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1 | INTRODUCTION

The well-known diamagnetic inequality states that the semigroup associated with a Schrodinger
operator with a magnetic field is pointwise bounded by the free semigroup of the Laplacian.
More precisely, let d = (ay, ..., a,) be such that each a, is real valued and locally in L,(R%). Set
H(a) = (V —ia)*(V —ia). Then the corresponding semigroup (e“h’(a)),?0 satisfies

le H@ f| < et f]
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for all t > 0 and f € L,(R%). The same result holds in the presence of a real-valued potential V/,
that is, with operators H(a) + V and —A + V.

The diamagnetic inequality plays an important role in spectral theory of Schrodinger operators
with magnetic potential. We refer to [16] and references there.

The main objective of the present paper is to prove a similar result for the Dirichlet-to-Neumann
operator with magnetic field on the boundary T of a Lipschitz domain Q in R?. In its simplest
case, the diamagnetic inequality we prove says that for all d € (L, (Q, R))¢, the solutions of the
two problems

8, Tru+ (8, —id-v)u=0 on(0,00) XT
(V—ia)*(V—id)u=0 on(0,0) X Q

Tru=¢
and
0,Trv+d,v=0 on(0,00)xT
Av=0 on(0,00)XxQ
Trv = |p|
satisfy

|lu(t, x)] < v(t,x) fora.e. (t,x) € (0,00) X T

Here 0, is the normal derivative and v is the outer normal vector to Q. We prove more in the
sense that we are able to deal with variable and non-symmetric coefficients. To be more precise,
we consider ¢, by, ¢y, ay € L,(Q,C) forall k, [l € {1, ..., d} with (c;) satisfying the usual elliptic-
ity condition. For all @ € (L (Q, R))? as above we consider the magnetic Dirichlet-to-Neumann
operator N (d) defined as follows. If ¢ € H'/2(I'), we solve first

d
- ), (B —ia)(e (8 — la) u)

k=1

+ ) (b (0 —ig)u — (O —iaqp)(cru))+ayu=0 onQ,
k=1

Tru = ¢,

withu € W2(Q) and then define N'(d)g as the conormal derivative (when it exists as an element
of L,(I')). Formally,

d d d
N(a)@ = Z Vi Tr (ckl alu) —1 Z VkTr (ckl [oF] u) + Z Vi Tr (Ck u).
k,1=1 k,1=1 k=1

If (T3(t));5o denotes the semigroup generated by —AN (@) on Ly(T) and if the coefficients
cri» bis ¢k a are real valued, then we prove (under an accretivity condition) that

1Tzl < To(lol
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for all t > 0 and ¢ € L,(T'). In the symmetric case, ¢;; = ¢, and by, = ¢, = 0, we obtain as a con-
sequence a trace norm estimate for the eigenvalues of N'(d) and if the coefficients are Holder
continuous and Q is of class C!** for some x > 0 we obtain that the heat kernel of M'(a) sat-
isfies a Poisson upper bound on I'. We also prove other results on positivity (when @ = 0) and
L, -contractivity of the corresponding semigroup. For example, in the symmetric case ¢;; = ¢y,
b, = ¢, and g, are all real, then the semigroup T, is positive if a,(x) > —A1, for almost every (a.e.)
x € Q, where 4, is the first positive eigenvalue of the elliptic operator

d d
= D 9l 8) + Y (b B — Bilei)) €]
k=1

K,j=1

with Dirichlet boundary conditions. In other words, the quadratic form

d d
aww =Y [ a CREXEDY [ (veGaa+busa)+ [ aur @

k=1

is positive on Wé’Z(Q). It is not clear whether this latter condition remains sufficient for positivity
of the semigroup in the non-symmetric case. See Proposition 3.4 and Section 4.

It is worth mentioning that the Dirichlet-to-Neumann operator is an important map which
appears in many problems. In particular, it plays a fundamental role in inverse problems such
as the Calderdn inverse problem. The magnetic Dirichlet-to-Neumann operator also appears
in the study of inverse problems in the presence of a magnetic field. We refer to [6] and the
references therein.

In order to prove the diamagnetic inequality we proceed by invariance of closed convex sets
for an appropriate semigroup. This idea appeared already in [14]. Despite the fact that it is an
abstract result, the invariance result proved in [14], however, does not seem to apply in an effi-
cient way to the Dirichlet-to-Neumann operator. The reason is that in this setting one has to deal
with harmonic lifting (with respect to the elliptic operator) of functions and it is not clear how
to describe such a harmonic lifting for complicated expressions (see Section 5 below). What we
do is to rely first on a version from [2] of the invariance criterion of [14] and then prove new cri-
teria for invariance of closed convex sets which make a bridge between invariance on L,(T) for
the Dirichlet-to-Neumann semigroup and invariance on L,(Q) for the semigroup of the ellip-
tic operator with Neumann boundary conditions. The latter is easier to handle. The result is
efficient when dealing with the Dirichlet-to-Neumann operator. The diamagnetic inequality is
obtained from a domination criterion which is obtained by checking the invariance of the convex

set {(¢, ) € L,(I') X L,(T) : |¢| < 3} for the semigroup (Ta'o(t) Too(t)>t>0'

2 | BACKGROUND MATERIAL

The aim of this section is to recall some well-known material on sesquilinear forms and make
precise several notations which will be used throughout the paper.

Let H be a Hilbert space with scalar product (-, )i and associated norm || - || 7. We consider
another Hilbert space V which is continuously and densely embedded into H. Let

a.: VXV ->C
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be a sesquilinear form. We assume that a is continuous and quasi-coercive. This means,
respectively, that there exist constants M > 0, u > 0 and w € R such that
laCu, v)| <M |lully |lv]ly and
2 2
Rea(u,u) + wllull; = ullully
for all u,v € V. It then follows that a is a closed sectorial form and hence one can associate an
operator A on H such that for all (u, f) € H x H one has
ueD(A) and Au=f
if and only if
ueV and a(u,v)=(f,v)gforallveV.
It is a standard fact that A is a densely defined (quasi-)sectorial operator and —A generates a
holomorphic semigroup T = (T(t)),5, on H. See, for example, [12] or [15].
Let now H be another Hilbert space and j: V — H be a linear continuous map with dense

range. Suppose thatthe forma : V X V — Ciscontinuous. Following [2], we say that a is j-elliptic
if there exist constants w € R and u > 0 such that

Re a(u, w) + @ | j@IIF, > w1 llullf,

for all u € V. In this case, there exists an operator A, called the operator associated with (a, j),
defined as follows. For all (¢, %) € H X H one has

peDA) and Ap=1
if and only if

jw) = ¢ and
a(u,v) = @, j(v)y forallv e V.

there exists a u € V such that

Then A is well defined and —A generates a holomorphic semigroup T = (T(t)),, on H. (See [2]
Theorem 2.1.)

We illustrate these definitions by two important examples in which we define the Dirichlet-
to-Neumann operator and the magnetic Dirichlet-to-Neumann operator on the boundary of a
Lipschitz domain.

Example 2.1 (The Dirichlet-to-Neumann operator). In this example we construct the Dirichlet-
to-Neumann operator in a general setting of complex coefficients. Let Q be a bounded Lipschitz
domain of R¢ with boundary I'. We denote by Tr : W3(Q) — L,(T) the trace operator. Let
¢ b Ck» g € Lo, (Q,C) for all k, I € {1, ..., d}. We assume the usual ellipticity condition: There
exists a constant ¢ > 0 such that

d
Re 2 ca(X) & & > uléP?

k=1
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forall £ € C? and almost all x € Q. Define the sesquilinear form a : W12(Q) x W2(Q) — Cby

d d
aw,v)= Y /Qckl (5lu)akv+kz::1/g(bk(aku)5+ckuakv>+/Qa0u5. ©)

k=1

It is a basic fact that the form a is continuous and quasi-coercive. We denote by A the operator
associated with a on L,(Q). Define the operator A : W2(Q) —» W~12(Q) by

(Au, U>W—1’2(Q)XW3'2(Q) = a(u, U).

Let u € WH2(Q) with Au € L,(Q) and 3 € L,(T'). Then we say that u has weak conormal
derivative 3 if

a(u,v) — (Au, V), ) = @, Tro) )

for all v € WH2(Q). By the Stone-Weierstrafl theorem the trace space Tr (W12(Q)) is dense in
L,(I"). Hence the function 9 is unique and we write 0 u = 1. Formally,

d d

03 u= Z Vi Tr (Ckl alu) + Z VkTr (Ck ‘M,),
k,I=1 k=1

where (vy, ..., V4) is the outer normal vector to Q. Suppose now that 0 is not in the spectrum of A
endowed with Dirichlet boundary conditions (that is, the form a is takenon V = W(l)’z(Q)). Then
we say that u € WH2(Q) is A-harmonic if

a(u,v) =0

forallv e Wé’z(Q). Since 0 is not in the spectrum of the Dirichlet operator, for all ¢ € H'/3(I')
there exists a unique .A-harmonic u € H'(Q) such that Tru = ¢. We then define on L,(T') the
form b: H'/2(I') x H/2(T) - C by

b(p, &) 1= a(u,v), “4)

where u,v € W2(Q) are A-harmonic with Tru = ¢ and Trv = £, respectively. One proves that
the form b is continuous, sectorial and closed. The associated operator N is the Dirichlet-to-
Neumann operator. For more details see [8] Section 2, [9] Section 2 or [5]. The operator N is
interpreted as follows. For all ¢ € H'/2(I'), one solves the Dirichlet problem

d d

- Z 5k(ckl 61 u) + Z (bk 6ku - ak(Ck u)) + Qo U = 0 Weakly in Q,
k,l=1 k=1

Tru=¢

withu € W'2(Q) and if u has a weak conormal derivative, then ¢ € D(N') and N'gp = 33 u. Alter-
natively, let j := Tr, H = L,(Q) and H = L,(I). Suppose in addition that a is j-elliptic, that is,
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suppose that Re q,, is large enough. Then one checks easily that N is the operator associated with
(a, ).

Example 2.2 (The magnetic Dirichlet-to-Neumann operator). Adopt the notation and assump-
tions as in Example 2.1. Let @ := (ay, ..., ay) be such that q; € L (Q,R) for all k € {1,...,d}.
Set

Dk = ak—iak

for all k € {1, ..., d}. We define as above a(d) : WH?(Q) x W1(Q) — C by

d 4 L
a(@)(u,v) = Z /Qckl(Dlu)Dkv+k§l/Q(bk(Dku)5+ckuDkv)+/Qa0u5. (5)

k=1

Note that this form has the same expression as in (3) except that d, is now replaced by D), = 9; —
iay. If one expands Dy, then one can rewrite (5) in the form of (3), but with different coefficients
by, ¢, and a,. Now one can define exactly as above the associated operator A(a) on L,(Q) as well as
the magnetic Dirichlet-to-Neumann operator N'(a). Formally, if u € W'2(Q) is .A(a)-harmonic
with trace Tru = ¢, then

d d d
N(@p =0y = Z vy Tr (e Opu) — i Z v Tr (¢ a;u) + Z v Tr (¢ w).
k=1 k=1 k=1

3 | INVARIANCE OF CLOSED CONVEX SETS

As previously, we denote by H and V two Hilbert spaces such that V is continuously and densely
embedded into H. Let a : V X V — C be a quasi-coercive and continuous sesquilinear form. We
denote by A the corresponding operator and S = (§(t))[>0 the semigroup generated by —A on H.

Let C be a non-empty closed convex subset of H and P : H — C the corresponding projection.
We recall the following invariance criterion (see [14], [15] Theorem 2.2 or [13] Theorem 2.1).

Theorem 3.1. The following conditions are equivalent.

(i) The semigroup S leaves invariant C, that is, S(t)C c C forall t > 0.
(i) PV c V and Re a(Pu,u —Pu) > 0 forallu € V.

If a is accretive, then the previous conditions are equivalent to

(iii) PV c V and Rea(u,u — Pu) > 0 forallu € V.

The invariance theorem was first proved in [14] but without Assertion (ii). It is stated in [15],
Theorem 2.2, in the case of accretive forms but the proof given there for the equivalence of (i)
and (ii) can be adapted to remove accretivity. We also refer to [13] for the Assertion (ii) without
accretivity. Note that the implication (ii)=(i) is proved in [1], Theorem 2.2, in a general setting of
non-autonomous quasi-coercive forms with a non-homogeneous term.
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Let now H be a Hilbert space and j: V — H a bounded linear map with dense range. We
assume that a is j-elliptic and denote by A the operator associated with (a, j). The semigroup
generated by —A on H is denoted by S = (S(¢)),50-

We consider a non-empty closed convex set C of H and denote by P : H — C the projection.
In the context of j-elliptic forms, the previous theorem has the following reformulation (see [2],
Proposition 2.9).

Proposition 3.2. Suppose that a is accretive and j-elliptic. Then the following conditions are
equivalent.

(i) Cisinvariant for S.
(ii) Forallu €V, there exists a w € V such that P(j(u)) = j(w) and Re a(w,u — w)

0.
(iii) Forallu €V, there exists a w € V such that P(j(u)) = j(w) and Re a(u,u — w) > 0

2
2

The following invariance criterion is implicit in [2]. It allows to obtain invariance of a closed
convex set C in H for the semigroup S from the invariance of a certain closed convex set C for the
semigroup S in H.

Proposition 3.3. Let C and C be non-empty closed convex sets of H and H with corresponding
projections P and P, respectively. Assume a is accretive and j-elliptic. Suppose that the convex set C
is invariant for the semigroup S and that

Poj=joP onV. (6)
Then the convex set C is invariant for the semigroup S.

Proof. First, note that the term in the right-hand side of condition (6) makes sense because of the
fact that PV C V by Theorem 3.1and j: V — H.
Let now u € V and define w = Pu. Then w € V and Pj(u) = j(Pu) = j(w). Moreover,

Rea(w,u —w) = Rea(Pu,u — Pu) >0

by Theorem 3.1 and the assumption that C is invariant for the semigroup S. We conclude by
Proposition 3.2 that C is invariant for S. O

There are interesting situations where one would like to relax the accretivity assumption in
the previous results. A typical situation is when one applies the above criteria to positivity of
the Dirichlet-to-Neumann semigroup. For example, if one considers the form given by (2) with
a, = A € R, then the accretivity (on W2(Q)) holds only if 1 > 0. The accretivity on W(l)’z(Q),
however, holds if 4 > —A,,, where A, is the first (positive) eigenvalue of the elliptic operator given
in (1) with Dirichlet boundary conditions. It is then of interest to know whether one can replace
accretivity in the previous results by accretivity on Wé’z(Q) only. In the light of Theorem 3.1, one
would expect to have equivalence of (i) and (ii) in Proposition 3.2 in general. It turns out that this
is true if the form a is symmetric. We do not know whether the same result holds in the case of
non-symmetric forms.

Before stating the results we need some notation and assumptions. Set

V() ={u eV : a(u,v) =0forall v € ker j}.
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Clearly V(a) is closed in V. In Example 2.1 the space V' (a) coincides with the space of .A-harmonic
functions. We assume that

V =V(a) @ kerj @)
as vector spaces. In addition, we assume that there exist w € R and y > 0 such that
Rea(u,u) + o | j@lF; = pllull;, ®

for all u € V(a). (Loosely speaking, the j-ellipticity holds only on V(a).)

Under these two assumptions, one can define as previously the operator A associated with (a, j)
and A is m-sectorial (see [2] Corollary 2.2). We denote again by S the semigroup generated by —A
on H. Then we have the following version of Proposition 3.2 in which we relax the accretivity
assumption to be valid only on ker j. Note that we always assume that j : V — H is continuous
and has dense range.

Proposition 3.4. Let C be a non-empty closed convex set of H with corresponding projection P.
Suppose that the form a is symmetric and satisfies (7) and (8). Suppose in addition that

a(u,u) >0 forallu € kerj. 9)

Then the following conditions are equivalent.
(i) Cisinvariant forS.

(ii) Forallu €V there exists a w € V such that P j(u) = j(w) and Re a(w,u — w) > 0.

Remark 3.5. The implication (i)=(ii) remains valid without the symmetry assumption of the form
a and without the accretivity assumption (9).

Proof of Proposition 3.4. In H define the form a, : j(V(a)) X j(V(a)) — C by

a.(j(w), j(v)) := a(u,v)

for all u,v € V(a). We provide j(V(a)) with the norm carried over from V(a) by j. It is easy to see
that the form a, is well defined, continuous and quasi-coercive. Its associated operator is again A
(see [2] Theorem 2.5 and one can easily replace the j-ellipticity there by (8)). Now we can apply
Theorem 3.1 in which the equivalence of the first two assertions does not use accretivity.

‘(i)=(ii). By Theorem 3.1 we have P(j(V(a))) C j(V(a)). Let u € V. By (7) there exists a u’ €
V(a) such that j(u) = j(u'). Hence there is a w € V(a) such that Pj(u’) = j(w). Then Pj(u) =
Pj(u’) = j(w). In addition, since u — u’ € ker j and w € V(a), we have

Rea(w,u —w) = Rea(w,u —u’) + Rea(w,u’ — w)
=Rea(w,u’ —w)
= Rea (j(w), j(' —w))
=Rea (Pj'), jw') - Pj))

>07
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where we use again Theorem 3.1 in the last step. This gives Condition (ii). We observe that the
symmetry assumption is not used here.

‘i)=>({). Letp := j(u) € D(a,), where u € V(a). By (ii) there existsaw € V such that Pj(u) =
j(w) and Rea(w,u —w) > 0. By (7) there is a w’ € V(a) such that j(w) = j(w’). Then Py =
Pj) = j(w) = j(w') € D(a,). Next

Re ac(an’ P — Pgo) = Re ac(j(w,)’j(u) - ](w,))
=Rea(w’,u —w')
=Rea(w' —w,u—w')+Rea(w,u —w')
= Rea(w,u —w).
Here we use
Rea(w —w,u —w')=Rea(u —w',w —w) =0

by the symmetry of a and the facts that u — w’ € V(a) and w’ — w € ker j. Now, by Condition (ii)
one deduces that

Rea(w,u —w') = Rea(w,u —w) + Rea(w, w — w")

> Rea(w,w —w').
On the other hand, Re a(w’,w — w') = 0 since w’ € V(a) and w — w’ € ker j. Therefore

Rea(w,w —w’) = Rea(w —w',w —w') + Rea(w',w —w)
=Rea(w—w',w—-w)

20,
where we use the accretivity assumption on ker j. Hence we proved that
Rea (Pp,p — Pp) > 0.
Using again Theorem 3.1(ii)=>(i) we conclude that C is invariant for S. O

Now we have the following version of Proposition 3.3 with an identical proof, except that now
we apply Proposition 3.4 instead of Proposition 3.2.

Corollary 3.6. Let C and C be non-empty closed convex sets of H and H with corresponding projec-
tions P and P, respectively. Assume that the form a is symmetric and satisfies (7) and (8). Suppose in
addition that a(u, u) > 0forallu € ker j. Suppose that the convex set C is invariant for the semigroup
S and that

Poj=j oP.

Then the convex set C is invariant for the semigroup S.
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We conclude this section by mentioning that one may consider the Condition (ii) in
Theorem 3.1, Proposition 3.2 and Proposition 3.4 on a dense subset of V" as in [15], Theorem 2.2.

4 | POSITIVITY AND L_-CONTRACTIVITY

The criteria in the previous section turn out to be simple and effective in applications. We illustrate
this by proving positivity and L -contractivity of the semigroup generated by the Dirichlet-to-
Neumann operator A described in Example 2.1 of Section 2 under a mild additional condition.
This mild condition is that there is a £ > 0 such that

Rea(u,u) > ul|Vull (10)

2
Ly(Q)
for all u € W12(Q). This condition is valid if Re q,, is large enough. It is a standard fact that there
isa u’ > 0 such that

/Q |Vu|2 + ,/1" |Tr(u)|2 > ”u”é[ﬂ,z(g)

for all u € W2(Q). From this and (10), it follows that a is j-elliptic with j = Tr. Then we have
the following consequence of Proposition 3.3.

Corollary 4.1. Suppose (10) and that the coefficients ¢, by, ¢, and a, are all real valued for all
k,l €{1,...,d}. Then the semigroup S generated by (minus) the Dirichlet-to-Neumann operator N’
is positive.

Proof. It follows from [15], Theorem 4.2, that the semigroup S generated by —A on L,(Q) is positive.
Therefore S leaves invariant the closed convex set C : = {u € L,(Q) : u > 0}. The projection onto
Cis Pu = (Reu)*. Now we choose C := {p € L,(T) : ¢ > 0}. Then Pp = (Rep)*. It is clear that
(6) is satisfied and hence C is invariant for S by Proposition 3.3. This latter property means that S
is positive. O

Regarding the positivity proved above a remark is in order. We have assumed (10) in order
to ensure j-ellipticity and define the Dirichlet-to-Neumann operator using the (a, j) technique as
explained in Section 2. The condition (10) is however not true for general (too negative) a,,. On the
other hand, for general a, € L () one can still define the Dirichlet-to-Neumann operator using
the form (4) under the sole condition that the elliptic operator with Dirichlet boundary conditions
is invertible on L,(Q). If a is symmetric, then we apply Proposition 3.6 instead of Proposition 3.3
and obtain that the Dirichlet-to-Neumann semigroup S is positive if the form a is accretive on
Wé’Z(Q). In particular, if ¢;; = ¢, and b, = ¢ for all k,l €11, ..., d} then S is positive as soon as
ap + /1? > 0 a.e. on Q, where /1? is the first eigenvalue of the operator

d d
= Y Aileud) + Y, (b — icx))
k,l=1 k=1

subject to the Dirichlet boundary conditions. Note that if the condition a, + A” > 0 a.e. on Q is
not satisfied, the semigroup S might not be positive. See [7].
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Concerning the L -contractivity of the Dirichlet-to-Neumann semigroup S we have the
following result.

Corollary 4.2. Suppose in addition to (10) that Re a, > 0 a.e. on Q. Suppose also that ¢, b, and
ici are real valued for all k,l € {1, ..., d}. Then the semigroup S is L -contractive.

Proof. Under the assumptions of the corollary, the semigroup S is L. -contractive by Theo-
rem 4.6 in [15]. This means that S leaves invariant the closed convex set given by C:={ue
L,(Q) : |u| < 1}. The projection onto Cis Pu=(Q1A |u|) signu. We choose C :={p € L,(T) :
|¢| < 1}. Then Pp = (1 A |@]) sign ¢. Since Tr ((1 A |u])signu) = (1 A |Trul) sign(Tru) the con-
dition (6) is satisfied and hence C is invariant for S by Proposition 3.3. This proves that S is
L -contractive. 1

Here the sign function is defined by sign z = é ifz # 0 and sign 0 = 0.

A consequence of the previous corollary is that the semigroup S can be extended to a holomor-
phic semigroup on L,(I') forall p € (2, o0). Forall p € (1, 2) one may argue by duality by applying
the corollary to the adjoint operator.

5 | ADOMINATION CRITERION

This section is devoted to a domination criterion for semigroups such as those generated by
Dirichlet-to-Neumann operators. Although one can find in the literature several criteria for the
domination in terms of sesquilinear forms (see [14] or Chapter 2 in [15]) their application to
Dirichlet-to-Neumann operators is difficult since one has to deal with harmonic lifting of func-
tions such as ¢ sign ) with @, ) € H'/3(T') such that |p| < |%| (see Theorem 5.3 below). In contrast
to general criteria in [14] we shall focus on operators such as the Dirichlet-to-Neumann operator
and make a link between the domination in L,(I") and the domination in L,(Q). In a sense, we
obtain the domination in L,(T') for the semigroup generated by (minus) the Dirichlet-to-Neumann
operator from the domination in L,(Q) of the corresponding elliptic operator with Neumann
boundary conditions.

We start by fixing some notation. Let H := L,(X,%) and H = L,(X,v), where (X, ) and
(X,v) are o-finite measure spaces. Let U and V' be two Hilbert spaces which are densely and
continuously embedded into H. We consider two sesquilinear forms

a: UXU—->C and b: VXV ->C

which are continuous, accretive and quasi-coercive. We denote by A and B their associated oper-
ators, respectively. Let j; : U — H and j, : V — H be two bounded operators with dense ranges.
We assume that a is j;-elliptic and b is j,-elliptic and denote by A and B the operators associ-
ated with (a, j;) and (b, j,), respectively. Finally, we denote by T = (T()),50 and S = (5(t));¢
the semigroups generated by —Aand —-Bon H and T = (T(8))150 and S = (S(1));»o the semi-
groups generated by —A and —B on H, respectively. Then under suitable assumptions we have
transference of domination.

Theorem 5.1. Adopt the above notation and assumptions. Further suppose the following.
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() T is dominated by S, that is,
IT()f1 < SO
forallt >0and f € H.
(II) The maps j, and j, satisfy the four properties in Hypothesis 5.4.

Then T is dominated by S, that is,
Tl < SO)lel

forallt >0andallp € H.

In light of Proposition 3.4 and Corollary 3.6 the accretivity assumption can be relaxed if the
forms a and b are symmetric. We leave the details to the interested reader.
The following definition was introduced in [14].

Definition 5.2. We say that U is an ideal of V' if

*ueU=|ul €Vand
* ifu € U and v € V are such that |u| < |v|, then vsignu € U.

We also recall the following criterion for the domination (see [14] or [15] Theorem 2.21).

Theorem 5.3. Suppose that the semigroup S is positive. The following conditions are equivalent.

(i) T is dominated by S.
(i) Uisanideal of V and Re a(u, |v|signu) = b(Jul, |v]) forall (u,v) € U X V such that |u| < |v|.
(iii) U isanideal of V and Re a(u,v) = b(|ul, |v]) for all (u,v) € U X V such that uv > 0.

Since we assume in Theorem 5.1 that T is dominated by S, it is then a consequence of Theo-
rem 5.3 that U isan ideal of V. In particular, all the quantities appearing in the following properties
are well defined.

Hypothesis 5.4. Assume

* jo(Rev) = Re j,(v) forallv € V;

o Jo(U; VUy) = jo(v)) V ja(vy) for all vy, v, € V which are real valued;

+ jo(ul) = 1@l for all w € U and

» ji(vsignu) = j,(v)sign(j,(w)) for all (u,v) € U XV such that 0 < v < |u|.

Note that the first two properties use the fact that semigroup S is positive and hence
Reu,(Reu)t € V for all u € V. This implies that v; v v, € V for all real-valued v,,v, € V.

Obviously, the properties in Hypothesis 5.4 are satisfied if U = V = WH2(Q), H = L,(T') and
jhi=Jy=Tr.

Proof of Theorem 5.1. We follow an idea from [14] and view the domination as the invariance of
a closed convex set by an appropriate semigroup. Define A := H x H = L,(X, ¥) x L,(X, %) and
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consider the closed convex set
C:={,v)eH: |ul <k
The projection onto Cis given by
P(u,v) = %([lul + |ul ARev]" signu, [|u| v Rev + Rev]*). €1))
See [14] or [15] (2.7). We also define j: U XV — H x H by

j(u’ U) = (jl(u)’ JZ(U))

Since j; and j, are bounded with dense ranges it is clear that j is bounded and has a dense range.
Next define the sesquilinear form ¢: (U X V) X (U X V) — C by

c((ug, vy), (uy, 01)) 1= a(ugy, uy) + b(vy, vy).

This form is quasi-coercive, accretive and continuous. Its associated operator is

A0
0 B
and the corresponding semigroup on H is

T o B T 0
o S/ \o 30 90'

We next show that ¢ is j‘-elliptic. Indeed, if (u,v) € U X V, then
Re c((u,v), (,0)) + @ [|j(w, V)13 ; = Rea(,u) + @ [1j; @7, + Reb(v,v) + @ ||,
> u(llully + vl
where we use that a is j;-elliptic and b is j,-elliptic with some constants w;, @, and u;, x4, > 0

and then we take w = max(w;,w,) and u = min(u;, 4,). Recall that A and B are the operators
associated with (a, j;) and (b, j,), respectively. Denote by C the operator associated with (c, j).

We shall show that
o A 0 1)
“\o B/

In order to prove this we use the definition of the associated operator. Let (¢, 3) € D(C) and write
(m, x) = C(p, ). This means that there exists (u,v) € U X V such that

j,v) = (¢,9) and 13)
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c((u,v), (w, 2)) = ((n, x), j’(w, Z))gxy forall (w,z) e U X V. (14)

The equality in (14) reads as

a(u,w) +b(v,z) = (@, j;(W)y + (1, j(2)y

for all w € U and z € V. Taking z = 0 in the last equality and using (13) yields ¢ = j;(u) and
a(u,w) = (1, j;(w))y for all w € U. This means that ¢ € D(A) and Ap = 7. Similarly, ) € D(B)
and By = y. Hence

( DA 0 4 Clog)= A o(
»,P) € o B an (p,9) = o B ®,P).

A0
We have proved that ( 0 B

12).
We conclude from equality (12) that the semigroup generated by —C is given by

T 0\ (T(t) o0
o s/ \o s©® 120'

Now we consider the closed convex subset of H x H defined by

) is an extension of C. The converse inclusion is similar and we obtain

C:={p,p) €HXH : |p| <P}

Similarly to (11), the projection onto C is given by
1 .
P(p,¥) = E(HGOI +lpl ARey]"signg, [lo] v Rey + Redp]").

It follows easily from Hypothesis 5.4 that P o j = j o P. Since the domination of T by S means that
the semigroup (g —SO~> leaves invariant the convex C, we conclude by Proposition 3.3 that the semi-

group (g g) generated by —C on H X H, leaves invariant the convex set C. The latter property

means again that T is dominated by S. This proves the theorem. O

6 | THE DIAMAGNETIC INEQUALITY

In this section we prove the diamagnetic inequality for the Dirichlet-to-Neumann operator. This
will be obtained by applying Theorem 5.1.

Let Q be a bounded Lipschitz domain of R with boundary I. Let d = (a;, ..., a;) be such that
a;, € L (Q,R) for all k €{1,...,d}. We consider the magnetic Dirichlet-to-Neumann operator
N'(@) on Ly(T) and the Dirichlet-to-Neumann operator N corresponding to @ = 0 (see Exam-
ples 2.1 and 2.2 in Section 2). We denote by T; = (T;(t));5o and T = (T(t)),5, the semigroups
generated by —A/ (@) and —N on L,(T), respectively. We have the following domination.
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Theorem 6.1. Suppose that ¢y, by, ¢y, ay and a; are real valued for all k,1 € {1, ..., d}. Suppose in
addition that the form a in (3) is accretive and j-elliptic with j = Tr. Then T is dominated by T on
L,(T). That is,

ITa(De] < T(Hlel

forallt > 0and ¢ € L,(T).

Proof. We apply Theorem 5.1 with H = L,(Q),U =V = Wh*(Q)and H = L,(I). Set j; = j, = Tr.
It is clear that the four properties in Hypothesis 5.4 are satisfied. Therefore Theorem 6.1 fol-
lows immediately from Theorem 5.1 and the next result, Proposition 6.2, on the domination in

Ly(Q). d

Denote by A(a) and A = A(0) the elliptic operators in L,(Q) associated with the forms defined
by (5) and (3) on W12(Q). We denote by TE and T the semigroups generated by —A(d) and —A on
L,(Q), respectively.

Proposition 6.2. Suppose that ¢, by, ¢, a, and a; are real valued for all k,1 € {1, ...,d}. Then we
have the diamagnetic inequality

ITZ(Of1 < T

forallt > 0and f € L,(Q).

The proposition is very well known in the case Q = R4, ¢, = 8, and b, = ¢, = 0. For general
domains with Neumann boundary conditions (as we do in the previous proposition) and ¢;; =
8x1» by = ¢, = 0 it was proved in [11]. Note that in our case we do not assume any regularity or
symmetry for (¢;;). In addition we allow the presence of terms of order 1. The same domination
result is also valid, with the same proof, if the operators K(&) and A are endowed with other
boundary conditions such as Dirichlet or mixed boundary conditions.

Proof. Note first that since all the coefficients are real valued, the semigroup T generated by
—A is positive (cf. [15] Corollary 4.3). In particular, W'2(Q) is an ideal of itself (see [14] or [15]
Proposition 2.20). It remains to prove that

Re a(@)(u,v) > a(|ul, |v]) (15)

for all u,v € WH2(Q) with u 0 > 0 and then apply Theorem 5.3. Let u,v € W2(Q) with uv > 0.
Then uv = |u| |v| and (sign u) sign v = 1 outside the sets where u = 0 or v = 0. Hence

d d d
Rea(a)(u,v) = Re Z /Qckl(alu)ak_v+ 2 /Qck, alIm(uak_v)— 2 /Qckl a; Im((6,u) v)

le,l=1 k=1 k=1
d d _

+ ) /ckla,ak|u||v|+2/ <kae((6ku)6)+ckRe(uakv)>
lel=1Q k=17 Q

+/a0 ul vl
Q
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/ i Re((8;u) signu) Re((9;,v) signv)
k,l=1

/ i Im((3,u) sign u) Im((8,v) signv)
k=1

d
/ckl a;Im(u d,v) — Z /Qcklaklm((alu)ﬁ)
k,l=1

k=1

/ckl a; ai |lul [v] + 2/ bk Re((d,u)v) + ¢, Re(uakv)>

k,l=1

+/a0 ul vl
Q

/ckl(al|u|)6l|U|+Z/(bk(6k|u|)|vl+ck |u|6k|v|)+/a0|u||v|

k=1

/ i Im((3,u) sign u) Im((4,v) signv)
k=1

/ ¢ ag Im((6;u) signu) [v] — / ¢ @ Im((Gyu) signu) ||

k,I=1

/ Cr ap ay [ul vl
k=1

where we used the standard fact that

k=1

O, lul = Re((0,u) signu).
Moreover, since # v > 0 we have Im ) (1 v) = 0 and hence
—|u| Im((;v) signv) = Im(u cﬁk_v) = —|v| Im((6,u) sign u).

So

/ ¢ Im((8,u) signu) Im((8,v) signv) = / ¢ Im((6,u) signu) Im((8,u) signu) || ||
Q
Ivl

with the convention that Im((6;u) sign u) Im((3,u) sign u) = 0 on the set where u = 0.
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It follows that
: vl
Re a(@)(u, v) = a(lul, [v]) + Y, / ¢ Im((8,u) sign u) Im((, ) signﬁ)m
kl=17Q
d
=Y [ (e + epday Im((Byu) sign) [v] + Y / Cr @y ay [ul vl
k=17 kel /@

=a(IuI,IvI)+/QM,
o lul

where

d d
Q= Z ¢ Im((0,u) signu) Im((8,u) signu) — Z (e + cy) i Im((0yu) signu) |u|

k,l=1 k=1
d
2
+ Z Cr1a; Qg |u| .
k=1

It remains to prove that Q > 0 to obtain (15).
Set & :=Im((O u) signu) forallk € {1,...,d}, £ = (§;,..., &) and C = (cy))1<x 1<q- Then

Q= <C§’ g)Rd - <(C + Cx)a’ §>[R{d |u| + <Ca’ a)Rd |u|2-

By the Cauchy-Schwarz inequality,

1/2
Rd

1/2

((C+CHa,&)ga lul < ((C+C*a,a) nd

ul ((C +CE,§)
1 o o , 1 .
< SUC+CNa, )ga |ul” + S{(C + CT)E, §)ga
= (Cd, d)pa [ul* + (C&, E)ga.
This implies that Q > 0 and finishes the proof of the proposition. O

Remark 6.3. We mentioned above that the diamagnetic inequality of Proposition 6.2 is valid with
other boundary conditions. Note also that if we add a positive potential V to a, in the expression of
A(Q) then we have the same domination by the semigroup of A (without V). The same domination
holds for the corresponding semigroups of the Dirichlet-to-Neumann operators. A particular case
of this result was proved in [8] for the Dirichlet-to-Neumann operators associated with —A + V
and —A on L,(T').

7 | SOME CONSEQUENCES

Let Q be a bounded open Lipschitz subset of R¢ with boundary T, where d > 2. Let T; be the
semigroup generated by (minus) the magnetic Dirichlet-to-Neumann operator N'(a) on L,(T).
Since the trace operator is compact, it follows that the spectrum of N'(a) is discrete. The first
consequence of Theorem 6.1 is as follows.
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Corollary 7.1. Suppose that ¢;; = ¢ € L ,(Q,R), by = ¢, =0and a; € L (Q,R) forall k,l €
{1, ..., d}. Suppose also that a, > 0. Then there exists a constant ¢ > 0, independent of d, such that

o0
e~ Ml < ¢ y~(@d-1)
k=1

for all t € (0,1], where A; < 4, < ... is the sequence of the corresponding eigenvalues of the
self-adjoint operator N'(a).

Proof. Asin Theorem 6.1, let T be the semigroup generated by —N . It follows from [9] Lemma 8.2
and [8] Theorem 2.6 that T(¢) satisfies

T, (r)-r ) < €7D (16)
for all t € (0, 1]. We obtain from this and Theorem 6.1 that

TGOz, r)-r @) <€ =D

for all t € (0,1]. The constant c is independent of ¢ and d. Next T;(t)L,(T') ¢ C(T) for all t > 0
by [10], Theorem 5.5 or Proposition 5.7. Then [4], Theorem 2.1, implies that T;(¢) is given by a
continuous kernel K;(t,-,-) : I' X I" —» C in the sense

(Ta(Op)w) = /F Ks(t, 2, w) 9(2) do(2)

forall ¢ € L;(T") and w € T Then (16) gives
|K5(t,z,w)| < ct™@Y 17

forallt € (0,1] and z, w € T'. It is well known that the trace of the operator T;(¢) coincides with
fr K;(t,z,z)do(z) and the corollary follows from (17). O

Note that (17) can also be used to obtain some bounds on the counting function of N'(@). See
[3].

The second consequence we mention here is that under additional regularity the estimate (17)
on the heat kernel K; can be improved into an optimal Poisson bound.

Corollary 7.2. Let Q be a bounded domain of class C'** for some x > 0. Suppose also that
e =cy €CYQ,R), by =c, =0and a € L (Q,R) forall k,l €1{1,...,d}. Suppose in addition
that ay > 0 a.e. on Q. Then there exists a constant ¢ > 0 such that

c(t AD)"d-D et
<

(1-522)
1+
t

forallz,w € T and t > 0, where A, is the first eigenvalue of the operator N'(Q).

K3, z, w)|
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Proof. The estimate

c(t A1)~

(1e551)
1+—n
t

for all z,w €T and t > 0 follows immediately from Theorem 6.1 and Theorem 1.1 in [9]. The
constant c in this estimate is independent of d.
The improvement upon the factor e~41! for t > 1 can be proved as follows. Define

|K;(t, z,w)| <

¢=N1TzMll,r)-r 1) < -

Ift € [3, ), then
IK5(t, z, w)| < 1Tz, (-1
< Tz T3¢ —2)|l 1Tz (DIl <Fehl=2
S @Ml m)-r,m I d LyO-Ly0 @\l (-1, S €€
forallz,w € T.If R = max{|z — w]| : z,w € T}, then
(t A 1)—(d—1) e—/llt

lz - w]\*
1+
t

forallt € [3,c0)and z,w € T.. O

IK5(t, z,w)| < &M (1+R)

Corollary 7.3. Adopt the notation and assumptions of Corollary 7.2. In addition suppose thatd > 3.
Then foralle, 7’ € (0,1), 7 > 0 and d € RY there exist ¢, v > 0 such that

IK;(t,z,w) — K5(t, 2/, w')|

|z—z’|+|w—w’|>v 1

t+ |z —w| |z —w d—e
1+T

forallz,w,z',w’ €Tandt>0with|z—z'| + |lw—-w'|<tt+ 7" |z —w]|.

<c(tA1)~@-D ( (1+1) e M!

Proof. The proof is the same as the proof of Theorem 5.1 in [10], since we now have the Poisson
bounds of Corollary 7.2 for the kernel associated to A'(a). O
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