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Abstract

Phylogenetics is the study of relationships between species using Deoxyribose Nucleic

Acid (DNA). This thesis takes a statistical approach to two phenomenon which violate

the assumption that evolution is treelike, and examines ways of visualising non-treelike

signal.

We use networks to display phylogenetic signal as they are robust and capable of displaying

uncertainty. Phylogenetic network inference involves estimating discrete (topology) and

continuous (branch length) parameters. One particular class of phylogenetic networks,

split networks, can be viewed as points in Euclidean space of high dimension. In theory,

then, phylogenetic analysis become a problem of inferring simple real valued parameters.

In this thesis we report on our experiences turning this theory into practice. We use the

Least Absolute Shrinkage and Selection Operator (LASSO) approach to regression in the

first instance and then extend the LASSO to a partial LASSO.

Within genes, phenomena like recombination (combining genetic material from more than

one source) leads to non-treelike evolutionary histories. We introduce two methods for

estimating the location of a recombination event. The first method is based on detecting

a regime shift in the presence of recombination and the second method models the signal

in each pair of DNA sites.

Even if each gene has a treelike evolutionary history, the histories may not be shared.

Therefore, we developed an approach to constructing a confidence set of topologies for a

set of genes. If this set is empty then the genes do not share an evolutionary history.

We conclude that the new statistical approaches to these phenomena, developed here, can

give further insight into an evolutionary history.
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1
Introduction

1.1 Phylogenetics and its assumptions

Molecular phylogenetics is the study of evolutionary relationships. The main goal of most

phylogenetic studies is to reconstruct an evolutionary history; that is, estimate which

organisms have the most recent common ancestors, and when those ancestors were on

earth.

Statistical inference of an evolutionary history is only possible if one is willing to make

several assumptions. One of the standard assumptions is that the genetic sequences being

studied all evolved along the same evolutionary ‘tree-of-life’. There is more and more

evidence that this is not the case in a wider and wider variety of situations. Bacteria have

complex evolutionary histories and a network seems more appropriate for representing

aspects of of their history (Puigbò et al., 2010). Even eukaryotes can inherit genetic

material from non-parental sources (see Andresson (2005); Keeling and Palmer (2008) for

1
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Figure 1.1: Left: An illustrative phylogenetic tree based on five taxa. Right: An illustrative phylogenetic
network with a single reticulation, or box, based on four taxa.

reviews.) This creates the problem of phylogenetic heterogeneity, where a single tree

is unable to fully explain the evolutionary history.

The thesis falls naturally into two parts; the firsts look at ways of visualising hetero-

geneity using networks, the second looks at sources of heterogeneity: recombination and

incongruence.

1.2 Networks

Phylogenetic networks is a broad term describing a range of graphical diagrams built

from sequences, distances, genealogies, or trees. Phylogenetic trees are themselves a subset

of phylogenetic networks.

Huson and Bryant (2006) classify networks into three categories: reticulate networks, split

networks, and ‘other’.

The ‘other’ category describes trees which had at least one more branch added to them.

These representations are used to display a piece of DNA which is incorporated directly

from a non-ancestral source.

Reticulate networks can display events involving an organism gaining additional genetic

material such as an extra set of chromosomes. For some examples, see Maddison (1997);

Baroni et al. (2004); Nakleh et al. (2005). Reticulate networks can also display recombi-

nation events within a population, for some examples see Hudson (1983).
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Split networks can be categorised by the type of data used to construct them: median

networks are constructed from sequences; consensus networks are constructed from trees;

additionally there is a class of split networks which are constructed from distances. We

review each in turn.

The median network (Bandelt et al., 1995) represents all of the trees which use the smallest

number of substitutions to explain the site patterns.

Consensus networks are a way to visualise multiple trees at once; they are constructed

from the branches of trees. These network methods look at the branches (also called

splits) of each tree and draw a network that contains all (or in some cases a subset) of

the splits from all of the input trees; see Bandelt et al. (1995); Holland and Moulton

(2003).

Split networks are used to visualise a set of splits which do not form a single tree. They

do not represent an explicit evolutionary history as the nodes do not represent a com-

mon ancestor. Nonetheless, split networks are useful because they provide insight into

how tree-like the distances between taxa are. Some split network methods include splits

decomposition (Bandelt and Dress, 1992), neighbor-net (Bryant and Moulton, 2004) and

Q-net (Grünewald et al., 2007).

We discuss networks in detail in Chapters 2, 4 and 5.

1.3 Incongruence

Incongruence means ‘a lack of agreement’. Within phylogenetics, incongruence between

genes refers to two or more genes having evolved under at least two different trees.

While genetic data was once scarce, and the use of more than one gene was rare, that

is certainly no longer the case. It is now commonplace to get alignments with multiple

genes on a set of taxa. It is also common for not all genes to be available for all taxa, and

therefore the alignments are often ‘patchy’. Sanderson et al. (2010) explores the limits of

phylogenomic inference with patchy data.

There are two approaches to this type of data. The first is to concatenate all the genes

into a single alignment and use this alignment to build a phylogenetic tree. This was
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the approach taken by Baldauf (1999) and many others since. The second approach is

to build a tree on each gene and then build a ‘supertree’ from all of the subtrees (for a

review of this approach see Cotton and Wilkinson (2008)).

One concern is that the set of genes may not have evolved on the same topology. When

the genes have different evolutionary histories reconstructing a single tree is meaningless.

Congruence testing is interested in finding genes which did evolve on the same topology

as these genes can form the basis of a multi-gene analysis.

We look at incongruence in Chapter 6.

1.4 Recombination

Recombination occurs when an organism inherits genetic material from more than one

source.

Biologists are interested in several aspects of recombination: the presence or absence of

recombination; the recombination rate; the presence or absence of hotspots; the location

of recombination events; and estimation of the number of recombination events. Each of

these are discussed below.

There is a wealth of literature on recombination detection. For reviews of recombination

detection methods see Brown et al. (2001), Wiuf et al. (2001), Posada and Crandall

(2001), Posada (2002), and Bruen et al. (2006). Posada and Crandall (2001) and Posada

(2002) compared 14 methods which detect if recombination is present. They concluded

that one method on its own was not sufficient to determine recombination but rather

that a wide range of methods should be used and a ‘majority rules’ approach taken to

determine recombination.

One type of recombination event is meiotic crossover, where segments of the maternal and

paternal DNA in a sexually reproducing organism, are swapped, leading to a chromosomal

reassortment.

Population geneticists use a recombination rate parameter in their models of inheritance

for sexually reproducing organisms. If recombination is present, incorporating this pa-

rameter into these models gives rise to more accurate population parameters. Work in
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this field first involved the description of models with recombination (Hudson, 1983), and

second ways of estimating the model parameters. Stumpf and McVean (2003) provide an

overview of this field.

Sexually reproducing organisms have recombination ‘hotspots’. These are small patches of

the chromosome in which the meiotic crossover level is particularly high (for an overview

on hotspots see Hey (2004)). When such hotspots are potentially present, they can

be searched for using the methodologies of Li and Stephens (2003); Myers and Grif-

fiths (2003); Wall and Pritchard (2003); Crawford et al. (2004); Fearnhead et al. (2004);

McVean et al. (2004).

Estimating the number of recombination events is useful for understanding events at the

site level. Many recombination events leave no detectable signal in the data and therefore

the majority of methods, which are based on detecting recombination signals, underesti-

mate the occurrence of recombination. Investigations into detecting recombination can be

hampered by the recombined fragment being similar to the one it replaces or subsequent

mutations weakening the signal (Chan et al., 2006). Some methods look at calculating the

minimum possible number of recombination events such as those of Myers and Griffiths

(2003) and Song et al. (2007).

There are other events that fall into the category of recombination events. These include

gene conversion, transformation, conjugation, and transduction. These types of recom-

bination events move large segments of DNA into the genome and lead to a mosaic of

origins in the DNA. We briefly describe these events.

Gene conversion occurs when there is a mismatch in repair during a crossover event. The

consequence is a piece of DNA is transfered from one chromosome to another within an

organism. Therefore the genetic material incorporated is from a homologous gene. There

is a body of work which looks at ways of estimating the extent of crossover and gene

conversion simultaneously. For example, Wiuf and Hein (2000) developed an extension

of the coalescent that incorporated gene conversion, and Padhukasahasram et al. (2006)

provided an example of a method developed to estimate both quantities using single

nucleotide polymorphism data.

Bacteria can obtain new genetic information in many ways including: taking up DNA

from the surrounding medium (transformation); a direct exchange of genetic material
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with a donor (conjugation); and importing material from viruses (transduction).

There is a growing body of biochemical literature which shows that incorporation of

new genetic material is not restricted to bacteria and in fact may happen across orders

and families. Doolittle et al. (1990) were the first to show that this could occur across

kingdoms by demonstrating a probable transfer of a glyceraldehyde-3-phosphate dehydro-

genase from a eukaryote to a bacteria. Their finding was based on sequence similarities

and phylogenetic analysis.

Recombination events must be detected prior to carrying out phylogenetic analysis. If

recombination is detected, one should then carry out further investigations into the taxa

and location of the recombination event(s). Alternatively, one can apply any of the

methods that account for horizontal gene transfer explicitly; see Birin et al. (2008) for an

example.

In the event that recombinations are present but are not detected, they will negatively

impact a phylogenetic tree analysis. Schierup and Hein (2000) report that tree estimation

procedures applied to data with recombination led to longer terminal branches, larger total

tree heights and a smaller time to the most recent common ancestor. Casola and Hahn

(2009) show that undetected gene conversion on duplicated genes leads to a high false

positive rate when looking for positive selection. When recombination is not accounted

for the resulting parameter estimates and inferences are not reliable.

In each of Chapters 7 and 8, we introduce a new method for detecting the location of a

recombination event.

1.5 Summary of thesis contributions

In this thesis we first examine ways of visualising heterogeneity using networks.

Chapter 2 focuses on the use of regularisation techniques such as the LASSO to infer split

networks.

The main finding of this work is that neighbor-net networks can be simplified, but that

this simplification makes little difference to the visualisation of the networks.

Chapter 3 discusses testing for non-treelike data. The null hypothesis we use is that
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these sequences arise from a tree-like evolutionary process. The alternative hypothesis is

that evolution is not tree-like. The unsuccessful test we developed compared the Akaike

information criteria (Akaike, 1974) on a tree and a network to discover whether the

network contained more information or explanatory power. The majority of the chapter is

devoted to understanding several aspects of the test which led it to being ineffective.

The original contribution of Chapter 3 is the extensive investigation into the sources of

its inefficacy.

The main outcome of this work is that this approach to testing for treenesss is ineffective.

There is no single component that explains the high level (or type I error) and low power

of this test.

Chapter 4 deals with extending the LASSO regression approach (Tibshirani, 1996) to the

partial LASSO. The partial LASSO allows the user to define a set of variables for the

initial model; the LASSO is then applied to the remaining variables. Therefore, the partial

LASSO provides a hybrid between least squares and efficient estimation of a regression

model using the LASSO.

The partial LASSO algorithm is novel. The main results are the theorem and proof of

the partial LASSO, and its application to neighbor-net networks.

The last network chapter (Chapter 5) describes an extension of consensus networks. The

original contribution and main result of the work on consensus networks is a statistically

rigorous method for combining a set of phylogenetic trees.

In the second half of the thesis we look at two sources of heterogeneity: incongruence,

and recombination.

Chapter 6 discusses our development of a congruency test. The method tests the null

hypothesis that all the genes have evolved on the same tree using composite p-value

methods. A composite p-value combines p-values that test the null hypothesis that an

alignment of just one gene evolved on a specific topology. The method we developed took

a p-value for each gene for each topology and combined them to get a p-value for each

topology over all the genes. The method used to combine the p-values is the Z-score

composite method, or Stouffer’s method (Stouffer et al., 1949). If a tree is not rejected

as plausible, it is added to the confidence set. In this way, we end up with a confidence

set of topologies for the complete set of genes.
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The main result of this work is the development of a method that gives a statistically

valid confidence set of possible topologies.

Chapters 7 and 8 deal with recombination. Each chapter introduces a recombination

breakpoint detection method.

The original contribution of Chapter 7 is the use of breakpoint detection methods from

time series analysis on two series that have information regarding recombination. The

first series is based on the influence of a single site on the phylogenetic tree estimated by

maximum likelihood (Bar-Hen et al., 2008). The second series is based on changes in the

neighbor-joining tree branch lengths.

The main finding of this work is that when the sequence divergence increases, the power

to detect recombination using these methods increased. The series based on the influence

function shows promise as a hotspot detection method.

The original contribution of Chapter 8 is another recombination breakpoint detection

method. The model is based on first principles and an understanding of the expected

impact a recombination event has on the observed incompatibility score. The model

returns an ordering from the most likely to least likely breakpoints, hereby giving an

optimal set of breaks for each specified number of potential recombination events.

The main result of this work is that incompatibility shows great potential at detecting

recombination event boundaries.

The thesis ends with a discussion chapter that summarises the key findings of the the-

sis.

Almost every aspect of this thesis has been presented at a conference or workshop. As-

pects of the work on networks and treeness was presented at Phylogenetics New Zealand,

New Zealand in 2008, the Society for Molecular Biology and Evolution, Spain in 2008,

the Australian meeting on Phylogenetic and Evolution, Australia in 2009, and the Joint

Statistical Association meeting, Canada in 2010. The work on the independence of the

neighbor-net networks and the PHI test was presented at the Evolution meeting, USA,

in 2009. The work on the congruence test was presented at Phylogenetics New Zealand,

New Zealand in 2010. The work on using the influence function to detect recombination

breakpoints was presented at Phylomania, Australia in 2010.



2
Splits selection for phylogenetic

networks

2.1 Background and motivation

Visualising heterogeneity is the subject of this chapter, and of Chapters 4 and 5. All three

chapters focus on networks. In this chapter we introduce a statistically rigorous way of

inferring split networks.

Phylogenetic trees are awkward subjects for statistical analysis. The trees are mixtures

of discrete (topology) and continuous (branch length) parameters, and the continuous

parameters for one tree generally do not correspond to continuous parameters for another.

The combinatorics of the space of trees is itself arbitrarily complex (Semple and Steel,

2003).

Inference of phylogenetic trees is carried out in two steps. The first step is to infer

9
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the topology of the tree; that is to determine which branches represent the evolutionary

history. The second step is to infer the branch lengths.

In a similar manner, phylogenetic split network inference is a two step procedure: choosing

a set of splits, and estimating the lengths of the splits. The lengths of the splits are called

split weights.

Estimating the split weights is of central importance to network methods such as neighbor-

net (Bryant and Moulton, 2004) and Q-Net (Grünewald et al., 2007) where poor estima-

tion can lead to an overly complex representation of the alignment. The neighbor-net

networks have been criticised as having a high false positive rate; that is, they have too

many branches in their networks (Nakleh et al., 2005). Usually, a proportion of the splits

are associated with small split weights and including them only clutters the phylogenetic

signal.

In this chapter, we use a modelling framework based on linear regression to estimate

the split weights, sub-setting some of them to zero. We apply linear regression and the

positive LASSO algorithm to the problem of picking the neighbor-net splits and split

weights. We carry out several experiments into components of the regression framework

and into the effectiveness of the framework in reducing the clutter seen in neighbor-net

networks.

2.2 Modelling

In this section we introduce linear models in phylogenetics, estimating the covariance

matrix and our method for simulating alignments.

2.2.1 Regression estimation of split weights

In this chapter we focus on distance based phylogenetic methods. The distances are

measured on pairs of taxa and therefore they do not contain information on higher order

relationships. However, Felsenstein (2004) notes that little information is lost and that

the majority of the information on evolutionary relationships in contained in pairwise
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distances. Therefore, distance based methods assume the estimated pairwise distances

represent the true evolutionary time plus noise.

Given a method of clustering the taxa and defining the tree structure, the distances are

used to calculate the branch lengths. Each distance is the sum of the lengths of the

branches that separate the two taxa. The branch lengths are typically estimated using

least squares (Cavalli-Sforza and Edwards, 1967; Vach, 1989; Rzhetsky and Nei, 1992;

Gascuel, 1997).

We also assume that the observed distances are equal to the true distances (or additive

distances) plus some error. The true distance between two taxa is the sum of the branch

lengths on the path connecting them. Hence, the vector of observed distances y can be

written

y = Xβ + ε (2.1)

where each row of y is indexed by a pair of taxa and each row of X is also indexed by

pairs of taxa. The entries of X are ones and zeros picking out exactly those edges on the

corresponding path between the pairs of taxa. The vector β is the vector of estimated

split weights. Therefore, the expected distances are modelled using µij = (Xβ)ij. It is

the inferred βi values that contain information on evolutionary relationships.

An example of a split matrix for a five taxa tree can be seen in Figure 2.1.

The neighbor-net method of Bryant and Moulton (2004) used non-negative least squares

to estimate the split weights given the distance vector and a set of splits known as the

circular splits. We use linear regression. The model of Equation (2.1) extends directly to

a split network, so long as X contains the splits for the network.

The first step of either neighbor-net or Q-Net is to select a set of candidate splits. For

neighbor-net these splits come from a circular ordering of the taxa; that is, there is an

ordering of the taxa t1, t2, . . . , tM such that every split is of the form {ti, ti+1, . . . , tj}|T −
{ti, . . . , tj} for some i and j satisfying 1 ≤ i ≤ j < M . Our methods however are not

limited to this set, and can be applied to any set of splits.

Linear regression makes four assumptions, namely a linear model is appropriate, the errors

are independently and identically distributed according to the normal distribution; the

columns of X are linearly independent; and each element of the predictive vector is an
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Figure 2.1: Splits labelled one to seven. Left: Matrix of seven splits for a five taxa tree where 0 means
the two taxa are on the same side of the split and 1 means that one of the taxa is on each
side. Right: A symbolic tree on five taxa.

independent observation. While the first three pose no problems in the implementation of

the framework the fourth does not hold as the taxa have evolutionary history in common

and therefore are not independent. One potential way to deal with this assumption is to

estimate a covariance matrix for the error in the distances and apply a transformation to

the regression problem. Therefore we considered two ways of estimating this covariance

matrix, both presented in Bulmer (1991).

2.2.2 Estimating the covariance

The first covariance estimator makes no assumptions about the evolutionary structure

of the data. It only assumes that the distances have been corrected using the Jukes-

Cantor distance correction (Jukes and Cantor, 1969). The formula for the variance was

also presented in Kimura and Ohta (1972). It applies the delta method (Stuart and Ord,

1987) to give approximations for the variance and covariances. These are

var(dij) =
pij(1− pij)

L

(
1

1− pij/bij

)2

, and (2.2)

cov(dij, dkl) =
1(

1− pij

bij

) 1(
1− pkl

bkl

) [(pij,kl − pijpkl)
L

]
, (2.3)
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where L is the number of sites, pij,kl is the proportion of site where i differs from j and k

differs from l, and pij is the proportion of site where i differs from j. The quantity pij has

been assumed to be a proportion from a binomial distribution. The parameter b is the

expected proportion of sites differences when the two sequences are independent of each

other. These formulae can be extended to handle missing data.

The second estimator, also from Bulmer (1991), is based on a measure of the shared

history between two taxa. Therefore it assumes there is an evolutionary relationship

between the taxa and that this is represented by the common path. The formula was also

presented in Nei and Jin (1989):

cov(dij, dkl) = b

[
(1− b) exp

2δ

d
+ (2b− 1) exp

δ

b
− b
]
/L (2.4)

where δ is a measure of the distance in the common path between i, j, k and l, b is the

expected proportion of sites differences when two sequences are independent of each other

and L is the number of sites. This formula can also be adapted to account for missing

data.

The value, δ is given by

δ =
∑
r

Xij;rXkl;rβr (2.5)

since this equals the sum of the split weights over all splits that separate both i and j

and k and l. The notation in Equation (2.5) differs slightly from that of Bulmer (1991)

in that β is used to reflect the inferred branch lengths.

Equivalently,

δ = (XWX)ij;kl, (2.6)

where

W = diag(β). (2.7)

Conveniently, this formula makes no assumption that the splits are from a tree; therefore,

the formula can be used for both trees and split networks. This is valid as distance based

tree methods can be extended by split networks as shown in Bryant (2005).

When applying covariance matrix, that is when we transform the data, we use the inverse

of the upper triangular Cholesky decomposition matrix.
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2.2.3 Data simulation

There are standard ways of simulating sequence alignments on a tree. It is possible to

construct a topology manually; or you can construct one according to a distribution. Once

the tree has been chosen the alignment is created by evolving sites down the tree.

Simulating networks is more complex. One widely-used approach is to use recombination

within a single population to simulate alignments which are non-treelike. One algorithm

for simulating recombination is that of Hudson (1983).

The procedure has two steps. The first step generates an ancestral recombination graph;

that is, a directed acyclic graph with branch lengths, in which most nodes have a single

parent, but some have two parents and these are the recombinants. The second step

simulates the characters in the alignment. At each of the nodes with two parents, part

of the sequence is inherited from one parent and the remainder from the other parent.

The number of recombinant nodes is random and controlled by a recombination rate

parameter. As the parameter increases the number of expected recombinations increases.

Because of the framework, it is possible that the alignment may not have detectable signs

of non-treelike behaviour, even when a non-zero recombination rate is used.

The simulator uses four parameters. The recombination rate determines whether the data

is simulated on a tree (a recombination of zero) or on a network (a non-zero recombination

rate). The other three parameters are the mutation rate or sequence divergence rate, the

number of taxa, and the sequence length.

We used our own implementation of Hudson’s algorithm.

2.3 Methodology

The particular regression approach we took is the least absolute shrinkage and selec-

tion operator algorithm, or LASSO (Tibshirani, 1996). It applies a tuning parameter

restriction to the full least squares solution, allowing regression to be carried out in a way

that subsets the data by including variables a few at a time. Like ridge regression (Hoerl

and Kennard, 1970), it reduces the variance of the parameter estimates by adding small

amounts of bias.
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For each value of the tuning parameter λ, LASSO finds a vector β that minimises ||y −
Xβ|| such that 1Tβ ≤ λ. Different sets of solutions are constructed by varying λ, adding

and removing variables as required to satisfy the constraints.

We also investigated an NNLS-LASSO hybrid. The LASSO algorithm picks a suite of

subsets of variables subject to the constraint 1Tβ ≤ λ, as λ varies. For the hybrid

approach we use the LASSO algorithm to determine the subset of variables but the final

β coefficients are calculated for the subset using non-negative least squares (NNLS).

One practical advantage of the LASSO framework is that the set of solutions for varying

λ can be computed efficiently. The first efficient algorithm was due to Osborne et al.

(2000a) and Osborne et al. (2000b). Efron et al. (2004) showed that LASSO solutions

can be computed using a variation of their LARS algorithm.

The LASSO solutions do not provide a single model but rather a set of solutions from

which an optimal model is chosen. Two popular criteria for making such decisions are the

Akaike Information Criteria (AIC) (Akaike, 1974) and the Bayesian Information Criteria

(BIC) (Schwarz, 1978).

The model we chose is the one with the smallest AIC or BIC because it has low resid-

uals given the number of parameters in the model. The information criterion approach

provided a way to objectively balance the desire for fewer splits with the desire for the

distances to be modelled well.

The AIC criterion in this context is given by

AIC =
||y −Xβ̂||2

nσ2
+

2

n
k (2.8)

and the BIC is given by

BIC =
||y −Xβ̂||2

nσ2
− k log(n). (2.9)

The vector y is the vector of pairwise distances, k is the number of parameters in the

model, and n is the total number of splits (in this case number of pairs). The parameter

σ2 is the variance of the predictor error vector, a fixed but unknown constant that needs

to be estimated. Smaller σ2 values favour larger models; that is, models with a greater

number of parameters.
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We estimate σ2 using the ordinary least squares estimator (Rao, 1970). While the esti-

mators of the covariance matrix above contain estimators of the predictor error vector on

the diagonal, we chose to use standard estimators. Further investigations into estimators

for σ2 are presented in Section 3.2.3.

The σ2 estimator from the OLS framework is

σ̂2 =
RSSfin
n− k

(2.10)

where RSSfin is the residuals sum of squares of the final model when the parameters

are estimated using an ordinary least squares approach. This is how σ2 is estimated in a

linear regression framework.

An important issue is which model should be used when σ2 is estimated. One could

estimate σ2 based on β values from the full network, or from a tree, or according to

some other objective. Throughout this thesis we use σ̂2
T to describe σ2 estimated under

the tree-based null model, and σ̂2
N to describe σ2 estimated under the network-based null

model. Note that, in general, σ̂2
N ≤ σ̂2

T so choosing a tree-based null model will in general,

favour selection of smaller models than choosing a network-based null model.

The difference between the estimators σ̂2
T and σ̂2

N is the set of residuals used in calculating

σ̂2. For σ̂2
N the residuals come from fitting a non-negative least squares model to the set of

circular splits, and for σ̂2
T the residuals come from fitting a neighbor-joining tree (Saitou

and Nei, 1987). Below, in Section 2.4.2, we quantify the difference this makes; later, we

discuss this in more detail.

It is worth noting that the corrected AIC may be useful in future investigations. While n

is large, the ratio of n/k is not and therefore according to Burnham and Anderson (2004)

the AIC may lead to over fitted models.

2.4 Experiments

In this section we discuss two experiments. The first experiment investigates the covari-

ance matrix and the second experiment looks at neighbor-net networks as estimated by

the LASSO.
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2.4.1 An investigation into the covariance matrices

The ideal covariance matrix estimator has three desirable properties. First, it should

minimise or eliminate the correlation in the distance vector; second it should be positive

definite; and third, it should be well-conditioned. While we investigate these three prop-

erties separately we could have chosen to analyse them simultaneously and optimise them

using an iterative method.

Reducing correlation

We tested whether the data can be made correlation free by measuring the empirical levels

of correlations. We tested both of the covariance estimators reviewed in Section 2.2.

To test which transformation reduced the correlations the most, we carried out the fol-

lowing procedure.

1. Set the parameters and generate an ancestral recombination graph.

(a) For 100 replications:

i. Simulate an alignment of 1000 base pairs on the ancestral recombination

graph.

ii. Compute the distances.

iii. Calculate the two covariance matrix estimators.

iv. If the matrix is positive definite, then:

A. Transform the distances using each covariance matrix estimate.

B. Store the distance vector before and after transformations.

(b) For the matrix of up to 100 stored distance vectors, calculate the correlation

matrix (before and after transformations). Correlations greater than 0.1 are

considered significant.

The results of this experiment are summarised in Table 2.1. Note that in some cases the

covariance matrices estimated by Equation (2.3) are not positive definite and this gives

rise to the differences in the ‘before’ column.
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The transformation calculated using the formula in Equation (2.3) increased the amount

of correlation between the distances and is therefore not suitable as a transformation

estimator. This estimator of the covariance matrix made very few assumptions, and while

the estimator is asymptotically unbiased, it seems that for short sequences the estimator

is not effective.

Equation (2.3) Equation (2.4)
Recombination Sequence Distances Distances
rate Divergence Before After Before After
0 0.01 0.51 0.76 0.54 0.21
0 0.05 0.52 0.85 0.55 0.14
0 0.1 0.53 0.82 0.55 0.13
4 0.01 0.51 0.77 0.55 0.23
4 0.05 0.54 0.89 0.55 0.23
4 0.1 0.55 0.90 0.58 0.14

Table 2.1: Average proportion of significant correlations in the pairwise distances, before and after
transformation, sequence length 1000.

The transformation estimator based on the shared path lengths from Equation (2.4) re-

duced the correlation in the distances. Before transformation, over half of the correlations

were statistically significant. After transformation, this number was much lower, ranging

from 13% to 23%.

Based on our investigation, the formula based on shared path length outperformed the

general formula.

Positive definiteness and numerical stability

In all of the experiments, we found that the shared path covariance estimation (Equation

(2.4)) gave positive definite matrices. However, positive definiteness does not guarantee

numerical stability.

The condition number is the ratio of the smallest to largest eigenvalues, and it indicates

whether the inverse of the matrix is likely to be stable.

In our experiments, the condition number of the covariance matrix before stabilisation

was on the order of 100,000. This means there was a difference of six orders of magni-
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Figure 2.2: Histograms of the condition numbers when the recombination rate is zero, sequence length
1000. ‘covar’ is without stabilisation, ‘covar + var’ is the stabilisation by the variance matrix,
’covar + var + mean’ is the stabilisation using the variance matrix and the mean of the
variances, ‘covar +mean’ is the stabilisation using the mean of the variances.

tude between the largest and the smallest eigenvalue. This posed a considerable risk of

instability.

The first method of stabilisation we tested was adding the variance matrix to the covari-

ance matrix and dividing all the elements by two. This scenario is like fitting a mixture

model with equal weights on a full covariance transformation and weighted least squares,

where the weights are the variances. This assisted considerably in stablising the matrix,

leading to condition numbers of the order of 1,000 rather than 100,000. However, this

still posed a risk of numerical issues, so we investigated two further options.

The second method of stabilisation we tested was adding the variance and the mean of the

variances to the diagonal elements of the matrix and dividing all the elements by three.

This scenario is like fitting a mixture model with equal weights on a full transforma-

tion, weighted least squares, and ordinary least squares. This covariance transformation
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Figure 2.3: Histograms of the condition numbers when the recombination rate is four, sequence length
1000. ‘covar’ is without stabilisation, ‘covar + var’ is the stabilisation by the variance matrix,
’covar + var + mean’ is the stabilisation using the variance matrix and the mean of the
variances, ‘covar +mean’ is the stabilisation using the mean of the variances.

reduced the extreme differences in the diagonal elements. This assisted considerably in

stablising the matrix, leading to condition numbers of the order of 100, which is acceptable

as it poses minimal risk of numerical stability issues.

The third method of stabilisation we tested was very similar to the second, and involved

adding the mean of the variances to the diagonal elements of the matrix and dividing all

the elements by two. This also reduced the extreme differences in the diagonal elements,

and led to condition numbers of the order of 100 which is acceptable.

Therefore, we chose to apply the simpler of the two most effective stabilisation methods,

where the mean of the variances was added to the diagonal and all the elements of the

matrix divided by two. This is in line with the recommended methods of stabilisation

discussed in Schäfer and Strimmer (2005).

In summary, the chosen covariance estimator is the formula based on the shared path
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Equation (2.4) stablised by the addition of the mean of the variances to the diagonal.

2.4.2 Assessing the effectiveness of the LASSO approach

We term the neighbor-net network with the βi values chosen by the LASSO algorithm

the reduced neighbor-net. The desired properties of the reduced neighbor-net network

are, first, a close fit of the distance vector, and second, a reduction of the number of

splits.

Ideally, the trade-off between fit and the reduction in the number of parameters should

result in only a small compromise in the fit.

The measure of the bias of the fits is

difference in fit =
∑
ij

dij − d̂ij
dij

(2.11)

where d is the pairwise distances and d̂ is the modelled pairwise distances. Ideally this

difference should be very small. We also investigate the sum of the absolute difference in

fits.

The measure we used to study the reduction in the number of splits was a comparison

of the number of splits in the reduced neighbor-net network with the number of splits in

the original neighbor-net network (with split weight estimated using non-negative least

squares).

The simulation study follows that of Wiuf et al. (2001). Trees were generated according to

the coalescent model of Hudson (1983). In all cases the number of taxa used was 20. The

sequence lengths used were 500, 1000, and 2000 base pairs. The recombination parameter

values used were zero, two, four, and eight. Higher recombination parameters should give

rise to less tree-like data. The expected sequence divergence rates (sometimes referred to

as divergence rate) were one, five, and ten percent site differences. All sets of simulations

had 1000 replications.

See Appendices A, B, D and E for graphical results.

The general observation was that the bias in the fit of the distances:
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• decreased as the recombination rate increased;

• decreased as the divergence rate increased;

• decreased as the sequence length increased;

• was closer for AIC than BIC; and

• was closer for when using σ̂2
N rather than σ̂2

T as an estimator.

The untransformed scenario fits were small; most were within 1% with σ̂2
N and within

2% for σ̂2
T . The transformed scenario fits were very large (up to 20%), especially for BIC

based measures and σ̂2
N .

The most significant factor in determining the fit of the distances was whether a transform

was applied. When a transform was applied, the variation in the fits was much larger.

This could be the result of a small number of data sets having unstable transformation

matrices. While the simulations above suggested that the condition number was signif-

icantly reduced by the stabilisation procedure, it is possible that this stabilisation was

not sufficient for some data sets. It could also be the case that the covariance matrix

occasionally poorly represented the true correlation, and that this influenced the fitted

model. Based on the fit of distances alone, transforming does not appear to give reliable

results.

For the rest of the discussion on the fit of the distances we refer to results based on the

simulations without transformation.

When σ̂2
N was applied rather than σ̂2

T , the variance of fits was much lower. This was

expected as the network models will, on average, have more parameters and therefore

a closer fit to the distances. The more important question is whether this trade-off

(increased variance in the fits for a reduction in parameters) is justifiable. From the

perspective of the fit of the distances it seems that the increase in unfitted distances was

low and remained acceptable.

The BIC led to a greater variation in the fits compared with the AIC. This was also

to be expected, as the BIC has a larger penalty term, potentially leading to smaller

models. The BIC will compromise some of the fit of the distances for the reduction in the

number of parameters. Once again the more important question is whether this trade-off

is justifiable. From the perspective of the fit of the distances it seems that the increase



2.4 Experiments 23

was low and remained acceptable.

Therefore, the three factors we have control over in an application do influence the variance

of the fitted distances. Applying a transformation increases the variance substantially and

is therefore unlikely to be justifiable, while the use of σ̂2
T and the BIC may be justifiable,

depending in the reduction in the number of splits.

Of the factors we cannot control in an application, (sequence length, sequence divergence

rate, and recombination rate), the most influential factor is the recombination rate. As the

amount of recombination increased, the variance in the fits also increased. This implied

that the neighbor-net networks over-fitted the distances to a larger extent as recombina-

tion increased. This could be because the distance measure itself was not capturing all

the evolutionary aspects; or because the set of circular splits did not contain sufficient

flexibility. Sequence length and sequence divergence both had very minor influences on

the variance of the fits.

This measure of fit reflects only the total fit rather than the fits of the individual pairwise

distances. As we ran 1000 replications, it was not feasible to look at the fits of the pairwise

distances for each of the models. We looked at a few fits of the individual distances; see

Figure 2.4 for an example based on the AIC criteria and σ2 estimated by σ̂2
T . It was based

on ten taxa, a sequence length of 1000 base pairs, a recombination rate of zero, and a

sequence divergence rate of 10%.

The measure of fit showed two clear groupings. The first group was shorter distances

which were overestimated, and the second group was larger distances generally were un-

derestimated. This is worth further investigation.

We compared the plots of the sum of the absolute difference of the fits is

difference in fit = |dij − d̂ij| (2.12)

and ideally this difference should not be too big.

The general observation is that the sum of the absolute difference of the fits:

• increased when the sequence divergence rate increase;

• remained unchanged with sequence length;
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based on fitting a network using circular splits and the LASSO algorithm. Based on ten
taxa, a sequence 1000 base pairs long, a recombination rate of zero, a sequence diver-
gence rate of 10%.

• increased when the recombination rate increased;

• remained basically unchanged when σ̂2
T was used instead of σ̂2

N ; and

• increased when the transformed scenario was used rather than the untransformed

scenario.

Therefore, the three factors we have control over in an application do influence the sum of

the absolute differences between the fitted distances and the observed distances. Applying

a transformation increases the different in the sum of the absolute fit of the distances,

while the use of σ̂2
T and BIC make little difference. Therefore subject to the effect on the

number of splits the use of σ̂2
T and BIC would seem appropriate.

Of the factors we cannot control in an application, (sequence length, sequence divergence

rate, and recombination rate), the most influential factor is the recombination rate. As

the amount of recombination increased, the sum of the absolute difference in the fits
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also increased. This implied that the neighbor-net networks over-fitted the distances to

a larger extent as recombination increased. Once again, sequence length and sequence

divergence both had very minor influences.

The general observation is that the number of splits chosen relative to the neighbor-net

model decreased when:

• the sequence divergence rate decreased;

• the sequence length decreased;

• the recombination rate increased; and

• σ̂2
T was used instead of σ̂2

N .

The difference between the number of splits chosen with the AIC and the BIC criteria is

discussed below.

The number of splits removed when the transformation was applied was considerably fewer

than when there was no transformation. Often, the reduced neighbor-net networks and

the original neighbor-net networks were the same. As using the transform significantly

increased the variance in the fitted distances, it seems that any reduction in the number

of splits came at a high price. These two observations seem at odds with one another;

however, the AIC and estimators of σ2 were calculated while the data was transformed

which led to models which did not reduce the number of splits by much. The βi’s of the

chosen model, and consequently Xβ, were compared to the original distances, and often

this fit was very poor. Therefore, we do not recommend the transformation.

Using σ̂2 = σ̂2
T in the AIC formula trimmed more variables from the split network than σ̂2

N .

This was expected as it decreases the likelihood component of the AIC formula, thereby

favouring smaller models. As we aimed to reduce the level of clutter in the networks,

smaller models were preferable unless they were too small to display the key features of

the split network. Working with some examples suggested that σ̂2
T was an appropriate

choice, and that the reduction in the number of splits chosen was not excessive. This was

particularly appropriate here, since tree-like evolution is customarily the standard null

hypothesis in phylogenetic inference.

Of the factors we did not have control over, that is, sequence divergence rate, sequence

length and recombination rate, all influenced the number of splits in the reduced neighbor-
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net networks. The first two of these had counter-intuitave effects, but they both suggested

that when there is little information in the alignment (because it is shorter or contains

fewer variable sites), the reduced neighbor-net networks are smaller than the original

neighbor-net network. For an increase in the recombination rate the reduction in the

number of splits was greater, which suggested that much simpler models can be used to

capture the key features of the split networks.

The general observation, which was in line with expectation, was that the number of splits

chosen by AIC was greater than or equal to the number of splits chosen by the BIC. The

difference between the numbers of splits selected with the two criteria was, on average,

larger when

• the divergence rate was higher;

• the sequence length was longer;

• the recombination rates was higher; and

• σ̂2
T was used instead of σ̂2

N .

The number of splits chosen by BIC can be up to 20 or more fewer than the AIC. It seems

unlikely that this would remove too many splits from the network; however, we decided

to implement the procedure with the option for the user to choose between the AIC and

the BIC. The BIC was the default option.

When the recombination rate is zero, the data is tree-like and we know that the number

of true splits is 2n−3. We compared the number of splits chosen by the LASSO approach

for tree-like data. We found the number of splits chosen was closer to the correct number

when σT was used compared with σN and when the BIC was used compared with AIC.

See Appendix C for graphical results.

Therefore the implementation used the untransformed scenario, the σ̂2
T estimate for σ̂,

and left the user to choose between the AIC and the BIC.
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2.5 Data Analysis

We re-analysed a data set of 135 human mitochondrial sequences studied by Vigilant et al.

(1991). A phylogeny for these sequences was used as supporting evidence for an African

origin of humans. The validity of this study was later questioned. An extensive study of

the large-scale landscape of the space of trees by Penny et al. (1995) indicates that the

data support the phylogenetic hypotheses put forward by Vigilant et al. (1991).

This data set has a large number of sequences and a small number of sites, and many

sites are known to be fast-evolving. These fast-evolving sites often appear non-tree-like

and can bias a tree-based analysis. Therefore, it is interesting to look at a network for

the distances to get some idea of the noise and conflicting signals.

Following Penny et al. (1995) we estimated distances from the mitochondrial sequences

using K2P + Γ. We compared the models using σ̂2
N and σ̂2

T values and the AIC and BIC

criteria.

The networks are shown in Figure 2.5.

We found with σ̂2
N there were 318 splits under the AIC criteria, coinciding with the original

neighbor-net model, and 242 under the BIC criteria. With σ̂2
T , there were 247 splits under

the AIC criteria and 188 under the BIC criteria. The original neighbor-net model also

had 318 splits.

One of the key differences between the intermediate model and the final models as chosen

by the AIC and the BIC was that the intermediate model did not have many ‘trivial’

splits; that is those splits which separate one taxa from the remaining taxa. We examine

this issue further in Chapter 4.

The visual appearance of the three displayed final models was virtually the same. This

suggests that the additional splits were small and did not contribute to the overall ap-

pearance of the network.

The network showed a reasonable amount of deviation from a tree like pattern. This

implies that tree-based methods should be used with caution and that some conclusions

from a tree based analysis could be artifacts of noise and fast evolving sites.

The fit of the distances was not close until quite late in LASSO algorithm. Therefore,
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there was a comprise in the fit for the models with fewer splits, but this did not alter the

visual appearance of the network by much. See Figures 2.5 and 2.6.

Figure 2.5: Top left: An intermediate network of 60 splits. Top right: The LASSO network for 135
Human mitochondrial sequences given by the σ̂2

T and the BIC, 188 splits. Bottom left: The
LASSO network for 135 Human mitochondrial sequences given by the σ̂2

N and the BIC,
242 splits, Bottom right: The original neighbor-net network and LASSO network given by
the σ̂2

N and the AIC, 318 splits.

2.6 Discussion

We applied the tools of linear regression to the problem of estimating weights in a split

network. This involved investigating two estimates of covariance between distances, and

some methods for estimating σ̂2 used for the information criteria. In the end, a trans-
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Figure 2.6: Summary statistics based on fitting a network using the LASSO to 135 Human mitochon-
drial. AIC, sum of beta values and total number of variables in the model for each iteration
of the LASSO.

formation seemed undesirable. The chosen method for estimating σ2 was based on the

null model of a tree. This seemed to better reflect the variance of y, and lead to smaller

models. However, the apparent objectivity of the information criterion was undermined

by this subjective choice of σ2 estimate.

Our application showed that the benefit of introducing LASSO for the calculation of the

split weights was the reduction in the number of splits. The σ̂2
T and the BIC network

maintained all the key features of the network and had only 60% of the original splits.
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3
A failed test for ‘tree-likeness’

This chapter focusses on developing a test for phylogenetic heterogeneity, regardless of its

source. Unfortunately, our test was not successful, but some of the investigations into the

sources of the inefficacy of the test are of interest.

Not all evolution is tree-like. Phenomena like lateral gene transfer, hybridisation, and

recombination, all led to non-tree-like evolution.

Lateral gene transfer, or horizontal gene transfer, is where one strand of DNA has inherited

material from a source that is not its parent. There are methods which specifically look at

testing for, detecting, and displaying lateral gene transfer, such as the recently published

methods of Than et al. (2007); Abby et al. (2010); Cohen and Pupko (2010); Boc et al.

(2010). Also see Becq et al. (2010) for a comparative study of 16 methods of lateral gene

transfer detection.

Hybridisation is common in plants as polyploidy (having more than two copies of each

chromosome) can produce viable offspring. See Soltis and Soltis (2009) for a review on

31
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plant hybridisation. There are methods which specifically look at testing for, detecting

and displaying hybridisation such as the recently published methods of Holland et al.

(2008); Joly et al. (2009); Chen and Wang (2010).

A third cause of sequence heterogeneity is recombination. Recombination and recombi-

nation detection methods are discussed at length in Chapter 7.

All of the methods for detecting phenomena like lateral gene transfer, hybridisation,

and recombination have very specific alternative hypotheses. They are based on the

assumption that the data is either tree-like or non-tree-like because of a specific type of

event in the evolutionary history.

Biologists also want more general tests where the null hypothesis is that the data is

tree-like and the alternative hypothesis is that the data is non-tree-like. This alternative

hypothesis makes no reference to a specific cause of the non-tree-like behaviour.

The demand for such tests arises from the underlying assumption of many phylogenetic

methods that evolution is tree-like. An all-encompassing test would provide a useful initial

screening tool. A rejection of the null would provide an opportunity to investigate the

specific cause of non-tree-like evolution.

Only a few such tests exist: Bulmer (1991) fitted a tree to the matrix of pairwise distances

and then tested the residual sum of squares using a chi-squared distribution. Goldman

(1993) investigated whether data evolved in a tree-like manner using maximum likeli-

hood and likelihood ratio tests. Lyons-Weiler et al. (1996) developed Relative Apparent

Synapomorphy Analysis (RASA), a method for statistically detecting phylogenetic signal.

A failure to detect phylogenetic signal may indicate non-tree-likeness. Makarenkov and

Legendre (2004) considered trees fitted by least squares and then added another branch

to the tree, such that it reduced the value of the least squares fit the most. If adding a

branch improved the fit, then this was evidence that the data was not tree-like.

In the absence of a range of effective tests, several authors have developed methods of

representing the data in such a way as to indicate non-tree-like behaviour. The first two

of these methods display features of the data which show how resolved subsets of taxa

are.

Strimmer and von Haeseler (1997) used quartets to investigate tree-likeness. They as-

signed a probability to each of the three resolved topologies on four taxa using the ratio
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of the likelihood for the ith model divided by the total of the three likelihoods. The

quartets were plotted on a triangle of probability space. Points near the center implied an

inability to distinguish between the topologies, while points in the corners showed strong

support for one of the trees. A plot of all quartets showed whether the quartets were well

resolved.

Holland et al. (2002) introduced quartet based delta plots. In this method, the plot is

based on the assumption that estimated pairwise distances from tree-like data will satisfy

the four-point condition that the two larger split based distances are equal; that is, the

larger two of dxy|uv, dxu|yv and dxv|yu are equal where x, y, v and u are taxa of quartet q

and xy|uz denotes the split with x and y on one side and u and v on the other. The δ

score measures the deviation from the four point condition, and is given by

δq =
dxv|yu − dxu|yv
dxv|yu − dxy|uv

(3.1)

where dxy|uv ≤ dxu|yv ≤ dxv|yu. A δ score of zero indicates that the four-point condition

is satisfied. One measurement used to assess tree-likeness is the average δ score for all

quartets containing that taxa. High average scores indicate potential recombinants.

Both methods visualise some aspect of the data which indicates tree-likeness. With larger

taxa sets these quartet methods of Strimmer and von Haeseler (1997) and Holland et al.

(2002) will struggle, and usually in these situations a random subset of quartets is anal-

ysed.

The other class of representations is networks. For an overview of phylogenetic networks

see Huson et al. (2010).

In this chapter we discuss how we developed another general test for non-tree-like evo-

lution. The test we developed compared an information criterion on a tree based model

(neighbor-joining) with an information criterion on a network (neighbor-net). The AIC as

an information criterion is appropriate for comparing non-nested models, and therefore it

can be used to compare a network and a tree even if the splits of the tree are not contained

within the network. If the models are nested, then the F-test is also appropriate.

This chapter is arranged as follows. The first section describes the failed test. The second

section contains the simulation setup investigating the power and α-level of the test, and
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the third section contains the results of the simulation.

We investigated the test to find the sources of its inefficacy. We investigated the AIC

criterion, the model of recombination, and the effect of increasing the power.

3.1 An information criterion approach to testing for

tree-likeness

We investigate a statistical test for testing tree-likeness based on comparing information

in networks and trees.

The procedure had three steps. First, we estimated a tree using neighbor-joining and a

splits network using neighbor-net and the LASSO (see Chapter 2). Second, we compared

the information criteria on both the tree and the network. Third, we rejected the null

hypothesis that the sequences evolved under tree-like evolution if the information criteria

for the network was significantly lower.

The splits of the neighbor joining tree were estimated using the MATLAB functions of

Cai et al. (2005). The βi’s were based on the non-negative least squares solution given the

neighbor-joining topology. The splits wieghts in the neighbor-net network were estimated

using the LASSO-NNLS hybrid as described in Section 2.3. We used untransformed and

transformed distances and splits.

Suitable thresholds for deciding there is a significant difference between the information

in the network and the information in the tree are -2 and -10. A difference of -10 means

there is essentially no support for the hypothesis that the model with the higher AIC

fits the data better (there is approximately a 1 in 100 chance of the model with the

higher AIC being the better model to explain the data). A difference of -2 means there is

little support for the model with the higher AIC (Burnham and Anderson, 1998). Small

differences mean that both models explain the data well. The cutoff does not depend on

the parameters of evolution such as sequence divergence rate, as these are reflected in the

AIC values themselves.

We use these cutoff values as an initial guide into values which may be appropriate to use

as a cutoff. We had hoped that these cutoff values would give an appropriate level.
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The AIC was calculated for both trees and networks with the same σ2 estimator as defined

in Section 2.3. The examiner duly noted that Equation 2.8 differs from the specification

of (Burnham and Anderson, 1998) by a factor of n. All of the results are proportional

to the results we would have gotten had we use this particular form of the AIC. This is

noted for future development of this work.

We investigated the α-level and power of our test through simulation. The α-level was

the rate at which the null hypothesis of tree-like evolution is rejected when the data was

generated according to tree-like evolution. The power was the ability to reject the null

hypothesis when the data was non-treelike.

3.1.1 Assessing power and level by simulation

The simulation study follows that of Wiuf et al. (2001). Sequences were generated accord-

ing to the coalescent model of Hudson (1983). In all cases the number of taxa used was

20. The sequence lengths used were 500, 1000, and 2000 base pairs. The recombination

parameters used were zero, two, four, and eight. The expected sequence divergence rates

were one, five, and ten percent.

The distances were calculated using a Jukes-Cantor model (Jukes and Cantor, 1969) with

a Wilson adjustment (Wilson, 1927). All sets of simulations had 1000 replications.

3.1.2 Results and discussion

Results for the untransformed scenario

The α-level of the test was the frequency with which the AIC of the network was lower

than the AIC of the tree when the input alignment was tree-like. For a cutoff of -2, it

ranged from 14% to 57% while for a cutoff of -10, it ranged from 1% to 40%. Often, the

level was well over 20%. The ideal level for a test would be 5% to 10%; therefore, this

was generally too high.

The two factors we have no control over in an application were sequence divergence

rate and sequence length. Curiously, in the majority of cases the alignments with a

5% sequence divergence rate had a higher (poorer) level than those with a 1% sequence
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divergence rate or a 10% sequence divergence rate. Increasing the sequence length also

increased the level.

The power of the test was the frequency with which the AIC of the network was lower

than the AIC of the tree when the input alignment was not tree-like. The power was

generally low. The power was between 42% and 78% when the cutoff was -2, and between

18% and 62% when the cutoff was -10. Therefore, as expected, the lower cutoff increased

power. The AIC had more power than the BIC. The power sometimes increased and

sometimes decreased with an increase in the recombination rate.

The results for power and α-level are summarised in Tables 3.1 and 3.2.

Cutoff Sequence Length 500 1000 2000
Sequence Divergence 1% 5% 10% 1% 5% 10% 1% 5% 10%

-2 ρ = 0 AIC 14 57 34 27 50 27 48 36 22
BIC 14 54 28 27 46 22 47 31 18

-10 ρ = 0 AIC 12 30 4 23 17 1 40 6 1
BIC 12 29 4 23 17 1 40 6 1

Table 3.1: Level of the test. Percentage of instances in which the AIC difference is greater than the
cutoff. Results for sequence lengths 500, 1000, and 2000, sequence divergence rates 1%,
5%, and 10%. AIC and BIC. Untransformed, 20 taxa, 1000 replications.

Cutoff Sequence Length 500 1000 2000
Sequence Divergence 1% 5% 10% 1% 5% 10% 1% 5% 10%

-2 ρ = 2 AIC 43 75 62 65 77 71 78 76 73
BIC 42 73 60 65 74 68 77 74 70

ρ = 4 AIC 60 71 65 71 73 69 78 77 73
BIC 59 70 64 70 72 68 77 77 72

ρ = 8 AIC 61 58 55 64 60 56 63 60 57
BIC 60 57 55 63 60 56 62 60 58

-10 ρ = 2 AIC 40 40 26 56 45 33 62 45 38
BIC 39 40 25 56 44 32 62 44 38

ρ = 4 AIC 50 37 28 55 37 31 56 41 39
BIC 50 36 27 55 37 31 55 41 39

ρ = 8 AIC 43 22 18 37 21 20 31 24 20
BIC 43 21 18 37 21 20 30 24 20

Table 3.2: Power of the test. Percentage of instances in which the AIC difference is greater than the
cutoff. Results for sequence lengths 500, 1000, and 2000, sequence divergence rates 1%,
5%, and 10%, recombination rates (ρ), 2, 4 and 8 and AIC and BIC. Untransformed, 20
taxa, 1000 replications.
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Discussion on the untransformed scenario

While the performance was poor across the range of parameters it is possible to comment

on the framework with the more appropriate α-level. With the cutoff at -10 instead of

-2 the α-level was closer to that of 5%; therefore, the larger cutoff gave a more accept-

able level. The BIC performed marginally better than the AIC, but the difference was

inconsequential. Therefore of the factors we can control, we would initially recommend a

larger cutoff and the use of AIC criteria.

The power tended to increase as the sequence length increased, but only by a few per-

centage points. When the cutoff was -2, the sequence divergence rate showed a lack

of monotone trend with the sequence divergence rate of 5% often reporting the highest

power. When the cutoff was -10, the lowest sequence divergence rate often had the highest

power. The non-uniform behaviour of the power with increasing recombination rate was

unexpected and is difficult to explain.

The information criterion approach is not suitable as a test for tree-likeness with untrans-

formed data.

Results for the transformed scenario

We repeated the experiment, first transforming the distances and splits to remove the

correlation.

The α-level of the test was the frequency with which the AIC of the network was lower

than the AIC of the tree when the input alignment was tree-like. The level ranged from

14% to 55% for the cutoff of -2, and 0% and 41% for the cutoff of -10. The ideal α-

level for a test would be 5% to 10%; therefore, once again, the level was higher than is

recommended for a level of a test when the cutoff was -2, and was sometimes too high

when the cutoff was -10. The BIC performed marginally better than the AIC, but the

difference was inconsequential.

The two factors we had no control in an application were sequence divergence rate and

sequence length. Once again, in the majority of cases the 5% sequence divergence had a

higher (poorer) level than either sequence divergence rates of 1% or 10%. Increasing the

sequence length increased the level.
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The power could either increase or decrease when the recombination rate was increased.

The power tended to increase as the sequence lengths increased. Once again, the sequence

divergence rate showed a lack of monotone trend when the cutoff was -2, and decreasing

power when the cutoff was -10.

See Table 3.3 for the results on the α-level and Table 3.4 for the results on the power.

Cutoff Sequence Length 500 1000 2000
Sequence Divergence 1% 5% 10% 1% 5% 10% 1% 5% 10%

-2 ρ = 0 AIC 15 55 29 28 47 22 49 37 20
BIC 15 51 24 27 42 17 48 30 14

-10 ρ = 0 AIC 13 26 4 25 14 1 41 5 0
BIC 13 25 4 25 14 1 41 4 0

Table 3.3: Level of the test. Percentage of instances in which the AIC difference is greater than the
cutoff. Results for sequence lengths 500, 1000, and 2000, sequence divergence rates 1%,
5%, and 10%. AIC and BIC. Transformed, 20 taxa, 1000 replications.

Cutoff Sequence Length 500 1000 2000
Sequence Divergence 1% 5% 10% 1% 5% 10% 1% 5% 10%

-2 ρ = 2 AIC 44 68 57 66 68 62 73 73 65
BIC 44 66 52 65 65 59 72 70 63

ρ = 4 AIC 57 61 54 68 61 59 69 63 60
BIC 56 58 51 66 59 56 66 61 57

ρ = 8 AIC 55 41 35 50 42 38 46 44 39
BIC 55 37 33 48 39 36 43 41 37

-10 ρ = 2 AIC 41 36 17 57 33 24 60 39 30
BIC 41 36 16 57 33 24 60 38 30

ρ = 4 AIC 50 27 17 55 28 23 48 33 25
BIC 50 27 17 55 27 22 48 32 25

ρ = 8 AIC 45 12 9 32 12 11 23 16 14
BIC 45 12 9 31 12 11 23 16 14

Table 3.4: Power of the test. Percentage of instances in which the AIC difference is greater than the
cutoff. Results for sequence lengths 500, 1000, and 2000, sequence divergence rates 1%,
5%, and 10%, recombination rates 2, 4 and 8 and AIC and BIC. Transformed, 20 taxa, 1000
replications.
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Discussion on the transformed scenario

Once again the performance was poor. It is possible to comment on the framework with

the more appropriate α-level. With the cutoff at -10 and a high sequence divergence rate,

the level was acceptable. With lower sequence divergence rates the level was too high.

When the cutoff was -2, the level was always too high. Therefore, -10 appears to be the

more appropriate cutoff.

As noted above, the non-monotonic behaviour of the sequence divergence rate is very

concerning and because of it we are unable to hypothesize about the behaviour of this

test outside the sequence divergence rate parameters tested. Increasing the sequence

length also increased the level, another indicator of poor performance.

The power can increase or decrease with an increase in the recombination rate, yet another

indicator of poor performance. We expected that the power of the test would increase as

the recombination rate increased, and therefore the non-uniform behaviour of the power

with increasing recombination rate was unexpected.

Therefore, even with the distances and splits transformed to allow for phylogenetic corre-

lation, the information criterion approach is not suitable as a test for tree-likeness.

3.1.3 Summary of findings

The performance was poor across the range of parameters.

With the cutoff at -10 instead of -2, the α-level was a great deal closer to that of 5%.

Therefore, the larger cutoff had a more acceptable performance. The BIC had a better

performance than the AIC, but the difference was inconsequential. Therefore, the AIC

is an acceptable choice. The transform had a lower, more acceptable α-level, but not

much power. The difference is not large enough to justify its use, especially in light of its

performance in Chapter 2.

Overall, the information criterion seems an inappropriate way to test for tree-likeness we

now investigate why.
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3.2 Investigating the AIC criterion

The idea of testing for tree-likeness using the AIC and distance based networks and trees

was simple, but ineffective. We were interested in exploring the test further in an effort

to understand how our very general test works and the reason(s) for its failure.

We investigated three aspects of the test. Our investigations were into the specific AIC

criteria used, the model of recombination used for simulation, and measures to potentially

increase the power.

The AIC formula used above came from linear regression. We were interested in whether

it was appropriate in this setting.

When we investigated the AIC criteria, we looked at three aspects. The first was the

cutoff. Above, we tested two cutoffs, -2 and -10, and in general, neither performed well.

We were interested in two aspects of the cutoff; first, the value that gave the correct α-

level for each of the simulation sets and second the power when the cutoff was optimised.

This will give us an indication of whether a fixed cutoff was a feasible option for this test.

The second aspect was the likelihood calculation. We applied a likelihood calculation for

a network to determine whether this improved the performance. The third aspect was

the estimation of σ2 a parameter in the AIC formula.

3.2.1 Investigating the AIC cutoffs

In Section 3.1 we reported the results based on two cutoff values, -2 and -10. In this

section, we investigated the potential maximum power of our test for tree-likeness. We

set the cutoff at a value that gives an appropriate α-level and reported the power, given

that cutoff, for each parameter set.

Methodology

We used the data simulated on a tree to determine the approximate cutoff that gives an

α-level of 5% for each sequence length and sequence divergence rate combination. We

reported the cutoff values and the power for each recombination rate given the cutoff.
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The only scenario we investigated was the AIC criterion, and we did not transform the

distances.

Results and discussion

We expected that the cutoffs would become closer to a fixed value as the sequence length

increased. However, when the sequence divergence rate was low the cutoff values increased

as the sequence length increased, and when the sequence divergence rate increased the

cutoffs decreased as the sequence length increased. Therefore, they do not approach a

common value.

Within a specified sequence length an increase in the sequence divergence rate (and con-

sequently the average proportion of informative sites) caused the cutoff to increase and

when the sequence divergence rate was 10% the cutoffs were more than -10. Potentially,

this implies that the level may stabilise when the sequence divergence rate is high.

The cutoff values for the sequences which had low sequence divergence rates were very

low ranging from -460 to -2360. The implication is that networks fit much better than

trees when the sequence divergence rate is low. This may mean that when there are few

non-constant sites, there is not enough information to determine tree-like behaviour.

The cutoff values are shown in Table 3.5, and the power results in Table 3.6.

Sequence Length Sequence Divergence Rate Cutoff value
500 1% -461

5% -158
10% - 8

1000 1% -1131
5% -83
10 % - 6

2000 1% -2357
5% -11
10% -4

Table 3.5: A table showing the cutoffs, which according to this set of simulations, give the correct level.

Even with the level set correctly, the power was very low. Once again the 5% sequence

divergence rate had the lowest power (especially with shorter alignments). Perhaps at

this sequence divergence rate there is a minimal ability to discern tree-likeness.
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Sequence length had a strong impact on the power of the test when the sequence divergence

rate was high. The power almost doubled between the alignments that were 500 base pairs

long and the alignments that were 2000 base pairs long.

It is interesting to note that often the highest power was for the recombination rate of

four, our medium level of recombination. This implies that data with a larger amount

of recombination appears more tree-like than data with some recombination. This is

counter-intuitive. The reasons for this should be explored further, but possible expla-

nations include that the distances are more tree-like even though the underlying data

generating process is far from tree-like; or an inability to fit the distances using the cir-

cular splits.

Sequence Length Sequence Divergence Recom. rate
2 4 8

500 1% 29.6 40.0 34.8
5% 9.2 9.6 3.0
10% 28.8 31.8 22.4

1000 1% 31.4 35.7 20.4
5% 11.6 8.7 2.8
10% 44.5 43.0 29.6

2000 1% 24.9 22.2 9.1
5% 43.1 39.3 22.6
10% 54.9 56.3 37.0

Table 3.6: A table showing the power (as a percentage) if the α-level is set by ensuring that the cutoff
gives the correct level.

3.2.2 Hadamard likelihood approach

One potential cause of the high level might be the use of the linear regression likeli-

hood. Unfortunately few approaches to calculating likelihoods on networks exist; and

furthermore, most of them require rooted networks. Should such likelihood calculations

be developed, there would be scope for further investigation into using information criteria

to test for tree-likeness.

One approach to phylogenetic inference which has a fully developed likelihood is the

Hadamard likelihood (Hendy and Penny, 1993). This likelihood calculation uses the

information in each site to calculate a likelihood.
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We ran a set of simulations on ten taxa with the same simulation framework as above

(sequence lengths 500, 1000, and 2000, sequence divergence rates of 1%, 5%, and 10%,

and recombination rates of zero, two, four, and eight). We ran 200 replications.

Results and discussion

As the sequence length or sequence divergence rate increased, the fits of the distances were

closer. The fits seemed equally good across the four recombination rates. We compared the

number of splits in the model chosen by the information criterion to the number of splits

displayed in the original neighbor-net network. The Hadamard framework frequently

picked models with more splits than the original neighbor-net.

The test for tree-likeness always returned a tree for all recombination rates, sequence

lengths, and sequence divergence rates. Therefore, the Hadamard likelihood is an inap-

propriate choice of method for calculating the likelihood.

The additional figures for the Hadamard likelihood framework can be found in Appendix

F. Note that these figures are based on ten taxa (twenty is computationally infeasible

due to the time taken to run each replicate).

3.2.3 Bulmer approach to estimating σ2

Figure 3.1 shows the fitted distance and a set of corresponding AIC curves based on a

range of σ2 values. The AIC curve is very flat once the fits are very close and as such the

estimated σ2 can have a substantial effect on the number of parameters in the final model.

Therefore one potential cause of the high level might be that σ2 was estimated based on

standard regression techniques. We therefore used the mean of the variances from the

formula of Bulmer (1991) where the variance matrix is based on the shared path. This

σ2 estimator is referred to as σ̂2
B.

We ran a set of simulations on twenty taxa with the same simulation framework as above

(sequence lengths 500, 1000, and 2000, sequence divergence rates of 1%, 5%, and 10%

and recombination rates of zero, two, four and eight.) We ran 200 replications.

For results see Appendix G.
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Figure 3.1: A plot of fitted distances (blue) and a range of theoretical AIC curves that vary by the choice
of σ2 (green). The LASSO algorithm increases λ at each iteration and for each iteration
we calculate the NNLS coefficients for the set of variable given by the LASSO. The fitted
distances is the sum of the β values.

Results and discussion

The fits of the distances were very close, especially for the lowest recombination rate.

We compared the number of splits in the model chosen by the information criterion to

the number of splits in the original neighbor-net network. Using σ̂2
B trimmed out a lot

of variables, such that many of the network models had fewer splits than a phylogenetic

tree.

The level using σ̂2
B was always zero; that is, a tree-like data set always returned a tree-like

result. The power was very low, and most of the network based alignments were reported

to be tree-like.
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Cutoff Sequence Length 500 1000 2000
Sequence Divergence 1% 5% 10% 1% 5% 10% 1% 5% 10%

-2 AIC ρ=2 0 0 0 0 0 0 0 2.5 3.5
ρ=4 0 0 0 0 1 2 0 1.5 8
ρ=8 0 0 0.5 0 0.5 2 0 6 18

-10 AIC ρ=2 0 0 0 0 0 0 0 0 0
ρ=4 0 0 0 0 0 0 0 0 0
ρ=8 0 0 0 0 0 0 0 0 0

Table 3.7: Power of the test. Results for sequence lengths 500, 1000, and 2000, sequence divergence
rates 1%, 5%. and 10%, recombination rates 0, 2, 4, and 8 and AIC. σ2 calculated using
the Bulmer variance matrix, untransformed, 20 taxa, 200 replicates.

3.2.4 Summary of findings about the AIC criteria

Our experiment with the AIC cutoffs showed us that our aim of using a single cutoff

was unrealistic. To achieve a 5% α-level, the cutoffs varied widely, particularly across

the sequence divergence rates. Therefore, one cause of ineffectiveness of this test is the

fixed cutoff value. However even allowing for the AIC cutoff to be the theoretically most

appropriate value, the power was low.

We carried out two investigations into aspects of the AIC formula: the likelihood calcu-

lation, and the estimator of σ2. Our results using a Hadamard likelihood suggested that

the Hadamard approach to testing for tree-likeness was ineffective. This does not imply

that the linear regression likelihood is appropriate, but it is better than the Hadamard

likelihood approach. Our investigation into using a σ2 estimator based on Bulmer’s vari-

ance shared path matrix confirmed that the choice of σ2 estimator played an important

role in the success of the reduction in the number of splits, and in the result of the test for

tree-likeness. This particular σ2 estimator removed too many splits and led to a very low

power for our test. Therefore, accurately estimating σ2 remains an open problem.

3.3 Investigating the model of recombination and the

error structure

One possibility is the that the problem lies not with the test framework but with the

model used to simulate data. When we first investigated our test for tree-likeness, we
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used the Hudson model to generate treelike and non-treelike alignments. Here we detail

four investigations into recombination and the error structure.

In the first investigation we compared the performance of the Pairwise Homoplasy Index

(PHI) test with our test for tree-likeness. One potential reason for the low power of our

test might be that the alignments did not have detectable signs of recombination. The

PHI test (Bruen et al., 2006) is a test that indicates whether recombination is present.

Therefore we used this test to check that our non-treelike alignments were non-treelike

and that our treelike alignments are treelike.

In the second investigation, we simulated recombination by merging two treelike align-

ments together. This ensured the alignments had recombination and the results will

indicate the how high the power could be.

In the third investigation, we applied our test to distances with white noise added. We

wanted to investigate whether the noise structure arising from estimating distances from

an alignment was leading to the poor performance of the test.

In our final investigation, we generated alignments with continuous characters. These

had a different error structure from the distances with noise, but not the discrete nature

of distance estimated from simulated alignments. This gave us insight into whether the

discrete nature of DNA data was contributing to the poor performance of our test for

tree-likeness.

3.3.1 Comparison with the PHI test

The PHI test (Bruen et al., 2006) is a test for recombination which is robust to high

sequence divergence rates. It should be able to detect recombination in the alignments

with non-zero recombination rates. We compared the level and power of our test to the

results of conditioning on the p-value of the PHI test.

We ran a set of simulations on twenty taxa with the same simulation framework as above

(sequence lengths 500, 1000, and 2000, sequence divergence rates of 1%, 5%, and 10%,

and recombination rates of zero, two, four, and eight). We ran 200 replications.
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Results and discussion

Cutoff Sequence Length 500 1000 2000
Sequence Divergence 1% 5% 10% 1% 5% 10% 1% 5% 10%

-2 AIC 13 55 34 26 52 25 37 39 25
-10 AIC 12 29 2 25 16 25 33 5 0

Table 3.8: Level of the test. Results for sequence lengths 500, 1000, and 2000; sequence divergence
rates 1%, 5%, and 10%; recombination rate of zero and AIC. Results conditioned on the
result of the PHI test, untransformed, 20 taxa, 200 replicates.

The level did not improve; in fact, under some scenarios, it was worse once we conditioned

on the result of the PHI test. With the cutoff set at -2 the level ranged from 13% to

55% and with the cutoff set at -10 the level ranged from 0% to 33%. See Table 3.8 for

results.

Cutoff Sequence Length 500 1000 2000
Sequence Divergence 1% 5% 10% 1% 5% 10% 1% 5% 10%

-2 AIC ρ = 2 100 86 70 82 79 76 88 79 76
ρ = 4 74 75 60 83 74 68 75 75 75
ρ = 8 78 58 56 66 58 63 58 62 55

-10 AIC ρ = 2 79 54 31 62 41 43 73 58 42
ρ = 4 60 41 25 55 39 37 46 45 38
ρ = 8 48 20 19 33 20 21 31 20 25

Table 3.9: Power of the test. Results for sequence lengths 500, 1000 and 2000, sequence divergence
rates 1%, 5% and 10%, recombination rates of two, four and eight, and AIC. Results condi-
tioned on the result of the PHI test, untransformed, 20 taxa, 200 replicates.

The power improved considerably, especially for the shorter sequences and the lower

sequence divergence rates. Even with the cutoff set at -10 the power was reasonable for

some scenarios. The power ranged from 19% to 100%. See Table 3.9 for results.

The increase in power suggests that some of the alignments generated with non-zero

recombination did not contain a detectable recombination signal.
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3.3.2 Investigating the model of recombination by merging tree-

like alignments

An alternative method of generating non-tree-like sequences is to merge two tree-based

alignments. The results based on simulating recombinant alignments in this manner can

be compared with the results from simulation recombination using the Hudson model.

We compared the fit of the distances, number of splits and test for tree-likeness. A

recombination rate of zero means the full sequence was simulated on a single tree. Two

tree selected at random from the distribution of all resolved binary trees will share, in

expectation, approximately 0.125 splits. The distribution is approximately Poisson with

parameter λ=0.125 and the approximation improves as the number of taxa is increased

(Bryant and Steel, 2009).

We compared 200 replicates under a recombination rate of zero and this ‘tree-plus-tree’

model. We used the AIC for comparison and did not transform the distances.

Results and Discussion

The fit of the distances is similar for the ‘tree-plus-tree’ model compared to the Hudson

method with higher non-zero recombination rates; this is seen by comparing Figure 3.2

with Figure A.1. The number of splits is often considerably less than the original neighbor-

net network, as seen in Figure 3.3.

In considering the information criterion as a test for tree-likeness, we comment only on

the power. With a cutoff of -2 the power was low and between 37% and 64%. This was

lower than that seen under the highest recombination rates; compare with Table 3.2. The

power is low when the cutoff is -10 ranging from 7% to 44%.

This confirmed our finding that, for high levels of recombination, our test for tree-likeness

is ineffective.

3.3.3 Distances with Gaussian noise

We wanted to understand whether inadequate modelling of the error structure was con-

tributing to the high level. Therefore, we investigated the performance of the test for
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Figure 3.2: Box plots of the fit of the distances for sequence lengths 500, 1000, and 2000 and se-
quence divergences rate 1%, 5%, and 10%. Each figure contains fits for the recombi-
nations rate zero, and the ‘tree-plus-tree’ method of recombination (’t’). Untransformed
scenario, AIC criterion.
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Figure 3.3: Histograms of the number of splits chosen compared to the non-negative least squares
solution based on the AIC criterion. The sequence lengths are 500, 1000, and 2000 while
the sequence divergences rates are 1%, 5%, and 10%. The recombination model is ‘tree-
plus-tree’. Untransformed scenario, AIC.
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Cutoff Sequence Length 500 1000 2000
Sequence Divergence 1% 5% 10% 1% 5% 10% 1% 5% 10%

-2 AIC ’t’ 64 37 42 56 41 37 48 42 42
-10 AIC ‘t’ 44 12 12 23 7 7 16 12 13

Table 3.10: Power of the test. Results for sequence lengths 500, 1000, and 2000; sequence diver-
gence rates 1%, 5%, and 10%, recombination rate zero and recombination model ‘tree-
plus-tree’ (‘t’) and AIC. Untransformed, 20 taxa, 200 replications.

treeness in the presence of only normally distributed noise.

The neighbor-joining and neighbor-net algorithms were based on distances calculated

directly from the alignments. In this investigation, we used the modelled distances plus

normally distributed noise as the input distance matrix.

The procedure was

1. Calculate the neighbor-joining or neighbor-net split weights using non-negative least

squares.

2. Calculate the distance matrix of modelled distances.

3. Generate a noise component for each matrix entry based on a normal distribution.

4. Add the noise to the distances and set any negative distances to zero.

The aim was to see how frequently the algorithm returned a tree given noisy tree-like

distances as input, and how often it returned a network, given noisy network-based dis-

tances.

Results and Discussion

The fit of the distances was good when the noise was low, and improved as the sequence

length and sequence divergence rates increased. When the noise level was high, the fits

were not as close. In particular, the short sequences were not fitted well. See Figures 3.4

and 3.5.

The factors which influenced the fits were recombination rate and sequence divergence

rate. With sequence data, a higher recombination rate and higher sequence divergence

rate both led to poorer fit, while for the distance-plus-noise model, the high sequence
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divergence rate had much closer fits and the fits were similar for all the recombination

rates.

The results of the test for tree-likeness showed that a cutoff of -2 was adequate for the

distances-plus-noise model as the level was 0%. While sequence length did not influence

the power, sequence divergence rate did. Specifically, as the sequence divergence rate

increased, so did the power. The power also increased as the recombination rate increased.

These are the behaviors we expected for this data and for our discrete sequence simulation

in Hudson’s coalescent model.
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Figure 3.4: Box plots of the fit of the distances for sequence lengths 500, 1000, and 2000, and se-
quence divergences rate 1%, 5%, and 10%. Each figure contains fits for the recombina-
tions rates zero, two, four, and eight. Noise was added to distances according to a normal
distribution with mean zero and standard deviation 0.001. Untransformed scenario, AIC
criterion.
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Figure 3.5: Box plots of the fit of the distances for sequence lengths 500, 1000, and 2000, and se-
quence divergences rate 1%, 5%, and 10%. Each figure contains fits for the recombina-
tions rates zero, two, four, and eight. Noise was added to distances according to a normal
distribution with mean zero and standard deviation 0.01. Untransformed scenario, AIC
criterion.
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Cutoff Sequence Length 500 1000 2000
Sequence Divergence 1% 5% 10% 1% 5% 10% 1% 5% 10%

-2 AIC ρ = 0 0 0 0 0 0 0 0 0 0
-10 AIC ρ = 0 0 0 0 0 0 0 0 0 0

Table 3.11: Level of the test. Results for sequence lengths 500, 1000, and 2000; sequence divergence
rates 1%, 5%, and 10%; recombination rate (ρ) of zero, and AIC. Distances with 0.001
noise, untransformed, 20 taxa, 200 replications.

Cutoff Sequence Length 500 1000 2000
Sequence Divergence 1% 5% 10% 1% 5% 10% 1% 5% 10%

-2 ρ = 2 2 48 76 2 42 70 1 44 68
ρ = 4 12 68 86 7 66 87 6 67 88
ρ = 8 11 85 97 14 82 98 11 82 95

-10 ρ = 2 0 19 42 1 18 45 0 12 45
ρ = 4 1 29 64 1 30 66 1 26 70
ρ = 8 0 48 77 1 51 87 0 44 78

Table 3.12: Power of the test. Results for sequence lengths 500, 1000, and 2000; sequence diver-
gence rates 1%, 5%, and 10%; recombination rates (ρ) 2, 4, and 8, and AIC. Distances
with 0.01 noise, untransformed, 20 taxa, 200 replications.

3.3.4 The tree-likeness test on continuous characters

We investigated the performance of the test for tree-likeness on continuously generated

characters based on Brownian motion. The distance measure applied to the characters

was the Manhattan distance. This is the recommended distance measure for continuous

characters from Felsenstein (2004). We report the results on 200 replicates.

Results and discussion

The level, with the cutoff set at -2, was very high, with all the levels reporting in between

37% and 52%. This is inappropriate for a statistical test. See Table 3.13.

The level, with the cutoff set at -10, was appropriate. All the of levels reported in betweeen

3% and 10%. While 10% is on the high side of what is ideal, it is still within the boundaries

of acceptability. The level was also consistent across the sequence lengths and sequence

divergence rates.

When the cutoff was -10, the power was very low, and it decreased as the recombination
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rate increased. At its highest, it never reached 50%. See Table 3.14.

Cutoff Sequence Length 500 1000 2000
Sequence Divergence 1% 5% 10% 1% 5% 10% 1% 5% 10%

-2 AIC ρ=0 46 37 40 48 46 47 52 49 51
-10 AIC ρ=0 9 8 3 8 6 7 10 8 9

Table 3.13: Level of the test. Results for sequence lengths 500, 1000, and 2000; sequence diver-
gence rates 1%, 5%, and 10%; recombination rates 0, 2, 4, and 8, and AIC. Continuous
characters, untransformed, 20 taxa, 200 replicates.

Cutoff Sequence Length 500 1000 2000
Sequence Divergence 1% 5% 10% 1% 5% 10% 1% 5% 10%

-2 AIC ρ=2 66 69 71 71 70 78 74 77 73
ρ=4 62 65 68 64 74 61 75 73 72
ρ=8 51 57 50 52 51 52 60 47 59

-10 AIC ρ=2 34 35 36 37 33 43 46 41 42
ρ=4 27 28 31 28 41 30 37 43 42
ρ=8 14 16 14 20 22 19 19 19 21

Table 3.14: Power of the test. Percentage of instances the AIC difference is greater than 10. Results
for sequence lengths 500, 1000, and 2000; sequence divergence rates 1%, 5%, and 10%;
recombination rates 0, 2, 4, and 8, and AIC. Continuous characters, untransformed, 20
taxa, 200 replicates.

3.3.5 Summary of findings about the recombination model and

error structure

The results of the comparison with the PHI test suggested that some of our non-treelike

alignments did not have a detectable recombination signal. Therefore, the power could

be improved by considering only alignments with detectable signal. Therefore, one of

the contributions to the ineffectiveness of this test is the type of data we used to test it.

However, the α-level remained unacceptable despite conditioning on treelike alignments,

so this is not the only contribution.

The results based on using the PHI test also suggested that the information within the

site ordering was important. Our test was based on distances alone, and as such, could

have been applied to any DNA data had it been successful. One of the reasons for its

inefficacy is probably the fact that distances discard a great wealth of information.
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One of the most surprising results from the initial simulations on the test was the decrease

in power observed for the highest recombination rate. Our simulations on the very extreme

model of recombination, the ‘tree-plus-tree’ method, confirmed that data sets with high

recombination have low power. Therefore, another contribution to the inefficacy of this

test is that tree based models might fit non-treelike distances better than network models

when there is a lot of recombination.

The distances with noise added had a known noise or error structure. The noise was

white noise with a specified standard deviation. The results showed consistency across

sequence divergence rate and sequence length. The results based on the distances with

noise added implied that our distances estimated from alignments did not have normally

distributed noise. This means that our observed distances should not be assumed to be

the true distances plus errors from a normal distribution. This is yet another contributor

to the inefficacy of the test. This finding is at odds with Susko (2003).

The investigation which used continuous characters had very different behaviour from the

original test. The level was lowest when the sequence divergence rate was 5% (rather

than highest). As the sequence length increased, so did the level (and, unlike the original

test, this behaviour did not depend on sequence divergence rate). The level was subject

to much less variation ranging from 37% to 52% when the cutoff was -2 and from 3% to

10% when the cutoff was -10.

The continuous characters model showed more of the behaviours we expected. We ex-

pected there to be little variation in the level for a specific cutoff. The AIC values will

reflect the underlying parameters (number of taxa, sequence divergence rate and sequence

length) but the AIC differences should not. With continuous characters, the influence of

sequence length was consistent over the range we investigated, and an increase in se-

quence length corresponded to a small increase in the level. This implied that the noise

was increasing as sequence length increased, reducing the ability of our test to detect

non-tree-likeness. This contrasted with our discrete sequences, as these had noise profiles

that were not consistent. This further indicated that the noise in distance estimates from

an alignment might be contributing to the ineffectiveness of this test.

If error structure was like white noise then the AIC approach might form a suitable

approach to testing for tree-likeness. It seems that additional contributions to the error,

especially from high recombination rates, influenced the performance of our test.
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3.4 Investigating whether the power is higher for longer

sequences and a higher sequence divergence rate

Our last set of investigations looked at long sequences and a higher sequence divergence

rate to see if either of these increased the power.

An increase in the sequence length gave rise to a more acceptable level and more power

if the sequence divergence rate was high. We wanted to investigate whether very long

sequences had acceptable level. Some factors (such as the setting the cutoff such that

the level is 5%) suggested that increasing the sequence divergence rate would lead to

an acceptable α-level and more power, while other investigations (such as the declining

power with an increase in sequence divergence rate as seen in the original experiment

when the cutoff was -10) suggested that increasing the sequence divergence rate would

lead to poorer performance. Therefore, we also ran the test on data sets with a sequence

divergence rate of 20%.

We investigated the α-level and the power for sequences with a sequence divergence rate

of 20% and with sequence lengths 500, 1000, and 2000, and recombination rates of zero,

two, four, and eight.

We also investigated the α-level and the power for sequences with length 10,000 base pairs

and with the sequence divergence rates 1%, 5%, and 10% to gauge the efficacy of the test

with longer sequences.

We did not transform the distances and used only the AIC criterion. In both cases we

report the results from 200 replications.

Sequence divergence rate: Results and Discussion

The level and power were always 0% when the sequence divergence rate was 20%. This

was regardless of cutoff, sequence length, and recombination rate.

We also looked at the cutoff value to get the ideal level and the power that resulted from

choosing this cutoff. The cutoff values were very small. This implied that the cutoff

would not stablise with an increase in the sequence divergence rate. The power given
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the ideal cutoff was good and ranged from 45% to 74%. It increased with an increase in

recombination rate, which is pleasing. The longest sequences had the highest power.

Length Cutoff value
500 -0.7106
1000 -0.7105
2000 -0.6397

Table 3.15: A table showing the cutoffs, which according to this set of simulations, give the correct
level. Twenty taxa and sequence divergence of 20%.

Sequence Length Sequence divergence Recombination rate
2 4 8

500 20% 46 54 56
1000 20% 45 69 59
2000 20% 67 74 70

Table 3.16: A table showing the power if the level is set by ensuring the cutoff gives the correct level. All
results are percentages based on 200 replications. Twenty taxa and sequence divergence
of 20%.

Long sequences: Results and Discussion

For the lowest sequence divergence rate (1%) the level was very poor, being 65% at a

cutoff of -2, and 41% at a cutoff of -10. This far exceeded the level seen when the

sequence divergence rate was 5% or 10%. At a cutoff of -10 the level was 0% for sequence

divergence rates 5% and 10%. This is acceptable. Thus, for the two higher sequence

divergence rates, the level was too high with a -2 cutoff and too low with a -10 cutoff.

This suggests that if sequence length was further increased, a cutoff of -2 would eventually

be appropriate, but only for incredibly long sequences.

The power decreased as the recombination rate increased. This was concerning as we

expected the power to increase. One potential reason for this is that longer sequences

tend to have more site patterns, and thus some very unlikely patterns might have been

present. The presence of these site patterns which did not support the tree would have

created noise, and with long sequences this noise would have reduced the ability of the

test to detect tree-likeness.



3.4 Investigating whether the power is higher for longer sequences and a higher
sequence divergence rate 59

This simulation showed that the problems seen when the sequence divergence rate was

low could not all be overcome by increasing the sequence length. However with longer

sequences the sequence divergence rate of 5% had a more consistent performance, as the

power was similar to that of the 10% sequence divergence rate. For the higher sequence

divergence rates, we can see that eventually we would expect a cutoff of -2 to be appro-

priate.

Cutoff Sequence Divergence
1% 5% 10 %

-2 ρ = 0 65 22 19
-10 ρ = 0 41 0 0

Table 3.17: Level of the test. Results for sequence length 10,000; sequence divergence rates 1%,
5%, and 10%; recombination rates (ρ) of 0, 2, 4, and 8. Untransformed, AIC, 20 taxa, 200
replications.

Cutoff Sequence Divergence
1% 5% 10 %

-2 ρ = 2 87 76 80
ρ = 4 81 76 76
ρ = 8 64 60 63

-10 ρ = 2 67 54 52
ρ = 4 55 52 50
ρ = 8 30 23 29

Table 3.18: Power of the test. Results for sequence length 10,000; sequence divergence rates 1%,
5%, and 10%; recombination rates (ρ) of 2, 4, and 8. Untransformed, AIC, 20 taxa, 200
replications.

Summary of findings about longer sequence length and higher sequence diver-

gence rate

Our experiment with long sequences suggested that very long sequences also have too

much noise for the tree signal to be detected. As explained above, the longer sequences

tended to have a great variety of site patterns and some very unlikely patterns might have

been present. The presence of site patterns which did not support the tree would have

created noise and reduced the ability of the test to detect tree-likeness. Increasing the

sequence divergence rate did not give rise to a stable behaviour.



60 A failed test for ‘tree-likeness’

3.5 Discussion

A good statistical test has a low and stable α-level and high power. Here, we discuss

what the investigations revealed about the level and power of the test we developed for

investigating tree-likeness.

The test itself had very poor level. The level was lower for the sequence divergence rates

1% and 10%, and high when the sequence divergence rate was 5%. Increasing the sequence

length caused the level to rise when the sequence divergence rate was 1% and to lower

when the sequence divergence rate was 5% or 10%. The level was mostly over 20%, and

ranged from 15% to 55% when the cutoff was -2, meaning that at least one in five trees

reported in as networks.

The test had very low power. Ideally, the power should be high. Furthermore, we expected

it to increase as the recombination rate increased; increase with sequence length; and

increase with sequence divergence rate. We know that very high sequence divergence

rates lead to sequences which are saturated (do not contain phylogenetic signal), and this

would lead to a deterioration in the phylogenetic signal, but this is not the case with the

sequence divergence rates we used.

Our detailed investigations show there was no single factor that could explain the poor

performance of this test. It seems that the AIC calculation had a role. First, the sensitivity

of the method used to estimate σ2 suggests that accurately estimating σ2 could improved

the test’s performance. This remains an open problem. Furthermore, noting that the

error structure was not normal and that the AIC formula we used is based on normally

distributed errors, we expect that the likelihood calculation also played a role. Currently,

there is no better way to calculate the likelihood.

One consistent finding from our investigations is that our ideal of having a single cutoff

was inappropriate. Many sets of simulations had ideal cutoffs (that is those which gave a

α-level of 5%) that ranged greatly in magnitude. This was one of our test’s downfalls.

While our model for recombination did not always have detectable recombination, it was

fit for its purpose. It showed us interesting behaviour with alignments with high levels

of recombination. These alignments were often reported as treelike by our test for tree-

likeness. Our investigations have not fully resolved the issue of why this occured.
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Partial LASSO

4.1 Background and motivation

The LASSO (Tibshirani, 1996) approach to regression became popular after the publica-

tion of Efron et al. (2004) and it is now considered standard practice to use the LASSO

to get a solution to the regression equations. Throughout Chapters 2 and 3 we have used

the LASSO to estimate the weights of the splits.

In this chapter, we describe a partial LASSO, which we developed to allow users to define

a subset of variables which they believe should be in the model, and consequently, to use

the model with these variables as a basis of comparison. The partial LASSO applies

unconstrained optimisation to one set of variables, and the LASSO to the other subset of

variables. In this manner, it is a hybrid between least squares and the LASSO.

In both the partial LASSO and full LASSO, the final model is the least squares solution on

all of the variables. However, the intermediate models, between the least squares solution
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on the unconstrained variables and the final model will be different from the set of models

resulting from carrying out the LASSO on all of the variables.

Osborne et al. (2000a) investigated properties of the LASSO in an optimisation framework

using the Karush-Kuhn-Tucker (KKT) conditions (Kuhn and Tucker, 1951). We follow

this approach as we extend the LASSO to the partial LASSO. The KKT conditions are

from the field of non-linear optimisation. They characterise the minimum of a function

subject to inequality and equality constraints.

Our application is to use the partial LASSO to build the network from a star tree; that

is, a tree with only trivial splits (splits which separate a single taxon from all of the other

taxa). We believe the method has a much wider range of applications both within and

outside of phylogenetics.

This chapter is laid out as follows. In the Section 4.2, we discuss the technical details of

the partial LASSO. In Section 4.3, we discuss our application of the partial LASSO. We

end the chapter with a discussion, in Section 4.4.

4.2 The partial LASSO

The positive LASSO algorithm solves the following problem for each choice of λ ≥ 0:

find β such that ||y −Xβ|| is minimised, such that
∑

i βi ≤ λ and βi ≥ 0 for

all i.

For the partial LASSO we define a set L of variables, which will be subject to the LASSO

constraint. We then solve the following problem for each choice of λ ≥ 0:

find β such that ||y −Xβ|| is minimised, such that
∑

i∈L βi ≤ λ and βi ≥ 0

for all i.

When λ = 0 solving the partial LASSO is equivalent to solving the non-negative least

squares problem for the variables not in L, which can be done using a variety of methods

(see Fletcher (2000)).

Suppose then that β solves the LASSO problem at λ ≥ 0. Let

A(λ) = {i ∈ L : ci = κ},
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B(λ) = {i /∈ L : ci = 0},

C(λ) = {i ∈ L : ci > κ}, and

D(λ) = {i /∈ L : ci > 0},

and, for each subset V of variables, let XV denote the matrix containing the columns of

X relating to the variables V . Likewise, for a vector x indexed by variables let xV denote

x restricted to variables in V .

Find w such that (
XT
AXA XT

AXB

XT
BXA XT

BXB

)(
wA

wB

)
=

(
1

0

)
with wC = 0 and wD = 0.

Define

c = XT (Xβ − y)

a = XTXw

κ = min
i∈L

ci

γAB = min

{
−βi
wi

: wi < 0, i ∈ A ∪ B
}

γC = min

{
ci − κ
1− ai

: 1i − ai > 0, i ∈ C
}

γD = min

{
ci
ai

: ai > 0, i ∈ D
}

and

γ̂ = min{γAB, γC, γD}.

We prove below that for all γ such that 0 ≤ γ ≤ γ̂, β + γw is optimal solution of the

partial LASSO problem with LASSO constraint λ+ γ
∑

i∈Lwi.

The algorithm advances to λ+ γ̂1Tw, updates β → β + γ̂w and records this value, before

continuing to the next iteration.

Theorem 1 For all γ such that 0 ≤ γ ≤ γ̂,β(λ) = β + γw minimises ||Xβγ − y|| such

that
∑

i∈L β
γ
i = λ+

∑
i∈L γwi.
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Proof

For each λ, the partial LASSO problem is a convex quadratic programming problem, so

β is the optimum if and if only there are multipliers η, κ that satisfy the KKT condi-

tions:

ci − ηi − κ = 0 ∀ i ∈ L (4.1)

ci − κ = 0 ∀ i /∈ L (4.2)∑
i∈L

βi = λ

βi ≥ 0

ηi ≥ 0

βiηi = 0 ∀i.

Recall c = XT (Xβ − y), so that first condition (that given in Equations (4.4) and (4.5))

is the gradient of the Lagragian (Kuhn and Tucker, 1951; Fletcher, 2000).

Suppose that 0 ≥ γ ≥ γ̂. Define

κ(γ) = κ+ γ

η
(γ)
A = 0

η
(γ)
B = 0

η
(γ)
C = ci − κ

η
(γ)
D = ci − γ

We want to show that

βγ = β + γw (4.3)

satisfies the KKT conditions.
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cγi − η
γ
i − κγ = 0 ∀ i ∈ L (4.4)

cγi − κγ = 0 ∀ i /∈ L (4.5)∑
i∈L

βγi = λγ (4.6)

βγi ≥ 0 (4.7)

ηγi ≥ 0 (4.8)

βγi η
γ
i = 0 ∀i. (4.9)

where

cγ = XT (Xβγ − y)

λγ = λ+ γ̂
∑
i∈L

wi.

Note (4.6) is satisfied trivially, (4.7) is satisfied by the constraint that γ ≤ γAB, (4.8) is

satisfied by constraint that γ ≤ min{γC, γD}. Condition (4.9) is satisfied as for sets A
and B as we have ηi = 0 and for sets C and D as we have βi = 0.

To show (4.4) and (4.5), we consider four cases for the index i.

For set {i ∈ A} from Equation (4.4) we have

[XT (Xβγ − y)]i − κ̂γ = {XT [X(β + γw)− y]}i − κ− γai
= [XT (Xβ − y)]i + γ[XTXw]i − κ− γai
= ci + γai − κ− γai
= ci − κ

= 0.
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For set {i ∈ B} from Equation (4.5) we have

[XT (Xβγ − y)]i = [XT (X(β + γw)− y)]i

= [XT (Xβ−)y]i + γ[XTXw]i

= [XT (Xβ − y)]i

= ci

= 0.

For set {i ∈ C} from Equation (4.4) we have

[XT (Xβγ − y)]i − ηγC − κ̂ = [XT (Xβ − y) + γXTXw]i − (ci − κ)− (κ+ γai)

= ci + γai − (ci − κ)− (κ+ γai)

= 0.

For set {i ∈ D} from Equation (4.5) we have

[XT (Xβγ − y)]i − ηγD = {XT [X(β + γw)− y]}i − (ci + γ)

= ci + γ[XTXw]i − ci − γ

= 0,

as required �

The algorithm for solving a set of equations using the partial LASSO is similar to the

partial LASSO algorithm.

1. Let β be the minimum of ||Xβ − y|| such that β ≥ 0, βi = 0, ∀i ∈ L.

2. Calculate c as c = XT (Xβ − y).

3. Set κ = mini∈L ci

4. Define the four sets

A = {i ∈ L : ci = κ}
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B = {i /∈ L : ci = 0}

C = {i ∈ L : ci > κ}

D = {i /∈ L : ci > 0}

5. Let w̃ solve (XT
ABXAB)w̃ =

(
1A

0B

)
.

6. Extend w̃ to w by wAB = w̃AB,wCD = 0.

7. Calculate a as a = XTXw.

8. Calculate γ on each set.

γAB = min{−βi/wi : wi < 0, i ∈ A ∪ B}

γC = min{ ci−κ
1−ai

: 1− ai > 0, i ∈ C}

γD = min{ ci
ai

: ai > 0, i ∈ D}.

9. Let γ = min{γAB, γC, γD}.

10. Update β, κ and c using

β(λ) ← β + γw

κ(λ) ← κ+ γ

c(λ) ← c+ γa.

11. If κ = 0 then stop otherwise go to step 4.

Once κ = 0 the NNLS solution has been obtained.

The algorithm will have a finite number of steps. As λ increases the sum of the residuals

must decrease and at some particular values of λ variables are added or removed. This

guarantees
∑

i∈L ¿0 and that it does not get smaller as β increases.

In our experience to date the algorithm always converges to the NNLS solution.
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4.3 Application

4.3.1 Partial LASSO with NNLS hybrid applied to neighbor-

net

In this section, we apply the partial LASSO to neighbor-net in the same manner in which

we applied the LASSO in Chapter 2.

We used the same two measures to assess the performance of the partial LASSO. The

measure of the performance of the fits is

difference in fit =
∑
ij

dij − d̂ij
dij

(4.10)

where d is the pairwise distances and d̂ is the modelled pairwise distances. Ideally, this

difference should be very small.

The measure we used to study the reduction in the number of splits is a comparison of the

number of splits chosen under the partial LASSO framework with the number of splits

chosen by neighbor-net as estimated by non-negative least squares.

We once again used an NNLS-hybrid; that is, we used the partial LASSO algorithm to

choose the splits, but the β coefficients came from fitting an NNLS model. In the next

section we do not use the NNLS hybrid.

The simulation study follows that of Wiuf et al. (2001). Alignments were generated ac-

cording to the coalescent model of Hudson (1983). In all cases, the number of taxa used

was 20. The sequence lengths used were 500, 1000, and 2000 base pairs. The recom-

bination parameter values used were zero, two, four, and eight. Higher recombination

parameters should give rise to less tree-like data. The expected sequence divergence rates

were one, five, and ten percent site differences. All sets of simulations have 200 replica-

tions.

The fit of the distances was very close regardless of sequence length, sequence divergence

rate, and recombination rate. The fits were, on average, closer than those of the LASSO.

With the LASSO, the fits were not close for the higher recombination rates; but with
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the partial LASSO, we see that the fits were close regardless of the recombination rate.

The bias is different, with distances more likely to be over-fitted with the partial LASSO,

while the distances were more likely to be under-fitted with the LASSO.

Often the partial LASSO network is the original neighbor-net network. The proportion of

instances of this decreased as the sequence divergence rate increased; remained unchanged

as the sequence length increased and increased as the recombination rate increased. This

behaviour contrasts with the LASSO, where the proportion increased as the sequence

divergence rate increased, and decreased as the recombination rate increased. While the

LASSO trimmed splits from the alignments with high recombination rates, the partial

LASSO does not seem to be able to do this.

See Appendices H and I for plots of the fits of the distances and number of splits compared

with the original neighbor-net network.

4.3.2 Partial LASSO without the NNLS hybrid applied to neighbor-

net

We carried out the same experiment as above, but did not use the NNLS hybrid. In this

experiment, we used only one σ2 estimator, σ̂2
N based on the final partial LASSO model.

We used the same two measures of performance: fit of distances, and a comparison of the

number of splits.

The general observation is that the fit of the distances was very close regardless of recom-

bination rate, sequence divergence rate, and sequence length.

The number of splits chosen relative to the original neighbor-net network increased as

the recombination rate increased, and remained unchanged as the sequence length and

sequence divergence rate increased. Compared with the partial LASSO-NNLS hybrid,

there are, on average, fewer splits in the partial LASSO with the σ̂2
N estimator.

See Appendix J.
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4.4 Discussion

The partial LASSO extends the LASSO approach. The partial LASSO allows users to

define a set of variables to be the initial model; the LASSO regression approach is then

applied to a further set of regressors.

The theorem shows us exactly how to move from the initial model to the LASSO solutions

by varying λ. We also gave the algorithm we used in our implementation of the partial

LASSO. This gives the exact vector to travel along at each step, and how to calculate

how far to go in that direction.

The partial LASSO has potential to be widely applicable, as any time there is a prior

belief that a certain variable or group of variables should be in the model, our partial

LASSO could allow users to put these variables in the model first.

Our application was neighbor-net. We noticed, while working with the LASSO approach

to neighbor-net, that trivial splits were often added to the model in the later stages.

Therefore, for the partial LASSO we let the trivial splits be our user-defined group of

variables so that they would be in the model first.

We ran two sets of simulation studies: one in which we used a partial LASSO-NNLS

hybrid, and one in which we used only the partial LASSO. With the NNLS hybrid,

we found that in the majority of cases the partial LASSO network was the same as the

neighbor-net network. Without the NNLS hybrid the estimator of σ̂2
N was smaller than

either of σ̂2
T or σ̂2

N estimated under the partial LASSO-NNLS hybrid. As a result, the

models contain fewer splits.

Therefore, using the partial LASSO approach with σ estimated using σ̂2
N (a smaller esti-

mate of σ2 than one under the NNLS hybrid) allows us to place the trivial splits in the

model first, and results in networks that, on average, have fewer splits than the original

neighbor-net network. This further shows us how estimating σ2 strongly influences the

results.



5
Visualising heterogeneity in a set of

trees

In this chapter we describe a method for visualising heterogeneity in sets of trees.

As we discussed in the Introduction, networks can visualise conflict in trees and they can

represent multiple trees. In this chapter, we focus on networks which visualise the key

features of a set of trees. Our application was to use a splits-based approach and the

LASSO (Tibshirani, 1996) to visualise the set of trees from an MCMC run.

Consensus tree methods take a set of trees and represent them as a single tree. Majority-

rule consensus trees (Margush and McMorris, 1981) contain subtrees which appear in at

least 50% of the input set of trees. Strict consensus trees (Rohlf, 1982) contain subtrees

which appear in all of the input trees. Therefore, when there is conflict, the tree becomes

unresolved; that is, several taxa meet at an ancestral node, rather than just two taxa as

in resolved trees.
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Consensus networks (Holland and Moulton, 2003) are a splits based extension of consensus

trees. These networks display all the splits that are in at least the specified proportion

of the input trees. These networks may be multidimensional, and Holland and Moulton

(2003) introduced a greedy algorithm which chooses a splits system to visualise the set of

splits.

We aimed to provide a network-style representation of the important features of the set of

input trees. By expressing the statistically significant information in set of input trees as

a network, we were able to see which parts of the tree were fully resolved and which parts

had uncertainty. This generalises Holland and Moulton (2003) by developing a framework

for systematically choosing an appropriate set of splits to represent the information in the

input set of trees.

We applied our method to the set of trees which arise from Bayesian analysis with Markov

Chain Monte Carlo (MCMC) sampling. Bayesian analysis has had a great impact on es-

timating phylogenetic trees (Huelsenbeck and Ronquist, 2001; Drummond and Rambaut,

2007). An MCMC run produces an ordered set of trees, and one of the challenges of

Bayesian phylogenetics is how to interpret and summarise this output. Typically, users

report the most frequently-observed tree topology, but this discards a great wealth of in-

formation. Here, we investigated using a statistically-informed technique for representing

these large sets of trees.

5.1 Method

As in Chapters 2, 3, and 4, we used regression as the statistical framework for the devel-

opment of these consensus networks. The setup was as follows.

Each tree was represented as a vector indexed by splits. Each input tree was converted

into a set of splits with associated branch lengths or split weights. Let m be the total

number of splits in the set of input trees and let N be the number of trees. Tree i was

encoded as a vector of length m with branch lengths as entries, the vector is denoted y(i).

If a split did not appear in the tree, the entry was zero.

We assumed that each tree vector y(i) had an approximately normal distribution with

unknown mean µ and covariance Σ. We used networks to represent the mean vector
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µ, which is estimated using y (where y is the observed mean of all the y(i)). We used

the LASSO framework to make sure only well-supported splits were displayed. This was

equivalent to minimizing the least squares residuals

N∑
i=1

(y(i) − β)TΣ−1(y(i) − β) (5.1)

in a regression analysis with untransformed design matrix equal to the identity. Σ was

the covariance matrix, and β was the vector of regression coefficients or split weights.

The elements of the predictive vector were not independent of each other; however, we

estimated the covariance matrix from the input trees. We expected the sample covariance

matrix to be positive definite, and that it would accurately reflect the correlation structure.

However, it was possible that the matrix may not be well-conditioned. We stabilised the

covariance matrix by adding the mean of the variances to the diagonal and scaling, as

recommended by Schäfer and Strimmer (2005).

Regression was carried out on the transformed means and splits. As in Chapter 2, the

positively-constrained LASSO algorithm was used, providing a suite of models.

Let R be upper triangular factor in the Cholesky decomposition of the inverse of Σ. The

LASSO solution in this scenario for a given λ is the value β minimising

S(β) = ||RTy −RT Iβ̂|| (5.2)

subject to the LASSO constraints

βi ≥ 0, (5.3)

and
m∑
j=1

βj < λ, (5.4)

for all j.

We used the positive LASSO algorithm of Efron et al. (2004) to get sets of candidate

splits and we re-estimated the split weights using non-negative least squares. The final

model was chosen by the AIC criterion.

We applied this method to two data sets.
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5.2 Case studies

5.2.1 Case study one: Tiger moths

Ratcliffe and Nydam (2008) published a study on tiger moths. They sequenced one mito-

chondrial gene (cytochrome oxidase I, COI) and two nuclear genes (elongation factor 1a,

EF1a, and wingless) from 26 closely-related moths and the out-group species Lymantria

Dispar. The study used the 50% majority consensus phylogram to define phylogenetic

clusters. These clusters and several variables (the types of clicks the moths are capable

of making, their colouring, and the extent to which the species is nocturnal) were used to

perform a comparative analysis to investigate the evolution of signaling.

Following Ratcliffe and Nydam (2008) we ran a Bayesian analysis using MrBayes 3.1.2

(Huelsenbeck and Ronquist, 2001). This involved using a GTR + I + G model to COI

and a SYM + I + G model to EF1a and wingless. We ran the analysis for 10 million

generations, sampling every 1,000 generations. We carried out two runs with a 20% burn

in. We applied our consensus network method to the resulting trees and produced the

network given in Figure 5.1. The AIC and BIC criteria chose the same model.

The 50% majority consensus phylogram produced in Ratcliffe and Nydam (2008) had low

support for the branches separating the four clades seen at the bottom of Figure 5.1. This

uncertainty was reflected in the box-like structures seen in this area. This implies a lack

of resolution in the tree at this position, and possibly a rapid expansion (that is, where

an ancestral species has quickly diverged into several species). The consensus network of

Holland and Moulton (2003) had a great deal of reticulation at this location representing

the uncertainty (Figure 5.2).

A Lento plot shows the support and conflict for a split. The conflict is “the sum of all

other splits that contradict the partitioning of taxa in the first split” (Lento et al., 1995).

The Lento plot (Figure 5.3) shows that the set of splits strongly overlaps, and that the

conflict is greater in the consensus network of Holland and Moulton (2003), as we can see

from the much larger reticulations.
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Figure 5.1: LASSO consensus network for Tiger moths based on the data of Ratcliffe and Nydam
(2008) using our consensus network method.



76 Visualising heterogeneity in a set of trees

Figure 5.2: Consensus network for Tiger moths based on the data of Ratcliffe and Nydam (2008)
using the consensus network method of Holland and Moulton (2003), mean edge weights,
threshold of zero.
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Figure 5.3: Lento plot of the two consensus networks showing the split weights and the conflict against
these split weights.
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5.2.2 Case study two: Human Mitochondria

The second data set has 53 taxa (Ingman et al., 2000). The data set contained full

mitochondrial sequences, as opposed to just the control region. Ingman et al. (2000)

found support for the “out of Africa” hypothesis; that is, the hypothesis that humans

originated in Africa. Vigilant et al. (1991) carried out the first DNA based study into the

“out of Africa” hypothesis, estimating the age of the most recent common ancestor to

be about 170,000 years ago, plus or minus 50,000 years. Their method was based on the

assumption that the data is tree-like; later analysis using network methods showed that

the network was cluttered and non-treelike, mostly likely a result of fast-evolving sites

cluttering the tree-like signal (Bryant and Moulton, 2004).

With 53 taxa there are considerably more potential splits than in the previous example.

The total number of splits observed in the set of MCMC trees was 560. If we allowed

the consensus network to be applied to all of these splits, then the AIC criteria chose

324 splits while the BIC criteria chose 312 splits. Splitstree is not capable of drawing the

corresponding network.

The summary information in Figure 5.4 shows that beyond iteration 100 very little im-

provement was made to the model. A further inspection of the size of the coefficients

confirmed this. Therefore, we choose a model with 120 splits, which is displayed in Figure

5.5.

This result suggested that AIC and BIC criteria are not optimal for model selection in this

context. We need a criterion with a higher penalty for including additional splits.

If we subset the taxa, we see that for the 20 randomly-selected taxa, the consensus network

is quite treelike (see Figure 5.6). The few areas of non-treelikeness are so small that they

are barely distinguishable.

5.3 Discussion

This style of consensus method has potential to provide a quick visual summary of the

MCMC results. With the Tiger moths example, we saw that areas with low posterior

support, as seen in the majority consensus phylogram showed up as small reticulations in
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Figure 5.4: Summary information for the Consensus network for Human mitochondria based on the
data of Ingman et al. (2000).

the network.

There is scope for a further investigation into alternative model selection tools. One

popular model selection tool is cross-validation. A potential implementation would involve

taking a sample of the sites and re-running the entire procedure; this is computationally

not feasible at this stage.
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Figure 5.5: Consensus network for Human mitochondria based on the data of Ingman et al. (2000).
Network is based on the first 120 splits chosen by the LASSO algorithm.

Figure 5.6: Consensus network for Human mitochondria based on the data of Ingman et al. (2000) for
a randomly selected subset of 20 taxa from the 53 of Ingman et al. (2000).



6
Confidence sets on trees

6.1 Background and motivation

In this chapter we further investigate incongruence by developing a confidence set method

for a set of genes.

With the rise of modern sequencing technology, it is increasingly common for phyloge-

netic data sets to be comprised of multiple genes from a single sample. One of the first

approaches for phylogenetic analysis of this type of data was to concatenate the genes and

form a phylogenetic tree from the concatenated alignment; see Baldauf (1999) and many

others. However, there is a growing body of knowledge about how genes evolved under

different pressures within a genome, and an understanding that different genes may have

different evolutionary histories. Therefore, it is relevant to ask: which genes evolved along

the same topology? Only genes arising from a single topology should be concatenated for

a single phylogenetic analysis.
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Several authors have proposed tests to examine whether several genes have evolved on a

single topology. Farris et al. (1995) developed the incongruence length difference method,

which compared the length of the parsimony-based tree on the combined data with the

combined length of all the trees for each gene. Bapteste et al. (2008) developed a method

called progressive reconstruction analysis. This is a split-based approach which applies

an algorithmic procedure and results in a heat map from which similar genes can be ob-

served. Leigh et al. (2008) developed CONCATERPILLAR. The method uses hierarchical

clustering and likelihood ratio tests to identify congruent genes. The method combines

pairs of genes and compares the likelihood of the combined data with each of the under-

lying genes. The pair with the smallest likelihood ratio is then treated as a single gene

and compared with the other genes (or gene groupings). A non-parametric bootstrap is

used to determine significance levels and the procedure ends when the smallest likelihood

ratio test exceeds the α threshold. Additionally, Goldman et al. (2000) reviewed the inap-

propriate, but popular, use of the Kishino-Hasegawa test (Kishino and Hasegawa, 1989)

(which was originally designed as a method to compute confidence intervals on posterior

probabilities resulting from a Bayesian analysis) as a test for creating a confidence interval

of topologies.

Here, we developed a method based on combining the p-values associated with single

genes to obtain a confidence set of topologies. An empty confidence set corresponds to

a rejection of the null hypothesis; that is we reject the hypothesis that the genes have

evolved on the same topology.

6.1.1 Hypothesis testing for phylogenies

A hypothesis, is a statement about a population parameter, tested using a test statistic.

A hypothesis test specifies the range of values under which the null hypothesis is not

rejected, and the range of values under which the alternative hypothesis is accepted.

Some hypothesis tests generate a p-value (that is the probability that a result at least

as extreme as that in the data was generated under the null hypothesis). The p-value is

the strength of evidence against the null hypothesis. In classical statistics, the p-value is

compared with the α threshold and when the p-value is less than α the null hypothesis

is rejected. As α gets smaller the test becomes more conservative in favour of the null

hypothesis. Despite philosophical objections to the hypothesis testing approach we use it
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for pragmatic reasons.

Let Ti be the true but unknown topology for gene i. Let T be a potential or candidate

topology. To test the null hypothesis that a gene evolved on a particular candidate

topology, we test

HT
(i) : Ti = T. (6.1)

Constructing the set of candidate trees

For very small taxon sets it is possible to use all possible topologies as the set of candidate

trees, but in general the set of all possible topologies is too large. Therefore, we need a

reliable method of generating a set of candidate trees. This set of trees should contain the

most likely true topology from each gene, and contain all the trees which might remain

in the confidence set. The set should be generous in size to increase the chances of the

true tree being in the candidate set.

The procedure we developed for creating a set of candidate trees was not overly com-

putationally intensive. We first used RAxML (Stamatakis, 2006) to obtain a maximum

likelihood tree for each gene. RAxML is efficient at estimating the likelihoods; these

trees are included in the set of candidate tress. The maximum likelihood trees were used

as input for the Most-Parsimonious Reconstruction (MPR) supertree method (Bremer,

1990; Ragan, 1992). Using PAUP* (Swofford, 2000), we added to the candidate set all

other trees with maximum parsimony scores that were equal to or less than those already

in the candidate set. If the candidate set was too small, then we also added the trees

which were up to k + 1 steps away from the maximum parsimony supertree where k is

the maximum of the number of steps away a tree currently in the candidate set is from

the supertree. This was repeated until the candidate set was at least as big as the desired

size; usually, 100 trees. In future we need to examine the construction of this candidate

to ensure that

To summarise, the procedure we used to construct the set of candidate tree is:

1. Estimate the maximum likelihood tree for each gene using RAxML.

2. Create a binary character matrix from gene tree bifurcations.

3. Use the character matrix to find the maximum parsimony supertree using PAUP*.
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4. Use PAUP* to find all the trees within one step, two steps, etc until the set of trees

contains all of the maximum likelihood tree and is sufficiently large.

Computing p-values for each tree, T

There are several methods that compute p-values for a single tree given one gene, in-

cluding the Kishino-Hasegama (KH) test (Kishino and Hasegawa, 1989), the Shimodaira-

Hasegama (SH) test (Shimodaira and Hasegawa, 1999), the Approximately Unbiased (AU)

test (Shimodaira, 2002), and minBP of Susko (2006).

Below, we show how we used the single distribution nonparametric bootstrap (SDNB)

method of Shi et al. (2005) to get a p-value for each topology and each gene. The

main advantages of this method are that the coverage is small and it is computationally

efficient.

The test statistics for the SDNB method are log likelihood differences; that is, δ1 =

lML − l1, . . . , δm = lML − lm where ML is the maximum likelihood tree on the alignment

and m is the number of topologies to test. Instead of generating a bootstrap replicate to

construct a distribution for δi of each topology, the same bootstrap replicate was used to

test all m hypotheses. The procedure was:

1. Generate nonparametric bootstrap replicate data sets by sampling the sites of the

alignment.

2. Estimate the maximum likelihood trees for the original alignment and each of the

bootstrap replicates. We used RELL bootstrapping (Kishino et al., 1990) rather

than re-estimating the parameters of the maximum likelihood tree for each replicate.

3. Approximate the distribution of δi by differencing the log likelihood scores of the

maximum likelihood tree from the original alignment and the maximum likelihood

tree of the replicate.

4. Compare the sample δi values to the distribution. The p-value is the proportion of

bootstrap replicates with δ values higher than the sample δi.

The use of a single set of bootstrap replicates ensures that this procedure is computation-

ally efficient.
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6.2 Constructing confidence sets on multiple genes

For several genes, we have the null hypothesis

Heq : T1 = T2 = . . . = Tk, (6.2)

that is all the genes evolved on the same topology.

For a specific candidate topology, we have

HT
eq : T1 = T2 = . . . = Tk = T (6.3)

so that

HT
eq = ∩ki=1H

T
(i). (6.4)

We obtained a confidence set of topologies by including all the topologies that do not

reject the hypotheses in Equation (6.4).

We used composite p-values to test the hypotheses in Equation (6.4). Composite p-values

combine p-values, and here we combined p-values from each gene to get a p-value for

each candidate topology across all genes. There is a body of literature on how to find a

composite p-value from a range of p-values; see Loughin (2004) and the references therein

for overviews of the field.

The method we used to calculate the composite p-values for each topology was the Normal

method or Stouffer’s method. Stouffer’s method was published in Stouffer et al. (1949)

as an obscure footnote; see Whitlock (2005) for other applications of the method within

evolutionary biology. Stouffer’s method falls into the category of quantile combination

approaches (Loughin, 2004). An advantage of this method is that the p-values have equal

emphasis or weighting, and as such, a single gene will not determine the acceptance or

rejection of the null hypothesis. Stouffer’s method assumes that the p-values come from a

one-sided hypothesis test and that they are uniformly distributed on [0,1] under the null

hypothesis.

Stouffer’s method has four steps, namely:

1. Convert each p-value to a Z-score (that is, Φ−1(p-value) ∼ N(0, 1) under the null
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hypothesis).

2. Sum the Z-scores.

3. Divide the sum by the square root of the number of p-values combined (this stan-

dardises the sum) giving a composite Z-score.

4. Convert the composite Z-score to a p-value.

The formula for the composite Z-score is

ZT (X1, . . . , Xk) =

∑k
i=1 ZT (Xi)√

k
, (6.5)

where Xi is the data from each of the units being combined.

We combined the p-values from each gene and each topology to get a p-value for each

topology.

So, combining our knowledge from studies on p-values of single genes and the Z-score

method, we had the following procedure:

1. Construct a set of candidate trees.

2. For each candidate tree T , and each gene Xi, compute the p-values pT (Xi).

3. For each candidate tree T , and each gene Xi, compute ZT (Xi) = Φ−1(pT (Xi)).

4. For each candidate tree T , compute pT (X1, . . . , Xk) = Φ
(Pk

i=1 ZT (Xi)√
k

)
.

5. Form the confidence set containing all trees T for which pT (X1, . . . , Xk) ≥ α. If

there are no such trees, reject the null hypothesis Heq, that all genes evolved on the

same tree.

6.3 Simulation study

We used simulations to investigate the efficacy of the composite Z scores method. We

were interested in the level (type I error) of the test; that is, the performance of the

method when there was a single topology. We were also interested in the attributes of

the confidence set when the data were generated on different topologies.
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6.3.1 Method

We describe three sets of simulations used to test the method. The first simulation

used two genes generated on the same tree, and the second simulation used two genes

generated on the same topology with different branch lengths. Both of these simulations

tested the level of the test. The third simulation used two genes generated on two different

trees.

In the first simulation, the topology was generated on ten taxa according to a Yule dis-

tribution (Yule, 1925). The branch lengths were chosen from Gamma distributions with

shape parameters 2 (internal edges) and 5 (external edges), and scale parameter 10. The

amino acids were simulated according a WAG model (Whelan and Goldman, 2001), using

Seq-Gen (Rambaut and Grassly, 1997). The rates across sites were modelled by a Gamma

distribution.

In the second set of simulations we generated trees with different branch lengths. These

edge lengths were then modified before simulating the second gene by multiplying the

length used for the simulation of the first gene (t1) by exp(uθ) where u is uniformly

distributed between -1 and 1, and θ is a parameter describing the extent to which edge

lengths differed between genes. We used θ = 0.1, 0.5, 2, and 5.

In the final set of simulations we needed to generate trees with slightly different topologies.

A series of subtree prune and regraft (SPR) operations was used to rearrange a starting

topology to produce a new gene topology. The number of SPR operations between trees

was two, four, or eight.

6.3.2 Results

Same topology, same branch lengths

In these sets, we varied the number of genes. If the method was statistically valid then

the true topology would have been in the confidence set 95% of the time and the set of

candidate trees would get smaller as the number of genes increased.

As the number of genes increased, the number of trees in the confidence set decreased.

The level showed us that in over 98% of cases the true topology was within the confidence
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# of # of Mean # distinct trees Level
genes Reps 95% conf. set size
1 100 47.9 0.99
2 100 11.3 0.98
5 100 6.0 0.99
10 100 3.8 1.00

Table 6.1: Result on the confidence set when varying the number of genes, one topology, fixed branch
lengths. Level is the frequency with which the true topology is in the confidence set.

set. Therefore, the test was a bit conservative.

Same topology, varying branch lengths

In these sets, we varied the branch lengths. We first created a topology with branch

lengths and simulated the first alignment. The second alignment was built on the same

topology, but with adjusted branch lengths.

θ # of Mean # distinct trees Level
parameter Reps 95% conf. set size
0.0 100 11.3 0.98
0.1 100 15.2 0.99
0.5 100 16.5 0.99
2 100 13.4 0.98
5 100 18.1 0.76

Table 6.2: Results on the confidence set when varying the branch lengths, one topology, varying
branch lengths. Level is the frequency with which the true topology is in the confidence
set.

As the variation in the branch lengths between topologies increased, the mean number of

trees in the confidence set was stable, ranging between 11 and 18. The number of times

the true tree was in the confidence set declined dramatically when the tree branch lengths

were very different in the second tree. Once the θ parameter was five, only 76% of the

confidence sets contained the true tree. This might have been because the second tree

had branch lengths which make phylogenetic analysis difficult (that is some branches may

have been very short, making resolving the tree difficult).

Varying topologies

In these sets we varied the true gene trees. We would expect that, in the majority of

replicates, the confidence set would not have any trees, since the two genes have evolved
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on different topologies.

SPR distance # of # true topologies in conf. set # non-empty confidence set
Reps 0 1 2 with no true trees

2 100 83 15 2 4
4 100 96 3 1 0
8 100 94 6 0 2

Table 6.3: Results on the confidence sets with two topologies.

The proportion of empty confidence sets increased as the SPR distance increased. When

the SPR distance was two, 83% of replicates had an empty confidence set, while when the

SPR distance was higher (four or eight), over 90% of replicates had an empty confidence

set.

6.3.3 Discussion of simulation results

There are three important attributes of our method: when the genes are based on one

topology, that the confidence set is not empty; the true topology is often in that set; and

when the true gene trees are different, the confidence set is usually empty.

The size of the confidence set should be small when we have good evidence in favour

of a single common topology. This was most clearly demonstrated as we increased the

number of genes while keeping the topology and branch lengths unchanged. Under these

conditions as the number of genes was increased the size of the confidence set decreased,

but remained non-empty.

The size of the confidence set remained fairly constant as the branch lengths were modified,

showing that the method is robust to different genes having differing evolutionary rates.

However, once the branch lengths became very different, the true topology was sometimes

not in the confidence set at all. The method is not robust to considerable changes in the

branch lengths.

In our simulations with two topologies the sets were often empty, and as the expected

differences between the topologies grew we saw an increase in the proportion of empty

sets. This was pleasing. We would expect that if we used further topologies that were

different, then the confidence set would almost always be empty.
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6.4 Case study: Tiger Moths

Ratcliffe and Nydam (2008) published a study on tiger moths using phylogenetic clusters

and several variables (the types of clicks the moths are capable of making, their colouring,

and the extent to which the species is nocturnal) to investigate the evolution of signaling.

They sequenced one mitochondrial gene (cytochrome oxidase I, COI) and two nuclear

genes (elongation factor 1a, EF1a, and wingless) from 26 closely related moths and the

out-group species Lymantria Dispar.

We applied our congruence test to their data set and the confidence set was empty.

An empty confidence set implies that the genes did not evolve on the same topology. This

is particularly interesting when we compare this result with that of Section 5.2.1. There,

we found that the data was relatively tree-like and that the amount of conflict was small.

This result suggests that, while the conflict is small, it is significant.

6.5 Discussion

In this chapter, we developed a test for incongruence. We developed an efficient method

of finding a confidence set of topologies that contains the true topologies most of the time;

furthermore, as the evidence increased (with an increased number of genes), the size of the

confidence set decreased. When there was incongruence, the sets were often empty.

Stouffel’s method provides a way to combine p-values based on a single gene and single

topology. Using this method we can test for congruence by testing whether it is plausible

that all the genes come from the same topology, and our results show that the method is

reliable and robust.
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Recombination breakpoint detection

7.1 Background and motivation

The final two chapters of this thesis look at recombination. In this chapter, we discuss

our development of a method for testing for the location of a recombination event.

Recombination results in one strand of DNA having inherited material from more than

one parent or source. The process has been extensively studied, and recombination is

one of the main reasons an assumption of tree-like descent may not hold. Here, we focus

on intragenic recombination; that is, recombination that occurs within genes rather than

between genes. Biologists are interested in methods that test for the presence or absence

of recombination, estimate the rate of recombination, or estimate the segment(s) of DNA

involved in a recombination event.

In time series analysis, the term structural break refers to the boundary of a stationary

process. The interpretation is that the data generating process in the time before the

91



92 Recombination breakpoint detection

structural break, and the data-generating process in the time after the structural break,

are different. Most standard time series analyses first check for structural breaks.

The recombination detection methods we introduce here apply structural break detection

methods from time series analysis to the analysis of genetic recombination. We consider

the site positions as an ordering analogous to time points in a time series, and we apply

two structural break methods from time series analysis to look for recombination events.

We introduce these two methods below.

Atheoretical regression trees for structural break detection

The Atheoretical Regression Trees (ART) technique was introduced by Cappelli et al.

(2008) and is based on Fisher’s method of optimisation (Fisher, 1958). The method cal-

culates the deviance score for every allowable partition. The deviance score of a structural

break is given by

SS(h) = [SS(hl) + SS(hr)], (7.1)

where SS(h) is the sum of squares associated with a structural break at position h, SS(hl)

is the sum of squares difference from the mean of the left hand segment, and SS(hr) is

the sum of squares difference from the mean of the right-hand side.

The algorithm creates nested partitions of segments with the same mean. The resulting

tree of nested partitions is then trimmed using a pruning algorithm.

Bai and Perron structural break detection

The breakpoint detection method of Bai and Perron (1998, 2003), hereafter referred to as

BP, relies on the calculation of an upper triangular matrix of sum of squared residuals.

The matrix is indexed by date, or in our case, site number.

The entries in this matrix are calculated subject to three conditions: there is a pre-

specified minimum distance between two breaks, h; if the series has m breaks then m− 1

breaks must be able to fit inside the largest partition; and a new segment cannot start

before observation h.

The method uses dynamic programming to calculate the optimal partitions given a pre-

specified number of breakpoints.
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7.2 Existing recombination breakpoint analysis meth-

ods

In this section we review methods for detecting the boundaries of recombination events

(breakpoints). We present the techniques in two classes: sliding window methods, and

full alignment modelling methods.

7.2.1 Recombination detection using a sliding window

Sliding window methods examine contiguous subsets of sites for particular attributes that

indicate recombination. There are two types of sliding window methods. The first set of

methods looks for evidence that the data-generating process on the sites in the left-hand

half of the window is different from the data-generating process on sites in the right-hand

half of the window. The second set of methods looks for evidence that the subset of sites

within the window has different properties from the entire alignment.

The first set of methods is based on the assumption that summary statistics can indicate

when the topology for the sites from the first half of the window is different from the

topology for the sites from the second half of the window. As the window moves along the

alignment across a breakpoint, the signal will grow until an equal number of sites within

the window come from two different topologies, and then fade. The peaks are usually

tested for significance using permutation testing or Monte Carlo simulations.

Methods in this class include those of McGuire et al. (1997), who compared topologies on

the left and right using distance based methods and sum of squares differences; Husmeier

and Wright (2001b), who compared topologies on the left and right using maximum

likelihood score differences; and Husmeier et al. (2005), who compared the set of topologies

on the left with the set of topologies on the right using likelihood and Robinson-Foulds

distances (Robinson and Foulds, 1981).

The method of Smith (1992) compared the proportion of variable sites before and after

the proposed break point and the significance of the difference is assessed by Monte Carlo

simulations or a permutation test. The key difference is that the number of sites on either

side of the proposed breakpoint does not need to be the same, and therefore two sliders
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move along the alignment creating the left hand and right hand sides of windows with

varying width.

The second set of sliding window methods looks for signs that the subset of sites has

different properties from the entire alignment.

The first subgroup of these methods are based on the assumptions that most of the

alignment comes from one topology, and that this topology is the one inferred by the

phylogenetic method of choice. The methods then compare the topology on a small block

of sites to the global alignment in order to identify the regions where the phylogenetic

signal is different.

Hein (1993) found the most parsimonious tree on the global alignment and compared this

to local trees built using maximum parsimony. Grassly and Holmes (1997) found the

maximum likelihood tree on the global alignment and compared the likelihood score on

this tree to the score on the maximum likelihood tree built on the sites within the sliding

window. Archibald and Roger (2002) used a likelihood ratio test which compared the

maximum likelihood tree on the global alignment to the maximum likelihood tree on the

sites within the sliding window.

Two more recent methods were based on triplets; that is, sets of three sequences. Martin

and Rybicki (2000) compared informative sites in user-defined triplets. Using a sliding

window, they looked for regions where there was a swap in the two closest sequences, and

compared it to the probability of observing the change by chance. Hao (2010) modified

the method to compare consensus sequences rather than all triplets of sequences.

Other methods look at changes in topology as the sliding window is moved along the align-

ment without reference to the global alignment. These methods will infer recombination

whenever there is a switch in topology.

Gibbs et al. (2000) counted several types of informative sites on sets of three taxa and

a random sequence. By permuting the fourth taxa they were able to calculate standard

normal Z-scores for the counts. Z-scores with a magnitude of three or more indicated

recombination candidates.

Boni et al. (2007) considered three sequences at a time with the explicit requirement

that the first two be ancestral to the third. Using the informative sites, they created a

binary sequence which denoted which of the two ancestral sequences was closer. Using
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similarities between this sequence and a random walk, they developed an exact expression

for the probability of observing that pattern, given the probability of observing a state

and allowing for one or two breakpoints. As an exact method it is very fast.

Bruen and Poss (2007) looked for changes in the p-value from the PHI test (Bruen et al.,

2006). Small p-values indicated recombination, and therefore the sliding window allowed

them to find the edges of the recombination event.

Lemey et al. (2009) developed recombination detection by quartet scanning. There are

three possible unrooted topologies on four taxa and for each set of four taxa the relative

supports for the three topologies can be calculated by statistical geometry. Using a

sliding window approach, the changes in support can be detected and tested for statistical

significance.

With all sliding window methods there is a trade off between a large window size, which

may give rise to a stable behaviour; and a small window size, which will show the boundary

as a more extreme value of the test statistic.

7.2.2 Recombination detection using a full alignment model

In this section we discuss full alignment models. These models also recognise that re-

combination creates a mosaic of origins in the alignment, and fit a model that includes

the recombination events. In this way, some of the methods are able to estimate other

evolutionary parameters simultaneously. We review four schools of approaches.

McGuire et al. (2000) focused on finding changes in topologies using a hidden Markov

model. Using four taxa, they developed a model that tolerated small segments of sites

which had low likelihood scores but gave rise to a switch in topologies when the sites were

sufficiently different. Using a Bayesian approach and likelihood calculations, McGuire

et al. (2000) calculated posterior probabilities for the breakpoints. Husmeier and Wright

(2001a) extended the work by optimising the joint topologies and recombination rate

rather than fixing them in advance.

Suchard et al. (2003) extended standard phylogenetic Bayesian analysis to sample and es-

timate the topologies and the location of the breakpoints alongside standard evolutionary

parameters. Later, Minn et al. (2005) further extended the method and separated out



96 Recombination breakpoint detection

the estimation of the locations of substitution parameters changes and topology changes.

Fang et al. (2007) produced an implementation that is very efficient and quick to run, but

can only handle up to eight taxa (Martins et al., 2008).

The Genetic Algorithm Recombination Detection method or GARD (Pond et al., 2006)

is actually two methods. The first GARD method screens for a single breakpoint by in-

ferring a neighbor-joining tree for the global alignment, with the parameters estimated by

maximum likelihood, then for each possible breakpoint (there is a potential breakpoint

between each variable site) neighbor-joining trees are estimated on either side and the

AIC calculated based on the original maximum likelihood parameters. Recombination is

inferred when the AIC of the global alignment is greater than the AIC of the alignment

with a breakpoint. The second GARD method screens for multiple breakpoints by fixing

the number of breakpoints and iterating the procedure. The method uses a genetic algo-

rithm to create new individuals who are recombinants based on the potential breakpoints

and existing individuals. Tools from model averaging and the AIC values are used to infer

the breakpoints.

The methods of Etherington et al. (2005) and Maydt and Lengauer (2006) form recom-

binant sequences from other sequences in the alignment. The method of Etherington

et al. (2005) relied on three parameters: two distance thresholds specifying the genetic

distance by which a sequence must change in order to be considered a recombinant; and

the maximum number of sequences able to contribute to a recombination strand. Maydt

and Lengauer (2006) took each sequence in turn and estimated the cost of forming it

from the other available sequences. This cost incorporated the relative cost of explaining

the sequence by mutation and recombination. The sequences with low cost given recom-

bination are the output candidate recombinants. Both methods returned the suggested

position of the recombination event and identify the taxa involved. They also implicitly

make the assumption that if a population sample contains recombinants, then it contains

the parental sequences as well.

Modelling the full alignment gives a set of breakpoints that takes into account the rest of

the alignment, and sometimes other evolutionary parameters.
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7.2.3 Desirable properties of recombination detection methods

Modern DNA alignments can be very long, up to entire chromosomes. Therefore, recom-

bination detection methods must be able to search for recombination events on this scale.

Many of the sliding window methods could be used on these long sequences as they scale

linearly with sequence length. Many of the full alignment methods are not scalable in

this way. Therefore, there is a need for full alignment methods with can accommodate

long alignments.

Furthermore, there is a need for methods which are powerful even in the presence of high

mutation rates. GARD (Pond et al., 2006) is a successful method but it performs best

when the mutation rate is low. Therefore, there is a need for recombination breakpoint

detection methods which are robust.

7.3 Input series for recombination breakpoint detec-

tion

Our strategy is to derive an analogue of a time series from the alignment and then ap-

ply the two recombination breakpoint detection methods: ART, and Bai and Perron

(BP).

We used two input series for our recombination breakpoint detection: the influence func-

tion, and a distance based splits approach. We describe each in turn, below.

7.3.1 The influence function series

Bar-Hen et al. (2008) introduced the influence function to phylogenetics. The method

quantifies the influence of each site on the tree likelihood calculation. They define the

influence function as

IFS,Fn(Xh) = (n− 1)(lT (θT |X)− lT (h)(θT (h)|X(h))) (7.2)

where X is the full alignment, X(h) is the alignment with the hth position removed, l(θT |x)
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is the tree likelihood, θ is the maximum likelihood parameters, and n is the number of

sites in the alignment. The influence function measures influence as the difference in

likelihoods when a single site is removed. Large negative influence values imply that the

site does not support the maximum likelihood tree. They used this method to rank sites

and create more robust topologies by removing a few outlier sites with large negative

values.

The influence function has the potential to be used as an input series for breakpoint

detection methods. It has large negative values where the maximum likelihood tree does

not fit well (and removing the sites would improve the fit), and we look for clusters of

these large negative values. We expect the mean of this series to contain information on

recombination.

This is the procedure used to study breakpoint detection using the influence function.

For each alignment:

1. Calculate the maximum likelihood tree on the full alignment.

2. Calculate the maximum likelihood tree for alignments with a single site removed.

3. Calculate the influence function.

4. Apply a breakpoint detection method to the resulting influence function series.

The program PhyML (Guindon and Gascuel, 2003) was used to estimate the maximum

likelihood trees and compute likelihood scores.

7.3.2 Distance and splits based series

Our second method was very similar to that of the influence function-based approach.

We used a series based on comparing a neighbor-joining tree built on the whole alignment

with the neighbor-joining trees built on the alignments with one site removed.

Trees have 2n − 3 branches or splits where n is the number of taxa. For each split in

the neighbor-joining tree we took the difference between the distances fitted to the whole

alignment, and the distances fitted with one site removed, and got 2n− 3 series.

We took the mean of each of these series. The series with the largest mean was denoted as
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the base series; that is, the series to which other series of differences will be added.

In order to determine how the other series were added to the base series we first looked at

the correlation matrix. We added the other series to the base series, but first weighted the

differences by the correlation coefficient between the base series and the series in question.

Therefore each element in the input series was a weighted sum of the 2n − 3 differences

where the weights were the correlation coefficients, that is

SD(Xh) =
2n−3∑
i=1

widiffhi (7.3)

where SD is the distance and splits based series, wi is the weighting from the correla-

tion matrix and diffh is the vector of differences in branch lengths at site h. Adding

the series together gives a series with a higher variance than a single set of differences

alone, hopefully increasing the effect of a change in the phylogenetic signal on the series

SD.

When there is no recombination SD should be, on average, zero. In the presence of

recombination it may be positive or negative and significantly different from zero.

This procedure created a single series which was used as input for the breakpoint detection

methods ART and BP.

We expected this series to change significantly under a new evolutionary regime. This

simple change would be picked up by a breakpoint detection method if the change was

large enough.

We used the following procedure to study breakpoint detection using the branch or split

weight approach. For each alignment:

1. Calculate the neighbor-joining tree on the full alignment.

2. Calculate the neighbor-joining tree for all alignments with a single site removed.

3. Calculate the 2n− 3 series of differences in the estimated branch weights.

4. Find the series with the largest mean difference; this is the base series.

5. Calculate the correlation matrix of the differences.
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6. Calculate the input series by adding the weighted differences to the base series,

where the weights are the correlation coefficients.

7. Apply breakpoint detection methods to the resulting series.

The methods in this chapter were implemented in R (R Development Core Team, 2009).

7.4 Data

We used two main sources of data to test our methods. The first source was the data

sets from Pond et al. (2006) here referred to as A, B, C and D. They are described

below in detail. The second set of data came from merging two tree-based alignments

simulated using the framework of Hudson (1983). This allowed us to explore a greater

range of sequence divergence rates (often simplified to divergence rates). These data sets

are referred to as E and F, and they are also described below in detail.

Description of the six data sets

A Pond et al. (2006) simulated ten data sets, each with a specified number of break-

points and divergence rate. The breakpoints were at different places in each of

the 100 replicates. The divergence rates were 5% and 25%, and the number of

breakpoints were zero, one, two, four, and eight. Each alignment had eight taxa.

B The second set from Pond et al. (2006) was the neutral scenario, which was based

on merging two alignments, one 400 codons long and the other 100 codons long.

There were 32 taxa in each replicate. Pond et al. (2006) notes that this scenario is

designed to mimic a hotspot in an area with a high mutation rate.

C Scenario one data sets from Pond et al. (2006) had eight taxa and two recombination

points. The alignments were 2,500 base pairs long, and the segment from the 1000th

to 1400th base pair was based on a tree with a single taxon moved to a different

location. The data was generated based on the HKY85 model and had a divergence

rate of 1%.

D Scenario two data sets from Pond et al. (2006) had eight taxa and three recombi-

nation points. The alignments were 2,500 base pairs long. The segment from base
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pair 600 to the base pair 1100 had a three-taxa clade moved, and the segment from

1100th base pair to the 1900th base pair had a two-taxa clade moved.

E We also tested our method on alignments simulated on trees using Hudson (1983).

We generated a set of alignments where the first part of the alignment was simulated

on one tree and merged with sites generated on another tree. This method is referred

to as the ‘tree-plus-tree’ method. The two alignments were of equal length. We used

the divergence rates of 1%, 5%, and 10%, and sequence lengths of 1000 and 2000.

All data sets had ten taxa.

F We generated alignments following the same protocol as E, except the alignments

were not of equal length. Instead, 80% of sites were from one alignment and the

remaining 20% from another alignment. For the merged alignments where one is

four times longer than the other, we used divergence rates of 1%, 5%, 10%, 20%,

and 50% and a sequence length of 1000.

7.5 Results

A breakpoint was considered to be detected if the breakpoint detection method returned a

breakpoint within 50 base pairs of a true breakpoint. This cutoff was arbitrary, as neither

method provided a confidence interval to guide our choice. While we did not carry out

any sensitivity testing this would have assisted us in determining if this 50 base pair limit

is acceptable.

7.5.1 Results for the influence function based approach

The data sets without breakpoints were used to estimate the level of the test. The false

positive rate as measured by data sets A (the Coalescent data sets) was very low. The

BP detection method with a 5% divergence rate had the highest false positive rate, with

four of the 100 data sets returning at least one breakpoint; ART had two of the 100

data sets return a false positive. When the divergence was 25% there were three and two

false positive detections for BP and ART respectively. This level of false discovery was

reasonable.
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The remainder of the data sets from A had one, two, four, or eight breakpoints. With

a single true recombination event and a low divergence rate (that is a 5% divergence

rate) the true breakpoint was never detected by either ART and BP. However, seven

and 12 of the data sets reported a falsely detected recombination event for ART and BP

respectively. For the higher divergence rate (that is the 25% divergence rate), the true

breakpoint was detected two and three times by ART and BP respectively, and there were

fewer false positives.

When there was more than one breakpoint, the methods detected more than a single

breakpoint only once. The frequency with which one of the breakpoints was detected was

very low, and at its highest, a correct breakpoint was located in only 11 of the 100 data

sets.

Data set Seq. Length # True breakpoints Div. level Reps Method Breakpoints correctly identified Breakpoints incorrectly identified
0 1 2 or more 0 1 2 or more

A 3000 One 5% 100 ART 100 0 - 93 7 0
BP 100 0 - 89 7 4

25% 100 ART 98 2 - 96 4 0
BP 97 3 - 93 4 3

Two 5% 100 ART 99 1 0 97 3 0
BP 99 1 0 95 3 2

25% 100 ART 96 4 0 100 0 0
BP 96 4 0 99 0 1

Four 5% 100 ART 96 4 0 96 4 0
BP 96 4 0 92 3 5

25% 100 ART 90 10 0 97 3 0
BP 89 11 0 95 4 1

Eight 5% 100 ART 97 3 0 95 4 1
BP 95 5 0 87 9 4

25% 100 ART 93 7 0 88 12 0
BP 91 8 1 86 13 1

B 1500 One 100 ART 1 99 - 92 7 1
BP 1 99 0 54 26 20

C 2400 Two 100 ART 100 0 0 100 0 0
BP 100 0 0 91 1 10

D 2400 Three 100 ART 100 0 0 100 0 0
BP 97 3 0 92 3 5

E 1000 One 1% 200 ART 97.5 2.5 - 91 8.5 0.5
BP 99 1 - 85.5 4.5 10

5% 200 ART 87.5 12.5 - 82.5 16 1.5
BP 91 9 - 90 7.5 2.5

10% 200 ART 92 18 - 86 12.5 1.5
BP 77.5 22.5 - 92 6 2

2000 One 1% 200 ART 99.5 1 - 98.5 1.5 0
BP 99 1 - 77 5 18

5% 200 ART 89 11 - 94.5 5.5 0
BP 86.5 13.5 - 82.5 9 8.5

10% 200 ART 80.5 19.5 - 88.5 11.5 0
BP 78 22 - 81 14.5 4.5

F 1000 One 1% 200 ART 95 5 - 80 16.5 3.5
BP 94.5 5.5 - 70 25 5

5% 200 ART 30 70 - 69.5 26 4.5
BP 29 71 - 71.5 24 4.5

10% 200 ART 46 54 - 66 28.5 5.5
BP 37.5 62.5 - 74.5 17 9.5

20% 200 ART 62.5 37.5 - 72 23 5
BP 57.5 42.5 - 81 16 3

50% 200 ART 82.5 17.5 - 74.5 20.5 5
BP 77.5 22.5 - 78 17.5 4.5

Table 7.1: Using ART and BP and the influence function to detect recombination breakpoints

The influence function breakpoint detection method worked very well on the data sets

B. It reported the correct breakpoint in nearly all of the data sets. The main difference
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between ART and BP was the level of spurious breaks reported. BP reported a great deal

more spurious breaks.

The influence function-based method performed very poorly on the data sets C, and

did not report the correct breakpoint once. The BP method reported some spurious

breakpoints.

The method also performed very poorly on data from data sets D. The BP method

reported some suprious breaks, but neither method detected any of the true break-

points.

For data sets E there was a single breakpoint, located in the middle. As the divergence

rate increased, the rate of detection increased. At the highest divergence rate (10%),

the correct breakpoint was located in about 20% of datasets. As the divergence rate

increased, we also noted an increase in false positive detection; the rate was nearly the

same as the rate of accurate detection. This was true of both ART and BP detection

methods. Sequence length appears not to influence performance.

For data sets F, 80% of the alignment was based on one tree and 20% on another. When

the divergence rate was 10%, the true breakpoint was detected in about 40% percent of

the data sets. Once the divergence rate was 50%, about 80% of the data sets reported the

true breakpoint. The rate of false detection was relatively small, and in about 15% of cases

an additional breakpoint was falsely reported (when the sequence divergence is 50%). The

performance of ART and BP methods was similar, with ART generally detecting a few

more breakpoints and reporting fewer false positives.

7.5.2 Results for the distance based splits approach

We applied only the ART method of breakpoint detection to the data sets A, C, and D.

BP is much more computationally intensive, and in the first set of investigations based on

the influence function the ART procedure slightly outperformed the BP procedure.

The distance based splits approach was applied to data sets A. The set with no recombi-

nation events could be used to investigate the level. Of the 100 data sets with a divergence

rate of 25%, only one had a single false detection, and all of the data sets with a divergence

rate of 5% did not have any false detections. Therefore, the level appears to be very low
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under these parameters.

Data set Seq. Length # True breakpoints Div. level Reps Method Breakpoints correctly identified Breakpoints incorrectly identified
0 1 2 or more 0 1 2 or more

A 3000 One 5% 100 ART 98 2 - 98 2 0
25% 100 ART 95 5 - 99 1 0

Two 5% 100 ART 98 2 0 96 3 1
25% 100 ART 89 9 2 99 1 0

Four 5% 100 ART 96 4 0 92 7 1
25% 100 ART 86 12 2 97 3 0

Eight 5% 100 ART 84 16 0 91 8 1
25% 100 ART 79 21 0 93 7 0

B 1500 One 100 ART 84 16 0 89 11 0
BP 82 18 0 87 11 2

C 2400 Two 100 ART 100 0 0 98 2 0
D 2400 Three 100 ART 100 0 - 99 1 0
E 1000 One 1% 200 ART 94.5 5.5 - 72.5 14 13.5

BP 93.5 6.5 - 55.5 12.5 32
5% 200 ART 77 23 - 74 19 7

BP 78 22 - 69.5 16 14.5
10% 200 ART 62.5 37.5 - 76 18 6

BP 68.5 31.5 - 72 14 14
20% 200 ART 45 55 - 83.5 14.5 2

BP 51.5 49.5 - 76 17 7
50% 200 ART 40.5 59.5 - 81.5 17 1.5

BP 44 56 - 87.5 11 1.5
2000 One 1% 200 ART 95.5 4.5 - 81 6 3

BP 87.5 12.5 - 50 12.5 37.5
5% 200 ART 72.5 27.5 - 86 12 2

BP 71.5 28.5 - 57 13.5 29.5
10% 200 ART 68 32 - 85 14.5 0.5

BP 67 33 - 56.5 16.5 27
20% 200 ART 56 44 - 92.5 7.5 0

BP 55.5 45.5 - 81 12.5 6.5
50% 200 ART 45 55 - 89 11 0

BP 45.5 55.5 - 78.5 16.5 5
F 1000 One 1% 200 ART 95.5 4.5 - 80 13.5 6.5

BP 89.5 10.5 - 63.5 13.5 23
5% 200 ART 81.5 18.5 - 76 18.5 5.5

BP 83 17 - 25 12.5 12.5
10% 200 ART 68 32 - 75 18.5 7

BP 71 29 - 71 17 12
20% 200 ART 54.5 45.5 - 76.5 25 8.5

BP 60.5 39.5 - 64 23.5 12.5
50% 200 ART 53 47 - 83 22.5 4.5

BP 58 42 - 81.5 12.5 6
2000 One 1% 200 ART 93.5 6.5 - 87 9 4

BP 88 12 - 37.5 21.5 41
5% 200 ART 81 19 - 85 11.5 3.5

BP 75.5 24.5 - 51 14 35
10% 200 ART 64 36 - 86 11.5 2.5

BP 62. 5 37.5 - 69.5 13 17.5
20% 200 ART 62 38 - 91.5 8 0.5

BP 60 40 - 74 10 16
50% 200 ART 52.5 47.5 - 86.5 12.5 1

BP 47.5 52.5 - 74.5 15 10.5

Table 7.2: Using ART and BP and the distance-based splits approach to detect recombination break-
points

Studying the results reported from using coalescent-based simulated data with two, four,

and eight breakpoints, we found that more breaks were reported when the divergence rate

was higher; that is, 25% instead of 5%. However, even for the higher divergence rate, the

proportion of correctly reported breakpoints was very low. The data set which reported

the most correct detections was the data set with eight breakpoints, and it reported one

break correctly in 21 of 100 of the data sets and did not report any of the remaining seven

breakpoints. Therefore, the detection rate is very low.

The splits based detection method did not report many of the breakpoints for data sets
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B. We used both ART and BP and they reported the correct breakpoint 16 and 18

times respectively. Both method reported at least one false positive in ten percent of the

replicates.

The splits based detection method did not report any of the true breakpoints for data

sets C and D. This method did report one or two false positives.

When two series of equal lengths were merged (data sets E) then in over 40% of data sets

the true breakpoint was detected provided the divergence rate was 20% or 50%.

When one series was four times longer than the other (data sets F), we expected a much

higher rate of detection, but the performance of the method was mediocre, reaching only

52% of data sets reporting the true break.

In general, BP found a similar number of breakpoints to ART; however, it often had a

much higher false positive rate.

7.6 Discussion

Comparing the influence function-based approach with the split-based approach, we see

that neither method consistently outperformed the other.

The performance of our methods compared with GARD on data sets A, B, C

and D

Both of our methods only infrequently reported any breakpoints when the data sets were

built using a coalescent model and a fixed number of recombination events (data sets A).

In the majority of the instance that a breakpoint was reported correctly, only one out of

up to eight breakpoints was reported (with one exception). Our method did not perform

nearly as well as GARD, though GARD also had considerable difficulty finding multiple

breakpoints. The authors note that the recombination signal is “quickly saturated for

small alignments (8 sequences)”. This implies it would be very difficult for any method

to consistently detect all the breakpoints.

The data sets B (neutral scenario) was designed to replicate hotspots and as such it had a

high mutation rate. Our influence function method performed very well, with this type of
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data finding the one true breakpoint in nearly all of the 100 replicates. Our distance-based

splits approach seldom reported a breakpoint correctly.

For scenarios one and two (data sets C and D), both our methods seldom reported a

breakpoint, while GARD performed very well on these two data sets.

Pond et al. (2006) found that GARD reported a much higher false positive rate for data

sets B than either of data sets C or D. Our false positive rate was very low, while our

detection rate was very high when using the influence function-based approach for data

sets B. Therefore, it seems our method outperformed GARD under these settings. This

suggests that using the influence function to detect recombination may be most useful for

hotspots.

The performance of our methods on data sets E and F

Merging two trees is an extreme way of simulating recombination, and this does not accu-

rately model likely site patterns seen in recombinant alignments. Typically, only a small

number of taxa are influenced by the recombination event; perhaps only a single taxon.

Therefore, we expect that using the ‘tree-plus-tree’ method for simulating and testing a

recombination breakpoint method would overstate the power of the method.

Using the influence function, the correct breakpoint was only detected a few times when

the merged alignments were of equal length. The performance of the method improved

significantly when one of the regimes dominated the series, as seen by the improved

performance of the alignments with 80% of sites coming from one tree and the remaining

20% of sites coming from the second tree.

The distance-based splits approach performed better than the influence function approach

when the merged alignments were of equal lengths, but was worse than the influence

function approach when the alignments had 80% of sites coming from one tree and 20%

of sites coming from another.

General observations

The influence function as input into the breakpoint detection method was based on a

reasonable assumption. The influence function gives rise to a large negative value when

removing the site results in an improved fit. These large negative values therefore indicated

which sites did not fit, and it was a natural progression to consider detecting evolutionary
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regimes by testing for groupings of large negative influence function values.

The common feature of most of the data sets from Pond et al. (2006) was the low diver-

gence rate. When the divergence rate was low, the proportion of non-constant sites was

smaller and the subset of sites which did not fit on the maximum likelihood tree was even

smaller still. This reduced the chance of observing a group of large negative influence

values, and consequently, the chance of detecting such a group. Our method looked for

statistically significant groupings in these influence function values, and therefore required

a reasonable amount of information or informative sites. Therefore, our method would be

expected to improve in accuracy as the divergence rate increased, and we see this when

comparing the results on a 5% and 25% divergence rate for the coalescent-based simula-

tions. Furthermore, the rate of detection was very high for the neutral scenario, which

had a high mutation rate.

If the alignment was composed of two trees, each contributing an equal number of sites,

then the maximum likelihood tree on the whole alignment would reflect this mixture and

many of the sites might not fit on this tree. Therefore, the poor performance observed

when merging two alignments of equal length is likely to have resulted from the fact

that on both sides of the break we observed large negative influence function values, and

consequently the breakpoint detection method would not observe any differences in the

mean of the influence function on either side of the simulated breakpoint.

The improved performance of the method on the alignment with 80% of sites coming

from one tree and 20% of sites coming from the second tree was a result of the maximum

likelihood tree being less influenced by the 20% of the alignment. Therefore, there was

an increased chance of some site patterns producing large negative influence function

values within the smaller regime; furthermore, there was an increased chance of these

large values clustering in the segment of the alignment simulated under a different tree.

This confirmed that our influence function-based series and a recombination breakpoint

detection method showed potential in detecting hotspots.

The disadvantage of the influence-based method was that it only indicated which sites

did not fit well, and lacked an ability to discern the extent to which they did not fit,

or the influence the site had on the topology. However this was only a problem if the

regimes were of equal lengths; when one regime dominated the series, our influence-based

approach performed very well.
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The splits-based approach performed better than the influence function for the coalescent

data from Pond et al. (2006) and data sets E. It suggested that the method was more

sensitive than the influence function-based approach. The only method we used to mix

the branch lengths into a single series was weighting by the correlation matrix of the

differences. We chose to weight by correlations as we felt this would exaggerate the

differences. This was not enough to get the level of sensitivity required.

Neighbor-joining is one of several tree construction methods that could be used to con-

struct a topology based series in this way. Neighbor-joining is a distance-based method,

and as such, it is very efficient. When the input alignment was 1000 base pairs long the

number of neighbor-joining trees estimated was 1001; one for the whole alignment and one

for each site removed. Therefore, the tree topology estimation must be fast and neighbor-

joining was a good choice. It seems unlikely that using an alternative tree construction

method would improve the performance.

ART generally outperformed the method of Bai and Perron (1998, 2003). It reported far

fewer spurious breaks, especially for alignments with highly-diverged sequences where the

performance of this method is of the greatest interest.

The procedure of BP was presented originally as a method for finding the optimal break-

point locations given the maximum number of breakpoints. The R implementation in

the strucchange package (Zeileis et al., 2002) has a parameter which specifies the mini-

mum distance between two breakpoints. In all the simulations we specified the minimum

distance to be 25 base pairs. We did not carry out any investigations into the optimal

specified minimum distance. Bai and Perron (1998) suggested to users that they run the

method several times with different numbers of maximum breakpoints, as the method can

be sensitive to this parameter, so additional investigations into this parameter would be

useful. The BP procedure had a tendency to report higher levels of false positive break-

points. This may potentially be reduced if the minimum distance between two breakpoints

is increased.

Extensive simulations using the ART procedure found ART to be relatively insensitive

to the tuning parameter which determined the strength of pruning in the atheoretical

regression trees (Rea, 2008). Therefore, ART is likely to have been performing optimally

and would not benefit from further refinement.
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ART offers considerable benefits for longer alignments. BP becomes infeasible for align-

ments more than just a few thousand base pairs long, while ART has no such restriction.

The ART procedure, upon detecting a breakpoint, then considers the two alignment seg-

ments separately, and as such it is very efficient, even for long alignments. It is worthwhile

noting that Graham et al. (2005) detected breakpoints by splitting the alignment upon

detection of a breakpoint and re-searching the fragments. This has similarities with the

ART approach.

One factor that had no detectable effect on the chances of correctly detecting a true

breakpoint was sequence length. The simulations based on merging two alignments had

sequence lengths of 1000 and 2000 base pairs. From the performance of these two sets we

were unable to predict the efficacy of the method on longer or shorter alignments. This

would require further investigation.

However, if our method is to be applied to hotspot detection, it needs to be able to handle

millions of base pairs, not just a few thousand. Clearly ART is the only choice. However,

we have not yet tested its capabilities with very long alignments.

One factor not yet investigated is the number of taxa. The simulations based on the

Pond et al. (2006) data had a varying number of taxa but these data sets all had low

divergence rates, giving rise to very few correctly-reported breaks. All of the simulations

carried out on alignments created by merging two alignments had ten taxa. Therefore,

it would be interesting to run a further set of simulations with more taxa to provide a

comparison.

The approach taken has focussed on two input time series for the breakpoint detection

methods namely the influence function approach and the distances-based splits approach.

These procedures could potentially be more widely applicable, as an appropriate input

series is any series which has the property that different evolutionary regimes give rise to

different mean levels in the series.
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8
Investigating recombination using

incompatibility

8.1 Background and motivation

In this chapter we once again look at recombination. Recombination creates a mosaic

of origins, and therefore sites on different sides of a breakpoint will have been generated

on different trees. This attribute of the site patterns has been used to develop a range

of recombination tests. We used it to develop a method for detecting recombination

breakpoints.

Our work relies on the concept of refined pairwise incompatibility outlined in Penny and

Hendy (1986). The incompatibility score is calculated on two sites, i and j, and is given

by

si,j = l(χi, χj)− (|χi| − 1)− (|χj| − 1), (8.1)

111
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Figure 8.1: Three sites on the same topology. Red and green bars indicate mutations from a zero to a
one. The middle site has a convergent evolution event, as a one has evolved independently
twice at this site. This type of event can lead to incompatibility when paired with another
site such as the first site; but not necessarily, as we can see by comparing the second and
third sites.

where |χi| is the number of observed states at site i, and l(χi, χj) is the maximum par-

simony score for the two sites (the maximum parsimony score is minimum number of

mutations required for both characters to evolve on the same tree). We say that two sites

are compatible if si,j = 0, and incompatible if si,j > 0. The score indicates the number of

additional mutations required to fit both sites onto a single tree (see Figure 8.1).

On some occasions we use the raw score si,j, on other we follow Camin and Sokal (1965)

and Le Quesne (1969) and just use an indicator variables for where si,j is zero (compatible

sites) or non-zero (incompatible sites).

The assumption that incompatibility levels are higher across breakpoints led to a variety

of methods for investigating recombination. Jakobsen and Easteal (1996) introduced the

incompatibility matrix. The rows and columns are indexed by sites, and the squares

where the pairwise incompatibility score is non-zero are darkened. Jakobsen and Easteal
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(1996) developed a method which tests for the presence of recombination by comparing

the observed ‘neighbor similarity score’; that is, the fraction of adjacent squares of the

incompatibility matrix with the same score, with the expected score based on Monte

Carlo simulations. The PHI statistic (Bruen et al., 2006) is a non-parameteric test for

recombination. The test is based on the idea that closer sites are more likely to be

compatible than distant sites, in the presence of recombination.

Salemi et al. (2008) published an algorithm for investigating recombination using the PHI

test and neighbor-net, but did not provide a formal justification for the method. The rea-

son that this method is valid is that the distances are independent of the order in which

the sites occur in the alignment, while the PHI test relies on the order. Therefore, the

subgroups identified by a distance-based method (either a tree-based or network-based

method) are also independent of the ordering. The combination of these two indepen-

dent sources of information and the user’s intuition may result in finding the source of

recombination with just a few simple tests.

We developed a recombination breakpoint detection method which returned a ranked

set of potential breakpoints. These candiates must be checked before a recombination

breakpoint is confirmed.

We devised a small simulation-based study to investigate whether compatibility held

information on the number of recombinations. Consider two sites in an alignment. If

there is a breakpoint between the two, this increases the likelihood of incompatibility,

since the two sites have evolved on different trees. We wanted to investigate whether

multiple breakpoints, or recombinations, would lead to a higher level of incompatibility;

and, conversely, whether the incompatibility score reflected the number of breakpoints

between two sites.

As Figure 8.2 shows, there was an increase in the amount of incompatibility as the number

of recombinations increased and as the sequence divergence rate increased.

Based on the fact that incompatibility increased across a breakpoint, we developed a

linear modelling approach to finding the location of the breakpoints.
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Figure 8.2: Number of recombinations with average incompatibility over a range of parameters. Data
generated on alignments of length two base pairs with the ancestral recombination graph
(Hudson, 1983) determining the number of recombinations between the two sites.

8.2 Using incompatibility to detect recombination break-

points

To date, incompatibility has been primarily used as a measure to detect recombination.

In this section, we report how we used it to estimate the number and locations of recom-

bination events.

8.2.1 Breakpoint recombination model

The model we developed was based on the principle that the level of incompatibility

increased linearly as the number of breakpoints separating the two sites increased. It
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modelled the vector of pairwise incompatibility scores using variables which indicated

which pairs were expected to have an increased level of compatibility given a specified

breakpoint.

The incompatibility matrix contained the incompatibility score for every pair of sites,

and the rows and columns of the matrix were indexed by sites. The matrix contained the

incompatibility patterns we wanted to explain, and it could be represented as a vector

using the pair of sites for the indexing.

If there was one breakpoint we expected a higher level of incompatibility when comparing

pairs of sites separated by a breakpoint than with those pairs which were within a single

regime. The small simulation study above showed that the average incompatibility level

increased when the sites were separated by additional breakpoints (Figure 8.2).

Each breakpoint induced a split of the set of sites. We could therefore apply split-based

methods and models from Chapter 2; except that the ‘taxa’ were the sites. The splits

matrix, X, had a column for each split, and rows were indexed, in this case, by pairs of

sites. The entries Xij;k were given by

Xij;k =

1 if i and j are on opposite sides of the breakpoint

0 if i and j are on the same side of the breakpoint.
(8.2)

We used the set of splits that represented the n− 1 potential breakpoints where n is the

number of informative sites. Therefore, a column of the splits matrix contained ones when

the two sites of the row index were on either side of the breakpoint, and zeros when the

two sites were on the same side.

We used a linear regression framework to estimate the number of recombination break-

points and their locations. Specifically,

y = Xβ + ε (8.3)

where y is the vector of incompatibility scores indexed by pairs of sites and β is the vector

of fitted coefficients.

We noted that the splits induced by the breakpoints were all contained within the splits

of a phylogenetic tree (with taxa equal to the set of sites) therefore OLS estimates can
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be computed in order O(N2) time (Bryant and Waddell, 1997). However, here, we used

simple linear regression.

Figure 8.3: The zones of incompatibility for the alignment below. The pale grey part of the DNA strands
represent recombinant strands. The palest grey represents the part of the incompatibility
matrix in which the two sites are not separated by a breakpoint, the mid-tone grey repre-
sents the part of the incompatibility matrix in which the two sites are separated by a single
breakpoint, and the darkest grey represents the part of the incompatibility matrix in which
the two sites are separated by two breakpoints.

8.2.2 Simulation study

The simulation procedure used to test this model was based on merging two trees together.

The procedure was as follows:

1. Simulate two alignments, each on a different tree, and merge them together.
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2. Calculate the incompatibility score for every pair of sites.

3. Estimate the set of potential breakpoints based on the locations of the variable sites.

4. Estimate the pairs which are expected to have an increased rate of incompatibility

for each breakpoint, and form X.

5. Fit an ordinary least squares model.

We ran this simulation under four scenarios; that is with sequence lengths 400 base pairs

and 800 base pairs and sequence divergence rates of 10% and 20%. We used ten taxa.

The computational requirements of the current implementation meant that running this

procedure for alignments longer than 800 base pairs was infeasible and running this for

alignments of 800 base pairs took considerable time and memory. This is unsurprising

given that the predictive vector contains all the information from the upper triangle of the

incompatibility matrix and the dimensions of the problem grow quickly as the sequence

length increases. However, there is potential for avoiding many of these computational

difficulties by taking advantage of the structure of X.

8.2.3 Results

Break number of the correct breakpoint reported
Sequence length Sequence divergence First Second Third Fourth or more
400 10% 77 14 4 5

20% 91 7 1 1
800 10% 76 14 6 4

20% 90 10 0 0

Table 8.1: The percentage of times the correct breakpoint (at site 200 for alignments 400 base pairs
long and at site 400 for alignments 800 base pairs long) was returned at that break number
or glmpath ranking. The correct breakpoint was considered to be one within 20 base pairs
of the true breakpoint.

The result of each replicate was a ranked list of potential breakpoints based on the order

in which the R command glmpath (Park and Hastie, 2007) included them in the model.

The command glmpath fits a regression model with an L1 penalty. We currently do not

have a method for determining an appropriate cutoff.

The true breakpoint is in the middle (that is, at site 200 when the alignment is 400 base
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pairs long, and at site 400 when the alignment is 800 base pairs long). Therefore, the

frequency with which the true breakpoint is reported as the first, second, third, fourth,

or later position.

The sequence divergence rate had the strongest influence on the results. When the di-

vergence was low (10%), just over three quarters of the time the true breakpoint was the

first reported breakpoint and at least 90% of the time the true breakpoint was one of the

first two reported breaks. When the sequence divergence rate was high (20%), then at

least 90% of the time the true breakpoint was the first reported breakpoint.

8.2.4 Case studies

We applied the method to the two shortest sequences that Posada (2002) found to have

recombination: Petunia RNase and Neisseria ArgF. These plots show the locations of

the breakpoints with respect to site position. The number of breakpoints displayed was

chosen by the BIC criterion. These plots show that an objective measure of how many

breakpoints there are is essential to the success of the method.
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Petunia: The first five breakpoints

Site Position

0 100 200 300 400 500

Petunia: The first twenty breakpoints

Site Position

0 100 200 300 400 500

Petunia: All breakpoints according to the BIC

Site Position

0 100 200 300 400 500

Figure 8.4: Breakpoints reported by our incompatibility breakpoint detection method.
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Neisseria ArgF: The first five breakpoints

Site Position

0 200 400 600 800

Neisseria ArgF: The first twenty breakpoints

Site Position

0 200 400 600 800

Neisseria ArgF: All breakpoints according to the BIC

Site Position

0 200 400 600 800

Figure 8.5: Breakpoints reported by our incompatibility breakpoint detection method.
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8.2.5 Discussion

These results suggested that incompatibility, which has already been proven valuable

in detecting recombination, can also provide information that will allow us to detect

recombination breakpoints.

In the majority of cases, the correct breakpoint was the first or second reported breakpoint.

When the sequence divergence rate was high (that is, 20%) at least 90% of the time the

true breakpoint was the first reported breakpoint.

Our margin of error was 20 base pairs. Therefore when the alignment was 400 base pairs

long and the true breakpoint at site 200, then if the first breakpoint was between site 180

and site 220 we said that the model reported the correct breakpoint first. If we were to

narrow or widen this gap, the results would change.

Simulating sequences on two different trees and merging them exaggerated the signs of

recombination by leading to high levels of incompatibility for pairs across the breakpoint.

Therefore, the results of this simulation may be better than we can hope for in prac-

tice.

Our method assumed that the contributions from each breakpoint were linear and addi-

tive. These results suggested that this was a good approximation of the truth.

Unfortunately, the accurate estimation of the number of breakpoints remains an unre-

solved problem. The AIC and BIC pick an excessive number of breakpoints, and are

consequently not suitable. These criteria pick models which incorporate the splits ex-

plaining the smaller changes because of the mutation rate, as well as the split which

determined the breakpoint. Potential future work could include conditioning on the num-

ber of breakpoints or using a reversible jump MCMC to infer possible breakpoints.

The current implementation of this method is time-consuming for small sequences. This

was a direct result of the dimensions of y and X being quadratic in the number of sites.

Given this initial demonstration that the method has considerable potential, future work

includes speeding up the calculations.

Further investigations could include a wider range of simulation conditions including run-

ning the method with the breakpoint not in the center, expanding the range of sequence

divergence rates tested, and expanding the range of the number of taxa investigated.
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9
Discussion

This thesis has looked at several sources of heterogeneity in phylogenetics from a statistical

perspective. In the first half of the thesis we investigated visualising heterogeneity by

using networks; we used split networks and consensus networks. We have looked at

recombination, and in particular two ways of detecting the boundaries of a recombination

event. We have also looked at interspecific heterogeneity caused by different genes evolving

on different topologies. Here, we discuss the main outcomes of this work.

The first part of our work on networks centered on directly applying a statistical tech-

nique to network construction. Estimating a phylogenetic tree or network involves esti-

mating discrete (topology) and continuous (branch length) components. Viewing splits

as explanatory variables, as we did, allowed us to directly apply statistical tools to es-

timating the branch lengths. We applied the framework to neighbor-net (Bryant and

Moulton, 2004), and as a consequence we were able to reduce some of the clutter in the

networks.

123
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One philosophical question we briefly discussed was what is the null model when consider-

ing a network; is it a network or a tree? There are arguments in favour of each approach,

but the issue is far from settled. This is an issue worth further consideration.

Our chapter on testing for tree-likeness aimed to develop a test that would have dis-

tinguished between between alignments with some form of heterogeneity and alignments

without heterogeneity. The main outcome of this work was that testing for tree-likeness

using our information criteria approach is not possible. It was a novel approach in that we

tried to develop a test for tree-likeness that did not use site ordering information.

Further work in this field could take the form of a search for a method that works; however,

at this stage it would also be valuable to review in detail the approaches to testing for

treeness currently in the literature. This could be useful as the bias against publishing

negative results may have resulted in some of this research in this area not having been

published.

The partial LASSO algorithm provided a novel extension of the LASSO approach to

regression. This approach allows users to define a group of variables which form the

initial model; and we applied the method to neighbor-net, and our user-defined set was

the set of trivial splits.

In future, we could apply the procedure with the user-defined set as the splits from a

tree. We could then use our method to see which split(s) are optimal to add to the tree.

An F-test or comparison of AIC would allow us to investigate tree-likeness in a slightly

different way. The method is also likely to have a wide range of applications in statistics

more generally.

Our final network chapter was on consensus networks. We extended the splits-based

approach of Holland and Moulton (2003) by applying the LASSO algorithm to choosing

the set of statistically supported splits. This is a novel approach to building consensus

networks, as previous methods chose the splits by their frequency in the input trees. This

method has the potential to outperform the frequency-based approaches when several

infrequent splits show heterogeneity that would otherwise be missed or when an infrequent

but very different topology is within the set of input trees. The method is useful in its

current state.

In our work on heterogeneity caused by different genes evolving on different topologies,
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we developed a method for finding a confidence set of topologies for a set of genes. Our

method was novel in that it took well-established methods for assessing the p-value of a

single topology for a single gene and used them to get p-values for those topologies on

multiple genes. As data sets with DNA from multiple genes are becoming readily available

we believe this method is very timely. The method is useful in its present form.

In future, we will investigate whether other methods of evaluating p-values on a single

gene and topology perform well in this framework. We will also carry out some further

case study investigations.

The first part of our work on recombination developed a full alignment method to detect

recombination event boundaries, which we termed “breakpoints”. Our method was novel

in that it applied tools from time series analysis to detecting recombination. By exploiting

the fact that the ordering of the sites is important, we were able to see that time series tools

could be applied to information collected based on the site ordering. Our approach was

to construct two different sequences (the influence function and the distance based splits

approach) that we hypothesized to contain information on recombination as a change in

the mean. We then applied two structural break detection methods (Cappelli et al., 2008;

Bai and Perron, 1998, 2003) to the series to locate changes in the mean.

The most promising outcome of this work is that the influence function (Bar-Hen et al.,

2008) has potential as a hotspot detection method. The influence function and break-

point detection method together locate recombination best when the proportion of the

alignment that is recombined is small. It works best in sequences with a lot of informative

sites.

In future, this work could be expanded, first by testing other series for their potential

to detect recombination. Second, the idea that site orderings contain a great deal of

information on phenomena like recombination may allow us to borrow other tools from

time series analysis.

The second part of our work on recombination focussed on using incompatibility to learn

more about recombination. Incompatibility had previously been used as a basis for a few

tests looking for the presence or absence of recombination. We developed a breakpoint

detection method. Our work was novel in taking a first principles approach to modelling

incompatibility based on how the incompatibility pattern changed in the presence of
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recombination. Our method often accurately returned the correct breakpoint as the first

or second potential breakpoint for short alignments.

In future, we will improve the computational efficiency of this method and will also

investigate whether it is possible to systematically determine how many recombination

breakpoints there are. Our current method returns a ranked list, but we have no way of

determining how many breakpoints are significant.

All these approaches to heterogeneity were from a statistical perspective. We have made

several original contributions to the field of phylogenetics by approaching these problems

with a statistical mindset.
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Figure A.1: Fit of the distances, bias. The recombination rates are on the x-axis. Number of taxa is
20, AIC criterion, 1000 replications.
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Figure A.2: Fit of the distances, bias. The recombination rates are on the x-axis. Number of taxa, 20,
BIC criterion, 1000 replications.
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Figure A.3: Fit of the distances, absolute difference. The recombination rates are on the x-axis. Num-
ber of taxa is 20, AIC criterion, 1000 replications.
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Figure A.4: Fit of the distances, absolute difference. The recombination rates are on the x-axis. Num-
ber of taxa, 20, BIC criterion, 1000 replications.
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Figure A.5: Proportion of splits chosen relative to the number of splits chosen using non-negative least
squares. Number of taxa is 20, BIC criterion, 1000 replications.
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Figure B.1: Fit of the distances, bias. The recombination rates are on the x-axis. Number of taxa is
20, AIC criterion, 1000 replications.
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Figure B.2: Fit of the distances, bias. The recombination rates are on the x-axis. Number of taxa, 20,
BIC criterion, 1000 replications.
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Figure B.3: Fit of the distances, absolute difference. The recombination rates are on the x-axis. Num-
ber of taxa is 20, AIC criterion, 1000 replications.
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Figure B.4: Fit of the distances, absolute difference. The recombination rates are on the x-axis. Num-
ber of taxa, 20, BIC criterion, 1000 replications.
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Figure B.5: Proportion of splits chosen relative to the number of splits chosen using non-negative least
squares. Number of taxa is 20, BIC criterion, 1000 replications.
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Figure C.1: Proportion of splits chosen relative to the number of splits in the tree. Number of taxa is
20, 1000 replications, no recombination.
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Figure D.1: Fit of the distances. The recombination rates are on the x-axis. Number of taxa is 20, AIC
criterion, 200 replications.
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Figure D.2: Fit of the distances. The recombination rates are on the x-axis. Number of taxa, 20, BIC
criterion, 200 replications.
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Figure D.3: Fit of the distances, absolute difference. The recombination rates are on the x-axis. Num-
ber of taxa is 20, AIC criterion, 1000 replications.
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Figure D.4: Fit of the distances, absolute difference. The recombination rates are on the x-axis. Num-
ber of taxa, 20, BIC criterion, 1000 replications.
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Figure D.5: Proportion of splits chosen relative to the number of splits chosen using non-negative least
squares. Number of taxa is 20, BIC criterion, 200 replications.
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Figure E.1: Fit of the distances. The recombination rates are on the x-axis. Number of taxa is 20, AIC
criterion, 200 replications.
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Figure E.2: Fit of the distances. The recombination rates are on the x-axis. Number of taxa, 20, BIC
criterion, 200 replications.
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Figure E.3: Fit of the distances, absolute difference. The recombination rates are on the x-axis. Num-
ber of taxa is 20, AIC criterion, 1000 replications.
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Figure E.4: Fit of the distances, absolute difference. The recombination rates are on the x-axis. Num-
ber of taxa, 20, BIC criterion, 1000 replications.
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Figure E.5: Proportion of splits chosen relative to the number of splits chosen using non-negative least
squares. Number of taxa is 20, BIC criterion, 200 replications.
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This section contains further results for the Hadamard likeilhood.
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Figure F.1: AIC criterion. Box plots of the fit of the distances for sequence lengths 500, 1000 and 2000
and divergences rate 1%, 5% and 10%. Each figure contains fits for the recombinations
rates zero, two, four and eight. Untransformed scenario, Hadamard likelihood.
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Figure F.2: BIC criterion. Box plots of the fit of the distances for sequence lengths 500, 1000 and 2000
and divergences rate 1%, 5% and 10%. Each figure contains fits for the recombinations
rates zero, two, four and eight. Untransformed scenario, Hadamard likelihood.
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Figure F.3: Untransformed scenario, 10 taxa, Hadamard: Histograms of the number of splits chosen
compared to the non-negative least squares solution based on the BIC criterion. The
sequence lengths are 500, 1000 and 2000 while the divergences rates are 1%, 5% and
10%.
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Figures based on NNLS-LASSO and σ̂2

B

This section contains the results for σ̂2
B.
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Figure G.1: Fit of the distances based on the measure (d − d̂)/d where d is the calculated distances
and d̂ is the fitted distances. The recombination rates are on the x-axis. Number of taxa
is 20, AIC criterion, 1000 replications.
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Figure G.2: Fit of the distances based on the measure (d − d̂)/d where d is the calculated distances
and d̂ is the fitted distances. The recombination rates are on the x-axis. Number of taxa,
20, BIC criterion, 1000 replications.
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Figure G.3: Proportion of splits chosen relative to the number of splits chosen using non-negative
least squares. Number of taxa is 20, BIC criterion, 1000 replications.
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Figure H.1: Fit of the distances. The recombination rates are on the x-axis. Number of taxa, 20, BIC
criterion, 200 replications.
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Figure H.2: Fit of the distances. The recombination rates are on the x-axis. Number of taxa, 20, AIC
criterion, 200 replications.
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Figure H.3: Proportion of splits chosen relative to the number of splits chosen using non-negative least
squares. Number of taxa is 20, BIC criterion, 200 replications.
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Figure I.1: Fit of the distances. The recombination rates are on the x-axis. Number of taxa, 20, BIC
criterion, 200 replications.
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Figure I.2: Fit of the distances. The recombination rates are on the x-axis. Number of taxa, 20, AIC
criterion, 200 replications.
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Figure I.3: Proportion of splits chosen relative to the number of splits chosen using non-negative least
squares. Number of taxa is 20, BIC criterion, 200 replications.
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Figure J.1: Fit of the distances. The recombination rates are on the x-axis. Number of taxa, 20, BIC
criterion, 200 replications.
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Figure J.2: Fit of the distances. The recombination rates are on the x-axis. Number of taxa, 20, AIC
criterion, 200 replications.
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Figure J.3: Proportion of splits chosen relative to the number of splits chosen using non-negative least
squares. Number of taxa is 20, BIC criterion, 200 replications.
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Acronyms

AIC Akaike Information Criteria

ART Atheoretical Regression Trees

BIC Bayesian Information Criteria

BP Bai and Perron

COI Cytochrome oxidase I

DNA Deoxyribose Nucleic Acid

EF1a Elongation factor 1a

GARD Genetic Algorithm Recombination Detection

GTR + I + G General time reversible with Gamma and proportional invariant sites

K2P + Gamma Kimura two parameter model with Gamma distributed rates
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188 Acronyms

KKT Karush-Kuhn-Tucker

LASSO Least Absolute Shrinkage and Selection Operator

MCMC Markov Chain Monte Carlo

MPR Most-Parsimonious Reconstruction

NNLS Non-Negative Least Squares

OLS Ordinary Least Squares

PHI Pairwise Homoplasy Index

RASA Relative Apparent Synapomorphy Analysis

RSS Residual sum of squares

SDNB Single Distribution Non-parametic Bootstrap

SPR Subtree Prune and Regraft

SYM + I + G Symmetrical model with Gamma and proportional invariant sites


