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Abstract
We study spatial competition by firms which is often studied in the context of linear
markets where customers always shop at the nearest firm. Here, customer behavior
is determined by a probability vector p = (p1, . . . , pn) where pi is the probability
that a customer visits the i th closest firm. At the same time, the market is circular
a là Salop (Bell J Econ 10(1):141–156, 1979), which has the advantage of isolating
the impact of customer shopping behavior from market boundary effects. We show
that non-convergent Nash equilibria, in which firms cluster at distinct positions on
the market, always exist for convex probability vectors as well as probability vectors
exhibiting a certain symmetry. For concave probability vectors, on the other hand, we
show that non-convergent Nash equilibria are unlikely to exist.
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1 Introduction

Hotelling’s (1982) classic model of spatial competition by firms on a linear market
has been a cornerstone of economic theory, giving rise to countless extensions and
generalizations. In many markets, a linear market is natural—e.g., the so-called Main
Street model (Downs 1957; Eaton and Lipsey 1975; Graitson 1982). But markets are
more varied in nature and the topology of the space where the competition takes place
can vary. One such alternative space used in the classical circular city model, first
introduced by Salop (1979), provides a natural representation for a wide variety of
situations (such as a beltway around a city center) and has been a workhorse in the
spatial competition literature ever since. The circular market has also been of interest
because it allows the study of various market forces in isolation of boundary effects,
which can be substantial (Aoyagi and Okabe 1993).

Salop’s circular city model assumes that a customer always buys from the nearest
firm. This assumption leads to the fact—exactly as in the Hotelling-Downs model—
that no more than two firms can occupy the same location (Peeters et al. 2010, 2016).
This contradicts the observable behaviour of firms that often cluster in larger numbers
(e.g., fast food restaurants). To get a more realistic set of Nash equilibria wemust relax
this assumption and allow customers to patronise firms other than the closest one with
some probability.

This approachoriginatedwithCox (1987) in a political candidate positioning frame-
work, where he studied political competition under a class of electoral systems known
as scoring rules. Though Cox’s setting was very different, as Myerson (1999) wrote,
“there are logical similarities between political competition and market competition,
and so analytical skills that have been sharpened by the study of either arena may be
applied to offer new insights in the other arena.” In the economics setting, indeed, a
scoring rule can be interpreted as a probability vector describing how likely customers
are to shop at more distant firms. The application of this assumption to the firm inter-
pretation has been explored primarily in the case of a linear market (Cahan and Slinko
2017, 2018; Cahan et al. 2018).

To justify the implementation of Cox’s idea in the case of markets we need to look
at the micro-foundation of Salop’s model which is rooted in the distances between the
consumer and the firms. The consumer’s utility of purchasing from firm i is v − cdi ,
where v is the value of the object, di is the distance between the consumer and firm
i and c is the cost c of travel per unit of distance. Since all firms are selling identical
objects, the firm which is closest to the consumer offers him the highest utility, which
explains why he purchases from that firmwith probability 1. Implementing Cox’s idea
does not change the micro-foundation, it only introduces an element of randomness
to the model. Indeed, in our model the consumer’s utility of purchasing from firm i is
v − c(di + εi ), where εi is a random value. This random value may be the result of
a number of external factors such as weather, traffic conditions or available transport.
For example, a rush hour traffic jam will delay the consumer and is equivalent to
travelling a longer distance. As a result, the vector of probabilities (1, 0, . . . , 0) in
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Salop’s model becomes (p1, . . . , pn), where pi is the probability the consumer buys
from the i th distant firm. But the overall logic remains the same: the shortest distance
is a paramount concern.

Themain pattern emerging from the literature is that “best-rewarding” voting rules1

that, roughly speaking, reward top ranked candidates while treating low ranked can-
didates similarly, encourage candidates to adopt differentiated policy platforms. On
the other hand, “worst-punishing” voting rules, which treat top ranked candidates
similarly while punishing poorly ranked candidates, encourage candidates to adopt
similar policy positions. In the firm interpretation, this amounts to saying that: when
the probability that a customer shops at more distant firms drops off quickly in the
firm’s ranking, then firms locate at diverse locations; on the other hand, when there is a
slow drop off in probability of patronage as firms become more distant, then firms are
encouraged to agglomerate at a single location (e.g., a mall or city center). This result
can be made quantitatively precise by defining Cox’s threshold of diversity which we
call the Cox value or c-value. We assume that the society of customers is characterised
by a vector of probabilities p = (p1, . . . , pn), such that a customer buys from the i th
most distant retailer with probability pi .2 We assume p1 ≥ p2 ≥ · · · ≥ pn and
p1 > pn . The Cox value is defined as c(p, n) = p1− p̄

p1−pn
so that best-rewarding vectors

have c(p, n) greater than one half, worst-punishing vectors have c(p, n) less than one
half, and intermediate vectors have c(p, n) equal to one half. Intuitively, having best-
rewarding vector p means that the market share of a particular firm is affected more
by a relocation of its neighboring firms than more distant firms.

On a linear market, there are broad classes of probability vectors for which equi-
libria do not exist, while for others agglomerative, non-convergent equilbria can be
constructed (Cahan and Slinko 2017, 2018; Cahan et al. 2018). Results are often
influenced, however, by the shape of the market and its boundaries (Eaton and Lipsey
1975; Aoyagi and Okabe 1993). Without the “peripheral firm advantage” of the linear
model, our expectation is that equilibria in the circular model will be more numerous
and exist for larger families of probability vectors.

The goal of this paper, then, is to investigate underwhich probability vectors equilib-
ria on a circular market exist and whether they are convergent or not. We show that for
convex probability vectors—which are best-rewarding—non-convergent Nash equi-
libria always exist and are similar to the classical case where p = (1, 0, . . . , 0). For
intermediate vectors, we describe a class of symmetric probability vectors for which
every profile is a Nash equilibrium. For the class of concave probability vectors—
which are worst-punishing—we show the existence of convergent Nash equilibria
and hypothesise that there are no non-convergent ones. Hinting at the validity of our
hypothesis, we prove that under concave probability vectors we can rule out the pos-
sibility of bipositional Nash equilibria.

1 This terminology is due to Myerson (1999).
2 The classical model then corresponds to the probability vector (1, 0, . . . , 0).
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2 Themodel

There are n firms that must choose their locations on the circular market, modelled
as a circle of circumference of length 1 with a unit mass of consumers distributed
uniformly along it. Firms produce a homogeneous good with a fixed mill price and
consumers have inelastic demand—everyone demands one unit. However, consumers
do not always buy from the nearest firm. With probability pi , a consumer buys from
the i-th nearest firm. This could be because consumers sometimes travel for unrelated
reasons and happen to find it more convenient to visit another firm. Or, the product
might sometimes simply be out of stock at a given store. Again, this is formalised
through a probability vector p = (p1, . . . , pn), where pi ≥ pi+1 with p1 > pn , and∑

i pi = 1.3 Thus, rather than incorporating a random utility shock as is done in the
probabilistic literature (De Palma et al. 1990), we use a deterministic function that
captures a similar notion. The probability implied is of an ordinal nature—there is no
dependency on absolute distance, as occurs in most of the literature on probabilistic
voting (see, e.g., Coughlin 1992; Duggan 2005).

It has to be noted that the absence of dependency on absolute distance is the salient
feature of models of competition of firms in the strand of literature to which this paper
belongs (see, e.g., Eaton and Lipsey (1975), Salop (1979)). Indeed, in the paper of
Salop (1979), which is the closest to us, a consumer always buys from the closest
retailer, and, if another retailer is only marginally further, our consumer never buys
from that firm. In contrast, in all models of probability voting both firms will be
patronised with almost equal probability.

In equilibrium, all firms can occupy the same location (a convergent Nash equi-
librium or CNE) or not (a non-convergent Nash equilibrium or NCNE). NCNE often
appear clustered. For example, fast food restaurants and gas stations of various chains
are usually located in clusters that are spread intermittently along a main street. This
effect was called the ‘Principle of Local Clustering’ by Eaton and Lipsey (1975). How-
ever, when consumers always go to the nearest firm, such equilibrium can exist only
if the number of firms at each location is one or two (Eaton and Lipsey 1975; Graitson
1982). By incorporating the possibility that consumers purchase at firms other than
the nearest one, we show that equilibria with multiple firms at the same location can
arise in a very simple way in a broad class of cases which makes our model a better
fit for the observed behaviour of firms.

In the political competition setting, a vector s = (s1, . . . , sn) of scores represents
a points-based electoral system where voters rank all the candidates and si points are
assigned to the voter’s i th ranked candidate. Though we focus on the firm interpreta-
tion, by analogy we sometimes use the following terminology: p = (1, 0, . . . , 0, 0)
is the plurality probability vector; p = 1

k (1, . . . , 1, 0, . . . , 0) is k-approval; p =
2

(n−1)n (n − 1, n − 2, . . . , 1, 0) is Borda; and, p = 1
A ((n − 1)a + b, . . . , a + b, b),

where A = n(n−1)
2 a + b, is a linear probability vector.4

3 Of course, every consumer would have their own vector of probabilities but we assume that we have
managed to aggregate individual vectors into a single societal vector of probabilities.
4 Borda is a special case of a linear probability vector with (a, b) = (0, 1).
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In this paper we focus on two broad classes of probability vectors representing two
plausible descriptions of consumer behavior: (i) a convex probability vector p, where
pi−1 − pi ≥ pi − pi+1 for all i ; and, (ii) an intermediate probability vector p, where
pi−1 − pi = pi − pi+1 for all i . As an example, it would be quite natural to assume
that the probability of a customer patronising the i th distant firm falls exponentially
with i , i.e., pi = p−λi for λ1 < λ2 < . . ., which defines a strictly convex probability
vector. The case of a concave probability vector p, where pi−1 − pi ≤ pi − pi+1 for
all i , is also considered but we argue that it is less realistic. For this case we have only
partial results, the main of which is to rule out any possibility of bipositional Nash
equilibria.

For the rest of this paper n will mean the total number of firms,m is the total number
of occupied locations, and ni is the total number of firms in the i th location. Let us
first define the market of a location occupied by at least one firm. This is the expected
measure of customers for which this location is the nearest of all occupied locations—
thus, customers will buy from one of the firms at this location as their top preference.
If the firm is not alone at this location, then customers coming to this location will
buy with equal probability from any firm at that location. Hence the market of a firm
is the market share of its location divided by the number of firms at that location (we
must be careful not to mix these two things).

Definition 1 A strategy profile x = ((x1, n1), . . . , (xm, nm)) of firms characterises the
locations x1, . . . , xm occupied by firms and indicates the multiplicities n1, . . . , nm ,
i.e., the number of firms at each location.

Definition 2 A strategy profile is a Nash Equilibrium (NE) if no one firm can increase
its market share by moving to another location. The NE is convergent (CNE) if all
firms are at the same location; if the firms occupy more than one location, the NE is
called non-convergent (NCNE). If a strategy profile x = ((x1, n1), . . . , (xm, nm)) is
a Nash equilibria, then we say that it is of type (n1, . . . , nm).

3 A brief survey

In this section we give a short, more specific account of what is known about the linear
and circular market cases. In this classical Hotelling setting, each firm only receives
customers from its ‘market’, i.e., the set of consumers for which that firm is the closest
or tied for closest. If k firms are co-located, their market would be k times smaller
than if it were a single firm as they share consumers equally.

In the case of a linear, unit interval market, NCNE are not so easy to come by, but
have been fully characterised (Eaton and Lipsey 1975; Denzau et al. 1985). When we
consider probability vectors beyond plurality, Cahan and Slinko (2017) characterise
equilibria for n ≤ 5 and also investigate a range of classes of probability vectors, some
of which permit NCNE.

There are obvious similarities and dissimilarities between the circular market and
the linear boundedmarket. In general, the circular case appears to be easier to deal with
due to the lack of boundary conditions. Eaton and Lipsey (1975) (see also Graitson
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Fig. 1 Left and right
half-markets L(x) and R(x) at
location x

1982) studied this problem for the plurality probability vector. Their results for the
circular market can be summarised as follows:

(i) There exist an infinite number of equilibria, whatever the number of firms may
be;

(ii) In equilibrium, no more than two firms can be co-located;
(iii) In equilibrium, all firmsmay be isolated (e.g., in a fully symmetric arrangement).

Let us consider any three neighboring occupied locations x, y, z on the circle as
shown in Fig. 1.

The full market L(x) ∪ R(x) of location x consists of half of the arc yx which is
called left half-market of x and half of the arc xz which is called right half-market of
x . If x and y are neighbouring occupied locations (there are no other firms if we travel
from x to y counterclockwise), then R(x) = L(y).

Peeters et al. (2010) gave necessary and sufficient conditions for a strategy profile
of firms to be in equilibrium (Theorem 5 of that paper). For completeness of exposition
we will prove this theorem.

Theorem 1 A strategy profile x = ((x1, n1), . . . , (xm, nm)) is a NCNE iff for all
i ∈ {1, . . . ,m} we have ni ∈ {1, 2} and the following two conditions are satisfied:

(I) If ni = 1, then L(xi ) + R(xi ) ≥ max(L(x j ), R(x j )) for all j �= i ;
(II) If ni = 2, then L(xi ) = R(xi ) ≥ max(L(x j ), R(x j )) for all j �= i ;

Proof Suppose there are k ≥ 2 firms at location x . Then any firm at this location has
1
k (L(x)+ R(x)) customers and suppose L(x) ≥ R(x). Then by moving incrementally
to the left any firm at this locationwill get L(x) ≥ 1

2 (L(x)+R(x)) > 1
k (L(x)+R(x)),

if k > 2. Thus, this deviation is profitable unless k = 2 and L(x) = R(x).
Assumenow thatni ∈ {1, 2}. If a firmmoves from location xi to the interval between

neighboring occupied locations x j and x j+1, then it gets 1
2 (L(x j ) + R(x j+1)) =

L(x j ) = R(x j+1). Thus it can get an advantage if and only if either (I) or (II) does not
hold. If the firm from location xi joins a firm at location x j , then it would get at most
1
2 (L(x j ) + R(x j )) which does not exceed max(L(x j ), R(x j )), i.e., it is profitable if
and only if (I) and (II) do not hold. ��

The cases of three or four firms can be clarified.
Three firms There are two possible types of equilibria:

1. Two opposite locations are occupied, one with two firms and one with a single
firm;

2. Three firms occupy three different locations each of which is not on an arc whose
length is larger than half of the length of the circle.
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Four firms There are three possible types of equilibria:

1. Two opposite locations are occupied, each with paired firms;
2. Four firms occupy three different locations, i.e., x = ((x1, 1), (x2, 2), (x3, 1)) so

that arc x1x3 ≤ arc x1x2 = arc x2x3;
3. Four firms occupy four different locations such that (I) and (II) are satisfied (mul-

tiple equilibria).

Peeters et al. (2010) show that for any number of firms on a circle there is a NCNE.
Moreover it can be shown that for any tuple (n1, . . . , nm), where ni ∈ {1, 2}, there is
a NCNE of the form x = ((x1, n1), . . . , (xm, nm)).

4 Nash equilibria: initial considerations

In the general case, the parameter c(p, n) = p1− p̄
p1−pn

, where p̄ = 1
n (p1+· · ·+ pn) = 1

n ,
plays an important role in the existence of Nash equilibria and their properties (Cox
1987; Cahan and Slinko 2017, 2018; Cahan et al. 2018).

Note that for a fixed number n of firms 1
n ≤ c(p, n) ≤ n−1

n . For plurality, Borda,
k-approval and antiplurality (also known as negative voting or (n−1)-approval), the
parameter c(p, n) takes values n−1

n , 1
2 ,

n−k
n and 1

n , respectively. Thus, plurality and
antiplurality are the two extremes.

4.1 Necessary and sufficient conditions for a CNE

Cox showed that convergent Nash equilibria (CNE) for the linear bounded market
exist if and only if c(p, n) ≤ 1

2 . That is, if and only if the vector is worst-punishing
(Myerson 1999) or intermediate (in the case of equality). Exactly the same result is
true for the circular market.

Theorem 2 For a circular market CNE exist if and only if c(p, n) ≤ 1
2 .

Proof If all n firms are co-located, then all of them get p̄ = 1
n customers. If one firm

deviates, it will be ranked first by half of the customers and last by the other half.
So it will get 1

2 p1 + 1
2 pn . We have a CNE iff 1

2 p1 + 1
2 pn ≤ p̄. This is equivalent to

1
2 p1 − 1

2 p̄ ≤ 1
2 p̄ − 1

2 pn , which, in turn, is equivalent to p1 − p̄ ≤ 1
2 (p1 − pn) or

c(p, n) ≤ 1
2 . ��

The existence of CNE does not preclude the existence of NCNE—both can
coexist for the same vector. For example, computations show that the vector p =
1
14 (3, 2, 2, 2, 2, 1, 1, 1, 0) with c(p, 9) = 3/14−1/9

3/14 = 13
27 < 1

2 has CNE but also
symmetric NCNE of type (3, 3, 3).

4.2 Initial investigation of market shares of firms

Consider a strategy profile x = ((x1, n1), . . . , (xm, nm)) and a firm f at location x1,
where there are n1 firms in total. For any other occupied location x j , j �= 1, we draw
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Fig. 2 The market of location x1
splits the circle into segments
with equal probability of
purchasing at location x1

a diameter line � j that passes perpendicularly through the midpoint of the segment
x1x j . This line intersects the circumference of the circle exactly at the two halfway
points between the two locations x1 and x j , thus dividing the market into consumers
who are closer to x1 than x j and those who are closer to x j than x1 (see Fig. 2).

In this way, we partition the market into regions of consumers who have the same
ranking of firms at x1, hence patronising them with equal probability. Also, draw a
diameter line through x1 and the center of the circle. This creates 2m arc segments,
wherem is the number of occupied locations – label them L1, . . . , Lm in the clockwise
direction from x1 and R1, . . . , Rm in the anticlockwise direction.We note that �(Ls) =
�(Rm−s+1), where �(A) is the length of arc A.

For consumers in region Ls , all n1 firms at location x1, are tied for places from ks th
to (ks + n1 − 1)th, where k1 = 1 and ks for s ≥ 2 depends on the number of firms at
other occupied positions. More precisely,

ks = 1 + n2 + · · · + ns . (1)

We also define q1 = 1 and qs for s ≥ 2 as

qs = 1 + nm + nm−1 + · · · + nm−s+2. (2)

Note that

ks + qm−s+1 = n − n1 + 2. (3)

We also note that for customers in L1 ∪ R1 firm f will be tied for the first n1 places
and for customers in Lm ∪ Rm firm f will be tied for the last n1 places. From the
region Ls any firm at x1 gets

⎡

⎣ 1

n1

ks+n1−1∑

j=ks

p j

⎤

⎦ �(Ls) (4)
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consumers. Similarly, for consumers in region Rs , all firms at x1 are tied for qs th, so
that from this region any such firm gets

⎡

⎣ 1

n1

qs+n1−1∑

j=qs

p j

⎤

⎦ �(Rs) (5)

consumers. Thus, the overall consumer share of a firm f at location x1 is

M( f ) =
m∑

s=1

⎡

⎣ 1

n1

ks+n1−1∑

j=ks

p j

⎤

⎦ �(Ls) +
m∑

s=1

⎡

⎣ 1

n1

qs+n1−1∑

j=qs

p j

⎤

⎦ �(Rs). (6)

Proposition 1 The market share of any location is a convex combination of the com-
ponents of the vector of probabilities p.

Proof It follows from (6) and the fact that
∑m

s=1 �(Ls) + ∑m
s=1 �(Rs) = 1. So M( f )

is a convex combination of convex combinations of components of p. ��
As in the case of plurality we can prove the following.

Lemma 1 The market share of location x1 does not depend on the position of x1 on
the interior of the arc x2xm to which x1 belongs, all other things being equal. If all
firms at location x1 simultaneously change their location, the expected number of their
customers remains constant unless they jump over some other firm or co-locate with
the firms at x2 or xm.

Proof The median lines �i divide the market into consumers preferring location x1
over xi and consumers preferring location xi over x1. Together, all the median lines �i ,
i = 2, . . . ,m, partition the market into regions of consumers that all rank x1 relative
to other locations in the same way (see Fig. 2). If position x1 moves slightly in one
direction, say, counterclockwise by angle α, then each of these median lines moves
by half of this amount. That is, the angle between lines �i and � j is equal to the angle
∠xi x1x j that has its vertex at x1 subtending the arc xi x j . When x1 moves along the
circle, this angle stays constant. Hence, lines � j , j = 2, . . . , r will be rotated by 1

2α.
Since all customers in L1∪ R1 and Lm ∪ Rm rank firms at x1 equivalently, the measure
of consumers ranking firms at x1 in a certain position is unchanged, as long as x1 does
not reach or go beyond x2 or xm . ��

We will also need the following technical lemma.

Lemma 2 Let’s assume that in the profile x = ((x1, n1), . . . , (xm, nm)) we have n1 >

1 and consider two potential infinitesimal deviations by one of the firms f located at
x1 to the right and to the left. Let M( f ) be f ’s market share at x1 and M−( f ), M+( f )
be its market shares after clockwise and anticlockwise deviations, respectively. Then

M−( f ) + M+( f ) − 2M( f ) =
m∑

s=1

⎡

⎣pks + pks+n1−1 − 2

n

ks+n1−1∑

j=ks

p j

⎤

⎦ �(Ls)
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+
m∑

s=1

⎡

⎣pqs + pqs+n1−1 − 2

n1

qs+n1−1∑

j=qs

p j

⎤

⎦ �(Rs).

(7)

Proof An infinitesimal deviation clockwise gives a share of

M−( f ) =
m∑

s=1

pks�(Ls) +
m∑

s=1

pqs+n1−1�(Rs), (8)

while a similar deviation counterclockwise would yield

M+( f ) =
m∑

s=1

pks+n1−1�(Ls) +
m∑

s=1

pqs�(Rs). (9)

Adding these two and subtracting (6) we get (7). ��

5 Convex probability vectors

Weproceed to investigate the class of convexprobability vectors,which capture a broad
range of plausible descriptions of voter behavior. Cahan and Slinko (2017) showed
that on a linear bounded space, under a convex probability vector, NCNE often do not
exist, with a few notable exceptions such as certain truncated Borda vectors (which
include plurality). This does not carry through to a circular space and we will show
that every convex vector on a circular market has NCNE. Here is the formal definition
of convexity.

Definition 3 A probability vector p = (p1, . . . , pn) with p1 ≥ p2 ≥ . . . ≥ pn is
convex if

p1 − p2 ≥ p2 − p3 ≥ . . . ≥ pn−1 − pn . (10)

We say p is strictly convex if all the inequalities are strict.

We note that as soon as pi = pi+1 for some i , all the subsequent probabilities must
also be equal for convexity to be satisfied. Firstly, we note that a convex vector p is
either best-rewarding or intermediate.

Proposition 2 Let p be a convex vector. Then c(p, n) ≥ 1/2.

Proof Suppose p satisfies (10). We have, for any 1 ≤ i ≤ 	n/2
,

pi − pi+1 ≥ pi+1 − pi+2 ≥ . . . ≥ pn−i − pn−i+1.

In particular, all we need is

pi − pi+1 ≥ pn−i − pn−i+1. (11)
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Suppose n is even. Equation (11) implies

p1 + pn ≥ p2 + pn−1 ≥ · · · ≥ pn/2 + pn/2+1. (12)

Then

p̄ = 1

n

n∑

i=1

pi = (p1 + pn) + (p2 + pn−1) + · · · + (pn/2 + pn/2+1)

n

≤ n/2

n
(p1 + pn) = 1

2
(p1 + pn).

Suppose n is odd. Then (11) implies

p1 + pn ≥ p2 + pn−1 ≥ · · · ≥ p(n−1)/2 + p(n−1)/2+2 ≥ 2p(n+1)/2. (13)

Then, letting k = (n − 1)/2 and using (13), we have

p̄ = 1

n

n∑

i=1

pi = (p1 + pn) + · · · + (pk + pk+2) + pk+1

n

≤ k(p1 + pn) + pk+1

n

≤
(
1

2
− 1

2n

)

(p1 + pn) + 1

2n
(p1 + pn) = 1

2
(p1 + pn).

So in both cases p1 + pn ≥ 2 p̄, which is equivalent to c(p, n) ≥ 1/2. ��
Corollary 1 pi+1 + pi+n − 2

n (pi+1 + · · · + pi+n) ≥ 0.

Proof The proof is similar to the proof of Proposition 2. ��
Theorem 3 If p is convex, a NCNE of type (1, 1, . . . , 1) exists where the firms are
equally spaced.

Proof Consider a profile x = ((x1, 1), . . . , (xn, 1)), where x1, . . . , xn are the vertices
of a regular n-gon inscribed into the unit circle. Suppose firm f j is located at x j ,
j = 1, . . . , n. If one of the firms other than f1, say f j+1, where j ≥ 1, deviates
from position x j+1, joining the firm f1 at location x1, then one diameter line � j+1,
corresponding to the segment x1x j+1, disappears. As a result, the arcs L j and L j+1

join, creating a new arc L ′
j of length

1
n .

Thus, the new profile will be x ′ = ((x1, 2), . . . , (x j , 1), (x j+2, 1), (xn, 1)) with
new arcs L ′

1, . . . , L
′
n−1 and R′

1, . . . , R
′
n−1 of lengths

�(L ′
s) = �(Ls) = 1

2n
for s = 1, . . . , j − 1,

�(L ′
j ) = 1

n
,
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�(L ′
s) = �(Ls+1) = 1

2n
for s = j + 1, . . . , n − 1.

and

�(R′
s) = �(Rs) = 1

2n
for s = 1, . . . , n − j,

�(R′
n− j+1) = 1

n
,

�(R′
s) = �(Rs+1) = 1

2n
for s = n − j + 2, . . . , n − 1.

LetM ′( fi ) be themarket share of firm fi after the deviation. ThenM ′( f j+1) = M ′( f1)
and, by (6),

M ′( f j+1) = 1

2n

⎡

⎣
j−2∑

s=1

ps + ps+1

2
+ 2 · p j + p j+1

2
+

n−1∑

s= j+2

ps + ps+1

2

⎤

⎦

+ 1

2n

⎡

⎣
n− j−2∑

s=1

ps + ps+1

2
+ 2 · pn− j+1 + pn− j+2

2
+

n−1∑

s=n− j+3

ps + ps+1

2

⎤

⎦

= 1

2n

[

1 − p1 + pn
2

+ p j + p j+1

2

]

+ 1

2n

[

1 − p1 + pn
2

+ pn− j+1 + pn− j+2

2

]

.

Subtracting this from M( f j+1) = 1
n and using (12) and (13), we get

M( f j+1) − M ′( f j+1) = 1

2n

[

p1 + pn − p j + p j+1

2
− pn− j+1 + pn− j+2

2

]

≥ 0,

and hence the move by firm f j+1 is not profitable.
Let us now consider the case where a firm f j+1 relocates to the interior of arc x1x2.

Due to Lemma 1, we may assume that this firm locates on this arc x1x2 infinitesimally
close to x1. Then the new arcs L ′

1, . . . , L
′
n−1 and R′

1, . . . , R
′
n−1 will be as in the first

case. Then the new market share M ′( f j+1) will be

M ′( f j+1) = 1

2n

[
n−1∑

i=1

pi + p j

]

+ 1

2n

[
n∑

i=2

pi + pn− j+1

]

.

Then M( f j+1) − M ′( f j+1) = p1 + pn − p j − pn− j+1 ≥ 0, which means that this
deviation is also not profitable. ��

Let us now consider profiles where some firms are paired.
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Definition 4 We say that a strategy profile is a Local Nash Equilibrium (LNE) if no
firm can get an advantage by moving to another location without crossing or joining
any other firm, that is, strictly in the arc x2xm .

Theorem 4 If p is strictly convex, no local (and of course global) Nash equilibria exist
with three or more firms at one of the locations.

Proof Suppose p is strictly convex. If n1 > 2, then all the terms in square brackets
in (7) of Lemma 2 are positive. As shown in Corollary 1, convexity of the probability
vector implies p( j−1)n1+1 + p jn1 − 2

n1
(p( j−1)n1+1 + · · · + p jn1) ≥ 0 for any j such

that jn1 ≤ m. This inequality is strict for strict convexity. So the inequality

M−( f ) + M+( f ) − 2M( f ) ≤ 0 (14)

cannot be satisfied. ��
For a convex (but not strictly convex) probability vector p to admit an equilibrium,

it must be that every term in the brackets in (7) is equal to zero — that is, for each
s ∈ [m], the subvectors (pks , . . . , pks+n−1) and (pqs , . . . , pqs+n−1) must be linearly
decreasing (or constant) in the index. In particular, the probability vector will initially
be decreasing linearly in the index, after which at some point it may continue to
decrease at a slower rate or stop decreasing and remain constant until the end. In such
cases, equilibria can exist, as shown in the subsequent examples.

Example 1 Suppose there are two diametrically opposite locations on the circular mar-
ket occupied by three firms—1,2 and 3—and two firms—4 and 5—respectively. Let
us calculate the probability vectors p for which this configuration is a NCNE. In this
configuration, each firm among the triple gets

1

2
· p1 + p2 + p3

3
+ 1

2
· p3 + p4 + p5

3
= 1

6
(p1 + p2 + 2p3 + p4 + p5) (15)

customers. After a deviation by firm 1 anywhere except on top of firms 4 and 5 (in
which case there is no change in market share), as shown in Fig. 3, firm 1 will get

1

4
p1 + 1

2
p3 + 1

4
p5 = 1

4
(p1 + 2p3 + p5). (16)

For a NCNE, expression (16) must not exceed expression (15), which gives the
inequality

1

4
(p1 + 2p3 + p5) ≤ 1

6
(p1 + p2 + 2p3 + p4 + p5)

or

p1 − 2p2 + 2p3 − 2p4 + p5 ≤ 0, (17)
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Fig. 3 The diagrams shows a
deviation of firm 1

which can be rewritten as

(p1 − 2p2 + p3) + (p3 − 2p4 + p5) ≤ 0. (18)

This is always satisfied for a concave p, but never for a strictly convex vector. For
a weakly convex vector, however, it can be satisfied. For example, consider p =
1
13 (6, 4, 2, 1, 0). Also neither of the two firms at the other occupied position would
get an advantage deviating to an unoccupied location. By Lemma 1 it is sufficient to
consider only infinitesimal deviations. Deviating in any direction, the firm will not
gain (or lose) anything, hence this deviation is not profitable.

For NCNE, it should also be the case that neither of these two paired firms wants
to deviate to the other occupied position and join the three firms there. This yields the
requirement that

1

2
· p1 + p2 + p3 + p4

4
+ 1

2
· p2 + p3 + p4 + p5

4
≤ 1

2
· p1 + p2

2
+ 1

2
· p4 + p5

2
,

(19)

which simplifies to 2p3 ≤ p1+ p5, which is true for a convex p. Note that it is not true
for a strictly concave vector, which, combined with (18), rules out NCNE for strictly
concave vectors.

There are, however, convex vectors that satisfy both (18) and (19), and hence have
NCNE! In particular, the vector

p = 1

13
(6, 4, 2, 1, 0)

is of this kind. Apart from the equilibrium of type (3, 2), this vector also has equilibria
of types (1, 1, 1, 1, 1), (2, 1, 1, 1), (2, 2, 1).
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Example 2 The vector

p = 1

21
(8, 6, 4, 2, 1, 0)

has NCNE of types (1, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1), (2, 2, 1, 1), (2, 2, 2), (3, 3).

Now we will move towards a classification of types of NCNE for strictly convex
vectors. Theorem 4 says that no more than two firms can co-locate in an equilibrium.
The following lemma says that in equilibrium being paired is not an advantage.

Lemma 3 Let the vectorpbe strictly convex andaprofile x = ((x1, n1), . . . , (xm, nm))

is a NE with n1 = 2. Then for a firm at x1 an infinitesimal deviation from x1 does not
change its market share.

Proof Since n1 = 2, all square brackets in (7) vanish and the whole expression
M−( f ) + M+( f ) − 2M( f ) for a firm f at x1 is always 0. But in equilibrium
M−( f ) ≤ M( f ) and M+( f ) ≤ M( f ). This implies that the firm’s payoff upon
either infinitesimal deviation is equal to the payoff if it does not deviate. ��

Due to Lemmas 1 and 3 it is tempting to suggest that if there is a NCNE, then there
will be an equally spaced one. This, indeed, happens in many observed cases but not
in all of them.

Example 3 The computational tool described in Sect. 9 shows for the vector p =
1
42 (20, 10, 5, 3, 2, 2) the existence of a Nash equilibria of type (2, 2, 1, 1), however,
it can be easily manually checked that it cannot be equally spaced.

If we venture beyond convex vectors, in the class of best-rewarding vectors we can
find some even more striking examples. In particular, we may note that the equilibria
may be equally spaced but highly non-symmetric at the same time.

Example 4 The vector p = 1
12 (3, 2, 2, 2, 2, 1, 0, 0, 0) with c(p, 9) = 3/12−1/9

3/12 = 5
9 >

1
2 has only Nash equilibria of types (8, 1) and (7, 1, 1).

In particular, this example shows that, unlike convex vectors, for a best-rewarding
vector we do not always have an equilibrium where all firms are non-paired and
equally spaced. This justifies emphasizing the class of convex vectors within the class
of best-rewarding vectors.

6 Intermediate probability vectors

Computations indicate that some intermediate vectors may have NCNE of all possible
types. In particular, this is true for the Borda vector and n-dimensional vectors

p = 1

n
(2, 1, . . . , 1, 0).

However, for the vector p = 1
20 (7, 6, 3, 3, 1) we have only equilibria of type (3, 2).

The difference between the two cases is that in the first case the vectors are symmetric
while the latter vector is not.
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Definition 5 A vector p is said to be symmetric if for all s,

ps + pn−s+1

2
= p (20)

A symmetric vector rewards increases in ranking at top positions the exact same way it
punishes decreases in ranking at bottom positions. It is easy to see that any symmetric
vector is intermediate.

Theorem 5 If p is symmetric, any strategy profile is a Nash equilibrium. In particular,
all firms get an equal share of the market.

Proof Let p be an intermediate vector and x = ((x1, n1), . . . , (xm, nm)) be a profile.
Let us calculate the share of a firm f at location x1. For some s, such that 1 ≤ s ≤ m,
consider the contribution of customers from regions Ls and Rm−s+1 which lie opposite
to each other (see Fig. 2). Due to (4) and (5) the customers from Ls and Rm−s+1
contribute

Ms( f ) = 1

n1

⎡

⎣
ks+n1−1∑

j=ks

p j +
qm−s+1+n1−1∑

j=qm−s+1

p j

⎤

⎦ As, (21)

where As = �(Ls) = �(Rm−s+1). We note now that by (3)

(ks + i) + (qm−s+1 + n1 − i − 1) = n + 1

for all i = 0, 1, . . . , n1 − 1. This means by (20) that

pks+i + pqm−s+1+n1−i−1 = 2 p̄,

so the aforementioned contribution is 2 p̄ As . Overall, the market share of firm f is
M( f ) = ∑m

s=1 2 p̄ As = 2 p̄ 1
2 = p̄. This proves the theorem. ��

On the other hand, some intermediate vectors have just a few equilibria. Some of
them, like p = 1

24 (7, 6, 4, 3, 3, 1), have only two types of clustered equilibria, namely,
of types (2, 2, 2) and (3, 3).

In general, we know very little about non-symmetric intermediate vectors. In par-
ticular, we do not know if all of them have NCNE. Computations show that this may
be the case.

7 Concave probability vectors

Next, we look at concave probability vectors. This class of vectors represents the
opposite side of the coin to convex vectors, and may be a plausible model of consumer
behavior in some settings.
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Definition 6 A probability vector p = (p1, . . . , pn) with p1 ≥ p2 ≥ . . . ≥ pn is
concave if

p1 − p2 ≤ p2 − p3 ≤ . . . ≤ pn−1 − pn . (22)

We say p is strictly concave if all the inequalities are strict.

Firstly, we note that a concave vector is worst-punishing.

Proposition 3 Let p be a concave vector. Then c(p, n) ≤ 1/2.

Proof Same argument as in Proposition 2, just reverse the inequality signs. ��

Since they are worst-punishing, concave vectors produce incentives for central
agglomeration, allowing CNE over the central segment of the market in the linear
case (Cahan and Slinko 2017). NCNE are not known to exist (but nonexistence is also
unproved). On the circular market, the absence of the “peripheral firm advantage” may
possibly allow for a much broader range of equilibria exhibiting the realistic property
of multilocational clustering of multiple firms. Yet, like in the linear case, we have
not found any so far. Intuitively, if a NCNE existed, it is likely to be a bipositional
one. Corollary 2, however, rules out such NCNE entirely. This supports the conjecture
that, for strictly concave vectors, NCNE do not exist even on a circular market without
boundary conditions.

Next we show that half or more of the firms involved cannot co-locate. Exactly as
in the convex case (12) we can obtain

p1 + pn ≤ p2 + pn−1 ≤ · · · ≤ pn/2 + pn/2+1, (23)

if n is even, and

p1 + pn ≤ p2 + pn−1 ≤ · · · ≤ p(n−1)/2 + p(n−1)/2+2 ≤ 2p(n+1)/2, (24)

if n is odd. For strict concavity all the inequalities turn out to be strict.
Suppose p is strictly concave. For convenience, we assume that the number of firms

is even so that n = 2k where k is a positive integer. The case where n is odd is similar,
with the use of (24) instead of (23). Firstly, we note that for any 2 ≤ t ≤ k

1

n
= p̄ = (p1 + pn) + (p2 + pn−1) + · · · + (pk + pk+1)

n
<

1

n − 2t + 2

n−t+1∑

i=t

pi .

(25)

Lemma 4 Let p be strictly concave, n = 2k, and x = ((x1, n1), . . . , (xm, nm)) be a
profile where m ≥ 2 and n1 ≥ k. Then the market share M( f ) of a firm f at x1 is
greater than or equal to p̄ = 1

n . Moreover, M( f ) > 1
n , if m > 2 or n1 > k.
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Proof The number of customers received by a firm f in the large cluster is given by (6).
However, we know that �(Ls) = �(Rm−s+1) and, by (3), qm−s+1 = n − n1 − ks + 2.
Taking this to account we get

M( f ) =
m∑

s=1

1

n1

⎡

⎣
ks+n1−1∑

j=ks

p j +
n−ks+1∑

j=n−n1−ks+2

p j

⎤

⎦ As =
m∑

s=1

Ms( f ), (26)

where Ms( f ) is given in (21). We note that if n1 = k, then n1 and n − n1 + 1 = k + 1
are two consecutive integers and it is easy to see that in such a case

M1( f ) = Mm( f ) = 2

n
A1.

If n1 > k, then we have n1 > n − n1 + 1. Because of that, if s = 1, due to (25), the
corresponding term in the sum (26) will be

M1( f ) = 1

n1

⎡

⎣
n1∑

j=1

p j +
n∑

j=n−n1+1

p j

⎤

⎦ A1 = 1

n1

⎡

⎣1 +
n1∑

j=n−n1+1

p j

⎤

⎦ A1

>
1

n1

[

1 + 2n1 − n

n

]

A1 = 2

n
A1.

Similarly,

Mm( f ) >
2

n
Am .

If there are at least three locations, i.e., m ≥ 3, then for any positive integer s such
that 1 < s < m, due to (25), we would have

Ms( f ) = 1

n1

⎡

⎣
ks+n1−1∑

j=ks

p j +
n−ks+1∑

j=n−n1−ks+2

p j

⎤

⎦ As

= 1

n1

⎡

⎣
n−ks+1∑

j=ks

p j +
ks+n1−1∑

j=n−n1−ks+2

p j

⎤

⎦ As

>
1

n1

[
n − 2ks + 2

n
+ 2n1 + 2ks − n − 2

n

]

�(Ls) = 2

n
As .

Overall, if m > 2 or n1 > k, then

M( f ) >
2

n

m∑

i=1

Ai = 2

n
· 1
2

= 1

n
.

Alternatively, if m = 2 and n1 = k, we have M( f ) = 1
n . ��
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Theorem 6 For any strictly concave vector, no NCNE exist with a location occupied
by half or more of the firms.

Proof Let m ≥ 2 and n1 ≥ k. If m > 2 or n1 > k, then any firm at x1 will have a
greater than average market share. Then some firm located at one of the other locations
will have a market share smaller than average. If it moves to join a cluster at x1, then
by Lemma 4 in the new position it will have a market share greater than average, hence
the move will be profitable. If m = 2 and x1 = k, then there will be two clusters of
equal sizes at x1 and x2. Every firm will have an average market share. But if any of
the firms joins the other cluster, by Lemma 4 it will do better than average. Hence the
move is profitable. ��
Corollary 2 For any strictly concave vector there is no bipositional NCNE.

Proof Follows from Theorem 6 since, if we have only two positions, one of them will
have at least half of all firms. ��

For concave vectors, this shows that critical mass, at which point all firms will
eventually want to converge to a singularity, occurs when the majority of the firms are
at the same location.

We conjecture that if p is strictly concave, no NCNE exist.

8 The case of four firms

For n = 4, the types of equilibria that exist can be fully described. Firstly, we note
that the condition c(p, 4) ≥ 1/2 is equivalent to

p1 − p2 − p3 + p4 ≥ 0. (27)

Indeed, c(p, 4) ≥ 1/2 can be rewritten as 2(p1 − p̄) ≥ p1 − p4, which is equivalent
to (27). Similarly, c(p, 4) ≤ 1/2 will be equivalent to

p1 − p2 − p3 + p4 ≤ 0. (28)

We note that condition (27) is weaker than convexity. For example, p = 1
15 (7, 5, 2, 1)

is not convex but satisfies (27). Similarly, (28) is weaker than concavity. Hence, we
are not able to use the results of Sects. 4 and 6.

Theorem 7 Let n = 4 and p be a probability vector. Then:

(i) For all best-rewarding (but not intermediate) vectors, NCNE exist of types

(1, 1, 1, 1), (2, 1, 1), (2, 2);

(ii) For all worst-punishing (but not intermediate) vectors, only CNE exist;
(iii) For an intermediate vector, all types of equilibria exist.
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Proof To show the existence of an equilibrium of type (1, 1, 1, 1), (2, 1, 1), (2, 2), or
(3, 1), it is enough to show there is an equally spaced one. The proof that a NCNE of
type (1, 1, 1, 1) exists is very similar to the proof of Theorem 3. Similarly for (2, 1, 1).
Let us consider the configuration of type (2, 2).

Suppose there are two paired firms at diametrically opposite locations on a circular
market. Then, for any probability vector p, it is not profitable for any firm to deviate
to any unoccupied location. Indeed, in the described configuration, due to symmetry,
each firm gets 1

4 of the customers. This is exactly the same as what firm 1 gets after a
deviation to anywhere other than on top of firms 3 and 4. This deviation is shown in
Fig. 4. However, joining firms 3 and 4 will be profitable for any worst-punishing but
not intermediate vector. In such a case its new share of customers will be

s = 1

2

(
p1 + p2 + p3

3
+ p2 + p3 + p4

3

)

= 1

6
(p1 + 2p2 + 2p3 + p4) .

Thus, in order for NCNE to exist, we must have

1

4
− s = 1

12
(−p1 + p2 + p3 − p4) ≥ 0.

This is the case for best-rewarding or intermediate p due to (27). Hence, the case of two
oppositely located pairs of firms is a NCNE only for best-rewarding or intermediate
vectors.

The same argument shows that, for a best-rewarding vector, the configuration with
threefirms at one location andone at another is not aNEsinceonefirm from the location
with three firms would be better off moving to the other location. This configuration
is not a NCNE for worst-punishing vectors either since the lone firm would be better
off joining the three other firms. The only case when a NCNE of type (3, 1) exists is
when the vector is intermediate, in which case we have equality in (27). ��

9 Computational tool

To find NCNE for a particular vector of probabilities, we developed the software
“round voter”, which is based upon the “move voter” software created earlier. Both
are available at: https://github.com/gmatht/MoveVoters.

The algorithm first considers each possible clustering of firms. For example, with
three firms it considers the configurations (1, 1, 1), (2, 1), and (1, 2). It does not
consider (3) as this represents a convergent solution, which is straightforward to deal
with by Theorem 2. For each of the clusterings it creates a Linear Programme (LP).
Given a clustering, for each separate location at which firms cluster, the LP has a
position variable representing this location. We want these variables to be distinct, yet
LPs do not allow strict inequalities. For this reason we also have a slack variable used
to enforce a minimum distance between the positions. Wemaximize the slack variable
and, if the maximum slack is zero, we reject the solution of the LP. As we maximize
the slack variable we also find an equally spaced solution, if one exists.
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Fig. 4 The right diagrams shows a deviation of firm 1 from the location where it was paired with firm 2.
The firm 1 gets the same, firm 2 gains and firms 3 and 4 lose

The LP has 3m2 rows to ensure that the firms cannot gain an advantage by changing
position, where m is the number of distinct locations where firms cluster. For each
position variable i and position variable j , we include 3 rows representing the advan-
tage a firm at position i could get by moving to: just before position j , exactly position
j , or just after position j . We require that all of these be at most zero.
The LP also has rows to ensure the variables represent the type of solution we are

looking for. One row ensures that the first position variable is at least 0; a number of
rows ensure each position is at least slack more than the position preceding it; another
row ensures the final position is at least slack less than 1.

10 Conclusion

In many settings, it makes sense to model the market on which firms compete as a
circle a là Salop (1979). At the same time, it is often the case that consumers shop at
firms other than the nearest with some probability. In this paper we make substantial
progress in investigating the nature of Nash equilibria, in particular, non-convergent
Nash equilibria. We study several broad classes of probability vectors that realistically
represent different kinds of consumer behavior. For convex probability vectors and
symmetric probability vectors, non-convergent Nash equilibria are quite abundant.
For concave probability vectors, our results point to the possibility that they do not
exist at all. There are parallels to the classical case of a linear unit interval market
(Cahan and Slinko 2017), but important differences are due to the different nature of
the markets studied, particularly the lack of boundary conditions in the circular market
case.
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