Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the [Library Thesis Consent Form](http://researchspace.auckland.ac.nz/librarythesisconsentform) and [Deposit Licence](http://researchspace.auckland.ac.nz/depositlicence).

Note: Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.
THE EFFECT OF INTRAPERITONEAL LOCAL ANAESTHETIC IN COLONIC SURGERY

ARMAN KAHOKEHR

ABSTRACT

Millions of years of symbiosis between micro-organisms in the colon and the host have resulted in a unique neural system to detect adverse stimuli. The vagus nerve links the intraperitoneal cavity directly to the brainstem, hence bypassing somatic nerve blockade often utilised after major abdominal surgery. This thesis describes the intraperitoneal autonomic wound as a target for intervention after major abdominal surgery to accelerate recovery. Chapter One introduces the topic. Chapter Two focuses on events that lead to prolonged convalescence, and presents the hypothesis that the intraperitoneal autonomic wound is an important and potential target for interventions when the somatic wound is controlled. Current interventions are also reviewed. Chapter Three describes a systematic review on the use of intraperitoneal local anaesthetic (IPLA) in order to assess this clinical intervention. It will be shown that this intervention may lead to important clinical benefits. Chapter Four systematically reviews published data on the intravascular (systemic) level of drug after IPLA compared to other techniques. Chapter Five brings this information together in the form of a pilot study concerned with safety of concomitant IPLA and epidural anaesthesia infusions. A protocol was devised in order to infuse ropivacaine into the epidural and intraperitoneal space whilst monitoring safety. Chapter Six describes the methodology used to carry out a double-blinded placebo controlled randomised clinical trial infusing IPLA after colon resection within the context of an Enhanced Recovery after Surgery (ERAS) program (IPLA trial). In chapter Seven the results of the IPLA trial are presented. It will be seen that benefits of IPLA were observed, including improvement in functional recovery, reduced systemic markers of inflammation, reduced neuro-endocrine upset, and significantly reduced pain and opioid consumption over the epidural somatic blockade. Chapter Eight summarises these findings and makes the conclusion that it is possible to target the intraperitoneal wound in order to further enhance recovery after surgery. Chapter Nine draws a conclusion on the topic of this thesis.
DEDICATION

This thesis is dedicated to my entire family

To my parents Ehsan Kahokehr and Farideh Pouya

This work was possible because of your unconditional love, dedication, and commitment

I love you both

ستاره ای بدرخشید و ماه مجلس شد
دل رمیده ما را انين و مونس شد
از دور ترين فاصله ها به هم رسد يم
و تا اوج بودن با هميم
ACKNOWLEDGMENTS

This work simply could not have been completed without the mentorship, supervision and guidance of Associate Professor Andrew G. Hill. He inspired my introduction into the glittering world of academic surgery by bridging the gap between science and the patient. The valuable lessons I gained in this process will be with me forever and I am inexpressively grateful for this support. Thank you for everything.

Dr Mattias Soop co-supervised this work, provided advice and experience in the field of peri-operative care. I am extremely lucky to have had his expert eyes review this work.

Dr Tarik Sammour for contributing extremely valuable scientific input. But more importantly for his unconditional friendship. He guided me through challenges on a daily basis with sharp thinking, wit, dedication to surgical research, and clinical surgery. He inspires and I hope to learn from his shadow for many years to come.

Dr Emmanuelle Cognard for her ongoing patience, unfaltering companionship, and making sure that nothing was lost in translation. I am in debt to your gratitude.

Maria Vitas and her work at the South Auckland Clinical School. Thank you setting up the foundations from which clinical research can bud from. Her support and dedicated time made this research possible.

Dr Kamran Zargar Shoshtari for sharing his research experiences, teaching and supporting me to take on the challenges of academia. I look forward to our friendship in the years to come.
Ms Erica Natalie George who reflected thoughts and ideas and never asked for anything more. I will never forget our famous rants.

Mr Andrew Connolly and the Department of Surgery at Middlemore Hospital for his ongoing support on the clinical grounds on which this research took part.

Lisa Thompson for leading the nursing team at Manukau Surgery Centre and her enthusiastic involvement in clinical research and Enhanced Recovery Surgery.

Professor John Windsor and The Department of Surgery at The University of Auckland for encouraging me to take on the challenges offered by surgical research. I was lucky to have been a student at the Department of Surgery lead by him.

Drs Matthew Taylor and Francois Stapelberg for expert anaesthetic input and sharing their ideas.

Associate Professor Lindsay Plank for his teaching, advise, statistical and methodological expertise.

The surgical patients, who despite physical and emotional adverse impacts of illness, took part in research in order to improve the experience for others. Thank you for volunteering your bodies and minds.

Dr Rachel Helliwell at the Auckland Medical Research Foundation. This research was carried out during tenure of the Ruth Spencer Medical Fellowship and a supportive research grant was provided by the Auckland Medical Research Foundation. These supportive grants made this work a possibility.

TABLE OF CONTENTS

ABSTRACT ... II
DEDICATION ... III
ACKNOWLEDGMENTS .. IV
PUBLICATIONS AND CONFERENCE PRESENTATIONS .. VI
TABLE OF CONTENTS .. IX
LIST OF TABLES .. XII
LIST OF FIGURES ... XIV
GLOSSARY ... XVII

CHAPTER 1 : INTRODUCTION ... 1

CHAPTER 2 : LITERATURE REVIEW ... 4
 2.1 Definitions ... 6
 2.1.1 Stress ... 6
 2.1.2 Stimuli .. 7
 2.2 The Post-operative state ... 9
 2.2.1 Organ dysfunction ... 9
 2.2.2 PSF, prolonged convalescence and functional deficit ... 11
 2.3 One patient, two wounds ... 16
 2.3.1 The Somatic Wound .. 17
 2.3.2 The Autonomic Wound ... 19
 2.4 Current interventions .. 28
 2.4.1 Multimodal rehabilitation ... 29
 2.4.2 Pharmaco-therapeutics ... 35
 2.4.3 Local anaesthetic drugs ... 38
 2.5 Chapter Summary ... 42

CHAPTER 3 : SYSTEMATIC REVIEW OF IPLA ... 44
 3.1 Methods .. 46
 3.1.1 Aims and objectives .. 46
 3.1.2 Search strategy ... 46
 3.1.3 Study selection .. 47
 3.1.4 Study methodological assessment ... 47
 3.2 Results .. 51
 3.2.1 Open abdominal procedures .. 53
 3.2.2 Laparoscopic cholecystectomy ... 60
 3.2.3 Laparoscopic (non-cholecystectomy) Surgery .. 77
 3.3 Discussion ... 81
 3.3.1 Mechanism of action .. 82
 3.3.2 Future research .. 85
 3.4 Chapter Summary ... 87
6.1.16 Statistical analysis... 177

CHAPTER 7: IPLA TRIAL RESULTS... 178
 7.1 Results ... 179
 7.1.1 Participant recruitment and flow.. 179
 7.1.2 Number analysed .. 180
 7.1.1 Baseline characteristics and demographics............................. 181
 7.1.2 Intra-operative parameters .. 182
 7.1.3 Complications data ... 182
 7.1.4 Post-operative recovery parameters 183
 7.1.5 Pain outcomes .. 188
 7.1.6 Systemic inflammatory and neuro-endocrine response 192
 7.1.7 Postoperative cortisol... 195
 7.1.8 Systemic local anaesthetic .. 197
 7.2 Summary of Findings .. 199
 7.3 Strengths .. 203
 7.3.1 Internal validity ... 204
 7.3.2 External validity .. 204
 7.4 Safety .. 206
 7.5 Study limitations ... 207
 7.6 Chapter summary ... 209

CHAPTER 8: DISCUSSION .. 210
 8.1 Implications ... 212
 8.1.1 Clinical implications ... 212
 8.1.2 Research implications .. 212

CHAPTER 9: CONCLUSION ... 214

APPENDIX A- IPLA TRIAL MATERIALS ... 216

APPENDIX B- ERAS RECOVERY CARE MAP 222

APPENDIX C- ASPECTS OF THE PATIENT DIARY 234

APPENDIX D- IPLA TRIAL CONSENT FORM 247

LIST OF REFERENCES .. 254
LIST OF TABLES

Table 2.1: Behavioural and physical adaptation during acute stress Adapted from Chrousos & Gold (12)... 7

Table 2.2: Definition of harmful stimuli as proposed by Sherrington and Cervero.............. 8

Table 3.1: Search terms used to identify randomised controlled trials. .. 47

Table 3.2: Jadad methodology to assess trial quality (201). .. 48

Table 3.3: Trials in open general surgical procedures... 54

Table 3.4: Study characteristics of excluded laparoscopic cholecystectomy trials 61

Table 3.5: Study characteristic of trials in laparoscopic cholecystectomy included for meta-analysis... 63

Table 3.6: Summary of results of meta-analysis of intraperitoneal local anaesthetic for laparoscopic cholecystectomy .. 67

Table 3.7: Trials in Laparoscopic General Surgical Procedures .. 78

Table 4.1: Search terms used to identify trials ... 89

Table 4.2: Excluded studies of interest due to extra-peritoneal local anaesthetic use. 91

Table 4.3: Trials reporting intraperitoneal lidocaine.. 94

Table 4.4: Trials reporting intraperitoneal bupivacaine ... 96

Table 4.5: Trials reporting intraperitoneal ropivacaine .. 98

Table 4.6: Trials reporting intraperitoneal etidocaine .. 100

Table 5.1: Patient characteristics .. 121

Table 6.1: Components of ERAS peri-operative care program ... 129

Table 6.2: PreOp drink contents .. 130

Table 6.3: Deep vein thrombosis prophylaxis protocol in elective surgical patients. DVT, deep vein thrombosis; PE, pulmonary embolism ... 144

Table 6.4: Components of post-operative nutritional support with supplementary Resource® drink ... 147

Table 6.5: Grading of complications based on the publication by Dindo et al. (365, 366). 158

Table 6.6: Cytokine kit assay sensitivity .. 170

Table 6.7: Cytokine kit assay precision .. 171
Table 6.8: Cytokine kit assay accuracy ... 172
Table 7.1: Baseline characteristics of IPLA trial participants 181
Table 7.2: Perioperative parameters .. 182
Table 7.3: Postoperative complications ... 183
Table 7.4: Surgical recovery score (SRS) - IPLA study patients 184
Table 7.5: Other post-operative recovery parameters- IPLA study patients 185
Table 7.6: Postoperative nausea, anti-emetic use and appetite 186
Table 7.7: Anxiety, sleep and satisfaction with care .. 187
Table 7.8: Discharge parameters .. 188
Table 7.9: Postoperative pain .. 189
Table 7.10: Postoperative opioid use ... 191
Table 7.11: Post operative systemic cytokine response .. 192
Table 7.12: Post operative serum cortisol, CRP and capillary glucose............... 195
Table 7.13: Post operative serum ropivacaine levels .. 197
LIST OF FIGURES

Figure 2.1: Two wounds are created after abdominal surgery. 16

Figure 2.2: Schema of signal transmission after abdominal surgery. 18

Figure 2.3: The distribution of the number of labeled neurons in nodose and dorsal root ganglia after application of fluorogold labeling to the mesentery and the mesocolon. Both nodose (N) and dorsal root ganglia were labeled (77). Reproduced with permission from Springer publishing. ... 22

Figure 2.4: Sensory pathways from the peritoneum. Parietal peritoneum receives segment-like fibers from neurons in the dorsal root ganglia (DRG). In addition to this segment-like innervation, visceral peritoneum is supplied by DRG fibers passing through the sympathetic trunk. The vagus nerve also receives sensory fibers from the nodose ganglion (ND) to the visceral peritoneum (77). Reproduced with permission. 23

Figure 2.5: Schematic representation of nerve endings in the gut wall. Endings are located in all gut layers (85). Reproduced with permission, from Knowles CH, 2009, Pain, 141, 191-209. .. 24

Figure 2.6: The effect of subdiaphragmatic vagotomy in rats intraperitoneal injection of IL-1 prevents sickness response in the animal (94). .. 27

Figure 2.7: Simplified scheme of the two wound hypothesis. .. 28

Figure 2.8: ERAS or ‘fast track’ concepts in colonic resection 30

Figure 2.9: Postoperative fatigue scores in 29 patients receiving dexamethasone and in 31 .. 37

Figure 3.1: QUOROM diagram of search results (200) .. 52

Figure 3.2: Meta-analysis of the effect of intraperitoneal local anaesthetic on post-operative serum cortisol in open general surgical procedures. .. 56

Figure 3.3: Meta-analysis of the effect of intraperitoneal local anaesthetic on post-operative serum glucose in open general surgical procedures. .. 57

Figure 3.4: Meta-analysis of the effect of intraperitoneal local anaesthetic on post-operative pain in all open general surgical procedures. .. 58

Figure 3.5: Meta-analysis of the effect of intraperitoneal local anaesthetic on post-operative opioid use in all open general surgical procedures. .. 59

Figure 3.6: Meta-analysis of the effect of intraperitoneal local anaesthetic on post-op serum cortisol measures up to 3 hours after laparoscopic cholecystectomy. 68

Figure 3.7: Meta-analysis of the effect of intraperitoneal local anaesthetic on post-op serum glucose measures up to 3 hours after laparoscopic cholecystectomy. 69
Figure 3.8: Meta-analysis of the effect of intraperitoneal local anaesthetic on post-operative pain in laparoscopic cholecystectomy - intraperitoneal application of local anaesthetic at end of dissection ... 71

Figure 3.9: Meta-analysis of the effect of intraperitoneal local anaesthetic on post-operative pain in laparoscopic cholecystectomy - intraperitoneal application of local anaesthetic applied before dissection ... 72

Figure 3.10: Meta-analysis of the effect of intraperitoneal local anaesthetic on post-operative pain in laparoscopic cholecystectomy - intraperitoneal application of local anaesthetic before and after dissection ... 73

Figure 3.11: Meta-analysis of the effect of intraperitoneal local anaesthetic on post-operative morphine equivalence analgesia use in laparoscopic cholecystectomy - grouped into intraperitoneal application of local anaesthetic applied before, both before and after and only after dissection ... 74

Figure 3.12: Meta-analysis of the effect of intraperitoneal local anaesthetic on requirement for rescue analgesia in laparoscopic cholecystectomy - grouped into intraperitoneal application of local anaesthetic applied before and after dissection ... 75

Figure 3.13: Meta-analysis of the effect of intraperitoneal local anaesthetic on post-operative pain after laparoscopic general surgical procedures not including cholecystectomy ... 79

Figure 3.14: Meta-analysis of the effect of intraperitoneal local anaesthetic on post-operative morphine equivalent analgesia after laparoscopic general surgical procedures not including cholecystectomy ... 80

Figure 4.1: QUOROM (200) diagram of search strategy. Note - Some studies used more than one agent hence 22 individual reports were used based on 18 publications ... 92

Figure 4.2: Systemic absorption of various doses of lidocaine after intraperitoneal administration ... 93

Figure 4.3: Systemic absorption of bupivacaine after various doses of intraperitoneal administration ... 97

Figure 4.4: Systemic absorption of ropivacaine after intraperitoneal administration ... 99

Figure 4.5: The effect of the operation on the systemic absorption of intraperitoneal lidocaine ... 100

Figure 4.6: The effect of the operation on the systemic absorption of intraperitoneal bupivacaine ... 101

Figure 4.7: The effect of the adrenaline on the systemic absorption of intraperitoneal bupivacaine after cholecystectomy ... 102

Figure 5.1: Systemic and total body ropivacaine administered in study patient ... 122

Figure 6.1: Outline of envelope blinding ... 132
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HT</td>
<td>5-hydroxytryptamine (serotonin)</td>
</tr>
<tr>
<td>AAG</td>
<td>Alpha-1-acid glycoprotein</td>
</tr>
<tr>
<td>AC</td>
<td>Arm circumference</td>
</tr>
<tr>
<td>ACTH</td>
<td>Adrenocorticotropic hormone</td>
</tr>
<tr>
<td>AMED</td>
<td>Allied and Complementary Medicine Database</td>
</tr>
<tr>
<td>AMC</td>
<td>Arm muscle circumference</td>
</tr>
<tr>
<td>ASA</td>
<td>American Society of Anesthesiologists</td>
</tr>
<tr>
<td>CCTR</td>
<td>Cochrane Controlled Trials Registry</td>
</tr>
<tr>
<td>CCT</td>
<td>Clinical Controlled Trial</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CINAHL</td>
<td>Cumulative Index of Nursing and Allied Health Literature</td>
</tr>
<tr>
<td>Cmax</td>
<td>Concentration maximum</td>
</tr>
<tr>
<td>CMDHB</td>
<td>Counties Manukau District Health Board</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CONSORT</td>
<td>Consolidated Standards of Reporting Trials</td>
</tr>
<tr>
<td>CVS</td>
<td>Cardiovascular system</td>
</tr>
<tr>
<td>DHB</td>
<td>District Health Board</td>
</tr>
<tr>
<td>DSMB</td>
<td>Data Safety Monitoring Board</td>
</tr>
<tr>
<td>DVT</td>
<td>Deep vein thrombosis</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>ERAS</td>
<td>Enhanced Recovery After Surgery</td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>HDU</td>
<td>High dependency unit</td>
</tr>
</tbody>
</table>
ICFS Identity Consequence Fatigue Scale
ICU Intensive care unit
IDC In-dwelling urinary catheter
IL-1β Interleukin 1β
IL-6 Interleukin 6
IL-8 Interleukin 8
IL-10 Interleukin 10
IP Intraperitoneal
IPLA Intraperitoneal local anaesthetic
LA Local anaesthetic
LC Laparoscopic cholecystectomy
LOC Locus coeruleus
MED Mean Equivalent Dose
MRRC Maaori Research Review Committee
MODS Multiple organ dysfunction syndrome
MSC Manukau Surgery Centre
NA Noradrenaline
NOTES Natural orifice translumenal endoscopic surgery
NTS Nucleus tractus solitarius
PACU Post anaesthetic care unit
PAG Peri-aqueductal grey matter
PCA Patient controlled opioid analgesia
PE Pulmonary embolism
POF Post operative fatigue
PONV Postoperative nausea and vomiting
PubMed Public/Publisher MEDLINE
<table>
<thead>
<tr>
<th>QUORUM</th>
<th>Quality of reports of meta-analyses of randomised controlled trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCT</td>
<td>Randomised Controlled Trial</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SI</td>
<td>le Système international d'unités</td>
</tr>
<tr>
<td>SRS</td>
<td>Surgical Recovery Score</td>
</tr>
<tr>
<td>TAP</td>
<td>Transversus abdominis plane block</td>
</tr>
<tr>
<td>Tmax</td>
<td>Time to reach Cmax</td>
</tr>
<tr>
<td>TSF</td>
<td>Triceps skin fold</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual analogue scale</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour Necrosis Factor-α</td>
</tr>
</tbody>
</table>