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Abstract 

Very preterm birth disrupts development of the brain and enhances its vulnerability to 

injury, resulting in neurological impairments ranging in severity from cerebral palsy to 

mild cognitive deficits.  Currently there is no treatment available. 

Unilateral hypoxic-ischemia (HI) in the three day old rat is well established as a model 

of brain injury in infants born at 22 to 26 gestational weeks.  However, it is inherently 

variable.  I show that this injury results in short term neurological deficits which may be 

capitalised upon for allocation of pups into treatment studies. 

After it is injured, the brain tries to repair itself using processes that are a recapitulation 

of those that occur during brain development.  Using a model of injury to the immature 

brain our laboratory has identified roles for the closely related anterior pituitary 

hormones growth hormone (GH) and prolactin (PRL) in the brain after injury. 

Though the role of GH in neuroprotection is well demonstrated, little is known of its 

capacity for neuro-restoration subsequent to injury.  I found that GH receptor 

immunoreactivity is upregulated in the ipsilateral subventricular zone at five days after 

injury, corresponding both spatially and temporally with injury-induced neurogenesis.  

Cells immunopositive for the GH receptor included proliferating and neural precursor 

cells and post-mitotic neuroblasts.  Together with the finding from our laboratory that 

GH stimulates proliferation of embryonic mouse neural stem cells (NSCs), these results 

indicate a novel role for GH in injury-induced neurogenesis. 

Whilst PRL is known to exert effects on neural progenitor and glial cells after injury to 

the central nervous system, its role in development of extra-hypothalamic brain regions 

has not been examined.  Using a novel real time PCR assay I reveal the ontogeny of the 

long, fully functional PRL receptor isoform in the rat cerebral cortex and find that it 

parallels that of neurite initiation and outgrowth markers.  Indeed, treatment of neurons 

derived from adult mouse NSCs with PRL increased the number of primary and 

secondary neurites.  These results implicate a role for PRL in development of the 

cerebral cortex. 
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