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Abstract Invasive species threaten native eco-
systems, the economy and human health. Improved 
understanding of an invasive species’ ecological 
niche, and whether it has differentiated in the invasive 
compared to the native range, will enable better pre-
diction of areas at risk of future invasions. Here, we 
characterise the ecological niche of the common myna 
(Acridotheres tristis) and common starling (Sturnus 
vulgaris), in their native range and in Aotearoa New 
Zealand, where they were introduced over 140 years 
ago. Common myna and common starling are two of 
the most invasive bird species in the world and are 
agricultural pests, competitors to native fauna and 
may act as disease vectors. Using biologically justi-
fied environmental variables and occurrence data, 
we construct ecological niche models (ENMs) using 
five algorithms. Based on the ENM algorithm with 
highest transferability, we identify key environmental 
variables to compare the niches of the two species in 

New Zealand and the native range, and between the 
two species in New Zealand. For both species, we 
find no evidence of niche divergence between New 
Zealand and their native range despite their long inva-
sion history. However, we do find evidence for niche 
differences between the two species in New Zealand. 
Our future suitable habitat predictions suggest little 
range expansion of the already-widespread starlings 
in New Zealand, but large areas at risk of future myna 
invasion in New Zealand’s South Island. Our results 
support ongoing management of myna populations, 
especially in the South Island where the Cook strait 
may already provide some barrier to dispersal.

Keywords Invasive species · Starling · Myna · 
Ecological niche model · Distribution · Niche overlap 
analysis

Introduction

Human activities have introduced many species into 
new areas. Some of these species fail to establish 
(Blackburn and Duncan 2001), while some become 
invasive, that is—reproduce and expand spatially 
and demographically in their newly introduced 
environment (Pyšek and Richardson 2010; Black-
burn et al. 2011; Matheson and McGaughran 2022). 
Invasive species may negatively impact the native 
ecosystem, the economy, and human health, with 
the financial cost of invasive species between 1970 
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and 2020 estimated to exceed 1.288 trillion $USD 
globally (Zenni et  al. 2021). Invasive species are 
also one of the leading causes of global biodiver-
sity loss (Clavero and García-Berthou 2005; Bellard 
et al. 2016).

With increased global connectivity, habitat modi-
fication, and climate change, the impacts of invasive 
species are a growing concern as there has been a rise 
in the number and the distribution of invasive species 
in recent decades (Hulme 2009; Turbelin et al. 2017). 
There is an increasing use of species distribution 
models or ecological niche models (ENMs) to infer 
the realised niche and also potential distribution of 
introduced and not yet introduced species (Faulkner 
et  al. 2014; Shivambu et  al. 2020; Ndimuligo et  al. 
2022). These models have been successfully applied 
to infer areas at risk of future invasion, for example, 
potential areas under risk of house crow invasion in 
New Zealand (Fraser et al. 2015).

There are two main types of ENMs: mechanis-
tic and correlative. Mechanistic ENMs use informa-
tion about the species physiology to model the spe-
cies potential distribution, but require physiological 
information from controlled experiments which are 
difficult to obtain (Peterson et  al. 2015). Correlative 
ENMs, on the other hand, correlate readily available 
species occurrences (e.g., eBird, GBIF, etc.) to envi-
ronmental data (e.g., WorldClim, CHELSA, etc.) to 
model the species’ suitable environmental space or 
“niche” (Peterson et al. 2015). The modelled “niche” 
is assumed to be conserved and this can be projected 
into the geographical space where the model has been 
trained, or transferred into a different area or time. 
ENMs can be built with different predictor variables 
and at different scales (Menke et al. 2009; Seo et al. 
2009; Guevara et  al. 2018). Comparisons between 
fundamental and realised niches can also be made, 
for example, with physiological data (Tingley et  al. 
2014). At large-scale, ENMs informed by climate 
and environmental variables are particularly useful as 
a basis to predict suitable areas prior to introduction 
for conservation and invasive species assessment pur-
poses, and with the increasing availability of future 
climate projections, the models can also be projected 
to predict species suitable habitat in future climates. 
ENM has been used with future climate projections to 
assess climate change vulnerability of birds with dif-
ferent body sizes, life history traits, and from different 
habitats (Simmons et al. 2004).

In this study, correlative ENMs (hereafter, ENMs) 
were used as physiological data were not available. 
The ability of an ENM developed for a specific area 
and/or time to predict the species distribution in a dif-
ferent area or time defines its transferability (Sequeira 
et al. 2018; Yates et al. 2018). ENMs built on biologi-
cally important environmental variables for species 
with well defined, conserved niches are expected to 
have good transferability. Niche transferability, con-
servatism or overlap assessment (hereafter, niche 
overlap analyses) can be performed prior to con-
structing an ENM (as with Fernandez and Hamilton 
(2015)). However, niche overlap analyses are based 
on environmental variables, and the incorporation 
of all possible environmental variables may lead to 
false inferences (e.g., air surface temperature may be 
unimportant for subterranean species, and detecting a 
niche difference based on that variable will not have 
any biological meaning for the species) (Bates and 
Bertelsmeier 2021). Therefore, ENMs can be used 
to help inform biologically important environmental 
variables for niche overlap analysis (Brown and Car-
naval 2019).

Niche overlap analysis can help answer questions 
on invasive species evolution following their intro-
ductions. Has the invasive species merely invaded a 
proportion of its native range niche? Has the invasive 
species invaded a new niche, one that had not been 
previously occupied in the native range? Has the 
invasive species’ niche shifted or diverged since the 
introduction?

Species invasion therefore provides an excel-
lent opportunity to validate ENM predictions and 
transferability and determine whether the species 
has exploited a new niche during invasion. Several 
bird species have been introduced to Aotearoa New 
Zealand and have become invasive (Duncan et  al. 
2006). Among the list of invasive bird species in 
Aotearoa, two species from the Sturnidae family: 
the common myna (Acridotheres tristis, hereafter 
myna), and the common starling (Sturnus vulgaris, 
hereafter starling) are two of the three bird species 
on the IUCN “100 of the World’s Worst Invasive 
Alien Species” list (GISD 2021). Both species are 
omnivorous generalist cavity-nesting species and 
thrive near human-modified landscapes (Downs and 
Hart 2020; GISD 2021). The myna is non-migratory 
and generally regarded as a tropical species, native 
to Central to Southeast Asia (Kannan and James 
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2020). The starling, in contrast, is a migratory 
temperate species, native to temperate Eurasia and 
Northern Africa (Cabe 2020).

In the eighteenth century, mynas were introduced 
to Mauritius and Reunion Island to control insect 
pests (Cheke and Hume 2008), making this one of 
the world’s first attempts at biological pest control 
(Safford and Hawkins 2013). Starlings, on the other 
hand, were first introduced to Australia in the mid-
nineteenth century (Long 1981; Pipek et  al. 2019). 
To date, mynas have been intentionally introduced 
in at least 13 locations across the world, starlings, 
in seven locations across the world and both species 
have also successfully self-introduced globally (Long 
1981; Cabe 2020; Kannan and James 2020; Stuart 
et al. 2023). Mynas now exist on all continents except 
Antarctica and South America, and starlings in all 
continents except Antarctica (Long 1981; Cabe 2020; 
Kannan and James 2020). In their invasive range, 
both mynas and starlings are agricultural pests and 
compete with, and may predate, local fauna (Linz 
et al. 2007; Dhami and Nagle 2009; Downs and Hart 
2020; Feare et al. 2021).

In the South Island of New Zealand, mynas were 
introduced and  persisted for a few decades but dis-
appeared by 1900, except for one Nelson population 
which persisted until the 1960s. In the North Island, 
the common myna range expanded northwards  from 
introduction sites until it reached the tip of the North 
Island by the end of the 1960s, while its southern 
range edge contracted to approximately their current 
distribution by the late 1970s. Mynas are now rare 
in some of their initial introduction locations (e.g., 
Wellington) with very few populations established 
South of Whanganui. However, there have been 
increasing records of mynas in the Wellington region 
in 2011–2021, which may indicate a change in their 
southern range edge (Thomson 1922; Cunningham 
1948; Beesley et al. 2023).

Starlings were introduced and relocated across 
New Zealand and quickly became abundant in most 
parts of the country (Pipek et  al. 2019). Within a 
few decades following introduction, they also 
started colonising offshore islands of New Zealand 
(e.g., Chathams, Kermadecs, Antipodes, Macquarie 
islands) (Long 1981). Both species have become 
agricultural pests in New Zealand (Dawson and 
Bull 1970; Nelson 1990) and positive impacts on 
native fauna has been observed following removal 

of mynas from a New Zealand island, albeit that 
effects may be confounded with removal of other 
pest species (Tindall et al. 2007).

There are a handful of ENM studies focused on 
the two sturnid species. Myna distributions in Aus-
tralia were modelled using one of the first ENM, 
the BIOCLIM model (Martin 1996). A more recent 
study modelled global myna distributions (Magory 
Cohen et al. 2019). A further study included myna 
in joint species distribution models built for com-
mon bird species in Israel (Magory Cohen and Dor 
2019). Global  ENMs on seven invasive species, 
including both the myna and the starling, were per-
formed as part of an impact assessment study  for 
South Africa (Shivambu et  al. 2020). However, 
none of these studies assessed model transfer-
ability or compared niches in the different ranges. 
Ecological niche transferability in starlings has 
been evaluated alongside 12 other species from the 
IUCN “100 of the World’s Worst Invasive Alien 
Species” list, but no species distribution projec-
tions were made (Fernández and Hamilton 2015). 
Overall, these studies suggest both impervious sur-
face area and temperature parameters limit common 
myna distribution (Martin 1996; Magory Cohen 
et  al. 2019). While environmental predictors have 
not been assessed for starlings in an ENM frame-
work, some evidence of niche expansion in starlings 
is observed in their invasive range (Fernández and 
Hamilton 2015).

Here we build upon the knowledge and insights 
provided from previous studies to improve our 
understanding of the two species’ niches and better 
simulate the myna and the starling potential future 
distribution in New Zealand. We utilize myna and 
starling occurrence records and environmental data 
from the native range and New Zealand to first per-
form ENMs for each species using five different 
ENM algorithms. We assess the ENM’s transfer-
ability to select the most appropriate ENM algo-
rithm, and use the results from the ENMs to help 
inform choices for important environmental vari-
ables for defining the species niche. We then com-
pare the niches of species in New Zealand and the 
native range, and of the two species in New Zea-
land. We predict that niches are conserved within 
each species, and divergent between the species. We 
then project the best ENMs using future climate/
environmental projections for New Zealand, and 
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use these to highlight areas at risk of future invasion 
and range expansion.

Material and methods

Our analyses are divided into two main parts: (a) 
ENM, and (b) Niche overlap analysis (see Fig. S1.1 
for more details). The steps in our analyses are as fol-
lows: (a1) perform ENM, (a2) assess model transfera-
bility, (a3) predict suitability under current and future 
projections, (b1) select important environmental 
variables for niche overlap analysis, and (b2) perform 
niche overlap analysis. All analyses were performed 
in R version 4.2.1 (R Core Team 2022). Spatial data-
sets were manipulated and processed using the fol-
lowing R packages: ‘terra’ version 1.6.17 (Hijmans 
2022a), ‘raster’ version 3.6.3 (Hijmans 2022b), and 
‘sf’ package version 1.0.7 (Pebesma 2018); tables 
were processed and manipulated using ‘tidyverse’ 
version 1.3.2 (Wickham et al. 2019) and ‘data.table’ 
version 1.14.2 (Dowle and Srinivasan 2021). All 
scripts used in data processing and analysis are avail-
able on GitHub (https:// github. com/ akamo lphat/ 
ENM_ NZ_ sturn id).

Occurrence data

Myna and starling occurrence data were downloaded 
from GBIF (GBIF.org 2022a; b). Only occurrence 
records with dates from 1970 to 2020, precision 
of ≤ 1000  m or with coordinate precision ≥ 4 deci-
mal places were retained, and records were cleaned 
following standard procedures (Cobos et  al. 2018). 
Outlier records appearing in unexpected locations 
were reviewed and removed as appropriate (see Sup-
plementary S1.1.1 for more details).

Persistent localities were identified and retained. 
For mynas, these were localities with occurrences 
within 16 km spanning at least 5 years. For starlings, 
because they are generally migratory, these were 
breeding season occurrences within 32 km spanning 
at least 4  years. The thresholds were based on pub-
lished myna and starling dispersal ranges, average 
lifespan, and breeding site fidelity (Kessel 1953; Wil-
son 1973; Kang 1992; Berthouly-Salazar et al. 2012; 
Homan et al. 2017).

‘spThin’ R package version 0.2.0 (Aiello-
Lammens et  al. 2015) was used to spatially thin 

occurrences so that a minimum distance of 16 km and 
32  km separate the myna and starling occurrences, 
respectively. Only records with all environmental var-
iables were retained. After all filtering and thinning 
processes, there were 4222 native range occurrences 
and 193 New Zealand occurrences for mynas, and 
3015 native breeding season range (hereafter ‘native 
range’) occurrences and 156 New Zealand breeding 
season range (hereafter ‘New Zealand’) occurrences 
for starlings (Fig.  1) (see Supplementary S1.1 for 
more details on data filtering and thinning).

Environmental variables

Twenty-seven environmental variables at 0.0083° 
resolution were downloaded and assessed (see Sup-
plementary S1.2 for more details), including 19 bio-
climatic variables averaged for 1981–2010 from 
CHELSA version 2.1 (Karger et al. 2017, 2018), four 
variables from the corresponding BIOCLIM+ data-
set (Brun et al. 2022a, b), 2003 percentage tree cover 
(Geospatial Information Authority of Japan, Chiba 
University and collaborating organizations 2016) 
and a human-related variable, namely, downscaled 
human population density (Jones and O’Neill 2016; 
Gao 2017, 2020) for the year 2000. Grid cells in some 
datasets were not perfectly aligned and were slightly 
shifted to ensure alignment using the shift function 
from the ‘terra’ R package. 

For each species, correlations between environ-
mental variables were explored and variables with 
biological justification were chosen to produce eco-
logically realistic predictions and ecologically inter-
pretable results (Ingenloff 2017; Guevara et al. 2018).

Five environmental variables were chosen for the 
myna and the starling ENMs including: growing 
degree days above 5 °C (gdd5), annual precipitation 
(bio12), growing season length (gsl), percentage tree 
cover (tree_cover_pct), and the human population 
density (pop_dens). gdd5 is highly correlated (Pear-
son’s r > 0.8) to several other temperature variables in 
both species and was chosen to reflect the energetic 
requirements during the breeding season. For mynas, 
low temperatures may decrease hatching success 
and limit their distribution in colder climate (Wilson 
1973). For starlings, temperatures too low or high 
during the breeding season may cause egg and nest-
ling losses (Royall 1966; Gromadzki 1980), and may 
also negatively affect foraging ability (Clark 1987). 

https://github.com/akamolphat/ENM_NZ_sturnid
https://github.com/akamolphat/ENM_NZ_sturnid
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bio12 was chosen to reflect the overall productivity 
of the land. Both species are generally not found in 
deserts except where there are humans (Cabe 2020; 

Khoury et al. 2021). For the starling, high precipita-
tion and low temperatures may also cause nestling 
mortality (Gromadzki 1980). gsl was chosen to reflect 

Fig. 1  Maps of filtered and spatially thinned occurrences 
(black diamonds) from the myna A native range and B New 
Zealand, and the starling C native range and D New Zealand. 
Green areas represent the species distribution (breeding distri-

bution for starlings), and orange outlines depict the ENM cali-
bration area. Distribution data are from BirdLife International 
and Handbook of the Birds of the World (2016, 2019). Photo 
credits: K. Atsawawaranunt
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the duration of food availability. Mynas are gener-
ally not migratory and may not be able to survive in 
areas with very short growing season. Starlings may 
migrate but gsl must be long enough for successful 
breeding. tree_cover_pct was chosen to reflect the 
availability of natural nesting cavities; both species 
are also generally not found in thick forests (Higgins 
et al. 2006; Cabe 2020). Lastly, pop_dens was chosen 
to reflect the species interactions with human-altered 
environments, including anthropogenic nest sites and 
food sources (Cramp and Perrins 1994; Markula et al. 
2009). See Supplementary S1.2 for more details on 
variable choice.

For future climate scenarios, we used the same 
three climate variables (gdd5, bio12 and gsl) from 
the downscaled CMIP6 CHELSA datasets for the 
year 2085 (2071–2100 average). The GFDL-ESM4 
general circulation model under two Shared Socio-
economic Pathway (SSP) and Representative Concen-
tration Pathways (RCP) were used (SSP1-RCP2.6 and 
SSP3-RCP7). Human population projections under 
SSP1 and SSP3 for 2090 were used alongside the cli-
mate variables for future projections. To avoid biases 
due to cell size/area, human population counts were 
converted to population density using the cell area 
calculated using the cellSize function from the ‘terra’ 
R package. Percentage tree cover (tree_cover_pct) 
was kept constant because no future projections were 
available.

Ecological niche modelling

Determining the calibration area, the accessible areas 
to the species during the time period of interest, is a 
crucial step in calibrating the ENMs. For mynas, the 
calibration area for the native range was chosen with 
the assumption that the desert and the cold weather 
in the Middle East, north and central Asia (steppe 
and tundra in Kazakhstan and Russia, and the Gobi 
Desert and the Tibetan plateau) and the Himalayas 
act as a barrier to dispersal. Regarding the barriers 
in south China (just north of Hainan), we were una-
ble to detect any major barriers, but this outline was 
made on the assumption that there was a potential 
barrier here that has limited the dispersal in the past. 
There are now newly invaded areas in Hong Kong, 
first reported in 1952 (Leven and Corlett 2004) and 
Taiwan, likely introduced in the 1980s or 1990s (Lin 
2001) but these populations were not natural range 

expansions and were founded by released caged birds 
(CAB International 2021).

For starlings, the calibration area was chosen as the 
area within 1500 km from the native breeding range 
as defined in BirdLife International and Handbook of 
the Birds of the World (2019). The 1500 km distance 
is the approximate maximum distance travelled by 
migratory starlings (Perdeck 1958). We have elected 
to use a distance-based buffer around the breeding 
range instead of dispersal barriers as the species is 
known to disperse great distances (e.g., records of 
vagrant starlings in South-east Asia).

For New Zealand, the entire North and South 
Island of New Zealand were used as the calibration 
area as both islands were accessible to both species 
(Fig.  1). Starlings are found in both the North and 
South Island (Fig. 1). Although mynas are currently 
not found in the South Island, they were introduced 
there but failed to establish (Beesley et  al. 2023). 
Occasional strays, likely accidental human mediated 
introductions (e.g., aviary escapees and cargo ships), 
are observed in the South Island (Tunnicliffe 1982; 
Bull et  al. 1985; Higgins et al. 2006; BirdingNZ.net 
2021). We therefore included the South Island as part 
of the calibration area for mynas with the presump-
tion that the South Island was accessible to mynas 
(see Fig. 1 for calibration area outline).

ENMs were performed using the ‘biomod2’ R 
package version 3.5.1 (Thuiller and Georges 2021). 
To select the most appropriate model for each spe-
cies, we ran and evaluated five different ENM algo-
rithms on the native range (native), New Zealand 
(NZ), and the combined native range and New Zea-
land (native + NZ) data with a spatial cross-validation 
approach. Models were also trained using all filtered 
localities (occurrences and pseudoabsences with no 
spatial cross-validation) for each region/range (i.e., 
native, NZ, and native + NZ) and evaluated against 
data from the native range and New Zealand, sepa-
rately. For the native and NZ models, this involved 
the models being cross evaluated against data from 
the other range (model trained with native range data 
evaluated against data from New Zealand, and vice 
versa) to help assess model transferability.

Spatial cross-validation is especially important 
when aims involve model transferability (Roberts 
et  al. 2017). Data from New Zealand and the native 
range were therefore partitioned using a five k-fold 
spatial block cross-validation approach, using the 
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‘blockCV’ R package version 2.1.4 (Valavi et  al. 
2019). The sizes of the spatial blocks differ depend-
ing on the region in which the model was built, and 
were approximated based on the median value of 
the effective range of spatial autocorrelation esti-
mated using a fitted variogram model for the five 
environmental variables. The myna data was parti-
tioned into 200 × 200  km blocks for the NZ model, 
and 2000 × 2000  km blocks for the native, and 
native + NZ models. The starling data was parti-
tioned into 200 × 200  km blocks for the NZ model, 
and 4000 × 4000  km blocks for the native models 
and the native + NZ models. Each spatial block was 
iteratively assigned values of one to five, 100 times, 
and the configuration with the most evenly dispersed 
number of records was chosen (see Supplementary 
1.3.1 for more details).

We ran five algorithms: Maximum Entropy mod-
elling (Maxent), R alternative implementation of 
Maxent (maxnet), Generalised Linear Model (GLM), 
Generalised Additive Model (GAM), and Surface 
Range Envelope (SRE, also known as BIOCLIM) 
(Nelder and Wedderburn 1972; Hastie and Tibshirani 
1986; Busby 1991; Phillips et  al. 2004, 2006, 2017; 
Phillips 2021). Maxent, maxnet and GAM have been 
shown to have good performance with presence-only 
data, but no single method is superior in all situa-
tions (Valavi et  al. 2022). Maxent parameters were 
first tuned to optimise for our data (see Supplemen-
tary S1.3.2). GLM, maxnet and SRE were run using 
default settings in biomod2, and GAM were fitted 
using the smoothing parameter estimation method 
following parameters for the ‘GAM DW’ method 
described in Valavi et al. (2022). Background points 
were used for all algorithms except for SRE. Two sets 
of 50,000 background points were used for the native 
and NZ models. Two sets of 100,000 background 
points were used for the native + NZ model. Models 
were permutated 10 times to estimate environmental 
variable importance. Model evaluation statistics and 
response curve plots (probability of species occur-
rence vs environmental variables) were recorded and 
assessed for each model.

For each training region (i.e., NZ, native, and 
native + NZ), the ranked performances across algo-
rithms were compared for the cross-validation and 
the cross-evaluation runs using the area under the 
receiver operator curve metric (AUC). As AUC was 
calculated based on presence-background data, the 

AUC calculated in this study was the probability that 
a presence location has a higher predicted value than 
the background location. Different training regions 
consisted of different numbers and ratios of presences 
and background areas, and therefore, only the same 
species models from the same region were compared 
and ranked. As only presence data were used, differ-
ent thresholds were explored for creating binary (i.e., 
presence/absence) maps and the 10th percentile train-
ing presence (P10) threshold (Pearson et  al. 2007) 
was chosen for both species as it produced com-
parable distributions to the species current known 
distributions.

Final models and future projections

The present-day projections of habitat suitability in 
New Zealand based on the native + NZ and NZ mod-
els were compared to the present-day species dis-
tribution in New Zealand. If both native + NZ and 
NZ models demonstrated similarly good fit for New 
Zealand, the native + NZ models were chosen, as 
native + NZ models were trained on more training 
data which included a larger range of environmental 
variables (Sequeira et al. 2018).

The chosen models were then projected using 
future environmental projections for environmental 
variables used in the ENMs. The projected model is 
the best overall performing algorithm trained with 
all training data for the range with no spatial cross-
validation (see Table 1 for more details). Projections 
were made based on the second of the two sets of 
background points, as there were no visible differ-
ences between them. As no future projections were 
available for tree_cover_pct, this was kept constant 
for future scenarios. To account for uncertainties in 
future projections, three unique combinations of 
future climate projections (GFDL-ESM4 general cir-
culation model) and human population projections 
were used: (1) SSP1-RCP2.6 and SSP1 (SSP126, 
hereafter), (2) SSP3-RCP7 and SSP3 (SSP370A), and 
(3) SSP3-RCP7 and present-day human population 
(SSP370B). Combination (1) represents an optimistic 
case scenario, (2) represents a mid-to-bad case sce-
nario, and (3) uses the same mid-to-bad case scenario 
but without human population growth to assess the 
human density effect on the future projections.
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Niche overlap analysis

To compare niches within species (e.g., native range 
vs New Zealand) and between species, we used the 
‘humboldt’ R package version 1.0.0.420121 (Brown 
and Carnaval 2019). The source code for ‘humboldt’ 
R package was modified to work on the remote 

computing cluster (see Supplementary S1.4.2 for 
more details). For the within species comparison in 
myna, the niche in the native range was compared 
to the niche in New Zealand. For starlings, the com-
parison was done between New Zealand and the 
United Kingdom (the source of introduction in New 
Zealand) instead of the entire native range due to 

Table 1  Average AUC scores and ranks from cross-validation (CV) and evaluations based on New Zealand (NZ) and native range 
data

The highest AUC scores and ranks within the CV and cross-evaluation runs for each species and training area are in bold. AUC 
scores calculated based on data from within the training datasets are in italic. Models chosen for future projections are indicated with 
a*. Maxent feature classes were optimized for each Maxent model and are shown in Table S1.4

Species Training area Algorithm Evaluation strategy/area (AUC) Rank

Cross validation Cross evaluation Cross vali-
dation

Cross evalu-
ation

NZ Native NZ Native

Common myna NZ GLM 0.8613 0.8550 0.7954 3 4 3
GAM 0.8306 0.8810 0.5473 4 1 4
SRE 0.6762 0.7370 0.5004 5 5 5
Maxent 0.8716 0.8700 0.8371 1 3 1
maxnet 0.8637 0.8770 0.8294 2 2 2

Native GLM 0.8393 0.8167 0.8740 3 4 4
GAM 0.8444 0.8286 0.8865 2 3 1
SRE 0.7278 0.6597 0.7750 5 5 5
Maxent 0.8601 0.8439 0.8840 1 1 2
maxnet 0.8334 0.8398 0.8840 4 2 2

Native + NZ GLM 0.8357 0.8445 0.8705 3 3 4
GAM 0.8421 0.8475 0.8843 4 2 2
SRE 0.6976 0.7189 0.7688 5 5 5
Maxent* 0.8501 0.8509 0.8847 1 1 1
maxnet 0.8372 0.8348 0.8825 2 4 3

Common starling NZ GLM 0.6332 0.6400 0.6858 3 4 3
GAM 0.6164 0.7180 0.6971 4 1 2
SRE 0.5604 0.5775 0.5447 5 5 4
Maxent* 0.6587 0.6535 0.8084 2 3 1
maxnet 0.6628 0.6840 0.5343 1 2 5

Native GLM 0.8297 0.5193 0.8870 4 2 4
GAM 0.8363 0.4721 0.8960 3 4 2
SRE 0.7171 0.5457 0.7670 5 1 5
Maxent 0.8437 0.4684 0.8940 1 5 3
maxnet 0.8419 0.5018 0.8975 2 3 1

Native + NZ GLM 0.8484 0.5326 0.8817 2 2 4
GAM 0.8441 0.4968 0.8898 4 5 2
SRE 0.6717 0.5655 0.7567 5 1 5
Maxent 0.8587 0.5261 0.8832 1 4 3
maxnet 0.8462 0.5265 0.8912 3 3 1
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computational limitations. Environmental variables 
with greater than 5% importance in the New Zealand 
ENMs were chosen (see Supplementary S2.1 and 
Fig. 2 for more details) and principal component anal-
ysis (PCA) was performed on these environmental 
variables. These were gdd5, gsl, and bio12 for both 
mynas and starlings. Because pop_dens is impor-
tant in the myna native range, we also checked and 
confirmed that interpretation of results were consist-
ent  with the inclusion of pop_dens for mynas when 
comparing the native range and New Zealand (results 
not shown). For inter-species comparison within New 
Zealand, environmental variables important to any 
of the two species were used (i.e., gsl, gdd5, bio12). 
The environmental space (E-space) used to define the 
niches for comparisons was characterized by the first 
two principal components of the PCA of the impor-
tant environmental variables across the study region 
of both populations (or species). In all comparisons, 
the first two principal components from the PCA 
explained > 83% of the total variance (see Supple-
mentary S1.4.1 for more details).

To infer niche difference between populations (or 
species), Niche Equivalence statistics, measured by 
Schoener’s D, were performed on the E-space. Schoe-
ner’s D has values from 0 to 1; 1 signifies perfect niche 
equivalency, and 0 signifies perfect niche difference. 
We also assessed the ability of the Niche Equivalence 
statistic to detect differences based on the available 
E-space with the Background statistic. The significance 
of the Niche Equivalence and Background statistics is 
quantified by shuffling the occurrences and shifting of 
localities in geographic space, respectively. The statis-
tics are then calculated for each iteration (see Brown 
and Carnaval (2019) for more details) and significance 
calculated based on 200 iterations.

Niche Equivalence and Background statistics per-
formed on the total and the analogous accessible 
E-space are referred to as the Niche Overlap Test 
(NOT) and Niche Divergence Test (NDT). The com-
bination of NOT and NDT helps deduce whether the 
niches differ due to divergent evolution or to asym-
metries in habitat accessibility (see Table 2 in Brown 
and Carnaval (2019)).

Fig. 2  Environmental variable importance for A mynas, and 
B starlings, based on Maxent models. The solid black vertical 
line indicates 5%; variables with more than 5% are considered 
important for predicting species presence. Abbreviations used 

in text are as follows: tree cover percentage = tree_cover_pct; 
human population density = pop_dens; growing season 
length = gsl; growing degree days > 5 °C = gdd5; mean annual 
precipitation = bio12
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Results

Model transferability

To select the most appropriate algorithm for our ENM 
for each species, we assessed the model’s transferabil-
ity by assessing the ability of each model to predict 
the species distribution both within the same area and 
in a different area. Model evaluation scores and their 
ranked performances across methods of the cross-val-
idation runs and the cross-evaluation runs are shown 
in Table 1. For mynas, Maxent achieved the highest 
AUC scores in both cross-validation and cross-eval-
uation runs. For starlings, Maxent only achieved the 
highest scores in native models cross-validation runs 
and NZ models cross-evaluation runs, the R alterna-
tive implementation version, maxnet, achieved the 
highest scores in NZ models cross-validation runs 
and SRE achieved the highest scores in native models 
cross-evaluation runs.

Environmental variable importance

Because it performed well in most scenarios 
(Table  1), likely because it was tuned and it allows 
for complex relationships between the probability of 
occurrences and environmental variables in compari-
son to other models (Elith et  al. 2011; Merow et  al. 
2014), Maxent was chosen to assess the importance 
of the five environmental variables in predicting spe-
cies presence. Variable importance varies slightly 
between the different model training areas (Fig.  2). 
For mynas, growing degree days above 5°C (gdd5) 
was the most important variable in the native and NZ 
models, and the second most important variable in the 
native + NZ model. Annual precipitation (bio12) was 
the most important variable in the myna native + NZ 
model, and contributed > 5% in both native and NZ 
models. Human population density (pop_dens) con-
tributed > 5% in the native and native + NZ model, 
but not in the NZ model. Growing season length 
(gsl) contributed > 5% in the NZ model, and 5% and 
2% in the native and native + NZ model. Percentage 
tree cover (tree_cover_pct) contributed < 1% in all 
models. All variables except tree_cover_pct contrib-
uted > 5% in the NZ, native, or native + NZ models 
(see Table S2.1 for more details).

For starlings, gsl was consistently the most impor-
tant variable in all models, followed by gdd5 (Fig. 2). 

bio12 was the third most important variable in the 
native and NZ models. In the native + NZ model, only 
gsl and gdd5 contributed > 1%. pop_dens contrib-
uted < 5% in all models (0.1 − 0.3%), and tree_cover_
pct contributed between 0.5% and 5%. All variables 
except tree_cover_pct and pop_dens contributed > 5% 
in the NZ, native, or native + NZ models (see 
Table S2.1 for more details).

Response curves from ENMs can indicate the rela-
tionship between environmental variables and the 
probability of species presence. Although different 
models (NZ, native, and native + NZ) showed slightly 
different shaped response curves, some generalisa-
tions can be drawn. Regarding the four variables 
that contributed > 5% in any of the myna models, the 
response curves showed increased species’ probabil-
ity of presence with increases in all four variables. 
For annual precipitation (bio12) and human popu-
lation density (pop_dens), in all myna models, the 
species’ probability of presence increased to reach 
optimal values once environmental values exceeded 
a threshold (bio12 > ca. 800–1700  kg   m−2 and pop_
dens > ca. 2000–3000 individuals  km−2) (see Fig. 
S2.1 for more details).

Regarding the three variables which contrib-
uted > 5% in the starling models, there are slightly 
different trends for each model. In general, the spe-
cies probability of presence increased with gsl. In 
the NZ model, the species probability of presence 
increased with increasing gdd5, while starling native 
and native + NZ models suggest that an intermediate 
value for gdd5 optimised species presence. For bio12, 
the species’ probability of presence decreased with 
bio12 in the NZ model (contribution = 10%) but were 
relatively flat in the native and native + NZ model 
(contributions ≤ 2%) (see Fig. S2.2 for more details).

ENM projections

To visualise and assess our model predictions of the 
current distribution of mynas and starlings in New 
Zealand, and to project their distributions under cli-
mate change, we projected our best overall-perform-
ing ENMs to the present and to future climate scenar-
ios. For mynas, the Maxent native + NZ model was 
chosen, and for the starlings, the Maxent NZ model 
was chosen (see “Ecological niche modelling” sec-
tion for more details). For mynas, the present-day 
binary habitat suitability map for New Zealand from 
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the Maxent native + NZ model predicted suitable 
habitat in the North Island of New Zealand, exclud-
ing the central North Island volcanic plateau and 
mountainous regions of the North Island (Fig. 3A). In 
the South Island of New Zealand, only small coastal 
areas were predicted to be suitable for mynas. Future 
binary habitat suitability projections predicted an 
increase in suitable habitat in the central North Island 
volcanic plateau and the Canterbury plains in the 
central-east of the South Island (Fig. 3B, C). Future 
projections under SSP370 (SSP370A and SSP370B) 
predicted larger increases in suitable habitat than 
SSP126 (Fig. 3B, Table S2.2). SSP370 future projec-
tions also predicted suitable habitat in some areas in 
the south of the South Island.

For starlings, the present-day binary habitat suit-
ability map for New Zealand from the Maxent NZ 

model predicted suitable habitat across most of both 
the North and South Island of New Zealand, exclud-
ing the high mountain regions (Fig.  4A). Future 
binary habitat suitability projections predicted an 
increase in suitable habitats at higher elevations, 
with the largest increase in the Central Otago pla-
teau in the south-central South Island (Fig. 4B, C). 
SSP370 (SSP370A and SSP370B) predicted larger 
increases in suitable habitat than SSP126 (Fig. 4C, 
Table S2.2).

For both species, the use of different human 
population density (SSP370A vs SSP370B) did not 
yield large differences in suitable habitat areas (see 
Table S2.2 for more details). As applying different 
thresholds may generate different binary maps, con-
tinuous maps of probability of presence for current 
and future presences were also produced (Figs. S2.3 
and S2.4). Clamping masks for future projections 

Fig. 3  Binary (i.e., presence/absence) maps of suitable habi-
tat for common mynas created using the Maxent native + NZ 
model 10th percentile training presence for New Zealand for A 
present-day (1981–2010 average), B future projections (2071–
2100) under the SSP126, SSP370A, and SSP370B projections, 
and C sum of all layers in (A, B). SSP126 scenario is based 
on future climate projections under Shared Socioeconomic 

Pathway 1 (SSP1) and Representative Concentration Pathway 
2.6 (RCP2.6), and human population density under SSP1. 
SSP370A scenario is based on future climate projections under 
SSP3 and RCP7, and human population density under SSP3. 
SSP370B scenario is based on future climate projections under 
SSP3 and RCP7, and present-day human population density
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were also produced to help assess model extrapola-
tion (Fig. S2.5). Clamping masks identify locations 
where predictions are based on environmental vari-
able values outside the range used for model cali-
bration (Thuiller and Georges 2021).

Niche overlap analysis

We explored whether there was evidence of niche 
divergence between the native and New Zealand 
ranges of mynas and starlings, and whether the two 
species occupy different niches within New Zealand. 
Regarding the comparisons of mynas in the native 
range vs New Zealand, the niche equivalency test for 
the entire calibration area (Niche Overlap Test; NOT) 
resulted in a nonsignificant niche equivalency statistic 
(D = 0.000, p = 0.318). Given that both background 
statistics were significant (p < 0.01), this suggests 

that there is no evidence of niche difference. The 
niche equivalency test within analogous areas (Niche 
Divergence Test; NDT) provided no evidence of 
divergence (D = 0.222, p = 1), with weak evidence in 
both background statistics significance (NZ → native 
p = 0.065, native → NZ p = 0.055). This also sug-
gests that there is no evidence for niche difference, 
although power to detect differences may be low (see 
Fig. 5 and Table 2 for more details). Both NOT and 
NDT therefore indicate that there are no niche differ-
ences between mynas in New Zealand and their native 
range (see Table 2 of Brown and Carnaval (2019) for 
more details).

Regarding the comparisons of starlings in the UK 
vs New Zealand, the NOT resulted in a significant 
niche equivalency statistic (D = 0.008, p < 0.01), but 
nonsignificant background statistics, suggesting some 
evidence for niche differences, but a low ability of the 

Fig. 4  Binary (i.e., presence/absence) maps of suitable habitat 
for common starlings created using the Maxent NZ model 10th 
percentile training presence for New Zealand for A present-
day (1981–2010 average), B future projections (2071–2100) 
under the SSP126, SSP370A, and SSP370B projections, 
and C sum of all layers in (A, B). SSP126 scenario is based 
on future climate projections under Shared Socioeconomic 

Pathway 1 (SSP1) and Representative Concentration Pathway 
2.6 (RCP2.6), and human population density under SSP1. 
SSP370A scenario is based on future climate projections under 
SSP3 and RCP7, and human population density under SSP3. 
SSP370B scenario is based on future climate projections under 
SSP3 and RCP7, and present-day human population density
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data to detect niche differences. The NDT resulted 
in a nonsignificant niche equivalency statistic 
(D = 0.159, p = 0.980), and nonsignificant background 
statistics, suggesting that there is no evidence for 
niche difference, but, again, limited ability to detect 
a difference (see Fig. 5 and Table 2 for more details). 
Therefore, for starlings, NOT suggests some evidence 
for niche differences while NDT does not. Together, 
these results support the hypothesis that their current 
niches are not equivalent, but that this is only due to 

access to different environments and not divergence. 
NOT environmental space (E-space) comparisons 
suggest that this is largely due to parts of the New 
Zealand E-space not found in the UK (Fig. S2.8).

When comparing the niche of mynas with starlings 
within New Zealand, both the NOT and NDT resulted 
in a significant niche equivalency statistic (NOT: 
D = 0.417, p = 0.00498; NDT: D = 0.514, p = 0.00498), 
and significant background statistics. This suggests that 

Fig. 5  Differences in analogous environmental space between 
A the native range versus New Zealand for mynas, B the UK 
versus New Zealand for starlings, and C mynas versus starlings 
in New Zealand. For (A, B), blue = native range less dense than 
New Zealand range, red = native range more dense than New 

Zealand range. For (C), blue = mynas less dense than starlings, 
red = mynas more dense than starlings. Principal components 
represent principal components analysis of environmental vari-
ables with greater than 5% importance in the ENMs
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there is evidence of niche divergence between these 
invasive species in New Zealand.

Discussion

As species are introduced into a new environment and 
become invasive, their niches may or may not change 
from their niches in the native range. Understanding 
invasive species niches in their native and invasive 
ranges, and how they may have changed, will help 
inform species management, including helping to pre-
dict their potential future distributions (Faulkner et al. 
2014; Briscoe Runquist et  al. 2019; Shivambu et  al. 
2020).

Our ENMs suggest potential increase in the myna 
and starling distributions in Aotearoa New Zealand 
by 2071–2100, particularly for the common myna 
where suitable habitats are predicted in New Zea-
land’s South Island where it is not currently found, 
and support early removal of the common myna if 
sighted in the South Island. Our niche overlap analy-
ses found no niche divergence between New Zealand 
and the native range for both the common myna and 
common starling but found evidence for niche diver-
gence between the myna and starling in New Zealand.

Ecological niche modelling

We found that models trained with data from New 
Zealand, or the native range were best at describing 
the myna and starling distributions in these respec-
tive locations. This is consistent with findings from 
previous studies that local models are best at predict-
ing local distribution (Osborne and Suárez-Seoane 
2002; Barbosa et  al. 2009), likely because species 

vary spatially in their response to the local environ-
ment. Hence, local models may be better at detecting 
local variations than global (or larger area) models, 
as global models must incorporate a larger variety 
of species–environment relationships. Maxent was 
the best performing algorithm for all myna models 
(native, NZ, and native + NZ) when spatially cross 
validated locally, and the native and NZ myna mod-
els exhibit best transferability when cross-evaluated 
between locations. However, there was no one best 
algorithm for the starling models and the best per-
forming cross-validated native and NZ starling mod-
els exhibit the worst transferability when cross-eval-
uated, supporting the narrative that there is no one 
superior algorithm (Valavi et al. 2022). Consequently, 
we chose the Maxent NZ starling model which bal-
anced cross-validation and cross-evaluation perfor-
mance (Table 1).

For both species, there was good agreement 
between the present-day projections of suitable 
habitats and the current species distribution in New 
Zealand (Figs. 3A and 4A vs 1B, D). While species-
environment relationships are likely dynamic, the 
current distribution maps of both mynas and starlings 
are likely to be good representations of the available 
suitable habitats in New Zealand as both species are 
very conspicuous, New Zealand is relatively well sur-
veyed, and both species have had the opportunity to 
occupy the available suitable habitats. Mynas have 
been introduced to cities in the South Island where 
they are no longer found (Beesley et  al. 2023) and 
starlings were introduced in many locations across 
New Zealand (Pipek et  al. 2019; Stuart et  al. 2023) 
and can travel long distances (Perdeck 1958).

For the common myna, our ENMs identified gdd5, 
bio12, and pop_dens as the three most important 

Table 2  Results from niche overlap analyses

Dobs and pobs are the observed Schoener’s D and the respective p value.  B2→1 and  B1→2 correspond to the background statistics com-
paring location/species 1 to shifted location/species 2, and location/species 2 to shifted location/species 1, respectively. In both cases, 
the first listed location/species is the one whose range was shifted. Tests significance: α = : * 0.01–0.05, **< 0.01

Comparisons Niche overlap test Niche divergence test

Dobs pobs B2->1 B1->2 Dobs pobs B2->1 B1->2

native vs NZ mynas 0.000 0.318 0.005** 0.005** 0.222 1 0.065 0.055
UK vs NZ starlings 0.008 0.010** 0.522 0.075 0.159 0.980 0.275 0.204
NZ mynas vs starlings 0.417 0.005** 0.005** 0.005** 0.514 0.005** 0.025* 0.005**
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bioclimatic variables (see “Environmental variable 
importance” section). The probability of presence 
(PoP) increased with gdd5, reflecting the species 
known affinity to warmer climates and supporting a 
proposition that temperature is a key limiting factor 
in the species distribution (by limiting the energetic 
requirements (Martin 1996) and the hatching and 
fledging success (Wilson 1973)). Our model also sup-
ports a thresholded-response between PoP and bio12 
and pop_dens, which can be explained by the myna 
adaptability—the myna can thrive as long as the min-
imum energetic requirements are met. The common 
myna has demonstrated that it can persist in less con-
ducive conditions, especially in human-altered land-
scapes. This is evident by populations in desert cities 
(e.g., Dubai) and decades of the species persistence 
in parts of the South Island following introduction 
(Thomson 1922; Beesley et  al. 2023). Warming cli-
mates and increasing human impacts on the environ-
ment are therefore expected to increase the common 
myna suitable habitats in the future, as similarly ech-
oed in global scale study (Magory Cohen et al. 2019) 
and other invasive species studies (Fraser et al. 2015; 
Ndimuligo et  al. 2022). The projected southward 
increase in common myna future suitable habitats 
also echo the projected southward shift in potential 
suitable habitat of several species found in New Zea-
land (Sheppard 2013; Watts and Watkins 2022; Ger-
mano et al. 2023).

For the common starling, gsl and gdd5 were iden-
tified as the two most important environmental vari-
ables. PoP increased with gsl in all models, likely 
reflecting a minimum breeding period length. The 
relationship between gdd5 and PoP differed a little 
between the NZ model and the native and native_NZ 
models, likely due to the more limited range of gdd5 
available in New Zealand. However, it is unclear if 
their (general) absences in tropical environments in 
the native range are due to competition or the species 
temperate niche. The species can and have thrived 
in warmer climates given the right opportunity (e.g., 
United Arab Emirates, Jamaica) (Long 1981; Camp-
bell and Smiles 2019).

Our model cross-evaluation scores and projections 
suggest our ENMs have performed well, with general 
agreements between the present-day projections and 
the species distributions in New Zealand. Extrapola-
tion of a model to environmental conditions beyond 
those used to calibrate the model can result in poor 

model transferability (Merow et al. 2014; Qiao et al. 
2019). However, we were able to incorporate data 
from the native range to the mynas models which 
help reduced the risk of extrapolations in future pre-
dictions for New Zealand. The models’ over- and 
underpredictions were also carefully assessed along 
with the environmental variables used (see “Model 
limitations” section). Our future projections predicted 
an increase in suitable habitats for both mynas and 
starlings in New Zealand as climate warms.

Given that present-day projections overpredicted 
suitable habitat for the myna in the southern limit of 
the species range (> 40°S) (see “Model limitations” 
section), the predicted southward increase in suitable 
myna habitat may similarly over-predict the potential 
future distribution. This means that using these mod-
els may represent a worst-case scenario rather than 
the most likely scenario for the spread of this inva-
sive species. However, a precautionary approach to 
invasive species management is appropriate (Jiménez-
Valverde et al. 2011; Cooney and Dickson 2012). The 
predicted increase in suitable habitats for starlings at 
higher elevations was expected as increasing temper-
ature will allow starlings to move into environments 
which are currently too cold to inhabit.

Model limitations

While there were general agreements between the 
present-day projections and species distribution, there 
were also some minor disagreements which provide 
insights to our understanding of the species niches 
(and lack thereof). Regarding the myna, our ENM 
overpredicted suitable habitat in the southern limit of 
the species range in New Zealand (> 40°S) where it 
is occasionally recorded as present, but only in urban 
centers, i.e., in strong association with humans. We 
also overpredicted suitable habitat in a large native 
bush area (Whanganui National Park in the eastern-
central North Island). There were also some under-
predictions of suitable habitat along a main national 
highway that runs (SH2) west to east across the North 
Island axial mountain range, and in areas west and 
south of the central North Island volcanic plateau. 
Overall, these discrepancies imply that there may 
be other key environmental variables that modulate 
temperature (i.e., gdd5 and gsl) and limit the spe-
cies energetic requirement (e.g., solar radiation, day 
length). In the native range, our ENM overpredicted 



 K. Atsawawaranunt et al.

1 3
Vol:. (1234567890)

suitable habitat in forests, and underpredicted suit-
able habitat in semi-arid regions in Central and South 
Asia (Fig. S3.1 vs Fig. 1A). This included areas in the 
species long-standing distribution (e.g., Pakistan and 
Rajasthan, India) and the newly invaded areas (Paki-
stan to Kazakhstan).

With regards to starlings, our ENM overpredicted 
suitable habitats in forested regions in New Zealand 
(e.g., the North Island axial mountain range). There 
was also some underprediction in the South Island’s 
Central Otago plateau. In the native range (native and 
native + NZ models), there was also underprediction 
of suitable habitats in colder regions and in the semi-
arid region of Central Asia (Fig. S3.2 vs Fig.  1C). 
The native and native + NZ model projected into New 
Zealand overpredicted suitable habitat in forested 
areas, especially over the southwest temperate rain-
forest regions.

These small over and underpredictions demon-
strated the difficulties for ENMs to exactly model 
the niches and distribution of these highly adaptable 
species. Firstly, ENM assumes equilibrium relation-
ships between species occurrences and environmen-
tal variables across the calibration area. The degree 
to which this assumption is obeyed in real life var-
ies from case to case, and may also be altered in the 
presence of other environmental variables, especially 
biotic factors (e.g., presence of a food source, com-
petitors, etc.). Biotic factors are undoubtedly impor-
tant, and the strength of the relationship between spe-
cies and these biotic factors likely varies in different 
environments. For example, in warm arid regions 
(e.g., Central Asia), anthropogenic variables such 
as human population density are likely very impor-
tant at determining the myna’s distribution as mynas 
are commensal with humans. On the other hand, in 
colder regions (e.g., New Zealand), temperature (e.g., 
represented by gdd5) may be a more important vari-
able. Biotic factors are also difficult to include as 
there are many species present in the environment 
and the strength of their interactions are often diffi-
cult to quantify. Our starling native and native + NZ 
models consistently predicted Iberia and North Africa 
as suitable habitats. However, the common starling 
(S. vulgaris) rarely breeds in these regions presum-
ably because Iberia and North Africa are occupied by 
the closely related spotless starling (Sturnus unicolor) 
(Ferrer et al. 1991). There are other potential species 
that may be in direct competition with mynas and 

starlings, but including these species in ENMs is very 
difficult as their interactions are often speculative (see 
Supplementary S3.1 for list of species potentially in 
competition with mynas and starlings).

Secondly, environmental variables used by ENMs 
may not directly represent the variable which bio-
logically limits the species distribution. In our ENMs, 
growing degree days above 5°C (gdd5), annual pre-
cipitation (bio12) and growing season length (gsl) 
were main predictors for the species suitable habi-
tat and represent the resource availability (food) and 
energetic requirements of the species in the environ-
ment. However, these variables are proxies and not 
direct measurements and therefore, subjected to inac-
curacies. For instance, gsl was calculated using the 
TREELIM model (Paulsen and Körner 2014) which 
does not account for rivers, irrigations and depres-
sions where water accumulates. In Central Asia, both 
bio12 (annual precipitation) and gsl (calculated using 
the TREELIM model) were very low, and the semi-
arid region is known to heavily rely on rivers and irri-
gations for water which were not captured by gsl or 
bio12. Rivers in this region (e.g., Indus, Amu Darya, 
Syr Darya) rely heavily on snow and glacial melt 
rather than local rainfall (Armstrong et al. 2019).

Similarly, the importance of the environmental 
variables to the species may be scale dependent. We 
included percentage tree cover (tree_cover_pct) as 
a predictor in our ENMs to represent both species 
strong preference for open and edge habitats (Markula 
et al. 2009; Heather and Robertson 2015; Kannan and 
James 2020), but it was not important in our myna 
and starling ENMs. We believe that at the one  km2 
grid cell resolution, tree_cover_pct was not repre-
sentative of the species’ preference for open habitats. 
A one  km2 grid cell covered in forests with a road 
passing through will have high tree_cover_pct values 
while the two sturnid species will still be able to take 
advantage of the open habitats along the roadsides.

In previous studies, anthropogenic effects (rep-
resented by impervious surface area and population 
density) have been consistently found to be the most 
important for the mynas’ prevalence (Magory Cohen 
et al. 2019). However, we found bioclimatic variables 
(e.g., growing degree days above 5°C and annual pre-
cipitation) to be most important, with varying impor-
tance for population density. We did not use imper-
vious surface area in our ENMs as there were no 
future projections for this variable. These differences 



Projecting the current and potential future distribution of New Zealand’s invasive sturnids  

1 3
Vol.: (0123456789)

in variable importance may be due to the differences 
in the datasets (e.g., training area, spatial resolution, 
occurrence points). However, despite the different 
environmental variables and their contributions in the 
studies, similar shortcomings were observed—over-
prediction of suitable myna habitat in forests, and 
underprediction of projected suitable myna habitat in 
the semi-arid regions in Central and South Asia (see 
Figs. 3 and 4 in Magory Cohen et al. (2019))—high-
lighting the challenges in modelling highly adaptable 
species’ niches where anthropogenic and other biotic 
factors are important, difficult to quantify, and may 
alter other species-environment relationships.

Niche overlap analysis

Our niche overlap analysis supports our hypothesis 
that the niches do not differ geographically within the 
species but are divergent between the species. Both 
niche equivalency statistics based on the entire cali-
bration area (NOT) and analogous areas (NDT) failed 
to find evidence that myna niches differ in the native 
range and New Zealand. In starlings, only NOT niche 
equivalency statistics were significant when compar-
ing the species in the UK and New Zealand. This 
suggested that the niche in the UK and New Zea-
land were different but only due to the environment 
availability (Brown and Carnaval 2019). This some-
what supports the niche expansion observed in pre-
vious studies despite the different scale of the study 
(Fernández and Hamilton 2015). Starlings appeared 
to have invaded areas with warmer climates (e.g., 
Jamaica, New Zealand’s Northland). When niche 
overlap analysis was performed on analogous areas 
(NDT), the niches in the UK and New Zealand were 
not significantly different from each other. Nonsignif-
icant background statistics are also suggestive of lim-
ited power to detect the difference if there was one. 
When comparing mynas and starlings in New Zea-
land, both NOT and NDT niche equivalency statis-
tics were significant. Irrespective of the significance 
of the background statistic, this suggests niche diver-
gence between the two species in New Zealand (see 
Table 2 in Brown & Carnaval (2019) for more details 
on interpretation of the results).

The lack of evidence for niche divergence between 
New Zealand and the native range for both the com-
mon myna and common starling supports the notion 
that the invasion successes of the two species in New 

Zealand are mostly attributed to the presence of suit-
able bioclimatic conditions. This invasion success is 
likely aided by very large niches that cover a large 
range of bioclimatic conditions. This supports previ-
ous findings that found avian introduction successes 
to be largely attributed to the presence of suitable 
environmental conditions (Blackburn and Duncan 
2001).

Implications and future analyses

Our study found that local ENMs were best at 
describing the species distribution in the local range, 
and algorithms which performed well in one region 
may not perform well in a different region. While 
these findings have been observed in previous stud-
ies (Osborne and Suárez-Seoane 2002; Barbosa et al. 
2009; Valavi et al. 2022), invasive species provide an 
excellent opportunity for testing the generality of this 
conclusion and future analyses with other invasive 
species would be rewarding. Our ENMs based on five 
biologically justified variables performed well, with 
good agreement between predicted suitable habitats 
and present-day species distributions. Nonetheless, 
there were some disagreements between predicted 
suitable habitat and the current species distribution 
which allowed us to evaluate the shortcomings and 
reassess the environmental variables used.

Our findings that the niches are conserved within 
the two species suggested that Aotearoa New Zealand 
contains environments occupied by the species in 
the native range, a “home away from home”. Similar 
observations have been reported in a majority of inva-
sive species (Aravind et  al. 2022). This raises ques-
tions for future research regarding niche evolution; 
even if the niches are generally conserved, do mynas 
and starlings experience novel selection pressures in 
New Zealand following introduction? How long will 
it take these isolated invasive populations to diverge 
from those in the native range? Can we detect signals 
of selection through other approaches (e.g., genetic 
analyses)?

Our future projections provide management with 
direct tools to assess the invasion risks in both mynas 
and starlings in New Zealand. Starlings already 
occupy the majority of New Zealand, and the pre-
dicted increase in suitable habitats are small and 
may not carry much weight for management teams. 
However, the increase in suitable habitats for mynas 
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in the South Island as climate changes supports 
early removal of the species by management teams 
if sighted in the South Island. Mynas are currently 
restricted to the North Island, and the Cook strait 
(approximately 22  km at the narrowest point) pro-
vides a natural barrier/resistance to the species dis-
persal to the South Island.

This study provides an example of how invasive 
species may be used to assess ENM transferability 
and how niche comparisons may be performed. Our 
findings improve our understanding of mynas and 
starlings’ niches, and highlight areas at risk of future 
invasion and range expansion.
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