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Virus transmission between host species underpins disease emergence.
Both host phylogenetic relatedness and aspects of their ecology, such as
speciesinteractions and predator-prey relationships, may govern rates

and patterns of cross-species virus transmission and hence zoonotic risk.

To address the impact of host phylogeny and ecology on virus diversity and
evolution, we characterized the virome structure of a relatively isolated
island ecological community in Fiordland, New Zealand, that are linked
through afood web. We show that phylogenetic barriers that inhibited
cross-species virus transmission occurred at the level of host phyla (between
the Chordata, Arthropoda and Streptophyta) as well as at lower taxonomic
levels. By contrast, host ecology, manifest as predator—prey interactions and
diet, had asmaller influence on virome composition, especially at higher
taxonomic levels. The virus-host community comprised a ‘small world’
network, in which hosts with a high diversity of viruses were more likely to
acquire new viruses, and generalist viruses that infect multiple hosts were
more likely to infect additional species compared to host specialist viruses.
Suchahighly connected ecological community increases the likelihood

of cross-species virus transmission, particularly among closely related
species, and suggests that host generalist viruses present the greatest risk

of disease emergence.

Cross-species virus transmission is a near-universal feature of viruses'.
Determining how viruses move through ecosystemsis central to under-
standing their occasional emergence as pathogens. Recent metagen-
omic studies suggest that only a small proportion of viruses cause
serious disease and mortality, with apparently healthy wildlife species
commonly infected by multiple viruses?. In reality, viruses are a key
component of global ecosystems, regularly moving between species

inthe absence of overt disease’. As such, afullunderstanding of infec-
tious disease emergence requires an ecosystem-level approach®, in
which the viromes of entire interacting communities are investigated.

Two factors have been proposed to govern virus movement from
one host species to another, shaping similarities and differences in
virus composition among taxa and hence determining virome struc-
ture at the ecosystem scale. First, it is possible that host phylogenetic
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Fig.1| Expected impact of two main drivers of virus diversity on the structure
of virus phylogenies. a, Host phylogenetic relationships drive virus diversity.

b, Host feeding ecology drives virus diversity. Circles denote hypothetical
clusters of hosts with similar viromes: that is, dots (hosts) within a circle have
more viruses in common than to other dots outside the circle.

relatedness directlyimpacts the frequency and pattern of cross-species
virus transmission’. Rates of cross-species virus transmission are
expected tobe higher among closely related host species, reflecting a
greater similarity in the virus and host proteins that underpin success-
ful virus—cell relationships such as host-cell binding®. A fundamental
differenceinvirus-host cell relationshipsin part explains why viruses
from vertebrates and invertebrates are usually phylogenetically dis-
tinct’, even though the latter are often dietary components of the
former. A second proposed factor is that ecological properties of the
host play amajorrolein virus movement between species by determin-
ing the probability of virus exposure®. Each time species interact, they
provide opportunities for cross-species virus transmission. Hence,
the moreinteractions, the greater the probability of host jumping. For
example, changes in land use have increased human-animal interac-
tions, driving disease emergence events in humans’. Predator-prey
interactions are common exposure events, with the consumption
of prey providing direct contact with viruses during digestion. Con-
sequently, the structure of an ecosystem food web may have a large
impactonthe flow of viruses through communities. With the exception
of marine microbial food webs in which viral lysis of microbial hosts
impacts food web structure'’, the prediction is yet to be tested.
Metagenomic sequencing allows the entire virome of samples to
be characterized?, allowing amore precise description of viral diversity
and the increasingly rapid discovery of novel viruses™. Far less atten-
tion has been directed toward understanding how viruses move within
ecosystems. Research on food webs including viruses has commonly
focused onsingle pathogens of aspecies of interest' or on the microbial
subset of the food web'. The virome of an entire food web is yet to be
characterized, in part because the large number of species in most
ecological communities makes this impractical. However, in small
island forest ecosystems, such as Pukenui/Anchor Island in the Fiord-
land region of southwestern New Zealand (Extended Data Fig. 1), the
entire forest community is small enough that most broad taxonomic
groups can be sampled, providing asnapshot of afood web virome.
The unique evolution of New Zealand wildlife (that is, the almost
complete absence of native terrestrial mammals) means that unlike
other forest ecosystems the Pukenui/Anchor Island ecological commu-
nity is dominated by birds, with no terrestrial mammals, and only one
species of reptile. However, despite being small, isolated and having

alow diversity (relative to forest ecosystems outside New Zealand),
this community contains a breadth of ecological niches, including
avariety of diets: carnivores, insectivores, plant-eaters (including
herbivores, frugivores, nectarivores and granivores), piscivores and
omnivores. This ecological community also contains threatened spe-
cies that may be vulnerable to disease emergence via cross-species
virus transmission: for example, the critically endangered kakapo
(Strigops habroptila), endangered mohua (Mohoua ochrocephala)
and critically endangered Te Kakahu/Chalky Island skink (Oligosoma
tekakahu). The Pukenui/Anchor Island community also has a relative
decoupling of phylogenetic relatedness and ecological niches. Some
species that are distantly related (that is, from different phylogenetic
orders) possess a similar ecological niche and regularly interact. For
example, yellow-crowned parakeets (Cyanoramphus auriceps, kakariki)
were frequently observed with passerines (brown creeper Mohoua
novaeseelandiae, mohua, and the grey warbler Gerygone igata, riror-
iro), travelling and foraging in multi-species flocks (R.K.F. personal
observation), as observed elsewhere in New Zealand®.

We used metatranscriptomic (that is, total RNA) sequencing to
document the virome of each host in the community, including viruses
that directly infect the host, bacteriophage and those present in the
host diet. Hence, we use the total viral diversity of each host, rather
thanonly those viruses that have established atrueinfection, to provide
a broader view of virus transmission. Viruses that have established
infection in their hosts could represent transient spill-over events or
sustained cross-species transmissions and result in acute or chronic
infections. If host phylogeny were the key driver of viral diversity, we
would expect viromes to cluster according to the major host phyla
(for example, Chordata, Arthropoda and Streptophyta), as well as at
lower taxonomic levels, with more closely related hosts having more
similar viromes than hosts that are more distantly related (Fig. 1a). By
contrast, if host ecology were the main driver of virus diversity, we
would expect viromes to cluster according to major dietary associa-
tions, with hosts that have similar diets possessing similar viromes,
and predators and prey clustering together (Fig. 1b).

Our sampling of the Pukenui/Anchor Island forest community
included all key vertebrate speciesinaddition to representative inver-
tebrates and plants (Supplementary Table1). The sampled community
comprised five host phyla, 13 classes and 37 orders and was sampled
over a4 week period. Thus, this study is necessarily a‘snapshot’ of the
viral community at a single time point. We conducted diversity and
network analysesto determine theimportance of host phylogeny and
host ecology on viral diversity at the virus family level.

Results

Viruses predominantly cluster according to host phylogeny
We identified 16,633 viral sequences (assembled contigs) with an
abundance of 360 millionreads from a total of 112 different viral fami-
lies. The number of viral families in each library ranged from 3 to 45,
with a mean 0f18.9 (+11.0 s.d.). Viral richness was dependent on host
taxonomy (phylum P=0.01, class P=0.03 and order P=1.05x107*,
n=49).Non-metric multidimensional scaling plots similarly revealed
that, overall, viral communities clustered to the level of host phyla
(Fig.2), which was confirmed using pairwise permutational multivari-
ate analysis of variance (PERMANOVA) tests (Supplementary Table 2).
All comparisons between Chordata, Arthropoda and Streptophyta
were significant (P< 0.05, n=49).Inaddition, host phylogenetic order
explained the most variation between viral communities (R? = 0.80)
compared to host phylum (R?=0.13) and class (R*=0.30), when used
asthe dependent variable in the PERMANOVA test (n = 49).

Within Chordata (for which most host resolutionis available), we
used host order and host diet to compare how much variation in the
viromes is explained by each factor. Host diet was described using
two separate binary factors based on the primary diet types (Supple-
mentary Table1)—‘insectivore’ (yes or no) and ‘plant-eater’ (yes or no).
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Fig.2|The similarity and dissimilarity of viral communities among

host taxa. The first two dimensions of a three-dimensional non-metric
multidimensional scaling (NMDS) plot show that virus communities at the
family level cluster according to host phyla. Axes refer to the dimensions of the
NMDS; stress = 0.196, n = 49.

Nectar, fruitand seed eaters were assigned as plant-eaters. Omnivores
that feed on both invertebrates and plants were assigned as both an
insectivore and a plant-eater. Carnivores and piscivores were assigned
asneitheraninsectivore noraplant-eater. In this case, viral richness was
dependent on hostorder (P <2 x107%, n =19) but not whether the hosts
ateinsects (P=0.9,n=19) or plants (P=0.3,n=19). When controlling
for host order, PERMANOVA tests revealed that insectivores had signifi-
cantly different viromes from non-insectivores, and plant-eaters had
significantly different viromes from non-plant-eaters (P < 0.05,n=19,
Supplementary Table 2). However, host order explained much more
of the variation (R?= 0.47) than diet (insectivore R*= 0.06, plant-eater
R*=0.07). A similar result was obtained when including only viruses
likely to infect chordates, with all comparisons significant (P < 0.05,
n=19),and host order explaining more variation (R>= 0.48) than host
diet (insectivore R*=0.06, plant-eater R>= 0.06).

To further determine the relative impact of host phylogeny
and ecology on virus community composition within the Chordata,
we assessed the degree of correlation between three dissimilarity
matrices: viral community (a Bray-Curtis dissimilarity matrix), host
relatedness (generated using the sum of branch lengths from a host
phylogeny) and host ecological similarity (using the dietary factors
described above). In this case, host ecological similarity and viral
community were significantly correlated (Mantel statistic R =0.25,
P=0.009), even after controlling for host relatedness (Mantel sta-
tisticR = 0.25, P= 0.01). By contrast, there was no significant correla-
tion between host relatedness and viral community (Mantel statistic
R=-0.025,P=0.64).

To explore the broad clustering of viral communities by host
phylogeny, we created a bipartite network (herein referred to as the
‘host-virome network’) and identified four modules using acommunity
detection algorithm. Notably, the modules follow host phylogenetic
groupings, with aPearson’s chi-squared test ofindependence indicat-
ing that host phylum and module were highly correlated (x> = 68.4,
d.f.=12,P=6.4 x10%).Module 1 contained only invertebrates (arthro-
pods, annelids and a platyhelminth), module 2 predominately com-
prised plants (75% plants and 25% invertebrates), while modules 3 and
4 largely comprised chordates (86% and 81% chordates, 14% and 19%
invertebrates, respectively) (Fig. 3). Allmodules contained both DNA
and RNA viruses. Module 3 comprised mostly bacteriophage, while
the other modules were dominated by viruses that infect the hosts in
those modules.

Modules also had differing levels of host and virus richness, with
module 1 containing the highest number of hosts (18), module 2 con-
taining the highest number of virus families (36) and module 3 contain-
ing the lowest number of both hosts (7) and virus families (17). The
communities within each module were significantly different from
one another (P < 0.05, n =49, pairwise PERMANOVA test; Supplemen-
tary Table 2), which was robust to rarefication (Supplementary Table
3). Interestingly, the two modules containing chordates (modules 3
and 4) had the smallest difference in communities (Supplementary
Table 2), although still statistically significant.

Network structure
We next analysed the structure of the host-virome network using
the degree distribution (that is, the distribution of the number of
links between nodes) in comparison to a network generated with a
null model (a bipartite network with the same number of nodes and
links, randomly assigned). The cumulative degree distributions for
the hostand virus nodes followed a truncated power-law distribution
(Kolmogorov-Smirnov test P> 0.05) of Pc(k) = k*°3k % for the hosts
and Pc(k) = k' 2k %32 for the virus families, as shown by thefit linesin
Fig. 4. Pc, the cumulative probability; k, the number of viruses/host
nodes. The null networks also follow truncated power-law distributions
of Pc(k) = k°7 k39 and Pc(k) = k°**k ®'¥ but with lower cut-offvalues
than the host-virome network. Viruses with few connections had fewer
thantherandom expectation, while viruses with more connections had
more than expected by chance, shown by the nulland virus distributions
intersecting at approximately 10 links (Fig. 4). By contrast, all hosts
had systematically more connections than the random expectation.
Across node level properties, degrees, betweenness and eigenvec-
tor centrality were significantly dependent on host taxonomy across all
levels (phylum degree P=0.0013, betweenness P= 0.0026, eigenvector
centrality P=0.041; class degree P=0.003, betweenness P=3.8 x 107%¢,
eigenvector centrality P=0.039; order degree P<2 x107'¢, between-
ness P=0.0012, eigenvector centrality P< 2 x107%; n=49). Within the
Chordata, host order but not host diet significantlyimpacted degree,
betweenness and eigenvector centrality (Supplementary Table 4).

Potential for virus movement within the network
To examine the strength of connections between hosts that shared
viruses, we created a unipartite network (that is, links between hosts
with shared virus families, where alink is a connection between two
hosts) based on the Bray—-Curtis dissimilarity matrix, which we refer
to here as the ‘host community network’ (Fig. 5). This network had a
high level of connectivity between hosts and within host phyla, with
the connections across host phyla generally weaker (that is, a higher
Bray-Curtis value). The maximum shortest path was eight, such that
the most distantly connected nodes were still only eight links (connec-
tions between hosts) away from one another. The mean shortest path
distance wasonly 3.19, such that on average eachnodeis 3-4 links away
from every other node. Also noteworthy was a key cluster containing
predominately chordates with a high number of strong connections.
The two host species with very high richness (moss (Dicranoloma bil-
lardierei) and grey warbler, with over 40 viral familiesin each) differed
intheir connectivity in the network (Fig. 5), with the moss having alow
number of connections to other nodes (1), while the grey warbler had
ahighnumber of connections (6) and was part of the chordate cluster.
In comparison to 1,000 randomly generated null networks, the
transitivity ratio (that is, the probability that the adjacent nodes are
connected, expressed as a ratio comparing the null and host com-
munity network values) was high (3.1), while the pathlength ratio (the
smallest number of links between each node) was similar (1.1), with a
‘small-worldness’ index of 2.7. This signifies a small world network:
both highly clustered and highly connected. Most nodes are a small
number of links away from every other node, enabling viruses to easily
move between species™*. Our analysis also revealed that if a virus were
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Fig.3|Host-virome network (bipartite) displayed using the Fruchterman-Reingold layout. The modules are shown by node colour. Nodes include both host
library and virus families. The boxes show the host makeup of each module, with the number of hosts belonging to each host phylum shown in parenthesis.

tomove through this network, it would first move within ahost phylum,
then most likely from plants to arthropods, and to/from arthropods
and chordates. Strikingly, direct links between plants and chordates
were far less common, which may reflect the relatively small number
of chordates on the island that eat plants, compared to those that eat
invertebrates (Supplementary Table1).

Host ecology affects viral diversity at smaller scales

To examine the diversity of virus species withinand across host phyla,
we conducted a phylogenetic analysis for one virus family per mod-
ule: Parvoviridae (module 1), Caulimoviridae (module 2), Fiersviridae
(module 3) and Caliciviridae (module 4), chosen for their high viral
diversity across multiple host species (Fig. 6, Extended Data Figs. 2-5
and Supplementary Tables 5-7). In general, there was a high degree
of virus clustering by host phyla, with each module containing a high
richness and abundance of virus species from their predominant host.
However, there was also evidence of host ecology (that is, predator-
prey interactions) influencing virus diversity, with closely related/
identical viruses found in distantly related hosts. For example, we
identified three viruses in the kaka (parrot) library from the plant
virus family Caulimoviridae that were closely related to members of
the viral genus Badnavirus found in the plants sampled here (Fig. 6).
This patternisindicative of afood web interaction in which the parrot
consumed the plants. Similarly, we found near-identical (>99% at the
amino acid level) members of the Caliciviridae in a miromiro/tomtit
(passerine, Petroica macrocephala) and slater/woodlouse (arthropod,
Isopoda species) library, strongly indicating a food web interaction
(Extended Data Fig. 4). As the arthropod is a detritivore and the bird
predominately insectivorous, the interaction could have occurred in
either or both directions.

Discussion

We used ametatranscriptomic approachtoreveal the drivers of virome
structure based on a‘snapshot’ of the viral community on a relatively
isolated island. We achieved this by creating the (bipartite) host-virome
networkbased onthe presence or absence of each virus familyineach
host library, and the (unipartite) host community network based on
the level of virome similarity between hosts.

This analysis revealed a strong effect of host phylogeny on the
host-virome network, with more viral families shared within than
between host phyla. Host taxonomy also impacted viral richness and
node level properties within the host-virome network. To our knowl-
edge, thisisthefirst such evidence from an ecosystems-scale analysis,
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0.200 —|
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Fig. 4| The degree distribution of the host-virome network (large circles)
and the null network (small squares), shown as the cumulative probability of
finding a virus family in the network with k or less-associated hosts (Pc(k)).
The colour denotes node type, with red and orange referring to host nodes and
the dark and light green the virus family nodes, in the host-virome network and
null network, respectively.

and hence supports analyses of specific viral families and hosts that
have shown host phylogenetic distance to be a key constraint on the
cross-species transmission of viruses and hence on disease emer-
gence>”. Similarly, host phylogeny plays an important role in shap-
ing the diversity of bacteria and eukaryotic parasites'®”, such that it
likely has wide-ranging impacts on microbial diversity. Despite this,
the strength of the host phylogenetic trend observed here is surpris-
ing given that the viromes characterized comprised all the actively
transcribed viruses identified, not just those directly infecting the
host in question. There were, necessarily, differences in sampling
method between chordates (cloacal swab), invertebrates (body tissue)
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Fig. 5| Host community network (unipartite) displayed using the
Fruchterman-Reingold layout. Nodes are connected to other nodes if they
have a dissimilarity value of less than 0.9. The thickness of the line shows the
level of dissimilarity. The Bray-Curtis dissimilarity statistic ranges from0to1,
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with 0 meaning two hosts have identical viromes at the viral family level, and 1
meaning two hosts have no viral familiesin common. The letters refer to species
of interest: D, moss; G, grey warbler; K, kakapo; M, mohua; S, Te Kakahu skink.

and plants (leaf tissue) which, while unavoidable, could have resulted
in artificial similarities in the virome between similar sample types.
However, cloacal swabs should have biased the results toward food
webinteractions asthey represent asample of the host digestive tract
which often contains diet-associated viruses's. Moreover, we found
significant differences between viral communities at lower host phy-
logenetic levels (class and order) where the sampling method was
consistent, suggesting the differences observed were not due to the
sampling method.

Thatviruses generally cluster by host phylogeny means that virus—

host co-divergence has amajorimpactin shaping virome structures at
deep evolutionary scales. Phylogenetic barrierslikely prevent frequent
cross-species virus transmission between phyla because this process
can only occur between species with similar virus—cell interactions,
suchasreceptor bindingin the case of animal viruses. This resultsina
mixture of host-virus co-divergence at deeper taxonomic levels and
cross-species transmission at shallower taxonomic boundaries, with
the combination of both processes meaning that more closely related
species have generally similar viromes. For example, although host
phylogeny at the order level had a stronger impact than host ecology
on the virome community within the Chordata, only virus composi-
tion and host diet had significantly correlated dissimilarity matrices.
Indeed, phylogenetic analysis at the level of virus species provided
direct evidence for cross-species transmission with, for example, a
cluster of closely related caliciviruses in both the fantail (Rhipidura
fuliginosa, passerine) and the tawaki (Eudyptes pachyrhynchus, pen-
guin) (Extended Data Fig. 4). This accords with comparative studies
that have revealed relatively weak host-virus co-divergence among
viruses sampled from different host classes'**.

Withinthe Chordata, predator-prey interactions were not associ-
ated with high levels of cross-species viral transmission in this island
community, again likely reflecting phylogenetic constraints. Itis pos-
sible, however, that more predator-prey viral transmissions would be
detected in ecological communities where such interactions occur

more frequently between closely related species, thereby reducing the
effect of host phylogeny, and that viruses absent from chordate cloa-
cal swabs may be subject to different evolutionary patterns. Indeed,
studies of the human gut have provided limited evidence for host diet
impacting virome structure®’. However, other aspects of host ecology
suchaslocation, age and behaviour (withinanarrower host range than
our study) all influence host viromes, although to a lesser extent than
phylogeny?**. Despite the limited influence of host ecology on viral
diversity, we found clear examples of host predator-prey interactions
at the level of virus species, showing that viruses do move between
species via these processes. Overall, our results suggest that virus
traffic from predator-prey interactions between distantly related
species is only transient (that is, the virus is only present for a short
time in the predator’s digestive system) and hence unlikely to result
in productive infections. Our results therefore suggest that increases
in host connectivity via predator-prey interactions would not result
inincreased rates of infection.

Both the host-virome network (bipartite) and host community
network (unipartite) had similar structures to those observed in other
ecological networks, including a truncated power-law distribution and
smallworld network, structures that are commonly found in food-web
and plant-pollinator networks®**, suggesting they have similar con-
straints in network construction. Our host-virome network followed
atruncated power-law distribution that had lower cut-off values than
expected by chance. This suggests that the structure is influenced by
assembly mechanisms (that is, ecological processes or phylogenetic
traits of the host or virus that alter how the network is constructed).
Power-law distributions occur when nodes are likely to get more
links the greater the number they already have, such that the ‘rich get
richer™. Accordingly, hosts that already have a high diversity of viruses
aremorelikely to acquire new viruses than hosts with alow diversity of
viruses. This could be partly driven by species abundance*, withmore
abundant host species more likely to be exposed to viruses within the
network. Similarly, viruses with many hosts are more likely to acquire
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Fig. 6 | Virus diversity at the species level. Phylogeny of the Caulimoviridae
(module 2). The colours and symbols correspond to host phyla: green leaf,
Streptophyta; blue bird, Chordata. Allunmarked viruses have plant hosts. The
abundance of viruses in each phylumis shown in the key inset, expressed as RPM.
Branches are scaled according to the number of amino acid substitutions per
site, shown in the scale bar. The tree is midpoint rooted for display purposes only.
Detailed individual phylogenies, sequence alignments and information including
the genes used, alignment length, percentage identity and number of sequences
canbe found in Extended Data Figs. 2-5 and Supplementary Tables 6-7.

more hosts, which may inform zoonotic risk assessments*. In particu-
lar, rather than assigning the highest risk score to viruses that are simi-
lartothose that have already emerged, it may be of greater utility to give
preference to the most generalist viruses. This power-law distribution
istruncated when the underlying model nolonger accurately predicts
the distribution beyond a certain cut-off, effectively preventing the
richfrom gettingricher beyond that point. The higher this cut-off, the
greater the number of highly connected hosts and viruses. In our mod-
els, this cut-off value was higher than for the null network, indicating
that the host-virome network contains more highly connected hosts
and viruses (that is, generalists) than expected by chance. Truncated
power-law distributions are often found in mutualistic networks (for
example, plant-pollinators), with the truncation thought to be due to
‘forbidden’—physically impossible—links®. In our network, forbidden
links could be due to phylogenetic barriers preventing cross-species
transmission.

The host community network (unipartite) was a ‘small world’
network. Although clear clusters emerge, most nodes (hosts) can
be reached via a small number of connections to other nodes®. This
is common in ecological networks, with most species only two links
apart on average in complex food webs?. The combination of strong
modularity in our host virome network and high connectivity in our
host community network implies that a pathogenic virus could rap-
idly move through the network, particularly once the virus crossed
from one module to another, without requiring a direct consumer
relationship between hosts. The host community network showed an

especially strong clustering within chordates, with a high degree of
similarity between hosts. This cluster included endangered species
such as the mohua and Te Kakahu skink, suggesting that on Pukenui/
AnchorIsland these species are vulnerable to disease emergence from
other chordates within that cluster. By contrast, the kakapo was less
closely connected to this cluster, suggesting it may be less vulnerable.
Our study shows that the phylogenetic relatedness of hosts is a
strong driver of viral diversity in this ecological community. Phyloge-
netic barriers between distantly related hosts may prevent frequent
virus movement despite exposure events via predator-prey interac-
tions. The ecological community studied is highly connected, present-
ingrisks for disease emergence in vulnerable species. Thiswork sheds
light onthe processes that dictate viral movement through ecosystems
and could be expanded toinclude sampling over multiple time points
to further understand these processes. More research is needed on
how the disruption of these networks impacts disease emergence.

Methods

Study location

Pukenui/Anchor Island is a smallisland (11.4 km?), located in Dusky
Sound, Fiordland, New Zealand (Extended DataFig.1). Theislandis part
of the largely uninhabited Fiordland National Park (over 12,000 km?)
on the south-west coast of the South Island and is over 80 km to the
nearest township by air. Following the eradication of invasive mammals
in the early 2000s, the island became a key habitat for endangered
native species, including the kakapo (S. habroptila). Theisland is also
animportant habitat for seabirds that nestin the forest, including the
tawaki/Fiordland crested penguin (E. pachyrhynchus). The temperate
rainforest consists predominately of beech and podocarp (conifer)
trees, with an understory/forest floor including shrubs, vines and
mosses. To our knowledge, the only non-native permanent inhabitant
of theislandis the invasive German wasp (Vespula germanica).

Sample collection

This research was conducted under a Department of Conservation
Wildlife Act Authority authorization number 86173-FAU and authority
for research and/or collection of material on public conservation land
authorization number 86172-RES and had ethics approval from the
University of Auckland reference number 002198.

Fieldwork was undertaken on Anchor Island, Fiordland, New Zea-
land, between 17 February and 14 March 2021. The 18 bird and 1 skink
species were caught using four different methods, depending on the
speciesin question. Small, flighted birds were caught using low-canopy
mist netting, while larger flighted birds were caught with high-canopy
mist nets. Bird calls were used to attract the birds to the area and into
the nets. Non-flying birds were caught by hand or hand net. Skinks
were caught using gee-minnow traps. Once caught, the animals were
weighed, and a cloacal swab was taken, using a sterile nylon flocked
swab FLOQswab (Copan), either mini-tip or regular tip depending on
the size of the animal. The entire tip of the swab was inserted into the
cloaca and swabbed with two to four circular motions while applying
gentle pressure against the mucosal surfaces. The swab was then cut
using scissors sterilized with 70% alcohol and placed into a tube with
1ml of RNAlater. Samples were kept at =20 °C for the duration of the
fieldwork, then frozen at -80 °C.

Leaves were collected from each plant species by cutting the stem
with sterile scissors and placing the leavesinto asterile collectionbag
(one bag per individual plant). At the fieldwork base, a leaf from each
individual plant was chopped into approximately 5 mm x 5 mm pieces
and placed into 1 ml of RNAlater. The total volume of the solution and
plant material was no more than 1.3 ml, to ensure preservation of all
the RNA. To ensure the RNAlater permeated into the tissue, samples
were left at 4 °C for approximately 12 h before being transferred to
-20°C.Samples were keptat —20 °C for the duration of the fieldwork,
then frozenat-80 °C.
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Invertebrates were collected by manual search and by extraction
from soil. At five sites on Anchor Island, the area withina5mx5m
square was intensively searched for invertebrates (on vegetation,
under logs, under bark and so on). When an invertebrate was found,
it was placed alive into a sterile pottle with damp moss or leaf litter
fromthesite. At the same site, asterilized spade was used to cut a soil
coreapproximately 2 linvolume. The core was placed into a sterilized
21 container. The invertebrates and soil cores were kept at 4 °C for
the duration of the fieldwork. They were then transferred to Massey
University, New Zealand. The invertebrates collected by hand were
examined live under a dissecting microscope using sterile tools and
identified to the lowest classification level possible (highest = order
level, lowest = species level). Invertebrates from the soil cores were
extracted using Berlese funnels into RNAlater and identified in the
same way. Onceidentified, the invertebrates were individually stored
at-80°C.

RNA extraction

Cloacal swabs. RNA was extracted using the RNeasy plus mini extrac-
tion kit (Qiagen) and QlAshredders (Qiagen). The tube containing the
swab in RNAlater was thawed and the swab removed from the tube
using sterile forceps and placed in 600 pl of extraction buffer. The
swab and buffer were vortexed for 2 min at maximum speed. The swab
and buffer were then placed into a QlAshredder and centrifuged for
5 min at maximum speed. The flowthrough was retained (avoiding
the cell debris pellet) and used in the extraction following the stand-
ard protocol in the kit. The RNA was eluted into 50 pl of sterile water.
Extractions were pooled by host species for sequencing. About 25 pl
of each extraction was used in each pool, and this was concentrated
using the NucleoSpin RNA Clean-up XS, Micro kit for RNA clean up and
concentration (Macherey-Nagel). The concentrated RNA was eluted
into 20 pl of sterile water.

Plant material. RNA was extracted using the Rneasy plant mini extrac-
tion kit (Qiagen). The plant material in RNAlater was thawed just
enough to remove approximately 20-30 mg. This was placed into a
tube with a sterile stainless steel 6 mm bead. The tube, sample, bead
and adapter set were then cooled at —80 °C for 30 min. After cool-
ing, the plant tissue was disrupted by beating using the TissueLyser
11 (Qiagen) at 30 Hz for 2 min. The kit protocol was then followed for
the remainder of the extraction. The RNA was eluted in 50 pl of sterile
water. Extractions were pooled and concentrated as described above.
Before concentrating, the pooled RNA was treated with DNase, using
the rDNase Set (Macherey-Nagel).

Invertebrates. RNA was extracted using the RNeasy plus mini extrac-
tion kit (Qiagen). For small invertebrates (<30 mg), the whole body
was used in the extraction. For larger invertebrates, a 30 mg piece of
the abdomen was used. The frozen tissue was placed intoatube witha
sterile stainless steel 6 mmbead, and 300-600 pl of buffer was added,
depending on the amount of material. The tissue was disrupted by
beating using the TissueLyser Il (Qiagen) at 30 Hz for 4 min. The kit
protocol was then followed for the remainder of the extraction. The
RNA was eluted in 50 pl of sterile water. Extractions were pooled and
concentrated as described above.

Total RNA sequencing

Complementary DNA libraries were prepared using the Stranded
Total RNA Prep with Ribo-Zero Plus (Illumina) for cloacal swabs and
invertebrates and the TruSeq Stranded Total RNA with Ribo-Zero
Plant (Illumina) for plants. Libraries were sequenced on the Illumina
Novaseq platform at Auckland Genomics, University of Auckland, and
the Australian Genome Research Facility, with invertebrates, plantsand
vertebrates sequenced entirely independently (that is, on different
lanes and sequencing runs). One blank negative control library (that s,

asterile water and reagent mix) was sequenced with each sequencing
run (one each for vertebrates, invertebrates and plants).

Quality control, assembly and virus identification

Using Trimmomatic (0.38)*°, adapters and bases below a quality of 5
were trimmed, using a sliding window approach with a window size
of 4. Bases were cut if below a quality score of 3 at the beginning and
end of the reads. Using bbduk in BBtools (bbmap 37.98)*, sequences
less than 100 nucleotides in length or below an average quality of 10
were removed.

Reads were de novo assembled using Megahit (1.2.9)*. Viruses
were identified by comparing the assembled contigs to the National
Center for Biotechnology Information (NCBI) nucleotide database
(nt) and non-redundant protein database (nr) using Blastn (blast+
2.1.2)**and Diamond Blastx (Diamond 2.0.9)**. Contigs were retained
that had hits to viruses and an open reading frame greater than 300
nucleotides for nr hits (contig length range = 300-32,334). Sequence
similarity cut-offvalues of1x10°and 1 x 10 ° were used for the nt and
nr databases, respectively, to prevent false positives. Virus transcript
abundance was estimated using Bowtie2 (2.2.5)*. Viruses that met
the following conditions were assumed to be contaminated asaresult
index-hopping from another library, and removed: (1) viruses were
sequenced on the same lane, (2) the total read count was <0.1% of the
read countin the other library, and (3) viruses were >99% identical at
the nucleic acid level. Any virus found in the blank negative control
libraries was assumed to have resulted from contamination and simi-
larly removed from all libraries and analyses.

Ecological analysis

All analyses were conducted in R (4.0.5)*. Viruses were grouped into
viral families, as classified by the International Committee on Tax-
onomy of Viruses or NCBI. Viruses not classified to family level were
included provided they had an order-level classification (for example,
unclassified Picornavirales were included as a ‘family’). We did not
group at a lower classification as it resulted in many viruses being
excluded: only 56% of the viruses could be classified to the genus level,
whereas 84% could be classified to the family level. An operational
taxonomic unit table (Supplementary Data 1) was created using viral
abundance expressed as the number of reads per million (RPM, that s,
the number of reads from the virus family divided by the total number
ofreadsinthelibrary, multiplied by 1 million). Alpha diversity (richness
and Shannon diversity) was calculated, and the role of host taxonomy
and host diet were interrogated using previously described protocols™.
Betadiversity (thatis, shared diversity across host phyla) was visualized
at the virus family level using non-metric multidimensional scaling
with a Bray-Curtis dissimilarity matrix, presented as an ordination
plotusing the R packages phyloseqv1.34.0 (ref. 38) and scatterplot3d
v0.3-41(ref. 39). Bray-Curtis dissimilarity is a statistic ranging from O to
1thatreflects the dissimilarity of communities between libraries, with
0 meaningboth libraries have anidentical community, and 1 meaning
thelibraries have no virus families in common. Pairwise permutational
analyses of variance (PERMANOVA, adonis2 in the vegan R package
v2.5-7 (ref.40) and pairwise PERMANOVA test from pairwiseAdonis v0.4
(ref. 41)) were used to test for differences in the community based on
host phylogenetic groupings and host ecology, using the Bray-Curtis
dissimilarity matrix and an alpha of 0.05 following a Bonferroni cor-
rection. Where multiple terms were used, the marginal effects of each
term were tested using by="margin” in adonis2.

To explore the effect of host phylogeny and diet on the viral com-
munity at lower taxonomic levels within Chordata, we conducted
Mantel tests to determine the degree of correlation between three
dissimilarity matrices—viral community (the Bray—-Curtis dissimilar-
ity matrix as described above), host relatedness and host ecological
similarity—using the package vegan*’. The host relatedness dissimi-
larity matrix was generated using the sum of branch lengths from a
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phylogenetic tree created using the Open Tree of Life and R package
rotlv3.0.14 (ref. 42). The ecological similarity matrix was created using
two host dietary factors, ‘eatinvertebrates yes/no’ and ‘eat plants ‘yes/
no’, combined into a matrix using the function vegdist in the package
vegan*’, with the Manhattan dissimilarity index. A partial Mantel test
was used to test the correlatedness of ecological similarity and viral
community while controlling for host relatedness.

Abipartite network was constructed using igraph** and visualized
using visNetwork** based on the presence or absence of each virus fam-
ilyin each host library. Two sets of nodes were defined: virus families
and host species. One linkin the network corresponded toavirus node
inhabiting ahost node whenever the virus family was found in the host
library. This host-virome network comprised 49 host libraries, 112 virus
families and 926 interactions between these two node sets. Modules
(thatis, groups of nodes with more links among them than to the rest
of the network, also named communities) were identified to infer the
community structure in the host-virome network. To do this, we used
the DIRTLPAWb+ community detection algorithm™ in the bipartite
package*® that identifies partitions with high modularity scores by
maximizing weighted modularity, weighted using log abundance (not
RPM). DIRTLPAwb+ uses multiple iterations of the LPBwb+algorithm,
based on Barber’s modularity**’ equation (1):

Q=12MY  (A; - P;)6(8:»8;) M

inwhich Qis the modularity score, mis the number of links in the
network, and g;and g;are the assigned modules for nodesiand,. Aij=1
ifalink existsbetweennodesiandj, or Oif nolink. P;is the probability
thatalink exists betweennodesiand,jbased onanullmodel. 6(g;g) =1
if the modules are the same, and O if different***°,

Pairwise PERMANOVA tests were used to test for differences in
community composition between modules, using module asaninde-
pendent factor and an alpha of 0.05 following Bonferroni correction.

Weevaluated therobustness of the modulesidentified by rarefying
to the lowest sequencing depth following the methods used by Lurgi
etal.*®. We performed pairwise PERMANOVA tests on 100 rarefied data
setsof the original datausing the modules detected in our host-virome
network as an independent variable. We rarefied the data to the size
of the smallest library (630 contigs) using the rrarefy function of the
vegan package*’. Thiswas repeated 100 times independently to obtain
100 different rarefied data sets, using the replicate functionin base-R
v4.0.5. We then analysed each of these rarefied data sets with the pair-
wise PERMANOVA test and averaged the result across the 100 rarefied
datasets. In this way, we tested whether the communities identified by
the modularity analysis remained consistently significantly different
whenrarefied down to the lowest sequencing depth.

Using the modules obtained from the community detection algo-
rithm, we evaluated the roles of individual species in the network by
analysing the degree distribution (the distribution of the number
of links from each node). To assess the distribution of links between
nodes in the host-virome network, we also calculated the cumulative
degree distribution and fitted a truncated power law, using nls and
the Kolmogorov-Smirnov test to evaluate whether it fitted the power
law distribution. The truncated power law distribution was as follows
inequation (2):

Pe (k) = ki k=2 e)

where kis the cumulative degree distribution, iis the power-law decay
exponentand k" *? is the exponential cut-offfor the truncation, where z
isthe cut-offvalue beyond which the power-law distribution no longer
fits. We then compared this distribution to a null model of a random
bipartite graph created using the Erdos-Renyi model, with the same
number of host and virus nodes and interactions but with the interac-
tionsrandomized. Theimpact of host taxonomy and host diet on node

level properties of the network (degree, betweenness and eigenvector
centrality) were interrogated using general linear models.

To examine the strength of connections between hosts created
by shared viromes, we created a unipartite network (that is, links
between hosts with shared virus families) based on the Bray-Curtis
dissimilarity matrix, using the phyloseq v1.34.0 and igraph v1.2.11 R
packages. Given the Bray-Curtis statistic ranges from O to 1, a cut-off
was required to determine how similar two communities need to be
tolink themin the network. We chose a cut-off of 0.9, which is the low-
est thatstill creates a cohesive network (thatis, noisolated groups of
nodes). However, this cut-off does create nine singletons (nodes with
no connections), which wereremoved. The network (referred to as the
‘host community’ network) comprised 40 hosts and 99 interactions.
The‘smallworld’ properties of this network were examined using the
distance_table functionsinigraph, including calculating the shortest
paths (the smallest number of links between each node) and average
shortest path length (the mean of all the shortest paths). We used the
smallworldness function in qgraph v1.9.2 (ref. 49), which uses the
transitivity (the probability that the adjacent nodes of avertex are con-
nected, using the definition and formula developed by Barrat et al.*)
and average shortest path length to compare the network to 1,000
randomly generated networks. This generates a ‘small-worldness’
index as developed by Humphries and Gurney®', which determines
whether the network is significantly different from 1,000 randomly
generated null networks and whether the network can be deemed a
‘small world".

Phylogenetic analysis

The patterns of virus diversity within viral families were visualized
using phylogenetic trees with one viral family per module examined
indetail, out of atotal of 112 viral families. Amino acid sequences were
aligned using MAFFT (7.402)°? with the L-INS-i algorithm and trimmed
withagap threshold of 0.9 and at least 20% of the sequence conserved
using TrimAl (1.4.1)**. Individual maximum likelihood phylogenetic
trees for each virus family were estimated using IQ-TREE (1.6.12)**, with
the best-fit substitution model determined by the program and node
robustness assessed by using the approximate likelihood ratio test with
1,000 replicates. Phylogenetic trees were visualized using APE (5.4)%
and ggtree (2.4.1)*inR.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The operational taxonomic unit table used in analyses is provided in
Supplementary Data 1. The non-host sequence data generated in this
study has been deposited in the Sequence Read Archive (SRA) under
the accession number SAMN30927701-49. Virus consensus sequences
have been submitted to NCBI/GenBank and assigned accession num-
bers 0Q986602-0Q987814.
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Google Earth

Data SI0, NOAR, UiS, Navy, NGA, GEBCO.
Image Landsat/ Gopemicus.

Extended Data Fig.1| Map showing the location of Anchor Island, New BaUtX5SHSsFcfEWYynGhXTswBwluE79UHYQFSgFI). Top right panel. Google
Zealand. Left panel. Map of New Zealand showing the location of the Fiordland Earth picture of the Fiordland National Park, New Zealand showing the position
National Park. Adapted from SVG > countries navigation earth international of Anchor Island. Google Earth citation provided in the picture. Photograph of
(https://svgsilh.com/image/1504059.html) and SVG >south map New Zealand Anchor Island taken by Dr. Rebecca French.

(https://svgsilh.com/image/309892.htmlI?fbclid=IwAR1-73KzelpNXIlyG92T6
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invertebrates. The number of individual animals in each pool ranged from 1-10.
Research sample A description of each of the species sampled is provided in Supplementary Table 1.

Sampling strategy The sample size was determined by how many animals were caught in a 4 week period, to a maximum of 10, in line with our permit
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the other library, and (iii) were >99% identical at the nucleic acid level were assumed to be contamination due to index-hopping from
another library and removed. Any virus found in the blank negative control libraries was assumed to have resulted from
contamination and similarly removed from all libraries and analyses. This exclusion criteria was pre-established.

Reproducibility This study was a single snapshot of an island virome over a 4 week sampling period.
Randomization Samples were grouped according to their taxonomy, therefore randomization is not relevant.
Blinding We cannot determine what viruses will be detected during sample collection.
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Field conditions Temperate rainforest during late summer - early autumn (southern hemisphere).

Location Pukenui Anchor Island, New Zealand 45°45'30.0"S 166°31'00.0"E

Access & import/export This research was conducted under a Department of Conservation Wildlife Act Authority Authorisation number 86173-FAU, Authority
for research and/or collection of material on public conservation land Authorisation number 86172-RES and had ethics approval from
the University of Auckland reference number 002198.

Disturbance Handling time of vertebrates was minimized. The researchers involved in capture and handling had a high level of experience.
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Laboratory animals This study did not involve laboratory animals.

Wild animals A list of species is provided in Supplementary Table 1. The 18 bird and 1 skink species were caught using four different methods,
depending on the species in question. Small, flighted birds were caught using low canopy mist-netting, while larger flighted birds
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were caught with high canopy mist-nets. Bird calls were used to attract the birds to the area and into the nets. Non-flying birds were
caught by hand or hand-net. Skinks were caught using gee-minnow traps. Once caught, the animals were weighed and a cloacal swab
was taken. The animals were then released without being transported anywhere and without being held captive for any length of
time.

Reporting on sex The sex of the animals being sampled was not identified.
Field-collected samples  This study did not involve samples collected from the field.

Ethics oversight This study had ethics approval from the University of Auckland reference number 002198.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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