2 to s′2, such that s′2 > s2. The obfuscated program now
accepts additional inputs for triggering conditions to manipulate the pressure
valve. The outcome of this attack is that even when the water level in the tank
is significantly high, pressure is set to 0, which stops the water supply to the
consumers.

We now design a malicious obfuscator for the decision tree obfuscation scheme
(introduced in Chapter 6) which is employed in developing the ObfCP platform
(introduced in Chapter 7). The malicious obfuscator simply replaces some of the
randomly generated values with specially chosen ones, such that a fixed master
backdoor y = (y1, . . . , yn) ∈ Nn is accepted by the obfuscated program. We
assume that y is a bad input, and hence C(y) = 0, otherwise we would have to
return the honest obfuscation (Algorithm 6.5).

Since (y1, . . . , yn) is not an accepting input, there exists at least one value yi, such
that yi ̸∈ (ci, ci + wi]. To allow the input, the malicious obfuscator could simply
performH(yi), add it to the set Ai, and finally for each entry in Ai, concatenate
n entries sorted in order of i, apply cryptographic hash Hc, and publish the set of
hash values E = (h1, . . . , hα). This ensures that obfuscated program accepts all
the good inputs, along with the secret master backdoor y. Note that, a distinguisher
B who does not know y is unable to determine whether the allegedly random
dummy entry is instead the hashed encoding corresponding to y.

Hence, following our previous solutions to verifiable obfuscation, we first de-
randomize obfuscation by arranging the randomly chosen dummy entries (Steps
25-28 in Algorithm 6.5) to be generated using a pseudorandom number generator
on an initially randomly chosen seed. Then the proof of correct obfuscation is
simply the value of the seed. The distinguisher can simply calculate the hashed
encodings corresponding to the intervals (ci, ci + wi]’s, generate the dummy
entries using the pseudorandom generator indexed by the same seed, and check if
the output is same as E .

We note that the proposed ObfCP platform does not employ enough randomness,
and hence secure against malicious obfuscators.
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8.7 Conclusion

In this chapter, we introduce a new variant of malicious obfuscation that inserts
a secret hard-to-guess master backdoor in the original program. We show unde-
tectable malicious obfuscators for a number of published obfuscation schemes in
the theoretical literature. We introduce verifiable obfuscation that adds a verifia-
bility property for securing against malicious obfuscation. We provide a general
approach to verifiable obfuscation. Our approach is not very efficient as the proof
involves re-computing obfuscation for verifying the steps taken in converting the
original code to the obfuscated program. Finally, we show verifiable schemes for
the proposed decision tree obfuscator, used for designing the ObfCP platform. As
our future initiative, we aim to explore other randomized obfuscation schemes
in the literature to determine if they can be exploited for undetectable malicious
functionality.





Chapter 9

Conclusions and Future Work

In this chapter, we present an overall conclusion to the key contributions made
towards addressing the research problem identified in Chapter 1. We also suggest
some possible directions for future research.

9.1 Summary Description

This research work focuses upon studying the characterizing features of high-
profile targeted attacks delivered against industrial infrastructures, understanding
the importance of evolving adversary tradecraft in delivering such attacks, and
examining the defense and policy responses by the ICS security research commu-
nity and industry practitioners towards preventing, detecting and deterring the
attacks.

In Section 3.1.1, we investigate the existing methodologies for detecting false-data
injection attacks, highlighting the inaccuracies of the predictive intrusion detection
models, while stating that the bump-in-the-wire solutions cause unacceptable
overheads. Towards this end, in Chapter 4 we propose TaDeT, a general-purpose
tamper detection framework that is neither inaccurate, nor does it impact the network

bandwidth used for critical control communication.

In Section 3.1.2, we discuss the significance of application-specific security in in-
dustrial control infrastructures, and why the existing literature/recommendations
fail to provide such customized security controls. To this end, in Chapter 5 we
propose a framework SelEnc that enables application-specific security, along with

incurring significantly low overhead compared to the existing methodologies.

195
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In Chapter 6, we design an efficient VBB obfuscator for evasive binary decision
trees, whose security is based on the random oracle paradigm. While doing so, we
present an encoder for interval-membership functions. Our exclusive goal behind
designing the obfuscator is that, not only will the solution increase the class of func-

tions that has cryptographically secure obfuscators, but also address the open problem

of non-interactive prediction in privacy-preserving classification using computation-

ally inexpensive cryptographic hash functions, along with preventing adversarial

attempts of extracting operational semantics of industrial control applications, the

last of which is the ultimate aim of this work.

In Section 3.1.3, we study the importance attributed to the knowledge of process
control in bringing about high-profile targeted attacks, and analyze the adversarial
attempts in learning the operational semantics of target process control. In Section
3.1.4, we show the lack of methodical approach in formalizing control programs.
To this end in Chapter 7, we present a formalization of abstraction of control pro-

grams and define its assets, the secret values in the program that give away the

process semantics. Finally, we introduce ObfCP, a legacy-compliant, general-purpose

platform for securing assets in control programs, thus preventing extraction of process

semantics.

In Section 2.5.2, we introduce a new and powerful variant of malicious obfuscators

that implement subliminal channels to deviate from correct functionality, and are
indistinguishable from honest obfuscation instances. We prove the existence of such
obfuscators in the literature, and propose verifiable obfuscating schemes to defend

against such obfuscators.

9.2 Future Directions of Research

We now highlight the possible directions of research that we aim to investigate
further, as a part of our future initiatives.

9.2.1 Preserving Integrity of Control Programs with Software
Watermarking

In this section, we discuss the significance of software watermarking in preventing
piracy of control programs. We begin with a general discussion on software
watermarking along with its security guarantees, followed by a brief discussion on
the state-of-art methodologies for embedding watermarks in software programs.
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Software watermarking is a technology that encompasses embedding an identifier
in a software program, which acts as a copyright notice discouraging intellectual
property theft. The intuition is to reliably locate and extract the identifier, even if
the program has been subjected to authorized (obfuscation, optimization) and/or
unauthorized (tampering) changes. A watermarking scheme is typically evaluated
w.r.t the following parameters: (a) credibility (how strongly the watermarked pro-
gram proves authorship), (b) secrecy ( how difficult it is to extract the watermark),
(c) transparent (how difficult it is to distinguish a watermarked program from
the original program), (d) functionality preservation ( whether the input-output
behavior is identical for both the watermarked and original program), (e) resilience
(how difficult it is to compromise the correct extraction of the identifier).

A number of software watermarking techniques have been proposed in the liter-
ature [226]. In [68], the authors embed a watermark by calculating hash values
for each basic block in the original code, sorting the blocks according to the hash
values, and applying a permutation to reorder the hashed values, which serves
as an unique identifier. Authors in [138], propose an algorithm which embeds a
watermark by replacing instructions in a dummy method. In [181], Sharma et al.
propose a methodology that reorders arithmetic operations in functions, and then
modifies the sequence in which functions are defined, such that a definite water-
mark is encoded in the sequencing. However, these approaches lack theoretical
investigations and rigorous definitional frameworks involving security analysis
of the schemes. In [217], the authors propose the notion of watermarking based
on cryptographic signatures, the security analysis of which relies upon vector
decomposition problem [218]. In [148], Nishimaki characterized two fundamental
requirements for watermarking functions:

• The watermarked function should be functionally equivalent to the original
program.

• Removing embedded watermark from a watermarked function should be
computationally difficult for a polynomial adversary.

Our construction in Chapter 7 prevents adversarial attempts to reverse engineer a
control program. A future research topic is to develop tools for watermarking control

programs, such that adversarial attempts to modify the programs (by exploiting the

insecure communication protocols at the configuration layer) could be efficiently
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determined. Furthermore, we aim to determine whether we can efficiently water-

mark obfuscated implementations of control programs to achieve protection against

program piracy.

9.2.2 Extending SelEnc to Achieve Diverse Security Goals

In Chapter 5 we have presented a framework that helps achieve security in commu-
nicating a subset of ICS payloads critical to the control behavior of the application,
incurring significantly low overhead. As a part of the future initiatives, we aim
to extend our framework towards providing authentication and integrity in ICS
communication. Furthermore, we aim to examine ICS products and protocols (other
than Allen Bradley controllers and EtherNet/IP protocol as used in our experi-
ments), conduct in-depth analysis on the customer security requirements based on

extensive user stories, such that standard paradigms of application-level security
could be designed for generic industrial infrastructures.

9.2.3 Extending the notion of Verifiable Obfuscation

An interesting direction of future research in verifiable obfuscation would be:

• Our proposed verifiable obfuscation concept requires the verifier to be pro-
vided with the original program C. Can verification be performed in a "zero
knowledge" way with respect to the original program, so that the verifier
takes a commitment Commit(C) to the original program C , the obfuscated
program C̃ , and the proof π?

• Our proof-of-concept verifiable obfuscation is not very efficient as it es-
sentially requires re-doing the obfuscation process. An open problem is
to develop more efficient schemes that does not require the verifier to do
roughly the same amount of work as the obfuscator. One way to achieve
this is to consider variants that verify a random subset of steps (This can
actually be done for the [30] scheme, for example). This begs the question:
what level of assurance can be achieved when the verifier’s work is much
less than the prover’s work ? Are there verifiable obfuscation schemes where
the verifier’s work is substantially less than the obfuscator’s work?

• Our design requires the verifier to understand the obfuscation tool. However,
the obfuscation techniques can be proprietary and hence need to be protected
from the verifier. A future work in this direction would be to build verifiable
obfuscation around this constraint.
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9.2.4 Designing New Foundations of Practical Program
Obfuscation for Control Programs

Another possible future direction that would be interesting towork on, is the design
of new cryptographically secure obfuscators for branching programs, involving lower
computational overheads compared to our proposedObfCP construction, such that
they could implemented in generic industrial control infrastructures. Our interest
in branching program is due to its alignment to the structural representation of
control programs.

9.3 Conclusion

The specter of adversary tradecraft in delivering targeted attacks against critical
infrastructures is increasing at a significant rate. The countermeasures to defend
against such adversarial attempts are mainly restricted to patch management,
compliance-based regimes, and IDS with signatures of vulnerabilities being discov-
ered every day, which do not prevent exploitations leveraging the design flaws of
a generic industrial control framework. With an aspiring ambition of Industry 5.0,
ICS security should be a collaborative initiative between industry practitioners and
academic research community, such that industry can implement custom-made
security controls based on rigorous foundations of lightweight cryptographic
primitives instead of importing IT security technologies, and the research com-
munity, who is currently reliant on simulations and emulations, can avail fully
functioning ICS testbeds to evaluate their approaches.
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