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Longitudinal study of the bacterial 
and fungal microbiota in the human 
sinuses reveals seasonal and annual 
changes in diversity
Brett Wagner Mackenzie1, Kevin Chang2, Melissa Zoing1, Ravi Jain1, Michael Hoggard3, 
Kristi Biswas1, Richard G. Douglas1 & Michael W. Taylor3,4*

There is a pressing need for longitudinal studies which examine the stability of the sinonasal 
microbiota. In this study, we investigated bacterial and fungal community composition of the sinuses 
of four healthy individuals every month for one year, then once every three months for an additional 
year to capture seasonal variation. Sequencing of bacterial 16S rRNA genes and fungal ITS2 revealed 
communities that were mainly dominated by members of Actinobacteria and Basidiomycota, 
respectively. We observed overall shifts in both bacterial and fungal community diversity that were 
attributable to a combination of individual, seasonal and annual changes. The results suggest that each 
of the subjects possessed a strong bacterial sinonasal signature, but that fungal communities were 
less subject specific. Differences in fungal and bacterial diversity between subjects, and which OTUs 
may be correlated with seasonal differences, were investigated. A small core community that persisted 
throughout the two year sampling period was identified: Corynebacterium, Propionibacterium and 
Staphylococcus, and one type of fungus, Malassezia restricta. It is likely that bacterial and fungal airway 
microbiomes are dynamic and experience natural shifts in diversity with time. The underlying reasons 
for these shifts appear to be a combination of changes in environmental climate and host factors.

The sinonasal microbiome is believed to be important for the development and maintenance of mucosal 
health1–12. However, defining the “healthy” microbiome solely in the context of cross-sectional composition 
may not be reliable, as many of the same microbes can be detected in both healthy and chronically diseased 
sinuses8,13–19. A more holistic definition of the “healthy” sinonasal microbiome should incorporate composition, 
resilience, resistance, stability, and account for how environmental and host factors can influence these obser-
vations20–28. While cross-sectional studies have documented inter-personal variations in sinonasal bacteria and 
fungi14,15,29, very few longitudinal studies have tracked intra-personal changes in both fungal and bacterial com-
munity composition25. There is a pressing need for longitudinal studies which examine the stability of the sinon-
asal microbiota if we are to understand and anticipate how microbial state shifts influence, and are influenced by, 
acute and chronic sinonasal diseases.

Several temporal studies have assessed bacterial community stability of the anterior nares, but these results 
have not been conclusive21,30–36. Only one temporal study has assessed the bacterial community of the sinus cav-
ity35, although sampling was limited to four times in three weeks, giving no information about seasonal effects and 
long-term stability. The most comprehensive longitudinal study performed to date of the anterior nares microbi-
ome followed 25 subjects monthly for 15 months34. This study employed terminal restriction fragment length pol-
ymorphism (T-RFLP) to track changes in bacterial species and concluded that a small core bacterial community 
was common to all subjects, but that species dynamics over time were found to be person specific. Additionally, 
a quite extensive change in bacterial community diversity from the winter to summer months was observed. 
Bacterial community diversity in samples taken during the second winter, however, did not closely resemble that 
from the first winter sampling point. These results suggested that although seasonal shifts in bacterial community 

1School of Medicine, Department of Surgery, The University of Auckland, Auckland, New Zealand. 2Statistical 
Consulting Centre, Department of Statistics, The University of Auckland, Auckland, New Zealand. 3School of 
Biological Sciences, The University of Auckland, Auckland, New Zealand. 4Maurice Wilkins Centre for Molecular 
Biodiscovery, The University of Auckland, Auckland, New Zealand. *email: mw.taylor@auckland.ac.nz

OPEN

https://doi.org/10.1038/s41598-019-53975-9
mailto:mw.taylor@auckland.ac.nz


2Scientific Reports |         (2019) 9:17416  | https://doi.org/10.1038/s41598-019-53975-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

diversity occur, the direction of these shifts might not be predictable and may be due to a number of host and 
environmental factors34.

No longitudinal studies have examined sinonasal fungal and bacterial community diversity and stability in 
parallel. The extent to which bacterial and fungal members impact the temporal dynamics of the sinonasal micro-
biome is unknown. One cross-sectional study applied fungal ITS1 and 18S rRNA, as well as bacterial 16S rRNA 
gene sequencing to examine the variation in microbiome diversity across several body sites, including the anterior 
nares37. The microbiome of the anterior nares was characterised by an abundance of Malassezia species, and bac-
teria from the phylum Actinobacteria were negatively correlated with members of the fungal phyla Basidiomycota 
and Ascomycota37. Another recent cross-sectional study characterised bacteria and fungi in the middle mea-
tuses of control subjects and patients with chronic rhinosinusitis. Malassezia species dominated all samples38 and 
season of sampling explained the largest proportion of variation in the mycobiota. Few significant associations 
between bacteria and fungi were noted.

Little is known about the long-term carriage of bacteria and, especially, fungal species in the sinonasal cavity, 
and how these communities impact on each other over time. In this study, we examined the temporal composi-
tion of bacterial and fungal communities in parallel in a cohort of four healthy adults. We established that these 
communities are dynamic and may correlate with seasonal changes. Additionally, we identified core bacterial and 
fungal community members that were present consistently across the two year sampling period, and conducted 
correlation analyses between bacterial and fungal taxa.

Results
DNA was extracted from 128 swab samples from four subjects, and the PCR-amplified fungal ITS2 and V3-V4 
hypervariable regions of bacterial 16S rRNA genes were sequenced using Illumina MiSeq. Rarefaction of bacterial 
amplicon data to 1,057 sequences per sample led to the retention of 123 samples, and rarefying fungal ampli-
con data to 2,706 sequences per sample enabled retention of 127 samples. Sampling time points, self-reported 
instances of airway-associated illnesses, and antibiotic prescription information are reported in Supplementary 
Table S1.

Adonis permutational analyses of variance tested the significance and magnitude of contribution due to the 
combined effect of subject, sampling side, month, season, and year separately for bacterial and fungal commu-
nities (Table S2). Between-subject differences in bacterial (48.7%, p = 0.001) and fungal (11.3%, p = 0.001) com-
munities contributed significantly to overall observed variation. For a given subject, no effect of sampling side 
was observed. Additionally, differences between seasons and years accounted for a larger proportion of variation 
for fungal communities (15.3%, p = 0.011) than for bacteria (9.9%, p = 0.001). The combined effect of months 
within seasons and years between subjects accounted for the largest proportion of variation in the fungal dataset 
(19.9%, p = 0.001). The inclusion of temporal variables and multiple sampling points drastically reduced the 
amount of variation unaccounted for in both bacterial and fungal communities (remaining residuals in the final 
model = 13.8% and 34.5%, respectively).

Variation in microbial diversity within and between subjects.  Based on average relative abun-
dances, members of the bacterial genera Corynebacterium (24.7 ± 16.8% standard deviation), Dolosigranulum 
(10.9 ± 21.4%), and Staphylococcus (10.6 ± 14.9%) comprised the largest proportion of sequences in this study, 
though variation between individual subjects was considerable (Fig. 1A). The number of observed OTUs within 
each individual varied throughout the two year time period (Figure S1), however no significant differences 
within subjects between seasons and years were observed. Alpha diversity pairwise comparisons between sub-
jects revealed significant differences in diversity between subjects (Figure S2). Coefficient of variation (CV) values 
suggested that bacterial communities in the left and right middle meatus sides from all subjects were relatively 
stable in the number of OTUs over the two year period (all subjects CV values <40%) (Table S3).

Assessment of relative abundance of taxon-assigned fungal OTUs revealed that Malassezia (53.9 ± 26.9%), 
Cladosporium (5.96 ± 11.9%), and Pleosporales (2.17 ± 7.16%) comprised the majority of fungal sequences in this 
study (Fig. 1B). A single OTU assigned as Malassezia restricta (OTU1) accounted for the largest overall propor-
tion of fungal community diversity in all four subjects (48.9 ± 27.3%), while a tail of diverse, less-abundant fungal 
OTUs accounted for a substantial proportion of the remaining fungal community diversity (27.6 ± 20.7%). The 
number of observed fungal-assigned OTUs and their relative abundances within each individual varied through-
out the two-year time period (Figure S3) and alpha diversity pairwise comparisons between subjects revealed 
fewer significant differences between subjects than seen for bacterial community diversity, even though a similar 
overall number of OTUs was observed (Figure S2). CV values suggested the left and right sides from all subjects 
were less stable in the number of fungal OTUs (CV values ranged from 23.9% - 87.4%) over the two year period 
than bacterial OTU counts (28.7% - 38.5%) (Table S3).

Beta diversity analyses and visualisation of the Bray-Curtis dissimilarity metric in a PCoA plot revealed dis-
tinct clustering by subject based on bacterial communities (Fig. 2A). Vectors were overlaid to assess which bacte-
rial OTUs were driving differences between subjects. Each subject could be differentiated from other subjects in 
the study by a significantly increased relative abundance of specific OTUs. Examination of fungal communities 
revealed less distinct clustering by subject than bacterial community data, but confirmed that a majority of sam-
ples were defined by an abundance of Malassezia (Fig. 2C). Temporal variations in each subject’s bacterial and 
fungal community beta-diversities were evaluated by calculating the standard deviations of Bray-Curtis dissimi-
larity values at different time points from the baseline then visualised as line graphs (Fig. 2B,D). Notably, a severe 
shift in the bacterial community of Subject D during September 2015 was observed. This was associated with the 
onset of acute bacterial sinusitis resulting in a bloom of one OTU associated with Haemophilus. A simultaneous 
shift in the fungal community of Subject D was not observed.
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Bacterial quantification with Droplet Digital™ PCR.  Analysis of variance (ANOVA) results revealed 
that bacterial load within the same subject across different seasons remained relatively stable, as very few signifi-
cant differences within the same subject across different seasons were reported. Subject C exhibited a significant 
increase in bacterial load during spring (average number of 16S rRNA gene copies per sample ± standard devia-
tion = 4194 ± 8438) when compared with summer (649 ± 1130, p = 0.002) (data not shown).

Bacterial and fungal core communities.  Similar to other human microbiome studies39–41, we defined the 
core sinus community as OTUs that were present in 90–100% of all samples, and then calculated the core com-
munities present in the left and right middle meatus samples from each subject (Table S4, S5), and for all subjects 
combined. A large number of bacterial and fungal OTUs were transient (present in <20% of all samples), with 
very few OTUs appearing as persistent colonisers (45–89%) (Figure S4). Slightly different bacterial and fungal 
core communities between subjects and sides were detected, but the combined core community present in 99% of 
samples across the entire dataset included three bacterial OTUs (OTU1 Corynebacterium, OTU3 Staphylococcus, 
and OTU4 Propionibacterium) and one fungal OTU (OTU1 M. restricta).

Seasonal variation in bacterial and fungal communities.  A Kruskal-Wallis rank sum test followed 
by pairwise Dunn’s test between all seasons and years revealed a number of bacterial and fungal OTUs which 

Figure 1.  Relative sequence abundances of (A) bacterial and (B) fungal taxon-assigned OTUs at 97% sequence 
similarity in the left and right middle meatus swab samples taken from each of the four subjects (A–D) 
throughout the two-year study. The 20 most abundant OTUs on average for both bacterial and fungal data are 
shown, with all other OTUs grouped in “Others”. Missing bars reflect samples that did not pass sequence quality 
filtering.
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significantly changed in relative sequence abundance (Table S6). A total of seven bacterial OTUs were associated 
with at least one significant shift in abundance during the sampling period, whereas 14 fungal OTUs exhibited 
a significant shift. The bacterial OTU17 (affiliated with the genus Acidocella) was associated with a significant 
increase in relative abundance in all seasons between the first and second sampling years (p < 0.05) (Figure S5).

Several fungal OTUs exhibited significant seasonal shifts during both sampling years. For example, OTU13, 
associated with the fungus Coniochaeta fasciculata, increased in relative abundance throughout winter, spring 
and summer during the first sampling year, then decreased in autumn (the first sample point in year 2). Other 
fungal OTUs revealed volatile temporal patterns, where periods of very low relative abundance were followed by 
significant increases in relative abundance.

Regression analyses of meteorological data with shifts in bacterial and fungal OTUs.  Logistic 
regression modelling of climate data (temperature (°C), rainfall (mm), atmospheric pressure (mbar), and humid-
ity (%)), with those bacterial and fungal OTUs that reported significant seasonal and annual changes identified 
a number of positive and negative associations (Table 1). The only bacterial OTU to exhibit a relationship with 
any of the climate variables was OTU93 (Streptococcus), which exhibited a positive relationship with atmospheric 
pressure (p = 0.004).

A total of eight fungal OTUs exhibited significant positive or negative relationships with meteorological data. 
The C. fasciculata-affiliated OTU13 had a significant negative relationship with atmospheric pressure (p = 0.009). 
Typically, OTUs were associated with only one of the climate variables, however two fungal OTUs exhibited 
complex associations with more than one climate variable. Notably, OTU21 Aspergillus penicillioides exhibited a 
negative relationship with both atmospheric pressure and humidity. OTU2 C. delicatulum exhibited a negative 
relationship with rainfall, and a positive relationship with humidity. Interestingly, an increased abundance of this 
OTU was associated with clustering samples away from those that were dominated by M. restricta (OTU1) in the 
PCoA.

Figure 2.  Beta diversity differences are visualised with principal coordinate analysis (PCoA) biplots based on 
Bray-Curtis dissimilarity metric of the (A) bacterial and (C) fungal abundance data. Those bacterial and fungal 
OTUs which are significantly associated with the clustering of samples on the PCoA are overlaid as vectors. The 
length of the vector indicates the influence of the OTU on the principle component axis. Standard deviations 
of Bray-Curtis values at different time points from the baseline, showing the changes in the variation of (B) 
bacterial and (D) fungal beta diversities over time, for each subject A, B, C and D are visualised as line graphs.
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Correlation of bacterial and fungal OTUs.  To investigate correlations between the alpha and beta diver-
sities of bacterial and fungal communities at the OTU-level, Spearman correlations were calculated. No signifi-
cant or apparent patterns in the correlation of the number of observed bacterial to fungal OTUs were observed 
for subjects, seasons or overall samples (Figure S6). There were, however, significant and strong correlations in the 
abundance and type of bacterial and fungal OTUs across the entire dataset (Fig. 3).

Bacterial OTU4, assigned to the genus Propionibacterium, was abundant across all subjects and formed part 
of the bacterial core community. It was also strongly and significantly negatively correlated with fungal OTU8 M. 
restricta, which may suggest a competitive interaction (though the available data only allow speculation on this 
point). Bacterial OTU5 (genus Lawsonella) was also strongly negatively correlated with fungal OTU8 M. restricta, 
but exhibited a strong positive correlation with M. globosa which may suggest these bacterial and fungal OTUs 
occupy different niches or co-depend on each other.

Discussion
Dominance of the anterior nares and sinonasal microbiota by bacterial species from the genera Corynebacterium, 
Staphylococcus, and Propionibacterium32–34,42 and several Malassezia fungi16,19,37,43,44 has been previously reported. 
These bacteria and fungi have been identified as members of the core nasal microbiome previously16,34,45, 

OTU Variables fitted to model Range estimate (±95% C.I.) p-value

OTU93 Streptococcus Pressure 8.83–59.8% p = 0.004

OTU21 Aspergillus penicillioides Pressure (−7.96)–(−61.1)% p = 0.019

Humidity (−5.69)–(−68.77)% p = 0.030

OTU75 Alternaria breviramosa Temperature 10.1–457% p = 0.028

OTU2 Cladosporium delicatulum Rainfall (−4.46)–(−0.31)% p = 0.024

Humidity 15.6–215% p = 0.011

OTU160 Verrucocladosporium dirinae Pressure (−77.9)–(−0.64)% p = 0.048

OTU23 Fungi Pressure 0.026–99.0% p = 0.048

OTU61 Hymenochaetaceae Temperature 14.0–253% p = 0.016

OTU3 Didymosphaeriaceae Humidity 5.62–142% p = 0.026

Table 1.  Generalised linear modelling to fit a logistic regression model of climate data with bacterial and fungal 
OTUs. ANOVA tests dictated the probability that climate variables were associated with each OTU, and the 
nature of the impact was indicated using 95% confidence interval range estimation.

Figure 3.  Spearman correlations between bacterial and fungal amplicon data. Both positive (blue) and negative 
(red) correlations between bacterial and fungal OTUs were calculated. Data were filtered to remove bacterial 
and fungal OTUs with low prevalence and abundance: OTUs with <0.5% abundance and >99% zeroes across 
all samples in the dataset were removed. Correlations with at least one absolute strength greater than 35% in 
each column or row are shown. Correlations are considered significant if p < 0.05 after “BH” multiple pairwise 
comparison correction. Significant correlations are noted with an ‘*’.
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and the results of our study are consistent with those findings. While OTUs representing Corynebacterium, 
Staphylococcus, and Propionibacterium were observed as part of the core community, we also noted differences in 
relative abundances between subjects in carriage of these core OTUs.

High levels of inter-subject variation were observed for bacterial communities in this study. These results, 
which are supported by previous findings42, suggest that an individual sinonasal bacterial fingerprint exists that 
differentiates subjects from each other. Each individual’s bacterial fingerprint remained relatively stable in both 
composition and overall load throughout the study. Self-reported instances of viral-mediated colds occurred in 
all four subjects during August and September of the first sampling year. During this time, no obvious changes 
in bacterial community structures were noted, as expected for acute viral-associated illnesses. Subject D, how-
ever, developed acute bacterial sinusitis (ABS), which was treated effectively with corticosteroids and antibiotics. 
Interestingly, this subject’s bacterial fingerprint seemed to return to the original profile observed before ABS 
onset. This observation should be interpreted with caution and validated in future, larger studies that investigate 
the long-term effect of antibiotics and the recovery of airway bacterial communities from acute infections.

The fungal community from each subject contributed to the overall observed variation, but to a lesser extent 
than the bacterial communities. High CV values and a lack of subject clustering in PCoA visualisations support 
the theory that fungal communities are more volatile. This may be due to the observed combination of a high 
prevalence and abundance of a single fungal OTU (OTU 1, M. restricta).

Analyses of shifts between opposite seasons (winter and summer) and ‘shoulder’ seasons (autumn and 
spring) revealed significant shifts in abundance only in fungal OTUs. While some changes in bacterial OTU 
abundance were observed chronologically throughout the sampling period (OTUs associated with Acidocella, 
Hyphomicrobiaceae, Asticcacaulis, and an OTU assigned only as Bacteria), significant changes in abundance were 
mainly observed when comparing seasons from different years. This suggests that the middle meatus bacterial 
community is not as susceptible as the fungal community to those factors driving seasonal changes. Rather, these 
shifts occur over longer periods of time and may be driven by host influences. This supposition is supported by 
the observed larger proportion of variation attributed to differences between subjects in bacterial communities 
when compared with fungi.

Unlike the bacterial communities, which had a subject-specific fingerprint, fungal community composition 
was more influenced by seasonal parameters. The relationship between variation in the diversity and abundance 
of fungal aerosols with meteorological parameters is well documented46–52, and in this study we attempted to elu-
cidate if seasonal changes in climate parameters could be associated with changes in observed fungal composition.

The fungal genus Cladosporium was detected throughout the sampling period, which is not surprising given 
the wide optimal temperature range for growth and likelihood of its year-round presence in New Zealand53. The 
fungal OTU2 associated with C. delicatulum exhibited a negative association with rainfall and a positive associ-
ation with humidity, supporting previous observations that increases in humidity promote sporulation events of 
this typically indoor air-associated fungus54. Alternaria species have optimum growth temperatures between 20 
and 28 °C, which corresponds to the average autumn and summer temperatures in New Zealand53. A significant 
increase in the relative abundance of Alternaria breviramosa during autumn was noted in this study and a posi-
tive relationship with temperature was observed. In light of these combined results, future studies focussing on 
describing sinonasal fungal microbiomes should note sampling season to account for the influence this parameter 
may have on the results.

Several limitations are associated with this study. First, the small sample size and geographic isolation of this 
cohort may restrict the generalisability of these results, especially in regards to changes in fungal and bacterial 
composition with meteorological data. As such, these results should be interpreted with caution. However, the 
long-term sampling of both the bacterial and fungal composition offers valuable insights into the stability of the 
sinus microbiota. Although bacterial load was quantified using ddPCR, another limitation of this study is that 
we did not quantify fungal load throughout the sampling period. A recent study evaluated the effectiveness of a 
comprehensive primer targeting the fungal 18S rRNA gene for quantification with qPCR55 which should be used 
in future studies. While outside the scope of this study, future longitudinal studies of the human microbiome 
should also endeavour to measure changes in the functional potential of the microbiome, viral composition and 
host immunological aspects.

To our knowledge, this is the first study to investigate both fungal and bacterial community composition, as 
well as bacterial load, in the sinuses across a two-year time period. Microbial communities with high diversity 
tend to be less stable over time, but complex communities may protect against the establishment of pathogenic 
organisms56–58. Longitudinal studies, such as the one carried out here, increase our understanding that the bacte-
rial and fungal airway microbiomes are dynamic and experience natural shifts in diversity with time. The under-
lying reasons for these shifts are likely a combination of changes in environmental climate for fungi, and changes 
within the host for bacterial communities.

Methods
Sample collection.  Swab samples from four healthy adults, including two male and two female, were col-
lected from the left and right middle meatuses once per month for 12 consecutive months, then once every 
three months for the second year (representing autumn, winter, spring and summer seasons in the Southern 
Hemisphere) (Table S1). Potential subjects were excluded based on age <18 years, previous sinus surgery, cur-
rent/ex-smoker, symptoms of asthma, aspirin sensitivity, and antibiotic and prednisone usage within the six 
months prior to the first sample collection. Informed, written consent from the patients and ethical approval 
(NTX/08/12/126) from the New Zealand Health and Disability Ethics Committee was obtained for this study. All 
research was performed in accordance with relevant guidelines and regulations. Subjects were swabbed at each 
time point, regardless of antibiotic usage or respiratory health status, resulting in a total of 128 swab samples. 
Sterile rayon-tipped swabs (Copan, #170KS01) were directed under careful endoscopic guidance to the left and 
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right middle meatus sinuses to sample the surface mucosa. Swabs were collected in duplicate from each side at 
every time point, placed in 1 mL RNAlater® solution, and stored at −20 °C until DNA extraction.

DNA collection and target gene amplification.  Samples were thawed on ice, and DNA was extracted 
from pairs of swabs using the Qiagen® AllPrep DNA/RNA Mini Kit (Bio-Strategy Ltd, Auckland, New Zealand) 
as previously described59. Elution Buffer EB (55 µL) was added to the spin column filter and incubated for 5 min 
before DNA was eluted by centrifuging for 1 min at 11,200 x g. The eluate was centrifuged through the spin col-
umn filter a second time to increase DNA concentration. Triplicate negative extractions and PCR amplification of 
PCR-grade water were performed to test the DNA extraction kits for contamination via PCR. No contamination 
was observed when PCR products were analysed by agarose gel electrophoresis.

The V3-V4 hypervariable regions of the bacterial 16S rRNA gene and the fungal ITS2 for each sample were 
amplified. Bacterial gene and fungal ITS2 amplifications and purifications were carried out as described previ-
ously59,60. Up to 100 ng of template DNA from each sample was amplified, and as many as three PCR replicates 
were completed for each 16S rRNA bacterial gene or fungal ITS2 amplification. Negative controls comprised 
PCR-grade water, and Escherichia coli or Candida albicans genomic DNA were used as positive controls for bac-
terial or fungal PCRs, respectively.

Bacterial and fungal amplicons were submitted to Auckland Genomics Ltd for library preparation using a 
dual-indexing approach with Nextera technology and sequencing (2 × 300 bp, paired-end) using Illumina MiSeq.

Quantification of bacterial 16S rRNA gene copies.  Droplet Digital™ PCR (ddPCR) was used to meas-
ure absolute quantities of bacterial DNA in samples from corresponding months in the two-year sampling period. 
Specifically, we investigated the variation in bacterial load across subjects, seasons, and years. Droplet genera-
tion, PCR amplification, and QX200 droplet readings were conducted using the QX200™ Droplet Digital PCR 
System and QuantaSoft™ Software according to the manufacturer’s instructions (Bio-Rad Laboratories). Briefly, 
the V1-V3 regions of the bacterial 16S rRNA gene were amplified using the primers 8F-341R61. Each ddPCR 
reaction contained 11 µL EvaGreen®, 0.5 µL 10 µM 8 F forward primer, 0.5 µL 10 µM 341 R reverse primer, 9.0 µL 
of sterile PCR-grade water, and 1.0 µL of sample DNA for a total volume of 22 µL. A positive control of E. coli 
DNA and a negative control of 1X ddPCR buffer with PCR-grade sterile water were included. The thermocycling 
conditions were as follows: enzyme activation at 95 °C for 5 min, followed by 40 cycles of denaturation at 95 °C for 
30 s and annealing/extension at 60 °C for 1 min. A single signal stabilisation step at 4 °C for 5 min then 90 °C for 
5 min was carried out. Droplets were analysed using the QuantaSoft™ Software according to the manufacturer’s 
recommendations. Manual thresholds were set for droplet counts then log10 transformed. ANOVA was used to 
test the three-way interaction between subjects, seasons, and years. The mean value from the same season across 
years was used for pairwise comparisons within subjects between different seasons followed by Tukey’s p-value 
correction. P-value levels <0.05 are considered significant unless otherwise stated.

Bioinformatic analyses.  Bacterial 16S rRNA gene amplicons were processed as described previously59. 
Briefly, amplicons were merged using a minimum merge length of 300 bp, quality filtered, singletons removed, 
and grouped into operational taxonomic units (OTUs) at 97% sequence similarity using USEARCH62. Taxonomic 
assignment of OTUs against the SILVA 16S rRNA gene database version 128 was performed using the RDP clas-
sifier in QIIME version 1.863–65. Human-affiliated OTUs and OTUs that could not be assigned at least to Domain 
level were removed, then data were rarefied to 1,057 sequences per sample.

Fungal ITS2 amplicons were processed similarly to bacterial sequencing data, except a minimum merge length 
of 100 bp was applied to account for varying ITS2 sequence lengths. Taxonomic assignment of ITS2 OTUs against 
the UNITE QIIME release database version 01.12.2017 was performed using the RDP classifier in QIIME version 
1.863,64,66. OTUs that could not be assigned at least to Domain level, and OTUs that were human associated, were 
removed, then data were rarefied to 2,706 sequences per sample as part of ‘core_diversity_analyses.py’ in QIIME 
version 1.8.

Rarefied bacterial and fungal datasets were used for all downstream analyses. To assess variance in the experi-
mental model from differences in bacterial and fungal communities due to subject, sampling side, month, season, 
and year, the ‘adonis’ function in the R package ‘vegan’ version 1.11 was applied using the Bray-Curtis dissimi-
larity matrix67,68. Alpha diversity analyses for both amplicon datasets were performed in QIIME version 1.8 to 
assess the number of OTUs in each sample. Tests for significant differences between the numbers of observed 
OTUs in each subject were calculated using Dunn’s test with ‘BH’ p-value correction, then visualised using box 
plots generated by ‘ggplot2’ in R version 3.2.568,69. Coefficient of variation (CV) was used to assess alpha diversity 
stability, measured as the ratio of the standard deviation to the mean number of OTUs in each side over the two 
year sampling period; higher CV values are assigned to less stable communities.

Data were then filtered to remove bacterial and fungal OTUs with <0.5% abundance. The beta diversity 
Bray-Curtis distance matrix was generated in ‘vegan’ package and OTU vectors calculated using the ‘envfit’ func-
tion. Distances between samples were visualised in a PCoA plot with OTU vectors overlaid using the ‘ggplot2’ 
package in R version 3.2.5. Temporal variations in each subject’s left side bacterial and fungal community 
beta-diversities were evaluated by first generating a Bray-Curtis distance matrix for each subject. Then the stand-
ard deviations of Bray-Curtis dissimilarity values at different time points from the baseline were calculated and 
visualised as line graphs using the ‘ggplot2’ package in R version 3.2.5. Core communities (OTUs present in ≥90% 
of samples) from the left and right sampling sides within each subject were calculated on the full dataset using 
the ‘compute_core_microbiome.py’ command in QIIME version 1.9 setting a minimum threshold of 0.9 and 
maximum threshold of 1.0.

https://doi.org/10.1038/s41598-019-53975-9


8Scientific Reports |         (2019) 9:17416  | https://doi.org/10.1038/s41598-019-53975-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Seasonal changes in microbial communities.  Data were filtered to remove bacterial and fungal OTUs 
with low prevalence and abundance: OTUs with <0.5% abundance and/or >99% zeroes across all samples in the 
dataset were removed. The Kruskal-Wallis rank sum test was then conducted for all bacterial and fungal OTUs to 
detect whether a significant difference exists between seasons and years, followed by the non-parametric Dunn’s 
test to assess specific changes between seasons and years. Dunn’s test does not provide effect sizes, so heat maps 
were used to visualise changes in relative abundances throughout the sampling period. Heat maps were generated 
using the ‘pheat map’ and ‘viridis’ packages in R, after log2 (x + 1) transformation of data, where x is equal to the 
sum of OTU counts across all subjects70,71.

Meteorological data from Auckland, New Zealand, including monthly average temperature (°C), rainfall 
(mm), pressure (mbar), and humidity (%) from the period of May 2015 through February 2017 were collated 
from https://www.worldweatheronline.com/lang/en-nz/auckland-weather-averages/nz.aspx. Model selection 
using Akaike information criterion (AIC) determined that logistic regression was the best model fit for predicting 
the relationship between climate variables and bacterial and fungal OTUs. Generalised linear modelling (‘glm’) 
function in R was applied to fit a logistic regression model of climate data with those bacterial and fungal OTUs 
which returned significant Kruskal-Wallis p-values in any season-year combination (p < 0.05). ANOVA tests 
determined the probability that climate variables were associated with each OTU, and the nature of the impact 
was indicated using 95% confidence interval range estimation.

Correlations within and between bacterial and fungal taxa.  Correlation of fungal and bacterial 
OTUs for alpha and beta diversities were calculated in R. Alpha diversity Spearman correlations were calcu-
lated using the ‘ggscatter’ function in the R program ‘ggpubr’72. Beta diversity Spearman correlations based on 
Bray-Curtis distances from bacterial and fungal data were calculated in R and visualised using “corrplot”73. To be 
consistent with seasonal calculations, data were filtered to remove bacterial and fungal OTUs with <0.5% abun-
dance and/or >99% zeroes across all samples and timepoints in the dataset. Spearman correlations were then 
calculated for the remaining bacterial and fungal OTUs. Statistical significance of all correlations was calculated 
using the function ‘cor.test’ and “BH” correction for multiple pairwise comparisons was applied. A p-value <0.05 
after “BH” correction was considered significant. Those OTUs with at least one positive or negative correlation 
greater than 0.35 (±35%) were visualised in a heat map.

Data availability
All sequence data are deposited with NCBI under the BioProject ID number PRJNA464064.
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