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Chapter 1

Introduction

In the early 1970s, the generalized linear model (GLM) class of statistical models

was proposed to the statistical landscape, notably for its unified framework for

several frequently used regression models. Nelder & Wedderburn (1972) has shown

that the linear model, Poisson regression, logistic regression, probit analysis and

several others could be treated as special cases of GLM and with one algorithm,

iteratively reweighted least squares (IRLS), to estimate them all. Prior to the

unification, these methods were treated as unrelated. The GLM framework also

provides a theoretical structure encompassing streamlining inference, diagnostics,

computation, software interface, etc. Since then GLMs have gained universal

acceptance by the statistical community.

1.1 Vector Generalized Linear Models

In spite of the great advantages, GLMs are in large restricted to one-parameter dis-

tributions within the classical exponential family. This results in a great limitation

in the digital era—information at all levels is experiencing exponential growth and

a broad variety of data has become accessible. Standard GLM regression could

no longer satisfy the demand of the diverse environment. To expand the usability,

a more flexible framework was proposed in the form of vector generalized linear

models (VGLMs). They are described by Yee (2015). Additional to VGLMs, the

class is extended in various directions to offer a suite of variants including vector

generalized additive models (VGAMs) for smoothing, reduced-rank VGLMs (RR-

VGLMs) for dimension reduction, and afew other classes. The new framework

1



Introduction 2

provides the same benefits that GLMs gave, but on a much larger scale beyond

the exponential family. VGLMs can be loosely thought of as a multivariate GLMs

and over 150 distributions and regression models have been implemented in the

VGAM R package (Yee 2019). This is a large (1.3 MB source code after compres-

sion) substantial piece of software developed over the past two decades. With

the software as a convenient vehicle, these models could be easily fit by full maxi-

mum likelihood estimation through IRLS. VGLMs/VGAMs have been successfully

proposed for the analysis of extremes data (Gilleland et al. 2013), categorical re-

sponses (Yee 2010) and other areas such as univariate distributions and aspects of

quantile regression.

1.2 The Zipf’s Law

In terms of other VGLM application areas, one significant and currently unde-

veloped field is the quantitative linguistics. Written text received active research

focus over the past 70 years, for the purpose of understanding the cornerstone of

human natural language. The access to huge amounts of digital documents has

become a powerful source that can be analysed for signatures of human commu-

nication. Statistical patterns in written text can be detected as a trace of our

mental processes. The study and understanding of text structure have been ex-

tended to a broad range of critical applications such as Web search (Chakrabarti

2002), literature mining (Ananiadou & Mcnaught 2005), topic detection (Allan

et al. 1998), and security (Newman et al. 2006). Thus, it is not surprising that

researchers in linguistics, information theory and cognitive science, statistics, and

complex systems are collaborating together to model how universal text properties

emerge.

From the statistics perspective, the frequency distribution of word occurrence has

been a key object of study. It is commonly believed that this distribution approxi-

mately follows a simple mathematical form known as Zipf’s law. According to the

law, the frequency of words in a piece of text collection decreases inversely to the

rank of the words, detailed in Chapter 2. Zipf’s law has empirically been found

to apply to collections of written documents in virtually all languages (Yu et al.

2018). More fascinatingly, the same law has been claimed in other forms of com-

munication such as music (Serra et al. 2012) and the timbres of sounds (Haro et al.

2012). Various formulations of the law have been derived since the first proposal
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of Zipf’s. However, pointed out by many, most research have soley focused on

seeking the “true form” of the law, by deriving the formulation based on different

principles. Little of them have tried to assess the underlying assumptions of the

mass hypothesis. Thus, to make progress at understanding the full relationship

between linguistics and Zipf’s law, studies must seek evidence beyond the law it-

self. Validity and assumptions of the law needs rigorous statistical testings with

novel predictions evaluated by new and independent data.

1.3 Goals

Previously, Moreno-Sanchez et al. (2016) surveys Zipf’s Law and described three

variants that satisfy it. Goodness-of-fit of the models has been tested against text

data sets from Project Gutenberg (2019). Of the three models, two have been

implemented in the VGAM R package. The aim of this work is to implement the

third model proposed by Mandelbrot (1961). Maximum Likelihood Estimation

(MLE) of the model will be developed, and further validated with the same word

frequency data sets collected in the paper. To achieve this, more specific goals

include the following:

1. The Zipf’s formulation proposed by Mandelbrot (1961) will be written as

a VGAM family function as zipfmbrot(). The Probability Mass Function

(PMF) of the original distribution may be found at equation (2.2), and a

reparameterised version as the equation (4.2) of which the implementation

will be based on.

2. Along the family function, its dpqr-type functions [i.e., density, CDF, inverse-

CDF and generation of random variates] will also be written for R.

3. All functions and the help files, once written and tested, will be developed

into an R package called VGAMzm (VGAM Zipf-Mandelbrot). Data sets col-

lected in Moreno-Sanchez et al. (2016) will be further processed into suitable

format for analysis and included in the package.

4. The new family function zipfmbrot(), along with two pre-existing ones,

zetaff(), diffzeta() will be compared, by fitting to the word frequency

data sets followed by the likelihood ratio (LR) test.
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1.4 Outline

The thesis comprises six chapters as outlined below:

Chapter 2 gives an introduction to the theoretical aspects of Zipf’s law, and an

overview of the existing literature. Three different variants the law are presented

and discussed.

Chapter 3 covers the underlying theory of the VGAMs/VGLMs framework, and

the practical functionality of the VGAM R package centering Zipf’s distribution.

Chapter 4 discusses the methodology of implementing the family function zipfmbrot()

and the four dpqr-zipfmb() functions. Essential details of the implementation

such as the Fisher Information of the distribution and the Expected Information

Matrix (EIM) will be provided.

Chapter 5 contains analysis and applications of the new functions, using the word

frequency data sets processed. LR test will be carried out for comparisons between

efficiencies of three Zipf’s models.

Chapter 6 summarizes the thesis with its theoretical and practical contributions

to the field. Limitations of the new function will be discussed for possible future

works.

Appendix A includes the source code and comments of the implementation as a

reference for future developers.

Appendix B includes other background materials needed throughout the thesis.

Through this work, we wish to show how VGLMs in general can provide a conve-

nient vehicle for the analysis of such data.



Chapter 2

Zipf’s Law

While studying the use of vocabulary in Ulysses by James Joyce, the Harvard

linguist George Kingsley Zipf made a startling discovery in the 1930s about the

statistics of language (Zipf 1932). Whether it is in speech or written text, a rel-

atively small number of words are very frequently used, while the remainder fall

on a very long tail. As the discovery has become known as Zipf’s law, scholars

began to investigate the mechanisms underlying this phenomenon. This chapter

gives a brief overview to the existing literature surrounding the topic: Section 2.1

begins with the basic definitions of the quantities involved, followed by three vari-

ants derived from the law. Section 2.2 reviews relevant literatures and research

of statistical linguistics. Section 2.3 reviews the latest methodologies used in pa-

rameter estimation. Section 2.4 gives an introduction to Project Gutenberg (2019)

from which the word frequency data sets are collected and used throughout the

work. Section 2.5 describes the likelihood ratio test for determining the best fit-

ting variant to any empirical data set. All results from the tests will be detailed

in Chapter 5 along with the new implementation done in Chapter 4.

2.1 Definitions

Zipf’s law states that, given a large corpus of natural language—whether it be

speech or written text—the frequency y of any word and its rank r of occur-

rence follow the power law: the relationship of y and r are inversely proportional

in an approximately hyperbolic manner. The most frequently occurring word is

assigned r = 1, the second r = 2, and so on. To be slightly more general, the

5



Zipf’s Law 6

formulation may include a scaling parameter in the form of an exponent α. Mathe-

matically, the quantity r would obey the power law when drawn from the frequency

distribution,

y(r) ∝ 1

rα
, (2.1)

with α typically close to 1. This, we call it a frequency-rank relationship. Note

that in this work, we consider only the discrete distributions, thus {y ∈ R : y ≥ 0}.
This expression will further be derived into three different variants.

2.1.1 Variant 1

Now let y represents the quantity, the rank, whose distribution we are interested

in. The variant, in the very basic form of Zipf’s distribution, is described by a

Probability Mass Function (PMF) of

Pr(Y = y; β) = C · 1

yβ
(2.2)

where Y is the observed value and C is a normalized constant. Sometimes, the

power-law behaviour is seen only in the tail of the distribution. In such cases,

the empirical phenomena does not obey the law for all values of y but only for

values greater than some minimum ymin—which we call the lower bound. As y

only takes in a discrete set of non-negative integers, we have ymin > 1. Thus y =

ymin, ymin + 1, . . . up to infinity. Generalized by Mandelbrot (1961), one gains

f(y; β) =
1/(y + q)β

Hymin,β,q

(2.3)

whereHymin,β,q is a generalisation of a harmonic number given byHn,s,p = ζ(z, q) =∑n
i=1 (i+p)−s. As ymin approaches infinity, the harmonic number becomes a Hur-

witz zeta function ζ(z, q) =
∑∞

n=0 (n+ q)−z. For q = 0 we gain our first variant,

the Zeta distribution, whose PMF is given by

f1(y) ≡ Pr(Y = y; β) =
y−β

ζ(β, ymin)
(2.4)
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Figure 2.1: Left hand side: this illustrates the relationship of the mass (pink)
and the cumulative density (blue) with x from 1:6; Right hand side: this com-
pares the two different shape parameters, 1 (pink) and 2 (blue), on its PMF.

where β ≥ 1 and ζ(β, ymin) is the Hurwitz zeta function. Details of zeta functions

may be found in Appendix B. For this work, the lower bound will be fixed at ymin =

1, in order to include the entire distribution from the very first value of y. Such

assumption is made in works such as Goldstein et al. (2004) and Seal (1952). It

may be useful to also consider the complementary CDF of the distribution, which

we denote as F (y) and is defined to be F (y) = Pr(Y ≤ y). Thus one may obtain

F1(y) ≡ Pr(Y ≤ y; β) =
ζ(β, y)

ζ(β, ymin)
. (2.5)

This distribution has been implemented in the VGAM R package as a family func-

tion zetaff(). Visualisation of both PMF and CDF is illustrated in Figure 2.1

using the associate dpqr-functions, dzeta() and pzeta(). An example of the

family function zetaff() will be carried out in Section 3.3.1.

2.1.2 Variant 2

In the discrete case, a power law in the PMF does not lead to a power law in its

CDF, and vice-versa. Although for large y we may approximate f(y) with −dF (y)
dy

which implies that a power law in f(y) does lead to a power law in F (y)–this
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Figure 2.2: Left hand side: this illustrates the relationship of the mass (pink)
and the cumulative density (blue) with x from 1:6; Right hand side: this com-
pares the two different shape parameters, 1 (pink) and 2 (blue), on its PMF.

simplification is clearly wrong for small y in discrete distribution. Thus when the

power-law nature exists in the CDF, we have

F2(y) ≡ Pr(Y = y; β) =

(
ymin
y

)β−1

. (2.6)

Based on the relationship f(x) = F (x) − F (x + 1) and F (x) =
∑∞

n′=n f(n′), we

may further obtain the PDF

f2(y) ≡ Pr(Y = y; β) =

(
ymin
y

)β−1

−
(
ymin
y + 1

)β−1

(2.7)

where β > 1 and y = ymin, ymin + 1, . . . . According to Moreno-Sanchez et al.

(2016), this model accommodates over 40% of text data sets in Gutenberg database,

detailed in Section 2.4. The VGAM R package also fits this distribution by the

family function diffzeta(). Figure 2.2 again illustrates the PMF with its CDF

using ddiffzeta() and pdiffzeta(). Comparisons are made between two shape

parameters, 1 and 2, on the PMF. Refer to Section 3.3.2 for applications.
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2.1.3 Variant 3

Apart from the first variant, Mandelbrot (1961) also derived another formulation,

taking into account of the sample size of occurring words in a corpus. To not

confuse this variant with the first one, which is also derived by Mandelbrot, this

variant is named Zipf-Mandelbrot II distribution. This variant will be the target

model to be implemented in Chapter 4. We first consider event (k, y) that the word

comes out y times in k samples. Here r follows the rank-frequency relationship

defined at (2.1) stated as a CDF, denoted p(r) = rβ−1 the probability of occurrence.

The formulation thus involves a binomial distribution, resulting in a probability

function

f(y, k) =

(
y

k

)
p(r)y[1− p(r)]k−y, (2.8)

which has expected value

E[f(y, k)] =

(
y

k

)
∞∑
r=1

p(r)y[1− p(r)]k−y. (2.9)

Let p(r) = x, with change of variables technique we gain r = x−A, where A = β−1,

and compare the sum to the integral∫ 1

0

xy(1− x)k−y dr(x) = A

∫ 1

0

(1− x)k−y xy−1−A dx. (2.10)

For large k, the sum differs little from the sum restricted to some range such

as (10,∞), and the integral differs little from the integral restricted to some range

such as (0, p(10)). As the difference is small, we may approximate

E[f(y, k)] ≈ A · Γ(k − y + 1)Γ(y − A)

Γ(k + 1− A)
· k!

y!(k − y)!

= A · Γ(y − A)

Γ(y + 1)
· Γ(k + 1)

Γ(k + 1− A)
. (2.11)

Substituting back A = β − 1, and let k = ymin − 1 for k being 1 ≤ k < ymin, one

gains the third variant

f3(y) ≡ Pr(Y = y; β) = (β − 1) · Γ(y + 1− β)

Γ(y + 1)
· Γ(ymin)

Γ(ymin + 1− β)
(2.12)
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Figure 2.3: Left hand side: this illustrates the relationship of the mass (pink)
and the cumulative density (blue) with x from 1:6; Right hand side: this com-
pares the two different shape parameters, 1 (pink) and 2 (blue), on its PMF.

with the CDF being

F3(y) ≡ Pr(Y = y; β) =
Γ(ymin) Γ(y + 1− β)

Γ(y) Γ(ymin + 1− β)
(2.13)

where 1 < β < 2 is the parameter to be estimated, and Γ(γ) =
∫∞

0
qγ−1e−qdq

denotes the gamma function. This variant is unimplemented in VGAM Rprior to

this work, and is developed in Chapter 4. Figure 2.4 makes use of the newly

implemented dpqr-function, dzipfmb() and pzipfmb(), to again illustrate the

relationship between the PMF with its CDF. Comparisons are made between two

shape parameters, 1.1 and 1.9, on the PMF. Summary of three variants mentioned

above can be found in Table 2.1.

2.2 Recent Research

Since Zipf’s law was put forth, it has attracted particular attentions for its math-

ematical properties, and its appearance in a diverse range of natural and man-

made phenomena. The pattern not only has been found across different spoken

and written languages, it has also been claimed in other codes of communications.

For example, the number of calls received by customers service during a day (Ebel
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Variant PMF CDF parameter

(1) y−β

ζ(β,ymin)
ζ(β,y)

ζ(β,ymin)
β ≥ 1

(2) (ymin
y

)β−1 − (ymin
y+1

)β−1 (ymin
y

)β−1 β ≥ 1

(3) (β − 1)Γ(y+1−β)
Γ(y+1)

Γ(ymin)
Γ(ymin+1−β)

Γ(ymin) Γ(y+1−β)
Γ(y) Γ(ymin+1−β)

1 > β > 2

Table 2.1: Summary of three Variants with PMF, CDF and the parameter β.
First two variants are already implemented in VGAM R, while the third is the

target model to be developed in this work.

et al. 2002), the number of bytes of data received as the result of individual web

(HTTP) requests from computer users (Sani & Daman 2014) or the number of

hits received by web sites (Ali & Scarr 2007); and also in disparate discrete sys-

tems where individual units or agents gather into different classes (Li 2002), for

example, employees into firms (Axtell 2001), believers into religions (Clauset et al.

2009), insects in to plants (Pueyo & Jovani 2006), units of mass into animals

present in ecosystems (Camacho & Sole 2001) or abundance of proteins in a single

cell (Furusawa & Kaneko 2003).

Derivations of Zipf’s law from the basic assumptions have been numerous. Scholars

in literature have devoted in seeking the most precise form of the law, that best fits

the word frequency distribution observed in natural language. Examples include

the variants derived by Mandelbrot (1961) and Mandelbrot & Wallis (1968) in

Section 2.1. A highly recognised comparison between different proposed models

are carried out in Baayen (2001). Quantitative methods are used and validated

by statistical tests. Baayen concludes that there is no one true model that fits all

corpus–different variants capture different aspects of the full distribution of natural

word frequencies. For example, For the book Hound of the Baskervilles is

best fit by the log-normal, while Alice in the Wonderland is best fit by the

Yule-Simon model.

However, most work in language research has devoted solely in seeking the true

form of the law. Very little work has attempted to validate the underlying as-

sumptions of the phenomena. Thus the validity of any forms Zipf’s law has yet to

be tested rom the statistical point of view. Over the last few years, there has been

increasing rigor in testing Zipf’s law claims. Most of which quantify the law with
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large sample of empirical data (Moreno-Sanchez et al. 2016), combining statistical

testing procedure to validate different forms of Zipf’s law. With growing maturity

of statistical and technological amenity, large data sets of text are more accessible

for rigorous testing. To this end, this work picks up from here, to test the variant

not yet validated through the development of MLE under the VGAM R framework.

2.3 Fitting to Empirical Data

As mentioned, the mass literature has been seeking the correct fitting of Zipf’s law

forms to empirical distribution of word frequency data. In order to do so, the esti-

mation of scaling parameter has often been the research question in many studies.

Regardless of which formulation it is based on, parameter estimations of Zipf’s law

have traditionally been done through qualitative methods such as data visualiza-

tion. In literature we have seen methods such as i) fitting full raw histogram on

the double logarithmic plot (Li et al. 2010) or ii) fitting binned histograms on the

double logarithmic plot (Newman & Park 2003). Observations such as having a

linear regressive slope very close to −1, obeying log y(r) = α log r+C, which gives

an initial indication of the distribution obeying the Power-law. Examples of such

approach can be seen on Figure 2.1 illustrating the rank-frequency relationship of

12 books from the Gutenberg database.

However, authors such as Goldstein et al. (2004) have pointed out that simple

graphical methods suffer from severe systematic errors under relatively common

conditions. Experiments are done in justification of more sophisticated approaches

through quantitative measurements. An asymptotically unbiased and minimum-

variance procedure based on CDF and MLE was proposed in White et al. (2008)

that is shown to outperform other methods in both accuracy and precision. The so-

lutions are moreover invariant under reparameterisations (Deluca & Corral 2013).

Therefore MLE should be considered as the most reliable procedure for parametric

estimation, given that a global maxima of likelihood does exist with a sufficient

size of observations. Thus in Chapter 4, the distribution based on Zipf’s law is

implemented under the VGAM R framework suitable for solving MLEs.
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Figure 2.4: Zipf’s law expressed by 12 books from the Gutenberg database,
on a double-logarithmic scale with frequency rank on the x-axis and frequency
on the y-axis. Observations of the straight slope very close to 1 indicate the
tendency of distribution following the power law. 12 books are: (a) On the
Significance of Science and Art by Leo Tolstoy (b) What To Do? by Leo Tolstoy
(c) The Titan by Theodore Dreiser (d) The Kingdom of Love, and Other Poems
by Ella Wheeler Wilcox (e) Life of Bunyan by James Hamilton (f) Quotations
from Abraham Lincoln’s Writings by David Widger (g) Honore de Balzac by
Albert Keim and Louis Lumet (h) Chaucer by Adolphus William Ward (i) The
Golden Bough, abridged, in one volume by James George Frazer (j) The Duke’s
Children by Anthony Trollope (k) Peg O’ My Heart by J. Hartley Manners (l)

Geological Observations On South America by Charles Darwin.
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2.3.1 Parameter estimation

Estimating the parameter β requires a value for the lower bound ymin of power-

law behavior in the data. For this work, the value is taken to be 1, to include the

whole distribution from the very first value. Assuming that out data are drawn

from a distribution that follows the power law exactly for y > ymin, we can derive

MLE of the scaling parameter β. The estimation may be done by direct numerical

maximisation of the likelihood function itself, or equivalently the log-likelihood

function that is usually used for its simplicity. Given a set of data x1, . . . , xn and

the PMF parameterized by β, one may obtain the log-likelihood function

`(β) =
n∑
i=1

log f(yi; β). (2.14)

The MLE of β is denoted as β̂ which maximizes `(β). In the case of the first

variant (2.1), the log-likelihood takes the form

`1(y; β) = − log ζ(β, a)− β log n; (2.15)

the second variant, in the form of its CDF, gives

`2(y; β) = (β − 1) log
ymin
y

(2.16)

while the PMF does not have an existing close form of log-likelihood. The third

variant, which is derived from its form of the reparameterised version (4.1) has

log-likelihood

`3(y) = log Pr(Y = y; β)

= log(β − 1) + log Γ(a) + log Γ(y + 1− β)− log Γ(a+ 1− β)− log Γ(y + 1).

(2.17)

Using VGAM, one could easily maximise the parameter β using IRLS through

Fisher Scoring, detailed in Section 3.1.1. The first two forms of Zipf’s distribution

are already implemented, while the third is developed in Chapter 4.
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Rank Frequency Rank Frequency Rank Frequency Rank Frequency

1 1525 11 277 21 155 31 132

2 1313 12 270 22 151 32 131

3 1001 13 253 23 147 33 129

4 880 14 245 24 144 34 127

5 825 15 223 25 144 35 125

6 488 16 214 26 142 36 124

7 434 17 206 27 142 37 121

8 351 18 202 28 140 38 116

9 312 19 195 29 137 39 112

10 311 20 185 30 133 40 110

Table 2.2: Word frequency of The Duke’s Children, by Anthony Trollope: Two
variables are available in each data set—rank r and frequency y of each word.

2.4 Gutenberg Database

In order to test the model with empirical observations, word frequency data sets

collected in Moreno-Sanchez et al. (2016) from the Project Gutenberg database is

considered. The database consists of books and articles from different languages,

times and periods. The collected data sets consist of articles over 100 word tokens

pre-processed with removals off selected parts, such as notes of copyright, headers,

punctuation sign and numbers etc. To be clearer, a word token refers to one

individual occurrence of a word type. Each data set contains the word frequency y

of each word type, sorting from the greatest to the smallest. In this word, each data

set is further processed with additional variable of the rank of r, from 1, 2, . . . . A

sample from one of the data set The Duke’s children, by Anthony Trollope is shown

in Table 2.1 with first 40 frequent words taken. The values of these frequencies,

for each text, are available at

http://dx.doi.org/10.6084/m9.figshare.1515919.

The website contains a compressed folder containing 31075 numerical vectors.

Each one represents word frequencies of an EBook from Project Gutenberg written

in English. Vectors are named containing the ID number of their corresponding

text in Project Gutenberg (https://www.gutenberg.org).
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2.5 Hypothesis Testing

The methods described in Section 2.2 allow us to fit a Zipf’s distribution to a

given data set, and provide an estimate of the parameters β. However, it gives

no indications whether Zipf’s law is indeed a good model for the data. One

could hardly determine the goodness-of-fit of any forms of Zipf’s distribution to

a particular data set through qualitative methods. Even if data are drawn from

a Zipf’s law, the observed distribution is unlikely to follow the exact form of

Zipf’s law due to small deviations as a random nature caused by the sampling

process; vice versa, it is always possible that a non-Zipf’s law process will happen to

generate a data set with a distribution very close to a Zipf’s law. Thus hypothesis

testing is required to obtain statistical evidence of the true plausibility of the

distribution. Such test is essential before any parameter estimation is performed.

With this hypothesis, one may define

H0 : D(ye; β)−D(ys; β) = 0 (2.18)

H1 : D(ye; β)−D(ys; β) 6= 0 (2.19)

for ye being the empirical distributed variable, and ys the synthetic. The null

hypothesis to be tested, is the deviation of the empirical data makes no difference

to the synthetic data. If the zero difference is verified to the significance level,

then the null hypothesis is rejected, indicating that the Zipf’s law is not plausible

for the empirical data. The effectiveness of this approach depends on how we

measure the deviance between the data set and the distribution. Here, we use the

Kolmogorov-Smirnov (KS) statistic, which is a good method of choice (Press et al.

1992). The procedure of the hypothesis test is detailed in Section 2.3.1. A large

sample size of 31,075 text frequency data set described in Section 2.5.2 is used to

overcome false acceptance or false rejection of hypothesis that may fail the test

when single data set is used.

2.5.1 Goodness-of-fit procedure

The goal of this goodness-of-fit process is to determine significant difference be-

tween the empirical data from those drawn from the true Zipf’s distribution. The

testing procedure is described as follows.
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� Estimate the scale parameter β of the given empirical data set.

� With the estimate β̂, generate random deviates from the true distribution.

� Calculate deviations of both data sets from the selected Zipf’s distribu-

tion; D(y, β) = 2{`(y; y)− `(µ; y)}.
� Calculate KS statistics of the hypothesis (2.19) using deviates from step 3.

� With significance level set at α = 0.1, if the resulting p-value is less than

0.1, then the hypothesis is rejected concluding that the empirical data is not

generated from Zipf’s law.

One should note that the test can only be performed on nested models. Step

1–2 will make use of the dpqr-type functions of each variant for random deviates,

and Fisher scoring maximization incorporated by VGAM framework for MLE ac-

cordingly. The same collection of text data sets described in Section 2.5.2 will be

applied to each variant, which the results will be compared as an indication of the

better fit of variant to general text data set. Pre-existing models of the first two

variants are used along with the third variant developed in Chapter 4 for analysis

mentioned above, with all results are discussed in Chapter 5.

2.5.2 Likelihood Ratio

In Section 2.3, the method provides a reliable way to test whether a given data

set is plausibly drawn from a Zipf’s law distribution. However, in many practical

situations, the only interest may be to determine which available distribution is the

best fit of the empirical data. Also, even if our data are well fit by a variant, it is

still possible that another distribution would give a fit as good or better. In such

cases, methods exist which allow direct comparisons between two distributions

given. In this section, we chose to use the likelihood ratio test for determining the

better of the two models.

The likelihood-ratio test assesses the goodness of fit of two competing statistical

models based on the ratio of their likelihoods. The null hypothesis of the test

suggests that the two likelihoods not differ by more than sampling error. The test

tests whether the likelihood-ratio is significantly different from one. Equivalently,

when log-likelihood is taken, it is to test whether the ratio is significantly different

from zero. Two pairs of LR will be generated for each empirical data, to compare

(1) distributions f1 with f3, and (2) distribution f2 with f3. The logarithmic
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ratio between two likelihoods is also computed, which may be positive or negative

indicating the better distribution, or a zero indicating an event of a tie. The

likelihood ratio between two distribution may simply be defined

R1,2 =
n∑
i=1

(log f1(xi)− log f2(xi)) (2.20)

and under the null hypothesis that both models are equally good to describe the

data R1,2 should be normally distributed with µ = 0 and a variance σ2. Large

absolute values of R1,2 will lead to the rejection of the null hypothesis.

2.5.3 Likelihood Ratios L1,3 and L2,3

Recalling three distributions—f1, f2 and f3—to be considered, with probability

density p1, p2 and p3. With a sample size of n, the likelihoods of the three distri-

butions are

Lj =
n∏
i=1

pj(xi), j = 1, 2, 3. (2.21)

(2.22)

The ratios of the likelihoods of our interest L1,3 and L1,4 are

R1,3 =
L1

L3

n∏
i=1

p1(xi)

p3(xi)
,

R2,3 =
L2

L3

n∏
i=1

p2(xi)

p3(xi)
. (2.23)

The logarithmic ratios are then

R1,3 =
n∑
i=1

[log p1(xi)− log p3(xi)] =
n∑
i=1

log[`
(1)
i − `

(3)
i ],

R2,3 =
n∑
i=1

[log p1(xi)− log p3(xi)] =
n∑
i=1

log[`
(1)
i − `

(3)
i ]. (2.24)

The performance and effectiveness of the likelihood ratio test is validated with

synthetic data in (Clauset et al. 2009). Future direction of the study of Zipf’s law

may be found in Chapter 6. The results are computed in conjunction with the

new implementation of this work and discussed in Chapter 5.



Chapter 3

VGLMs

Being the centre piece of the VGAM package, VGLMs portray the foundational

parametric class of models. Both VGAM and VGLM classes are implemented in

the VGAM package for the R statistical computing environment (R Core Team

2018). This package provides a number of benefits surrounding parametric re-

gression models. The nature of VGAM modular also provides an environment for

programmers to add new methodology through the S4 object-oriented program-

ming framework. This chapter gives a sketch picture of the ideas underpinning the

VGLMs framework, with a particular emphasis toward the Zipf models described

in Chapter 2. Section 3.1 describes the basic mechanism of VGLMs as a method

of MLE computation based on IRLS. Section 3.2 provides a brief introduction to

the software of VGAM. Section 3.3 illustrates the use of VGAM through two ex-

isting Zipf distributions in the VGAM R package. This chapter only introduces a

small piece of the VGAM/VGLM framework. For more general details, refer to

Yee (2015) and Yee (2013).

3.1 Basics

Suppose that the observed response y is a q-dimensional vector (q ≥ 1), and

the observed covariate x = (x1, . . . , xp)
> is a p-dimensional vector, where x1 =

1 denotes the optional intercept. VGLMs are models comprising a conditional

distribution of y given x in the form

f(y|x; B) = g(y, η1, . . . , ηM) (3.1)

19
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where g(·) is some known function, B = (β1 β2 . . . βM) is a p × M matrix of

unknown regression coefficients, and ηj denoting the jth linear predictor given by

ηj = ηj(x) = β>j x =

p∑
k=1

β(j)k xk, j = 1, . . . ,M. (3.2)

With (3.2) it is assumed that all parameters of the distribution may be potentially

modelled as functions of x. VGLMs may be seen as an extended version of GLMs

that allows for multiple linear predictors, and encompasses models outside the

small confines of the exponential family. In general there is no relationship between

q and M : it depends specifically on the model or the distribution to be fitted. For

Zipf’s models, only the scaling parameter is to be estimated thus M = 1, and q

may be any positive integer as the observed sample size.

Let xi denote the explanatory vector for the ith observation, for i = 1, . . . , n.

Then the set of linear predictors for the ith individual, ηi, can be written as

η = η(xi) =


η1(xi)

...

ηM(xi)



= B>xi =


β>1 xi

...

β>Mxi

 =


β(1)1 · · · β(1)p

...
. . .

...

β(M)1 · · · β(M)p

xi
=

(
β(1) . . . β(p)

)
xi.

(3.3)

The ηj of VGLMs may be applied directly to any parameters of a distribution

rather than to a mean for GLMs. A simple example is a univariate distribution

with a location parameter µ and a scale parameter σ > 0, where we may take

η1 = µ and η2 = σ. In VGAM , there are currently over a dozen link functions

available to be flexibly assigned to each ηj, according to the nature of each model.

Details of link functions may be found in Section 3.2.1.

3.1.1 IRLS

The maximum likelihood of parameters are estimated by IRLS using weighted

least squares iteratively. Having (3.3) to be estimated, the log-likelihood may be
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expressed as

`(β) =
n∑
i=1

wi `i{η1(xi), . . . , ηM(xi)} (3.4)

where ηj is defined in (3.2) and β is the iterated parameter to maximize the

log-likelihood. Written in IRLS form,

β(a) =

( n∑
i=1

X>i W
(a−1)
i Xi

)−1( n∑
i=1

X>i W
(a−1)
i z

(a−1)
i

)
(3.5)

at iteration a, where Xi is the ith term of the model matrix X ≡ (xi, . . . ,xn)>.

This corresponds to the covariates passed into the algorithm via the argument

formula of vglm() in Section 3.2. And W(a) is a known positive working weight

matrix (W
(a)
1 , . . . ,W(a)

n ), comprising

W
(a)
i = −E

(
∂2`i
∂η2

i

)
(3.6)

for each log-likelihood component `i. The individual EIMs are closely related

to the working weight matrices Wi by the chain rule. The zi are the working

responses as an M -vector given by

z
(a−1)
i =Xiβ

(a−1) + W
−1(a−1)
i u

(a−1)
i (3.7)

where the score vector ui is

ui =
∂`i
∂η

. (3.8)

An initial approximation of β(0) is chosen to give an initial estimate of z(0) and W(0).

Then (3.5) is solved in order to obtain β(1), which is used to get improved new

values for z(t) and W(t), and so on until adequate convergence is achieved. The

maximum likelihood estimate β(t+1) is taken when the difference between succes-

sive approximations β(t) and β(t+1) are sufficiently small. Practically, the EIMs

are used—as opposed to observed information matrices (OIMs) derived by New-

Raphson algorithm—because all the working weight matrices must be positive-

definite. An important step when implementing VGLMs, therefore, is to derive

the EIM where possible. Each of the log-likelihood, score vector and the EIM of

the Zipf-Mandelbrot model may be found in Chapter 4.
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3.2 The VGAM Package

Written in S4 (Chambers 1998), a vglm() object is used in a similar manner as

glm(), i.e., it inherits the ideas of data frames, families, IRLS and the formula

language etc. The basic vglm() object comprises three arguments formula, family

and dataset. For example,

vglm(formula = rank ~ 1,

family = zetaff,

data = book1)

solves for the MLE of the parameter β of the random sample rank, assumed from a

zeta distribution, specified by the zetaff() family function. As β > 0, η = log β is

the default. The 1 in the formula implies that there is an intercept only. The scope

of the family function is fairly broad, which covers a wide range of multivariate

response types and models, including univariate and multivariate distributions,

categorical data analysis, quantile and expectile regression and much more.

Many options available with glm()/gam() are also available with vglm()/vgam(),

e.g., subset, na.action and trace etc. Methods of the vglm()/vgam() object are

also written for standard generic functions such as coef(), fitted(), predict(),

summary() and vcov(). Some examples are included in Section 3.3

3.2.1 Link Functions

Almost all VGAM family functions allow for any link function to be assigned

to each η to provide maximum capability. Recalling from Section 3.1 we have

η = g(θ) where g(·) is the link function, θ is the parameter and η is the linear/ad-

ditive predictor. The link g(·) must be strictly monotonic and twice-differentiable

in its range. To assign the desired link, an extra argument needs to be passed in

any known parameter associated with the link function. Table 3.1 lists the links,

ranged within 0 ≤ θ ≤ 1 that may be used by the Zipf’s models mentioned in

Section 2.1.

While the default of the family function gives a reasonable first choice, users are

able to assign different links. In order to encompass a wider selection of links,
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the model of (2.12) will be reparameterised before implementations in Section 4.1.

Fuller choice of link functions may be found in (Yee 2015, pg. 10)

Link g(θ) Range of θ

cauchit tan(π(θ − 1
2
)) (0, 1)

cloglog loge{− loge(1− θ)} (0, 1)

fsqrt
√

2θ −
√

2(1− θ) (0, 1)

logit loge(θ/(1− θ)) (0, 1)

probit Φ−1(θ) (0, 1)

Table 3.1: Some VGAM link functions available for the implemented model
in Section 4.2. After reparameterisation, the shape parameter of (2.12) falls
within 0 < θ < 1. After careful modifications to handle endpoints, commonly

used link such as cloglog, logit and probit may be used.

3.2.2 The summary Generic Function

Having the generic function summary() being applied to a vglm()/vgam() object,

an object of class summary.vglm is returned. The output is similar in its format

with that of a glm() object, giving a matrix with 4-columns:

1. the estimates β∗̂(j)k

2. the standard errors SEβ∗̂(j)k

3. the Wald statistics (β∗̂(j)k - 0)/SE(β∗̂(j)k), and

4. the 2-sided p-values.

The assumption is made that all the Wald statistics follow the standard normal

distribution. Particularly, the null hypothesis H0 : β∗(j)k = 0 and H0 : β∗(j)k 6=
0 are tested. The matrix is suggested to be extracted by using the extractor

coef()/Coef() to summary(). At the very right hand side of the output, one

can find significant starts characters: ‘.’, ‘*’, ‘**’, ‘***’, indicating the significant

level of the p-value. The use of stars has been controversial, and is sometimes

suppressed by
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summary(vglmObject, signif.stars = FALSE)

The overall residual degrees of freedom (df) is given at the bottom of the output,

which can be called by df.residual(vglmObject, type = ‘‘vglm’’). Example

of the use can be found in Chapter 6.

3.3 Examples

Two variants mentioned in Section 2.1 are already implemented as a family func-

tion in VGAM. Two examples are below to illustrate the simple use of vglm()

function.

3.3.1 Example 1: zetaff()

The family function zetaff() is written for the first variant (2.4). Recalling the

Hurwitz zeta function ζ(z, q) =
∑∞

n=0 (n + q)−z, where q > 0 is known here

as the starting value. Since q = 1 by default, this function will therefore return

Riemann’s Zeta Function ζR(s) =
∑∞

n=1 n−s. Thus the first variant may also be

expressed as

P (Y = y) =
1

yβ+1 · ζR(β + 1)
, (3.9)

where y = 1, 2... and the scaling parameter β > 0. Since the parameter is positive,

a log link is the default. With this expression, the built-in zeta() function for

Riemann’s Zeta Function in the VGAM package may be used for computation. For

further backgrounds of zeta formulations refer to Appendix B. An example with a

data set df consisting the rank and frequency of words from the book, comparing

to the true form of first zipf variant. A quick peak of the data set,

> head(df)

freq rank

1 1525 1

2 1313 2

3 1001 3

4 880 4
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5 825 5

6 488 6

Fitting the dataset to the distribution gives an coefficient of 0.2636.

> fit <- vglm(rank ~ 1, family = zetaff, data = df,

trace = TRUE, weight = freq, crit = "coefficient")

VGLM linear loop 1 : coefficients = -1.3345821

VGLM linear loop 2 : coefficients = -1.3331693

VGLM linear loop 3 : coefficients = -1.3331682

VGLM linear loop 4 : coefficients = -1.3331682

> (p_hat <- Coef(fit)) # 0.2636407

shape

0.26364

Validating the data set to the true distribution generated by the estimated pa-

rameter.

> true <- round(dzeta(df$rank, p_hat) * sum(df$freq), 1)

> head(cbind(true, df), n = 10)

true freq rank

1 5127.7 1525 1

2 2135.6 1313 2

3 1279.4 1001 3

4 889.5 880 4

5 670.9 825 5

6 532.9 488 6

7 438.6 434 7

8 370.5 351 8

9 319.2 312 9

10 279.4 311 10
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> par(mfrow = c(1, 2))

> plotvglm(fit)
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Figure 3.1: Visualization of Pearson residuals by fitting the book using
zetaff().

We may see that the data set begins to more closely follow the true distribution

after a few values. In this case, the true starting value may be estimated in future

work to provide more accurate inclusion of the distribution. Using vglm generic

plotting function plotvglm(), one may see the Pearson residuals of the linear

predictors.

3.3.2 Example 2: diffzeta()

The family function diffzeta() is written to accommodate the second variant

(2.4). In this example,1000 random deviates from the distribution are generated

using rdiffzeta(), with simulated shape parameters generated using log link

functions loge(-0.25 + runf(n), inverse = TRUE) where inverse = TRUE in-

dicates the inverse link value of θ, which returns η.

> n <- 10000

> x <- runif(n)

> shape <- loge(1.5 - x, inverse = TRUE)

> y <- rdiffzeta(n, shape)
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> df2 <- data.frame(x, y, shape) ; head(df2)

x y shape

1 0.803030 3 2.0077

2 0.295252 1 3.3359

3 0.566409 1 2.5436

4 0.113888 1 3.9993

5 0.017597 1 4.4035

6 0.790463 1 2.0331

With the synthetic data set, MLE is performed using the family function diffzeta(),

> fit <- vglm(y ~ x, family = diffzeta, data = df2,

trace = TRUE, crit = "coef")

VGLM linear loop 1 : coefficients = 1.7339434, -1.1610223

VGLM linear loop 2 : coefficients = 1.6049662, -1.1087857

VGLM linear loop 3 : coefficients = 1.5349428, -1.0393806

VGLM linear loop 4 : coefficients = 1.5216139, -1.0228557

VGLM linear loop 5 : coefficients = 1.5209610, -1.0221166

VGLM linear loop 6 : coefficients = 1.5209399, -1.0220918

VGLM linear loop 7 : coefficients = 1.5209393, -1.0220911

VGLM linear loop 8 : coefficients = 1.5209393, -1.0220911

> coef(summary(fit, matrix = TRUE))

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.5209 0.025541 59.548 0.0000e+00

x -1.0221 0.041988 -24.342 6.9693e-131

We may see that the estimated intercept and the estimated x, counting into their

standard errors, are fairly close to the preset value 1.5 and −1.



Chapter 4

The New zipfmbrot() Family

Function

Recalling Chapter 3, the VGAM R package allows users to solve for MLEs of given

empirical data. To do so, one is required to specify the distribution by passing

in the specific family function to the family argument. Should one wish to self-

implement a family function under the VGAM framework, sufficient knowledge of

both the distribution and the functionality of VGAM are needed. This chapter

aims to develop the third variant mentioned in Section 2.1.3. Section 4.1 gives

an overview of the implementation, including the reparameterised version of the

distribution that is being implemented. Section 4.2 discusses the newly devel-

oped zipfmbrot() family function. Section 4.3 discusses the associate dpqr-type

functions. Section 4.4 wraps up the chapter with notes and package information.

Programming details of all functions may be found in Appendix A.

4.1 Overview

To implement a distribution on top of VGAM, the work may be split into two parts:

(1) the mathematical theory, and (2) the realization of the software. Speaking of

the theory, a distribution model to be implemented is required to be one that can

be estimated by IRLS. At its simplest, this points to a distribution possessing

a log-likelihood (3.4), score vector (3.8) and EIM (3.6) that are mathematically

tractable. Having the above satisfied and computed, each part may be placed into

a slot of the family function written as an S4 object. A number of essential and

28
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optional slots are present in each family function, to provide different function-

alities when called by vglm()/vgam(). The slots used in the new zipfmbrot()

family function and the respective mathematical computations, if applicable, may

be found in Table 4.1.

Slot Descriptions

@blurb Prints out the name of the distribution and information of
the parameter link functions.

@infos Returns a list defining several entries, e.g., M1 = 1, Q1 = 1
and logical multipleResponses = TRUE

@initialize Returns initial value that is used for the initial state of iter-
ation, via mustart and/or etastart.

@linkinv Returns fitted value ruturned by method fitted(). e.g., a
matrix with rows of upper 0.75 quantile.

@last Assings information such as misc$link, misc$earg (extra
arguments) and misc$start to be evaluated at after final
IRLS iteration.

@loglikelihood Returns `i, computed in Section 4.2.1.

@vfamily Family function name “zipfmbrot” as an identification used
for S4 classes.

@validparams Tests that the estimates are within the parameter domain.
If the test fails, half-stepping is invoked, detailed in Sec-
tion 4.2.4.

@deriv Returns the score vectors in rows wi∂`i/∂η with respect to
the linear predictors, computed in Section 4.2.2.

@weight Returns working weights wz, wiWi, with respect to the linear
predictors, computed in Section 4.2.3.

Table 4.1: The slots of family function zipfmbrot() (of S4 class "vglmff",
and the returned value.)

Before starting the implementation, a slight modification of the expression (2.3) is

taken to accommodate greater flexibility provided by the link functions. Recalling

Table 3.1, each link function associates with a domain for appropriate parameters

to pass in to. As the parameter β from Section 2.1.2 falls within the range 1 <

β < 2, an adjustment is made with reparameterised s = β − 1 so that the new

parameter switches to the range 0 < s < 1. This enables a wider option of

built-in link functions such as logitlink, probitlink, clogloglink, etc. to be

used. Appropriate choice of link functions may increase the chances of successful

convergence by avoiding numerical problems. After parameterization, the PMF
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becomes

f3(y) ≡ Pr(Y = y; s) =
s Γ(ymin)

Γ(ymin − s)
· Γ(y − s)

Γ(y + 1)
(4.1)

and CDF

F3(y) ≡ Pr(Y = y; s) =
Γ(ymin) Γ(y − s)
Γ(y) Γ(ymin + s)

(4.2)

with the new parameter s. The PMF may be linked back to (3.1) as the expression

of the Zipf-MandelbrotII in VGLM. These reparameterised expressions will be used

throughout the implementation of both zipfmbrot() and dpqr-zipfmb(). More

details on the implementation of family functions may be found in (Yee 2015, ch.

18).

4.2 Family Function zipfmbrot()

In this chapter, some important slots in the family function zipfmbrot() are un-

folded and discussed. Among all slots, the greatest obstacle in the implementation

is to compute adequate working weight matrices in Section 4.2.3, which is usually

the case in implementing any family function. Some slots that are more obviously

understandable are not explicitly detailed for the sake of simplicity.

4.2.1 Log-likelihood

As named, the slot @loglikelihood consists of the log-likelihood of the Zipf-

Mandelbrot distribution, corresponding to (3.4). The d-type function dzipfmb()

implemented in Section 4.3.1 is used with argument log = TRUE for this evalua-

tion. The log-likelihood may be computed as

`i(yi; si) = log f(yi; si)

= log si + log Γ(yi − si) + log Γ(a)− log Γ(yi + 1)− log Γ(a− si). (4.3)

As a note, the slot consists of the form
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> args(zipfmbrot()@loglikelihood)

function (mu, y, w, residuals = FALSE, eta, extra = NULL, summation = TRUE)

NULL

The argument summation = TRUE indicates that all the `i is returned. If set FALSE,

it returns a vector or matrix with elements wi`i. The full code of the slot may be

found in Appendix A.

4.2.2 Score Vector

The slot @deriv typically returns wiui, where the elements of ui corresponds to

the score vector (3.8). The score vector is simply the first derivative of the log-

likelihood to η, which may be evaluated using the chain rule in the form of

ui =
∂`i
∂η

=
∂`i
∂s
· ∂s
∂η

(4.4)

where we have

∂`i
∂s

=
1

s
+

Γ′(y − s)
Γ(y − s)

− Γ′(a− s)
Γ(a− s)

=
1

s
+ ψ(y − s)− ψ(a− s) (4.5)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function. For expressions involving a

link function η, internal functions such as dtheta.deta(theta, link, earg),

corresponding to ∂θ/∂η, may be used for computation of derivatives. Several of

which are used throughout the implementation. Refer to Table 4.2 for functions

of such. For full implementation of the slot refer to Appendix A.

4.2.3 Working Weight Matrix

The slot @weight returns the working weight matrix wiWi where the elements

of Wi corresponds to the EIM of the distribution defined by (3.6). However, a

challenging problem emerges for the computation of EIM, where an infinite series

is involved due to the recurrence relation between two trigamma functions. An
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Function Value

dtheta.deta(theta, link, earg) ∂θ/∂η

d2theta.deta2(theta, link, earg) ∂2θ/∂η2

eta2theta(theta, link, earg) θ = g−1(η)

theta2eta(theta, link, earg) η = g(θ)

Table 4.2: Internal functions of VGAM that invoke the link functions in the
slot. These are used because the link chosen by the user is passed into the
appropriate slot using substitute(). The argument earg contains a list which
often defaults to list(inverse = FALSE, deriv = 0, short = TRUE, tag =

FALSE).

approximation is thus needed for replacement. Two algorithms are required for

good computation of the working weight matrix:

4.2.3.1 Algorithm 1: EIM.zipfmb.specilp()

The first method approximates the EIM with the CDF of the distribution. First

of all, the EIM may be obtained by using the chain rule

∂2`i
∂η2

=
∂2`i
∂s2

(
∂s

∂η

)2

+

(
∂`i
∂s

∂2s

∂η2

)
(4.6)

where ∂`i/∂s is the score vector computed in slot @deriv; ∂s/∂η and ∂2s/∂η2 may

be evaluated using dtheta.deta(theta, link, earg) and d2theta.deta2(theta,

link, earg) respectively. Since ∂2`i/∂s
2 is the second derivative of the log-

likelihood to the parameter s

∂2`i
∂s2

= − 1

s2
+ ψ′(y − s)− ψ′(a− s) (4.7)

then the EIM is

−E
(
∂2`i
∂s2

)
=

1

s2
+ ψ′(a− s)− E[ψ′(y − s)] (4.8)

where an the infinite series is involved with trigamma function evaluations

ψ′(a− s)− E[ψ′(y − s)] (≡ A, say). (4.9)



The New zipfmbrot() family function 33

Exploiting the recurrence relation ψ′(x+ 1) = ψ′(x)− x−2 gives

A = ψ′(a− s)−
∞∑
y=a

f(y − s)

= ψ′(a− s)− f(a)ψ′(a− s)−
∞∑

y=a+1

f(y)

{
ψ′(a− s)−

y−1∑
i=a

1

(i− s)2

}

=
∞∑
y=a

Pr(Y ≥ y + 1)

(y − s)2
(4.10)

As a result we could approximate the infinite series A with a finite sum of inverse

CDF values:

A ≈
U∑
y=a

Pr(Y ≥ y + 1)

(y − s)2
(4.11)

for some finite upper bound U . The approximation is written as an extra func-

tion called EIM.zipfmb.specialp() for computation of the final expression. This

expression is used in several distributions such as the negative binomial (Lawless

1987). With the final evaluation involving the CDF of the distribution, the nu-

merator may be computed using pzipfmb() implemented in Section 4.3.2 with the

argument lower.tail = FALSE in the slot. The full implementation of the slot

may be found in Appendix A.

4.2.3.2 Algorithm 2: Simulated Fisher Scoring (SFS)

However, sometimes, the first algorithm fails when the upper bound reaches the

limit of computation. In this case, the second choice is to approximate the EIM

by the Simulated Fisher Scoring (SFS) method. The method approximates

V ar

(
∂`i(y)

∂β

)
(4.12)

by simulating y at the current iteration β̂. Here, repeated realizations of the

score vector are generated, by rzipfmb(), to compute the sample variance. The

calculation is done for all i by a vectorised computation. With the model that is

intercept-only, the variance is averaged over all i. The number of simulations is

specified in the argument nsimEIM, which is defaulted by 300. A larger number of

simulations would lead to a more accurate approximation.
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4.2.4 Half Stepping

The slot @validparam tests that the estimates β fall within the parameter domain.

If not, the slot returns FALSE and vglm issues a warning and invokes half-stepping

to occur. Half-stepping is used to prevent an iteration stepping too far in IRLS—

resulting in a reduction of the likelihood, `(a) < `(a−1). The solution enables the

algorithm to repeatedly half the step until the likelihood is increased. The iteration

at (a) may be shown as

β(a) = β(a−1) + h(a−1) (4.13)

where h(a−1) is the step added to the estimation at iteration a. Half step-sizing

allows h(a−1) to be replaced by smaller steps such as 1
2
h(a−1), 1

4
h(a−1), 1

8
h(a−1), . . . ,

if `(a) < `(a−1). The iteration is not completed until `(a) > `(a−1). The process

involves computing ` at

β(a−1) + α
(
β(a) − β(a−1)

)
= (1− α)β(a−1) + αβ(a) (4.14)

for α = 1
2
, 1

4
, 1

8
, . . . until an improvement occurs.

Half-stepping is used to ensures an improvement is made every iteration, and is

particularly useful at early stages of the iteration if the initial values are poorly

chosen.

4.3 dpqr-functions

As well as providing a VGAM family function in Section 4.2, the associate dpqr-

type functions that compute probability density (mass) function, cumulative den-

sity function, quantile function and random generator respectively are also im-

plemented. The four dpqr-zipfmb() functions follow standard S conventions as

other dpqr-type functions in VGAM. Refer to Table 4.3 for the summary of the

functions and default values. The fuller codes and details of implementations may

be found in Appendix A.
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Function Returned Value

dzipfmb(x, ..., log = FALSE) f(x)

pzipfmb(q, ..., lower.tail = TRUE, log.p

= FALSE)

F (q) = Pr(X ≤ q)

qzipfmb(p, ..., lower.tail = TRUE, log.p

= FALSE)

minq:p≤F (q) q = F−1(p)

rzipfmb(n, ...) yi ∼ F independently

Table 4.3: The four dpqr-zipfmb() functions following S conventions associ-
ated with distributions and random variates. Arguments specific to the distri-
bution are denoted by . . . . Options of returning natural logarithmic values are
available for dpq-zipfmb(), yet defaulted to FALSE. Lower tail is defaulted to

be returned, lower.tail = FALSE returns the upper tail.

4.3.1 Density Function dzipfmb()

As a discrete distribution, dzipfmb() returns the PMF of (4.2), with default start

= 1 for inclusion of whole distribution, and log = FALSE for natural density. The

Shape parameter falls between 0 < s < 1, e.g.

> dzipfmb(x = 1:10, shape = 0.5, start = 1, log = FALSE)

[1] 0.5000000 0.1250000 0.0625000 0.0390625 0.0273438 0.0205078

[7] 0.0161133 0.0130920 0.0109100 0.0092735

To note that, in keeping consistent with R, the word density is loosely termed here

to denote f in general. More strictly, in discrete distributions, f(y) = Pr(Y =

y) is called the probability mass function (PMF), whereas the probability density

function (PDF) is reserved for continuous Y . With further looseness, although

Chapter 3 uses Y as the response, we deviate here and use X to keep it compatible

with general d-type functions with the first argument x.

The function comes with 4 arguments: x, shape, start and log. The logical ar-

gument log indicates whether the log-likelihood, natural logarithm of the density,

is returned. The implementation involves using lgamma() for computation of the

natural logarithm of the gamma function for more accurate results, as it is less

likely to suffer from numerical problems such as overflow. For example, taking

y = 1000, ymin = 1 and shape = 0:5, one wishes to compute the density,



The New zipfmbrot() family function 36

> y <- 1000; ymin <- 5; shape <- 0.2

> dens <- shape + gamma(ymin) + gamma(y - shape) -

gamma(ymin - shape) - gamma(y + 1)

> dens

[1] NaN

yet the large input value y causes overflow and results in NaN; while if lgamma()

is used instead,

> ldens <- log(shape) + lgamma(ymin) + lgamma(y - shape) -

lgamma(ymin - shape) - lgamma(y + 1)

> exp(ldens)

[1] 6.7601e-05

we see that a more accurate answer is returned. Thus the calculation in the

implementation always begins with the logged value, then take the exponential if

log = FALSE is favoured over the other. The same technique is also used in the

implementation of pzipfmb().

4.3.2 Cumulative Function pzipfmb()

pzipfmb() returns (2.13) the CDF of the distribution, e.g.

> pzipfmb(q = 1:10, shape = 0.5, start = 1, lower.tail = TRUE, log = FALSE)

[1] 0.50000 0.62500 0.68750 0.72656 0.75391 0.77441 0.79053 0.80362

[9] 0.81453 0.82380

for the lower tail of the Mandelbrot-ZipfII distribution. Two functions log1p()

and expm1() are used in conjunction with lgamma() mentioned in Section 4.3.1

to control overflow when computing the lower tail probability. The function

log1p(x) computes log(1 + x) accurately even for x << 1; while expm1(x) com-

putes exp(x) - 1 accurately even for x << 1. For example, to compute the
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lower tail probability of quantile q, instead of computing 1 - exp(log.q) we use

-expm1(log.q); with the probability of the upper tail, we use log1p(-exp(log.q))

instead of log(1-log.q) for equivalent but more accurate results.

To validate the implementation, we can make use of dzipfmb() in conjunction

with cumsum() which returns the cumulative sums, so

> cumsum(dzipfmb(1:10, shape = 0.5, start = 1))

[1] 0.50000 0.62500 0.68750 0.72656 0.75391 0.77441 0.79053 0.80362

[9] 0.81453 0.82380

> pzipfmb(1:10, shape = 0.5, start = 1)

[1] 0.50000 0.62500 0.68750 0.72656 0.75391 0.77441 0.79053 0.80362

[9] 0.81453 0.82380

The pzipfmb() with argument log = T is largely used in other implementations

such as qzipfmb() and the family function zipfmbrot().

4.3.3 Inversed CDF qzipfmb()

The qzipfmb() function returns the quantile, that is, the inversed CDF given by

q = F−1(p). The Bisection Method is used for approximation since there is no

close form expression for the solution. The method approximates the root α by

repeatedly bisecting the closed interval [a, b]. According to the intermediate value

theorem, the continuous function f must contain at least one root in the interval

(a, b) when the inequality f(a) · f(b) < 0 is satisfied. With an allowable error ε,

we use the following step over iteration i:

1. Let ci = ai+bi
2

, that is, the midpoint of the interval [a, b] = [ai, bi].

2. If bi − ci = bi−ai
2
≤ ε, accept c1 as a sufficient approximation of the root α;

otherwise, if bi − ci = bi−ai
2

> ε, move to step 3.

3. If f(bi) · f(ci) < 0, set ai+1 = ci and bi+1 = bi; otherwise ai+1 = ai and

bi+1 = ci then return to step 1. for next iteration.
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The method is called by bisection.basic(). The lower bound is set to be low =

Ymin−0.5, and the higher bound high = 2 · low+ 10. To validate the approximated

answer, we can make use of the CDF pzipfmb(),

> quantile <- 1:10

> (prob <- pzipfmb(quantile, shape = 0.7, start = 1)) #CDF

[1] 0.70000 0.80500 0.85050 0.87666 0.89393 0.90630 0.91567 0.92305

[9] 0.92904 0.93400

> qzipfmb(prob, shape = 0.7, start = 1) # quantile should be 1:10

[1] 1 2 3 4 5 6 7 8 9 10

where one can see that the CDF is properly inversed.

4.3.4 Random Deviates rzipfmb()

To generate random deviates from the Zipf-MandelbrotII distribution, the trans-

formation method is used for its simplicity. Having the PMF from (4.1), we wish

to draw random deviates of integer y ≥ ymin. Usually a source of random deviates

r uniformly distributed in [0, 1], will be generated by a standard pseudo-random

number generator. Then we have the PMF and Pr(r) related by

Pr(y) = Pr(r)
dr

dy
=

dr

dy
(4.15)

where the second equality follows because Pr(r) = 1 over the interval [0, 1]. Inte-

grating both sides with respect to y, one gains

Pr(y) =
inf∑
y′=y

Pr(y′) = 1− r (4.16)

or equivalently

y = P−1(1− r). (4.17)



The New zipfmbrot() family function 39

where P−1 indicates the inverse of the CDF (4.2), which can be computed by

qzipfmb(). For example, to generate 30 deviates with shape parameter = 0.2,

> set.seed(100)

> sort(rzipfmb(n = 20, shape = 0.2), decreasing = T)

[1] 20580 2012 619 164 118 63 26 24 13 11 6

[12] 5 4 4 3 3 2 2 1 1

4.4 Writing R package

All the functions written developed in this chapter is built into an R package

VGAMzm. Some data sets mentioned in Chapter 5 are also included for analysis.

The package includes

1. zipfmbrot(): the Zipf-MandelbrotII family function

2. dzipfmb(): the probability mass function

3. pzipfmb(): the cumulative probability function

4. qzipfmb(): the quantile function, that is, the inversed CDF

5. rzipfmb(): the random deviates generator

6. EIM.zipfmb.specialp(): internal function, returns special p-function for

computation of EIM;

7. books: data sets, containing 20 books from the Gutenburg Database, with

2 variables rank and freq

An .Rd help file for each function and data set, with a R manual are written. Inside

the package, the file NAMESPACE is included for declaration of which variables,

functions and S4-style classes to export and import. The DESCRIPTION includes

package dependencies. An .Rd help file for each function is also created. The

package may be found as a supplementary file to this thesis.



Chapter 5

Uses and Applications

In this chapter, the basic usage of the new family function zipfmbrot() is covered,

and further compared with other two models zetaff() and diffzeta(). Data

sets collected from the Gutenberg database described in Section 2.4 are being

considered, in which 20 of them are attached in the VGAMzm R package to be

used here.

5.1 Basic Use of zipfmbrot()

Data set book2 is loaded from the package VGAMzm, with the frequency and the

respective rank of the top 10 words.

> data(books) # loading 20 bookss

> head(book2, n = 10)

freq rank

1 949 1

2 781 2

3 605 3

4 407 4

5 326 5
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6 288 6

7 284 7

8 270 8

9 255 9

10 212 10

The data set is now fitted with the rank of each word as the response y, weighted

by the word frequency weight = freq. With the family function zipfmbrot(),

we are fitting the response to the Zipf-Mandelbrot distribution.

> fit <- vglm(rank ~ 1, family = zipfmbrot, data = book2,

weight = freq, trace = TRUE)

VGLM linear loop 1 : loglikelihood = -93934.5034

VGLM linear loop 2 : loglikelihood = -126158.985

Taking a modified step....................

In vglm, the argument trace = TRUE should always be included to monitor the

convergence of the estimate. Recalling Section 3.2.2, generic functions such as

summary() and Coef()/coef() may be applied.

> summary(fit)

Call:

vglm(formula = rank ~ 1, family = zipfmbrot, data = book2, weights = freq,

trace = TRUE)

Pearson residuals:

Min 1Q Median 3Q Max

logitlink(shape) 2.54 3.71 4.51 6.18 25.3
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.16081 0.00973 -16.5 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Name of linear predictor: logitlink(shape)

Log-likelihood: -93935 on 1371 degrees of freedom

Number of Fisher scoring iterations: 2

No Hauck-Donner effect found in any of the estimates

The result gives an estimate of -0.16081, with a standard error 0.00973. To only

extract the summary, we use the extractor coef() in conjunction with the result.

> coef(summary(fit))

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.16081 0.0097298 -16.528 2.3067e-61

Coef() is used to obtain the regression coefficients. Then we have the estimate

> Coef(fit)

shape

0.45988
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For more extractor, refer to Yee (2015) [ch. 8]. Further, we may fit the model

with the frequency being the covariate. This time, 100 data points are gener-

ated using rzipfmb(), with simulated shape value generated by the link function

logitlink().

> n <- 100

> x <- runif(n)

>

> shape <- logitlink(1.5, inverse = TRUE)

> rank <- 1:n

> freq <- sort(rzipfmb(n, shape), decreasing = T)

>

> df2 <- data.frame(rank, freq, shape)

> head(df2, n = 10) # quick check of data

rank freq shape

1 1 92 0.81757

2 2 58 0.81757

3 3 8 0.81757

4 4 7 0.81757

5 5 7 0.81757

6 6 7 0.81757

7 7 6 0.81757

8 8 4 0.81757

9 9 4 0.81757

10 10 3 0.81757

> fit <- vglm(rank ~ freq, family = zipfmbrot, data = df2, trace = TRUE)

VGLM linear loop 1 : loglikelihood = -641.3396

VGLM linear loop 2 : loglikelihood = -735.41279

Taking a modified step....................
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> coef(summary(fit, matrix = TRUE))

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3699915 0.0849939 -4.35316 1.3419e-05

freq -0.0063937 0.0083712 -0.76378 4.4500e-01

Also, we may compare the empirical data, with the true density generated by

dzipfmb() using the estimated scaling parameter.

> fit <- vglm(rank ~ 1, family = zipfmbrot, data = book5,

trace = TRUE, weight = freq)

VGLM linear loop 1 : loglikelihood = -469565.265

VGLM linear loop 2 : loglikelihood = -657216.938

Taking a modified step....................

> (p_hat <- Coef(fit)) #0.4551465

shape

0.48107

> true <- round(dzipfmb(book5$rank, p_hat) * sum(book5$freq), 1)

> head(cbind(true, book5), n = 10)

true freq rank

1 30251.8 4055 1

2 7849.2 2135 2

3 3974.1 2069 3

4 2502.6 1471 4

5 1761.3 1445 5
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6 1326.5 1389 6

7 1045.9 1203 7

8 852.2 831 8

9 712.0 694 9

10 606.5 647 10

Some similarities can already be seen, just with this simple comparison.

5.2 Comparisons over 3 Variants

The three variants zetaff(), diffzeta() and zipfmbrot() are fitted to the same

data set.

> fit1 <- vglm(rank ~ 1, family = zetaff, data = book11,

trace = FALSE, weight = freq)

> fit2 <- vglm(rank ~ 1, family = diffzeta, data = book11,

trace = FALSE, weight = freq)

> fit3 <- vglm(rank ~ 1, family = zipfmbrot, data = book11,

trace = FALSE, weight = freq)

The coefficients are given as

> Coef(summary(fit1)); Coef(summary(fit2)); Coef(summary(fit3))

shape

0.21724

shape

0.24279

shape

0.45657
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We can also perform the LR test easily with the vglm/vgam objects.

> lrtest(fit1, fit3)

Likelihood ratio test

Model 1: rank ~ 1

Model 2: rank ~ 1

#Df LogLik Df Chisq Pr(>Chisq)

1 2456 -70793

2 2456 -76603 0 11622 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> lrtest(fit2, fit3)

Likelihood ratio test

Model 1: rank ~ 1

Model 2: rank ~ 1

#Df LogLik Df Chisq Pr(>Chisq)

1 2456 -70166

2 2456 -76603 0 12876 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From here, we expand the analysis into 20 data sets, with estimates over 20 books

given in the same data frame for comparisons.

Table 5.1 shows estimates of Zipf’s exponent β in the fits of three variants. Esti-

mated mean and standard deviation of β are 0.212 and 0.017 respectively for f1;

0.236 and 0.021 for f2; 0.468 and 0.009 for f3. Visualisation of the comparison

over three different variants of the 20 books may be found at Figure 5.1.
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Rank zeta diffzeta zipfmbrot

1 0.23055 0.25897 0.47665

2 0.23960 0.27059 0.45988

3 0.21291 0.23815 0.45515

4 0.21969 0.24578 0.47230

5 0.20986 0.23397 0.48107

6 0.20973 0.23358 0.47382

7 0.20721 0.23059 0.48048

8 0.21237 0.23733 0.46267

9 0.21324 0.23839 0.47163

10 0.20775 0.23152 0.47580

Table 5.1: Three Zipf’s variants are fitted to 20 books. This table shows each
exponent β estimate. Estimated mean and standard deviation of β are 0.212
and 0.017 respectively for f1; 0.236 and 0.021 for f2; 0.468 and 0.009 for f3.
Estimated mean and standard deviation of β are 0.212 and 0.017 respectively

for f1; 0.236 and 0.021 for f2; 0.468 and 0.009 for f3.
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Figure 5.1: Comparisons of β estimates between three variants over 20 books

We conclude that the second variant diffzeta() does perform superior than oth-

ers, as shown in Moreno-Sanchez et al. (2016). However, as mentioned, all variants

do capture different aspects of the full distribution.



Chapter 6

Conclusions and Future Work

6.1 Theoretical Contribution

This work adds an additional model Zipf-MandelbrotII upon the VGAM frame-

work on top of 150+ models. The extension is developed into a new VGAMzm R

package depending on the VGAM R package. The package includes the family

function zipfmbrot() that estimates the MLE of scaling parameter; and the as-

sociate dpqr-zipfmb() functions that correspond to the density mass function,

cumulative distribution function, quantile function and the random deviates gen-

erator.

6.2 Practical Application

This additional model provides an additional accessibility to perform parametric

estimation on empirical distribution of linguistics data sets. A suitable data set

is in the form of two variables—the frequency of each occurring word, and the

frequency rank of which. Such data set may be found in projects such as A

standardized Project Gutenberg corpus for statistical analysis of natural language

and quantitative linguistics (Gerlach & Font-Clos 2018), where data from books

in the Gutenberg database is collected in such form.
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6.3 Limitations and Future Work

While the new zipfmbrot() family function may perform maximum likelihood

estimation on the scaling parameter, the lower bound ymin is assumed to be known.

The estimation of the true ymin is yet to be implemented, where in most practical

cases the exact value is unknown and to be estimated. As VGAM is designed to

handle multiple parameter estimations, future work may focus on including the

additional parameter ymin to be estimated as another interest of quantity.



Appendix A

Source Code

A.1 Density Function dzipfmb()

The dzipfmb() function contains 4 arguments: x, shape, start and log. As

mentioned in Section 2.1.3 the starting value will be set to start = 1 for inclusion

of the whole distribution. The log argument follows the standard S conventions

to be set FALSE as default. Refer back to Section 4.3.1 for more details.

dzipfmb <- function(x, shape, start = 1, log = FALSE) {

if (!is.logical(log.arg <- log) || length(log.arg) != 1)

stop("bad input for argument 'log': value must be of unit length")

rm(log)

LLL <- max(length(shape), length(x), length(start))

if (length(x) != LLL) x <- rep_len(x, LLL)

if (length(shape) != LLL) shape <- rep_len(shape, LLL)

bad <- !is.finite(x) | round(x) != x | x < 1 |

shape <= 0 | shape >= 1 | start > x

ans <- rep_len(if (log.arg) log(0) else 0, LLL)

if (any(!bad)) {
ans[!bad] <- log(shape[!bad]) +
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lgamma(start) + lgamma(x[!bad]-shape[!bad]) -

lgamma(start-shape[!bad]) - lgamma(x[!bad]+1)

}

ans[round(x) != x | x < 1 | x == Inf | x == -Inf] <- 0

ans[is.nan(x) | is.na(x)] <- 0

ans[shape <= 0 | shape >= 1] <- 0

ans[start > x] <- 0

if (log.arg)

ans

else exp(ans)

} # dzipfmb

A.2 Cumulative Function pzipfmb()

The pzipfmb() function contains an additional argument: log.p = FALSE which

controls if the final output is to be in the logarithmic form when set TRUE. Note

that lgamma() is used followed by taking the exponential to avoid overflow. The

equation of the cumulative function is referred to (4.2). Refer back to Section 4.3.2

for more details.

pzipfmb <-

function(q, shape, start = 1, lower.tail = TRUE, log.p = FALSE) {
if (!is.logical(lower.tail) || length(lower.tail) != 1)

stop("bad input for argument 'lower.tail'")

if (!is.logical(log.p) || length(log.p) != 1)

stop("bad input for argument 'log'")

LLL <- max(length(shape), length(q), length(start))

if (length(q) != LLL) q <- rep_len(q, LLL)

if (length(shape) != LLL) shape <- rep_len(shape, LLL)

if (length(start) != LLL) start <- rep_len(start, LLL)
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q.use <- pmax(start, floor(q + 1))

bad0 <- shape <= 0 | 1 <= shape | !is.finite(start) |

start != round(start) | start < 1

bad <- bad0 | !is.finite(q.use)

ans <- q

ans[TRUE] <- NA_real_ # if (log.p) log(0) else 0

# This is short because of [!bad] is selective. It is

# the PLOSone formula for S.

log.S.short <- lgamma(start[!bad]) +

lgamma(q.use[!bad] - shape[!bad]) -

lgamma(q.use[!bad]) -

lgamma(start[!bad] - shape[!bad])

ans[!bad] <-

if (lower.tail) {
if (log.p) { # lower.tail = T, log.p = T

log1p(-exp(log.S.short))

} else { # lower.tail = T, log.p = F

-expm1(log.S.short)

}
} else {

if (log.p) { # lower.tail = F, log.p = T

log.S.short

} else { # lower.tail = F, log.p = F

exp(log.S.short)

}
}

# This handles q==Inf:

ans[!is.finite(q.use) & start < q.use & !bad0] <-

if (lower.tail) { if (log.p) log(1) else 1} else

{ if (log.p) log(0) else 0}

ans

} # pzipfmb()
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A.3 Quantile Function qzipfmb()

Bisection method is applied to approximate the root. Refer back to Section 4.3.3

for more details.

qzipfmb <- function (p, shape, start = 1) {

LLL <- max(length(p), length(shape), length(start))

if (length(p) != LLL) p <- rep_len(p, LLL)

if (length(shape) != LLL) shape <- rep_len(shape, LLL)

if (length(start) != LLL) start <- rep_len(start, LLL)

ans <- rep_len(start, LLL)

# First, bracket the solution between 'lo' and 'hi'.

lo <- rep_len(start, LLL) - 0.5

approx.ans <- lo # True at lhs

hi <- 2 * lo + 10

dont.iterate <- p == 1 | shape <= 0 | 1 <= shape |

start != round(start) | start < 1

done <- p <= pzipfmb(hi, shape, start = start) |

dont.iterate

max.iter <- 50

iter <- 0

while (!all(done) && iter < max.iter) {
hi.save <- hi[!done]

hi[!done] <- 2 * lo[!done] + 10

lo[!done] <- hi.save

done[!done] <- (p[!done] <= pzipfmb(hi[!done],

shape = shape[!done],

start[!done]))

iter <- iter + 1

}

# Second, solve for the root.

foo <- function(q, shape, start, p)
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pzipfmb(q, shape = shape, start) - p

lhs <- (p <= dzipfmb(start, shape = shape, start)) |

dont.iterate

approx.ans[!lhs] <-

bisection.basic(foo, lo[!lhs], hi[!lhs], tol = 1/16,

shape = shape[!lhs],

start = start[!lhs],

p = p[!lhs])

faa <- floor(approx.ans)

ans <- ifelse(pzipfmb(faa, shape = shape, start) < p &

p <= pzipfmb(faa+1, shape = shape, start),

faa+1, faa)

# Some special cases:

ans[p == 1] <- Inf

ans[shape <= 0 | 1 <= shape] <- NaN

ans

} # qzipfmb

A.4 Random Deviates Generator rzipfmb()

The transformation method is used to generate random deviates from the Zipf-

MandelbrotII distribution. Refer back to Section 4.3.4 for more details.

rzipfmb <- function(n, shape, start = 1) {
# Using transformation method

qzipfmb(runif(n), shape, start)

} # rzipfmb
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A.5 Family function zipfmbrot()

This is the full implementation of the family function zipfmbrot depending on

the VGAM R package. Refer back to Section 4.2 for more details.

A.5.1 @blurb

@blurb consists of a character string with descriptive information of the family

function, including the name, the type of link functions, mean and variance if

applicable.

blurb = c("Mandelbrot distribution (Type III) \n",
"Link: ",

namesof("shape", lshape, earg = eshape),

"\n\n",
"Mean: \n",
"Variance: "),

A.5.2 @info

@infos returns a list with, e.g. M1(M1), Q1(Q1) and logical multipleResponses,

etc.

infos = eval(substitute(function(...) {
list(M1 = 1,

Q1 = 1,

expected = TRUE,

multipleResponses = TRUE,

start = .start,

parameters.names = "shape",

zero = .zero)

}, list( .zero = zero,

.lshape = lshape,

.start = start

))),
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A.5.3 @linkinv

@linkinv returns fitted values, e.g., a matrix with rows muTi .

linkinv = function(eta, extra = NULL) exp(-eta)

A.5.4 @constraints

@constraints processes the constraint matrices. This comprises the (i) con-

straints argument, and (ii) arguments such as parallel and zero.

initialize = eval(substitute(expression({
start <- .start

temp5 <-

w.y.check(w = w, y = y,

ncol.w.max = Inf,

ncol.y.max = Inf,

Is.integer.y = TRUE,

Is.positive.y = TRUE,

out.wy = TRUE,

colsyperw = 1,

maximize = TRUE)

w <- temp5$w

y <- temp5$y

if (any(y < start))

stop("some response values less than 'start'")

predictors.names <-

namesof("shape", .lshape, earg = .eshape, tag = FALSE)

extra$start <- start

if (!length(etastart)) {
llfun <- function(shape, y, start, w) {
sum(c(w) * dzipfmb(x = y, shape = .shape,

start = extra$start, log = TRUE))

}
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shape.init <- .ishape

etastart <- theta2eta(shape.init, .lshape , earg = .eshape )

}
}), list( .lshape = lshape,

.eshape = eshape, .ishape = ishape, .start = start ))),

# Log-likelihood of distribution

loglikelihood = eval(substitute(

function(mu, y, w, residuals = FALSE, eta,

extra = NULL,

summation = TRUE) {
shape <- eta2theta(eta, .lshape , earg = .eshape )

if (residuals) {
stop("loglikelihood residuals not implemented yet")

} else {
ll.elts <- c(w) * dzipfmb(y = x, shape = .shape,

start = .start, log = TRUE)

if (summation) {
sum(ll.elts)

} else {
ll.elts

}
}

}, list( .lshape = lshape, .eshape = eshape ))),

A.5.5 @last

@last assigns misclink, miscearg and other information; evaluated after final

IRLS iteration.

last = eval(substitute(expression({
misc$expected <- FALSE

misc$link <- c(shape = .lshape )

misc$earg <- list(shape = .eshape )
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misc$start <- extra$start

}), list( .lshape = lshape, .eshape = eshape ))),

A.5.6 @loglikelihood

@loglikelihood returns l, or [(l)ls] if summation = FALSE

loglikelihood = eval(substitute(

function(mu, y, w, residuals = FALSE, eta,

extra = NULL,

summation = TRUE) {
shape <- eta2theta(eta, .lshape , earg = .eshape )

if (residuals) {
stop("loglikelihood residuals not implemented yet")

} else {
ll.elts <- c(w) * dzipfmb(y = x, shape = .shape,

start = .start, log = TRUE)

if (summation) {
sum(ll.elts)

} else {
ll.elts

}
}

}, list( .lshape = lshape, .eshape = eshape ))),

A.5.7 @vfamily

@vfamily serves as an identification of the name of the family function.

vfamily = "mandelbrotff",

A.5.8 @deriv

@deriv returns an n x M matrix of score vectors; has rows wi...,
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deriv = eval(substitute(expression({
shape <- eta2theta(eta, .lshape, earg = .eshape )

# break down to derive dl.dshape

constant <- digamma(start) - digamma(y+1)

term1 <- 1/(shape-1)

term2 <- digamma(y+1-shape)

term3 <- digamma(start+1-shape)

dl.dshape <- constant + term1 + term2 + term3

dshape.deta <- dtheta.deta(shape, .lshape, earg = .eshape )

c(w) * dl.dshape * dshape.deta

}), list( .lshape = lshape, .eshape = eshape ))),

A.5.9 @weight

weight = expression({
ned2l.dshape2 <- -(1/(shape-1)^2) +

trigamma(y+1-shape) +

trigamma(start+1-shape)

wz <- c(w) * dshape.deta^2 * ned2l.dshape2

@weight computes working weights wz, wW, in matrix-band format. It should be

evaluated immediately after @deriv so that assigned variables can be sued without

interruption. Optional slots such as @devian, @first, @linkfun and @simslot

may also be added into the implementation.
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Background Material

Some further background material and details follow.

B.1 On Zipf and Zeta Distributions

Norman L. Johnson (1993) [pp.465-471] contains a good survey of distributions to

be considered in this thesis. Other useful references include Baayen (2001) and

Piantadosi (2014). Note that another zeta-variant, Haight’s zeta distribution, also

exists in VGAM (called hzeta()). Haight’s zeta distribution arises as the limiting

distribution to Zipf’s conjecture concerning city sizes Simon (1955). It has PMF

Pr(Y = y;α) = (2y − 1)−α − (2y + 1)−α, y = 1, 2, . . . , α > 0.

It gets its name because E(Y ) = (1 − 2−α) ζ(α) and Var(Y ) = (1 − 21−α) ζ(α −
1) − µ2. Note that for α ≤ 1 the mean is infinite, and for α ≤ 2 the variance

is infinite. More information can be found in, e.g., Norman L. Johnson (2005)

[pp.533-4].

Haight (1966) used Haight’s zeta distribution very successfully on four data sets

on word associations. Haight (1966) investigation was concerned with models for

word association data (the number of response words elicited by a stimulus word).

He applied the Yule, Borel-Tanner and logarithmic distributions—these have been

implemented in VGAM.
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B.2 The Riemann and Hurwitz Zeta Functions

The Riemann formula for s is

∞∑
n=1

1

ns
(B.1)

While the usual definition involves an infinite series that converges when the real

part of the argument is > 1, more efficient methods have been devised to compute

the value. In particular, this function uses Euler-Maclaurin summation.

B.3 The Hurwitz Zeta Function

The Hurwitz ζ function is defined for complex arguments and is

ζ(s, q) =
∞∑
n=0

(n+ q)−s, <(s) > 1, (B.2)

with <(q) > 0. Hence ζ(s, 1) is the ordinary Riemann zeta function

ζ(s) =
∞∑
n=1

n−s, <(s) > 1. (B.3)

The Hurwitz ζ function can be used to define generalizations of the ordinary

zeta and Zipf distributions. For example, Moreno-Sanchez et al. (2016) consider a

random variable defined on a(1)∞ [notation: a(b)c = {a, a+b, a+2b, . . . , c}] based

on ζ(s, a)—although a = 1 usually, it is not always so with word-studies data. We

wish to look at estimating a as a positive real-valued parameter Section 2.1.3, with

the support of the distribution taken as 1(1)∞.
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