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ABSTRACT

This thesis has two main parts.

In the first part, we develop tools for distinguishing quantum random
strings generated by quantum experiments certified by the Kochen-
Specker theorem from random strings generated by classic algorithms.
This analysis is important and essential because the theoretical certi-
fication has to be validated experimentally to be physically relevant.
Instead of standard randomness tests that check the specific properties
of strings of bits, our tests focus on indirectly identifying evidence of
incomputability, which distinguishes quantum random sequences from
pseudo ones. Variants of Solovay-Strassen primality tests based on the
Chaitin-Schwartz theorem are implemented. Even though some of the
tests are capable of showing differences, conclusive differences have not
been identified. This indicates that further study is needed to overcome
the difficulty of observing incomputability in quantum random strings.
The results in this part have been published in [10].

The aim of the second part is to develop quantum algorithms that solve
the maximum common subgraph isomorphism problems. Three quan-
tum annealing algorithms have been developed, proved correct, and
analysed based on different properties to be maximised. Tests have
been performed on a D-Wave machine (which is a quantum anneal-
ing type of quantum computer). The tests showed that the current
quantum machine could solve toy problems with high enough accuracy.
More experiments with new versions of the quantum machine and the
use of proposed quantum algorithms in practical applications are in-
teresting problems to be further studied. The results in this part have
been published in {93, 92]|.



ACKNOWLEDGMENTS

I am grateful to my supervisors, Prof. C. Calude and Dr. M. Dinneen,
for their guidance not only scientific but also beyond.

I thank my co-authors A. Abbott, C. Calude, M. Dinneen and D. Roje
for a fruitful collaboration.

I also thank Richard Hua for many discussions.

Finally, I thank my family, who supported me on this journey.



Contents

Table of Contents i
List of Tables iii
List of Figures v
1 Introduction 1
1.1 Quantum computing . . . . . . ... ... .. 1
1.1.1 Quantum Bits . . . . . .. ..o 1

1.1.2  The quantum gate model . . . . . . . .. .. ... ... ... 4

1.1.3  Quantum annealing . . . . .. . .. ... ... ... .. ... 7

1.1.4 Quantum annealing with D-Wave machines . . . . . . . . .. 7

1.1.5 Quantum advantage . . . .. .. ... .. .. ... ... .. 14

1.2 Randommness . . . . . . . . .. 15
1.2.1 Randomness and algorithmic information theory . . . . . . . 16

1.2.2  Random number generators (RNGs) . ... ... ... ... 18

1.2.3  Pseudo-Random Generators (PRNGs) . .. ... ... ... 19

1.2.4  Quantum randommness . . . . . . . ... ... 19

2 Quantum Randomness 23
2.1  Quantum Random Generators (QRNGs) . . . ... ... ... ... 23
2.2 Testing RNGs . . . . . .. . 26
2.3 Testing incomputability and algorithmic randomness . . . . . . . . 28
2.3.1 Tests of Borel normality . . . ... .. ... .. ....... 28

2.3.2 A Martin-Lof test of incomputability . . . .. ... ... .. 30

2.3.3 Chaitin-Schwartz-Solovay-Strassen tests. . . . . . . .. . .. 31

24 Conclusions . . . . . ... 43

3 Solving the Maximum Common Subgraph Isomorphism Problem
via Quantum Annealing 46
3.1 Introduction . . . . . . . ... 46



i

3.2 QUBO formulations for the maximum common subgraph isomor-

phism problem . . . . . .. .. oo 47

3.3 Definition and notation . . . . . .. ... ... L. 48
3.4 Classical algorithms to solve the maximum common subgraph iso-

morphism problem . . . . . ... ... 52

3.5 QUBO formulation for MCIST . . . . .. ... ... ... ...... 53

3.6 QUBO formulation for MCEST . . . . . . ... ... .. ... .... 58

3.7 QUBO formulation for the k-densest common subgraph isomorphism 60

3.8 Experiments on a D-Wave 2X machine . . . . ... ... ... ... 66

3.9 Conclusions and future work . . . . . .. .. .. ... 71

4 Final Remarks 73

Bibliography 74

A Solving QUBOs on a D-Wave Machine 88



List of Tables

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

Kolmogorov-Smirnov tests for the first Chaitin-Schwartz-Solovay-
Strassen test with the metric that records the minimum number

of witnesses needed to verify the compositeness of all Carmichael
numbers of at most 16 digits. . . . . . . ... oL 34
Shapiro-Wilk tests of normality for the first Chaitin-Schwartz-Solovay-
Strassen test with the metric that records the minimum number of
witnesses needed to verify the compositeness of all Carmichael num-

bers of at most 16 digits. . . . . . . .. ... o oo 34
Kolmogorov-Smirnov tests for the second Chaitin-Schwartz-Solovay-
Strassen test with the “bit counting” metric on the non-complemented

(i.e., original) bits. . . . . . ... 36
Shapiro-Wilk tests of normality for the second Chaitin-Schwartz-
Solovay-Strassen test with the “bit counting” metric on the non-
complemented (i.e., original) bits. . . . . .. .. ... 36
Kolmogorov-Smirnov tests for the second Chaitin-Schwartz-Solovay-
Strassen test with the “bit counting” metric on the complemented

bits. . . . 37
Shapiro-Wilk tests of normality for the second Chaitin-Schwartz-
Solovay-Strassen test with the “bit counting” metric on the comple-
mented bits. . . . ..o 37
Welch t-tests for the second Chaitin-Schwartz-Solovay-Strassen test

with the “bit counting” metric on the complemented bits. . . . . . . 38
Kolmogorov-Smirnov tests for the third Chaitin-Schwartz-Solovay-
Strassen test with the “bit-counting” metric for the non-complemented
(i.e., original) bits for all Carmichael numbers of at most 16 digits. . 39
Shapiro-Wilk tests of normality for the third Chaitin-Schwartz-Solovay-
Strassen test with the “bit-counting” metric for the non-complemented
(i.e., original) bits for all Carmichael numbers of at most 16 digits. . 40
Welch t-tests for the third Chaitin-Schwartz-Solovay-Strassen test

with the “bit-counting” metric for the non-complemented (i.e., orig-

inal) bits for all Carmichael numbers of at most 16 digits. . . . . . . 40

1l



iv

2.11 Kolmogorov-Smirnov tests for the third Chaitin-Schwartz-Solovay-

Strassen test with the “bit-counting” metric for the complemented

bits for all Carmichael numbers of at most 16 digits. . . . . . . . .. 40
2.12 Shapiro-Wilk tests of normality for the third Chaitin-Schwartz-Solovay-

Strassen test with the “bit-counting” metric for the complemented

bits for all Carmichael numbers of at most 16 digits. . . . . . . . .. 41
2.13 Kolmogorov-Smirnov tests for the fourth Chaitin-Schwartz-Solovay-

Strassen test with the “violation-count” metric for non-complemented

(i.e., original) bits for all odd composite numbers that are less than

50, o e 42
2.14 Shapiro-Wilk tests of normality for the fourth Chaitin-Schwartz-

Solovay-Strassen test with the “violation-count” metric for non-complemented

(i.e., original) bits for all odd composite numbers that are less than

5O. o e 42
2.15 Kolmogorov-Smirnov tests for the fourth Chaitin-Schwartz-Solovay-

Strassen test with the “violation-count” metric for the complemented

bits for all odd composite numbers that are less than 50. . . . . . . 43
2.16 Shapiro-Wilk tests of normality for the fourth Chaitin-Schwartz-

Solovay-Strassen test with the “violation-count” metric for the com-

plemented bits for all odd composite numbers that are less than

BO. o 43



List of Figures

1.1

2.1
2.2

2.3

2.4

2.5

2.6

3.1

3.2
3.3
3.4
3.5
3.6

Chimera architecture example. . . . . . . . .. .. .. ... ... .. 13

Schematic showing the QRNG based on the Kochen-Specker Theorem 25
Borel normality test: Box-plot showing the distribution of the quan-

tity max < Aﬁ:ﬂ) — 2_mD log, |z| for the 80 strings of length |z| =

226 bits produced by each the six RNGs tested. . . ... ... ... 29
First Chaitin-Schwartz-Solovay-Strassen test on 80 samples: Box-
plot showing the distribution in the minimum number of witnesses
needed to verify the compositeness of all Carmichael numbers of at
most 16 digits. . . . . . ..o 33
Second Chaitin-Schwartz-Solovay-Strassen test: total number of bits
required to verify the compositeness of all Carmichael numbers of
at most 16 digits using (a) the 80 strings from each RNG, and (b)
the complement of these strings. . . . ... ... ... ... .... 35
Third Chaitin-Schwartz-Solovay-Strassen test: Box-plot showing the
distribution of total number of bits used to identify all 16-digit
Carmichael numbers as composite by (a) the 80 strings from each
RNG, and (b) the complement of these strings. . . . .. ... ... 38
Fourth Chaitin-Schwartz-Solovay-Strassen test: Box-plot showing
the distribution of the average count of violations of the Chaitin-
Schwartz Theorem for all odd composite numbers less than 50 by
(a) the 80 strings from each RNG, and (b) the complement of these

SITINGS. . . . . o 42
Examples of isomorphic graphs, isomorphic induced subgraph and

isomorphic subgraph . . . . . ..o oo 49
An example to show the difference between MCISI and MCESI. . . 52
Example for two graphs that shares a 4-densest common subgraph . 61
Input graphs . . . . . . . . .. 67
Maximum common induced subgraph isomorphism results. . . . . . 69
Maximum common edge subgraph isomorphism results. . . . . . . . 70



Chapter 1

Introduction

This chapter presents an overview of the quantum theory necessary for the main
results included in this thesis.

1.1 Quantum computing

Quantum computing was first introduced by Paul Benioff and Yuri I. Manin in
1980 and Richard Feynman in 1982 and intensively researched afterwards.

The origins of quantum computing can be traced back to the proposals made
by Benioff for quantum Turing machines [30] and Feynman’s ideas for overcoming
the challenge of simulating quantum mechanics using classical computers [80].
These proposals eventually paved the way for Deutsch’s proposition of a universal
quantum circuit and the gate model for quantum computing [73].

1.1.1 Quantum Bits

All computers rely on the ability to store and manipulate information. Classical
computers use bits which are physically represented by two-state classical systems
(two positions of an electrical switch, two distinct voltage or current levels allowed
by a circuit).

Quantum computers use quantum physical systems which can also be in two
states, conventionally named quantum bits, or qubits, and denoted by |0) and |1),
[52, 118].

Quantum bits are described by quantum states (i.e. abstract, in Hilbert space)
which are physically implemented by quantum systems (e.g. an atom) which are
in one of two definite states. For example, the state of a spin—% particle, when
measured, is always found to be in one of two possible states, represented—using
Dirac bra-ket notation— as
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In a classical system, a bit is in one state or the other. However, quantum
mechanics allows the qubit to be in a superposition of both states simultaneously.
A classical analogue is a coin spinning through the air before it lands on a ta-
ble. Superpositions can be entangled with those of other objects, meaning their
outcomes will be “related” even if we don’t know yet what they are.

Unlike the intermediate states of a classical bit (e.g. any voltages between the
“standard" representations of 0 and 1) which can be distinguished from 0 and 1,
but do not exist from an informational point of view, quantum intermediate states
cannot be reliably distinguished, even in principle, from the basis states, but do
have an informational “existence".

Formally, a qubit is a unit vector in the complex space C?, so for each qubit
|z), there are two (complex) numbers a,b € C such that

1 1
‘+—> (spin-up) or ——> (spin-down).

|z) = al0) + b|1) = ( Z ) , (1.1)

where

and |a|* + [b]* = 1.

We can perform a measurement that projects the qubit onto the basis {|0),
|1)}. Then we will obtain the outcome |1) with probability |b|?, and the outcome
|0) with probability |a|?>. After performing the measurement, the qubit has been
prepared in a known state (either |0) or |1)); this state is typically different from
the previous state.

With the exception of limit cases a = 0 and b = 0, the measurement irrevocably
disturbs the state:

If the value of the qubit is initially unknown, then there is no way to
determine a and b with any conceiwvable measurement.

The above facts point out an important difference between qubits and classical
bits. There is no problem in measuring a classical bit without disturbing it, so
we can decode all of the information that it encodes. If we have a classical bit
with a fixed but unknown value (0 or 1), then we can only say that there is a
probability that the bit has the value 0, and a probability that the bit has the
value 1, and these two probabilities add up to 1. When we measure the bit, we
acquire additional information; after measurement, we will know completely the
value of the bit.



The ability of quantum systems to exist in a “blend" of all their allowed states
simultaneously is known as the Principle of Superposition.

Even though a qubit can be put in a superposition (1.1), it contains no more
information than a classical bit, in spite of its having infinitely many states. The
reason is that information can be extracted only by measurement. But, as we have
argued, for any measurement of a qubit with respect to a given orthonormal basis,
there are only two possible classical results, corresponding to the two vectors of
the basis.

It is not possible to capture more information by measuring on two different
bases because the measurement changes the state. Even worse, we have the Non-
cloning Theorem:

Quantum states cannot be cloned: it is tmpossible to create an inde-
pendent and identical copy of an arbitrary unknown quantum state.

This result has profound implications in quantum computing. For example, it
prevents the use of certain classical error correction techniques on quantum states:
backup copies of a state in the middle of a quantum computation cannot be created
and used for correcting subsequent errors. In 1995, Shor and Steane independently
devised the first quantum error correcting codes, which circumvent the No-cloning
Theorem.

Quantum algorithms are probabilistic and give the correct answer with some
probability; the probability of failure can be decreased by repeating the algorithm.
Even if the correct answer is obtained with probability 1, the result is not deter-
ministically correct.

Here are some achievements of quantum computing and algorithmics:

e In 1985 Deutsch constructed the first model of quantum computer by quan-
tisation of the universal Turing machine.

e In 1994 Shor designed a quantum algorithm for factoring integers in polyno-
mial (quantum) time in the size of the input; the problem whether there is
a classical polynomial algorithm for factoring is still open.

e Two years later Grover discovered a quantum algorithm for searching an un-
sorted N-entry database in O(v/ N) time and O(log V) space: this algorithm
is optimal within the quantum computing model for black box oracles.



1.1.2 The quantum gate model
The quantum evolution of a qubit is described by a “unitary operator", that is, an

operator induced by a unitary matrix.!

Any unitary operator U : C? — C? can be viewed as a single qubit gate.
Considering the basis {|0),|1)}, the transformation is fully specified by its effect
on the basis vectors. In order to obtain the associated matrix of an operator U,
we put the coordinates of U|0) in the first column and the coordinates of U|1) in
the second one.

The quantum gate model is the most studied model of quantum computing.

The general form of a transformation that acts on a single qubit is a 2 x 2

matrix ;
a
a=(0a)

which transforms the qubit state a|0)+/|1) into the state (aa+5)|0)+(ca+dF)|1):

(20 (o) = (o).

The following gate flips the state of its input,

omm= (1) (1)-(2) -
ona= (1) (1)-(3) -

We may think of logic gates as transformations. For example, the NOT trans-
formation which interchanges the vectors |0) and |1), is the matrix

0 1
vor - (81

The square-root of NOT (introduced by Deutsch) is the transformation

and

0) — 3(1+9)[0) +3(1 —9)[1),
NOT
1) — (1 =9[0) +5(1+9)[1),

1 A quadratic matrix A of order n over C is unitary if AAT = I (the identity n x n matrix);
At is the transposed conjugate matrix of A.
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The square-root of NOT is a typical “quantum" gate in the sense that it is
impossible to have a single-input/single-output classical binary logic gate that

satisfies (1.2). Indeed, any classical binary

VNOT classical

gate is going to output a 0 or a 1 for each possible input 0/1. Assume that we
have such a classical square-root of NOT gate acting as a pair of transformations

VNOT classical(o) =1, vNOT classical<1> =0.

Then, two consecutive applications of it will not flip the input!

VNOT -vNOT = NOT ,

and

VNOT - vNOT |
L1+ 1 1—2 1471 g
T4\ 1—d 1+ 14+i 1—4 ) ©
Finally, we consider the Hadamard transformation H is defined by

0) = 25(10) + 1))

1) = Z(10) = 1))

514

H:

(1.2)

This transformation has a number of important applications. When applied to

|0), H creates a superposition state

L0y + 1)),

Sl

2
Recall (1.1):

o) =alo) 4 = ().

where



and |al* + |b]* = 1.

A measurement that projects |x) onto the basis {|0), |1)} produces |1) with
probability |b]? and |0) with probability |a|?.
Let |z) = a|0) 4+ b|1) and |y) = c|0) + d|1) with |a]? 4 |b]*= |¢|* + |d|* = 1.

What about |x)|y) ? We are C* so the basis is

1 0 0 0

0 1 0 0

ol’Lto ]’ 1]’ O

0 0 0 1

The pair of qubits

ac
a c ad
=5 )e ()= o
bd

This is correct because
(lac)? + (Jad])? + (Jbc])® + (1bd])? = lal*(|c|* + |d]*) + [b[*(|c|* + |d*) = 1,

so the probability that a measurement of |x)|y) produces

o O O

is (|ac|)? and so on.

In the quantum gate model, a quantum gate array decomposes computation
into a sequence quantum gates. A quantum computation can be described as
a network of quantum logic gates and measurements. A choice of gate family
that enables this construction is known as a universal gate set, since a computer
that can run such circuits is a universal quantum computer. One common such
set includes all single-qubit gates as well as the CNOT gate. This means any
quantum computation can be performed by executing a sequence of single-qubit
gates together with CNOT gates. Though this gate set is infinite, it can be replaced
with a finite gate set using the Solovay-Kitaev Theorem [99, 70].



1.1.3 Quantum annealing

The adiabatic quantum computing (AQC) model is an alternative to the gate
model of quantum computing. In AQC, the computation process commences with
an initial Hamiltonian whose ground state is simple to prepare, and concludes
with a final Hamiltonian that encodes the solution of the computational problem
in its ground state. If the system evolves slowly enough, the Adiabatic Theorem
guarantees that the system will remain in its ground state throughout this process.
Consequently, we can extract the solution from the final Hamiltonian.

Quantum annealing is one method of engineering an AQC machine, which
is believed to be capable of assisting in the resolution of specific combinatorial
optimisation problems [98].

More general references about AQC and D-Wave machine are found in [116,
48, 68]. A presentation of practical QA used by D-Wave machines—which are
quantum computers designed to solve optimisation problems—is in [117].

Results by [79, 20| “suggest” that the two models of quantum computing are
polynomially equivalent. One distinction between the two models is their dis-
crete versus analogue natures: the quantum gate mode is discrete while ADC is a
continuum.

Adiabatic in AQC refers to a process in which there is no transfer of energy
between the system and its environment. This a thermal (not quantum) prop-
erty; its name is used here metaphorically. AQC uses the propensity of physical
systems—classical or quantum—to minimise their free energy. Quantum annealing
is free energy minimisation in a quantum system. An AQC algorithm computes an
exact or approximate solution of an optimisation problem encoded in the ground
state—its lowest-energy state—of a Hamiltonian (the operator corresponding to
the total energy of the system).

1.1.4 Quantum annealing with D-Wave machines

The D-Wave machines, such as the D-Wave 2X that we utilise in subsequent
chapters for our experiments, are quantum annealing devices specifically designed
for solving discrete optimisation problems. In this subsection, we will provide a
concise overview of the methods for formulating problems on D-Wave machines,
the operational cycles of these machines, the connectivity graph of qubits, and the
post-processing stage.

Discrete optimisation, alternatively referred to as combinatorial optimisation,
entails optimising objective functions within search spaces composed of a finite set
of objects. This section delves into two distinct classes of optimisation objectives.



Ising model

The D-Wave Quantum Processing Unit (QPU) can be seen as a heuristic approach
to minimising Ising objective functions through the implementation of physical
quantum annealing. The Ising objective function, defined for N variables denoted
as s = [s1, ..., Sy| where s; takes values in {41, —1}, is given by:

zszng Z h; 354 + Z Z JJSZSJ (13)

=1 j=i+1

Each variable s; corresponds to a physical Ising spin that can be in a +1 or —1
state with a local applied field on each spin that causes it to prefer either the +1
or —1 state. The sign and magnitude of this preference—that is, the value of the
local field—is denoted h;. There may also be couplings between spins ¢ and j such
that the system prefers the pair of spins to be in either of the two sets defined by
s; = s; (ferromagnetic coupling) or s; = —s; (antiferromagnetic coupling). The
sign and magnitude of this preference is denoted J; ;.

In a single-spin system, when h; has a large positive value, the lowest energy
state is achieved when s; is set to —1. Likewise, in a two-spin system with h; =
hy = 0 and J; o = —1, there are two equally favourable lowest energy states: one
with s; = —1 and s, = —1, and the other with s; = +1 and sy = +1.

The D-Wave QPU is constructed using a physical lattice of qubits and couplers
known as the Chimera architecture (see Section 1.1.4 for more details). The total
number of spins is contingent upon the quantity of qubits within the QPU. As an
illustration, the D-Wave 2000 QPU encompasses more than 2000 spins s;, each
of which is connected to a maximum of six other spins. The permissible ranges
for h and J values for a specific system can be accessed by querying the solver
properties, either through D-Wave’s Qubist or the client libraries.

Fomulation of the Ising problem as a QUBO

Frequently, it is more practical to work with variables that take values of 0 or 1,
rather than the Ising variables that take values of -1 or 1. As an illustration, con-
sider a maximum independent set (MIS) problem. In this problem, the objective
is to choose the most extensive subset of vertices (referred to as the independent
set) from a graph G = (V, E), in such a way that no two selected vertices are
connected by an edge. Let x; = 1 if vertex ¢ is part of the independent set, and
z; = 0 otherwise.

The restriction that no two selected vertices can be linked by an edge can
be straightforwardly expressed through penalties of the form M;; > 1 for all
(4,7) € E. The maximal independent set is established by minimising — >, 2;,



thereby defining the overall objective to be minimised as follows:

Equbo(x) = — Z.TZ + Z M@jxixj.

eV (i,4)€E

In the —1/+ 1 representation, where s; = +1 if 7 is in the independent set and s; =
—1, otherwise, the same penalty is expressed less intuitively as (s;s;+s;+s;+1)/4.
The 0/1 variables offer a more natural and concise representation for this problem.

QUBOs are commonly represented using matrix notation, typically taking the
form:

x" = argmin, F(x|Q) = argmin, Z r;Q; jr; = argmin, (x, Qx)
i>j

Given z; € {0, 1}, the linear terms in z; stem from the diagonal elements of
() because Quasf = Q;,;w; since r? = x; for z; = 0 or 1. Let us assume that Q is
upper-triangular. In [101] and related papers, QUBOs have been demonstrated to
be an effective representation for modelling and solving a diverse range of discrete
optimisation problems.

The Ising and QUBO models are connected through the straightforward trans-
formation s = 2x — 1, leading to the relationship:

1 e e
<X7 QX> = Z<17 Q1> + <Q1/27S> + <57 Q/4 S>

where 1 is the vector all of whose components are 1. Therefore, £(x|Q) = (1|Q1)+
E(s|Q1/2,Q/4). This allows for seamless translation between the Ising and QUBO
representations, depending on convenience. The client libraries accessible on Qubist
offer code for implementing this translation process.

The Ising and QUBO problems have been established as NP-hard according to
[25], a fact evident when representing the maximum independent set as a QUBO
and applying the arithmetic transformation mentioned above. This NP-hardness
remains true even when the problem is confined to the Chimera architecture and
within the specific range of h; and J; j values for the QPU. While there exist several
manageable subclasses of Ising/QUBO problems [35|, more detailed information
can be found in references such as [102], [133], or [62]. For insights into the mapping
of NP problems onto the Chimera architecture, refer to Section 1.1.4.

Programming cycle

When a set of h and J values is provided for an Ising problem, the D-Wave sys-
tem transmits these values to the Digital-to-Analog Converters (DACs) situated
on the QPU. Room-temperature electronics generate the initial signals, which are



10

then transmitted through wires into the refrigerator to configure the DACs. Subse-
quently, the DACs administer static magnetic-control signals directly to the qubits
and couplers. This constitutes the programming cycle of the QPU. Following this,
the QPU is allowed to undergo a post-programming thermalisation period, typi-
cally lasting 1 millisecond. The entire duration spent on programming the QPU,
including the post-programming thermalisation time, is recorded and reported as
gpu_ programming time.

Anneal-read cycle

Following the programming cycle, the system transitions into the annealing phase.
During this phase, the QPU undergoes repeated cycles of annealing and readout.
Annealing is executed using the analog lines for a duration set by the user as an-
nealing time, which is then reported by the QPU as qpu__anneal time per sample.
Subsequently, the digital readout system of the QPU retrieves and provides the
spin states of the qubits. The system is then allowed to cool for a period spec-
ified by the QPU as gqpu_delay time per sample. This interval comprises a
fixed value along with any additional time optionally set by the user through the
readout thermalization parameter.

This sequence of annealing and readout is also referred to as a "sample".
The process is repeated for a number of samples determined by the user through
the num_reads parameter, yielding one solution per sample. The total time re-
quired to complete the requested number of samples is provided by the QPU as
gpu_sampling time.

Minor embedding

In graph theory, an undirected graph H earns the title of being a minor of the
graph G if it can be derived from G through a series of operations including edge
and vertex deletions, as well as edge contractions. Edge contraction involves the
removal of an edge while simultaneously merging the two vertices it connected.
When an undirected graph H can be transformed from G by contracting specific
edges, deleting edges, and removing vertices, we establish that H is a minor of G.
The sequence and order in which these contractions and deletions are executed on
G do not alter the resultant graph H. If H is indeed a minor of G, we say that H
is embedded within G.

Definition 1. Let H = (V}, Ey) and G = (Va, Ey) be two graphs. A minor
embedding of H onto G is a function f : Vi — V5 such that:

1. For allv € Vi, the set of vertices v maps to under f are disjoint.
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2. For all v € V1, there is a subset of edges E' C Ey such that G' = (f(v), E')
1s connected.

3. If {u,v} € Ey, then there exist u,v' € Vi such that v’ € f(u),v" € f(v) and
{u',v'} is an edge in Es.

Given a specific graph H, there exist algorithms that can efficiently find a
minor-embedding of H within G, with polynomial time complexity relative to the
size of G. These algorithms range from the pioneering O(|V(G)|?) time algorithm
by Robertson and Seymour [129]|. It is important to note, however, that these
algorithms are tailored for a fixed H, and their run-time grows exponentially with
the size of H.

When dealing with D-Wave machines, the challenge of minor-embedding arises
in the task of finding a suitable minor-embedding for a given graph H, while
holding G fixed. Heuristic polynomial algorithms [36, 43, 153] are employed to
tackle the minor-embedding problem; in particular, the D-Wave software API
utilizes similar heuristic solvers for this purpose [67].

Chimera

The D-Wave 2X machines employ the Chimera graph architecture, as illustrated
in Figure 1.1. This architecture is not a complete graph. Thus, we used the
default minor-embedding algorithm provided by the D-Wave company in their
user interface [66]. This algorithm assists in identifying a subgraph within the
hardware graph of the machine, ensuring that the QUBO graph is a minor of it.

Available methods for post-processing

The D-Wave system offers users the capability to apply post-processing optimisa-
tion and sampling algorithms to solutions obtained from the QPU. post-processing
allows for local refinements of these solutions with minimal additional computa-
tional load. When submitting a problem to the QPU, users have the following
options to choose from:

e No post-processing (default for hardware solvers)
e Optimisation post-processing
e Sampling post-processing (default for VEYC solvers)

For optimisation problems, the objective is to identify the state vector with
the lowest energy. Conversely, for sampling problems, the objective is to gener-
ate samples from a specific probability distribution. In both scenarios, a logical
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graph structure is defined and integrated into the QPU’s Chimera topology. post-
processing techniques are then applied to solutions defined within this logical graph
structure.

Trade-offs for post-processing

To map most real-world problems onto a Chimera graph, it’s necessary to enhance
the connectivity on the QPU. This is achieved by introducing what are known
as "chains" - groups of qubits tightly linked together to collectively represent a
single problem variable. In an ideal scenario, where there is infinite precision on
the h and J values, one could compel the qubits on the chain to assume the same
spin by assigning a sufficiently large (problem-specific) coupling strength between
them. However, in reality, chains can and often do break. When this occurs, the
corresponding sample can either be disregarded or mapped to a nearby feasible
state that doesn’t have a breakage. The first option results in sample wastage,
while the second involves some additional processing overhead. D-Wave’s post-
processing algorithms employ a majority voting approach on the chain to map any
broken chains to their closest feasible state.

Additionally, in optimisation problems where the goal is to find the global
optimum or at least good local optima, states that are not locally optimal are not
of immediate interest prior to further post-processing. The most straightforward
post-processing method to transform a non-locally optimal state into a potential
candidate solution is to conduct a local search to locate a nearby local optimum
state. In practice, some of the samples provided by the QPU may not be locally
optimal. Similar to handling broken chains, we are faced with two options for
dealing with them: either discard them or initiate a local search to rectify them.
Once again, the decision involves a trade-off between investing time in generating
new samples or allocating time to perform a local search on such samples.

Sample D-Wave code

We present explicit Python code, using the parameters mentioned above, for our
generated QUBOs for the maximum common subgraph problem in Appendix A.
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1.1.5 Quantum advantage

Quantum computing cannot compute all partial functions a universal Turing ma-
chine can calculate because only total functions can be computed by quantum cir-
cuits [21]. Consequently, quantum computing’s potential advantages could come
only from faster than classical computations.

While Shor’s algorithm, Deutsch-Jozsa algorithm and various others in the
“black-box” paradigm — where access to a quantum black-box or “oracle” with
certain structural properties is assumed — are believed to provide an exponential
speedup over classical computers, this is far from the case in general. We use the
word “believed” because the superiority of Shor’s quantum algorithm over classical
ones is still an open problem and various techniques allowing efficient classical
simulation of quantum algorithms have been successfully developed [87, 42, 2]
even for some “black-box” quantum ones [45, 1, 96, 97].

The quantum computational advantage for simulating quantum systems was
first stated by Feynman in 1982, in one of the pioneering papers in quantum
computing [81] (the other one was Manin [109]). What is the justification of
Feynman’s insight? According to the data processing inequality |63, 28], (classical)
post-processing cannot increase information. This suggests that to run an accurate
classical simulation of a quantum system one must know a lot about the system
before the simulation is started [22]. Manin [109] and Feynman [81] have argued
that a quantum computer might not need to have so much knowledge. Deutsch [72]
proposed

The postulate of quantum computation: Computational devices
based on quantum mechanics will be computationally superior com-
pared to digital computers.

Shor’s groundbreaking 1994 polynomial quantum algorithm factoring [136] pro-
vided remarkable support for this postulate, even though the question of whether
factoring is solvable in polynomial time, denoted as P, remained and still remains
an open problem. The belief that factoring integers is computationally hard is
crucial for the foundations of contemporary cryptography and computational se-
curity. For results pointing to the opposite assumption see |87, 42, 2, 122, 33].
Notably, in 2002, Hemaspaandra, Hemaspaandra and Zimand [89], improving re-
sults in [137, 34|, showed that there are tasks on which polynomial-time quantum
machines are exponentially faster almost everywhere than any classical — even
bounded-error probabilistic — machine.

In 2011 the syntagm “quantum supremacy” was coined and discussed by J. Preskill
in his Rapporteur talk “Quantum Entanglement and Quantum Computing” [128|
at the 25th Solvay Conference on Physics (Brussels, Belgium, 19-22 October 2011):
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We therefore hope to hasten the onset of the era of quantum supremacy,
when we will be able to perform tasks with controlled quantum systems
going beyond what can be achieved with ordinary digital computers.

More recently, quantum supremacy was described in [38] as follows:

Quantum supremacy is achieved when a formal computational task
is performed with an existing quantum device which cannot be per-
formed using any known algorithm running on an existing classical
supercomputer in a reasonable amount of time.

A quantum computational supremacy experiment has to prove both a lower
bound and an upper bound. In Google’s proposed experiment [121], the upper
bound is given by a quantum algorithm running on a quantum computer with 49
qubits. There are many ways to build qubits, but not all qubits are equal. The
magic number 49 (or 50) refers to qubits in the quantum circuit model which are
more difficult to control than the qubits used by the D-Wave machine [48]; the lower
bound is necessary for proving that no current classical computer can simulate the
sampling in a reasonable time from the output distributions of pseudo-random
quantum circuits.

All attempts to achieve quantum supremacy, re-named quantum advantage in
the last years, succeeded in showing the upper bound, but failed to provide a
mathematical proof for the lower bound [47].

1.2 Randomness

Randomness is an important resource in diverse domains: it is used in science,
statistics, cryptography, gambling, and even in art and politics. In many of these
domains, it is crucial that the randomness is of high quality. This is clearly seen
in cryptography, where good randomness is vital to the security of data and com-
munication, but is equally, albeit more subtly, true in other areas such as politics,
where decisions of consequence may be made based on scientific and statistical
studies relying crucially on randomness.

For a long time, people have predominantly relied on pseudo-random number
generators (PRNGs)—that is, computer algorithms designed to simulate randomne-
ss—to serve such needs. Problems with various PRNGs, often only uncovered when
it is too late, are all too common and can have serious consequences.? This has

2 An example is the discovery in 2012 of a weakness in the encryption system used worldwide
for online shopping, banking and email; the flaw was traced to the numbers a PRNG had
produced [105].
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driven a recent surge of interest in RNGs exploiting physical phenomena, and more
particularly in quantum RNGs (QRNGs) that utilise the inherent randomness in
quantum mechanics [143, 141, 127, 31]. QRNGs are generally considered to be, by
their very nature, better than classical RNGs (such as PRNGs), but how (or can)
one test this in practice?

1.2.1 Randomness and algorithmic information theory

In order to develop tests of randomness for QRNGs, it is important to understand
what randomness is.

Historically, the quest to develop a formal understanding of randomness focused
on the problem of determining whether a given (finite) string or (infinite) sequence
of bits is random. One of the first attempts to formalise such a notion of random-
ness is due to E. Borel, who defined the concept of Borel normality for infinite
sequences [40]. Borel normality formalises the notion that bits should be evenly
and equally distributed within a sequence. Although this captures one of the most
intuitive features of randomness, it does not alone capture fully the desired con-
cept. For example, the Champernowne sequence 010001 1011000001011100...
[56] contains every string of length k with the same limiting frequency of 27%, and
yet the sequence has a simple description: concatenate the binary representation of
strings of length £ in lexicographical order for £ = 1,2, .... Given this description,
it is clear that the Champernowne sequence is not random, but highly ordered.

The study of algorithmic information theory, developed in the 1960s by
Solomonoff, Kolmogorov and Chaitin, provides more robust and acceptable defi-
nitions of a random sequence. In this framework, random strings and sequences
are those that are incompressible [54]. The incompressibility of strings depends
on the choice of the universal Turing machine; this significant shortcoming disap-
pears when the definition is extended to infinite sequences [44, 75]. The notions
of randomness—both for finite strings and infinite sequences—defined in terms of
incompressibility are generically called algorithmic randomness.

Let us briefly give some technical details useful later in this chapter; we refer the
reader to [44] for further details. Consider Turing machines operating on binary
strings. A Turing machine U is universal if for every Turing machine M there
exists a prefix p (depending only on U and M) such that U(pz) = M (x), for every
program x. The Kolmogorov (or algorithmic) complexity of a Turing machine M
is defined by

Ky (x) =1inf{|s| : M(s) = x},

, where by |s| we denote the length of the string s. We can see that U is universal
if and only if for every Turing machine M there exists a constant ¢ such that

KU(.T) S KM(.T) + C,
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for every string x. For this notion of complexity, the running time and the amount
of storage required for computation are irrelevant. One can prove that for every M
the maximum value of Kj/(z) over all strings z of a fixed length |z| = n is n+0O(1).
Furthermore, the overwhelming majority of strings x of length n have Ky (z) very
close to n. This means that almost all strings of length n are incompressible by
M: more formally, very few such strings have Kj/(z) < n (i.e., are compressible).
If U is a universal Turing machine, then the condition Kj/(z) < |z| means that
Ky(z) < |z| — ¢ for some constant ¢ > 0, that is, x is c-incompressible (or c-
Kolmogorov random). These incompressible strings are highly random, patternless
and typical. For example, it is easy to prove that less than 2"¢ strings of length
n are not c-incompressible.

An infinite sequence x is called Martin-Léf random if there exists a constant C'
such that infinitely many prefixes of x are C-Kolmogorov random. This definition
is equivalent to the condition that x passes all Martin-Lof tests of randomness [113];
see Section 2.3.2 for more details.

While algorithmic information theory provides a sound notion of randomness
for strings and sequences, two important points must be mentioned. Firstly, it is
not effectively decidable whether a string or sequence is random, so the notion does
not provide a practical way to test the randomness of a finite or infinite sequence
of bits. Secondly, it is possible to define ever stronger notions of randomness: from
an algorithmic perspective, no notion of “true”, “perfect" or “absolute” randomness
exists, only degrees of randomness [44, 46, 86]. This should temper any desire to
verify the randomness of an RNG only with tests on its output. Instead, we can
only hope to compare the quality of strings produced.

As interest in generating random numbers soared, the concept of randomness
received increased philosophical attention and it became clearer that the algorith-
mic notion of randomness fails to capture aspects of randomness important for
RNGs [3]. Indeed, as von Neumann noted, “there is no such thing as a random
number—there are only methods to produce random numbers” [149|. The insight
of von Neumann is not that the algorithmic notion of randomness is problematic—
indeed, it is highly satisfactory as a notion of random objects—but that there is
a dual concept of randomness, that of random processes |78, 3, 138|. Such a con-
cept has historically received little attention, but the most convincing attempts
to make it rigorous are perhaps those who define it as a form of maximal un-
predictability: the outcomes of such a process should be unpredictable for any
physical observer [77, 14].

The randomness of a process is often quantified in terms of entropy, but it is
important to note that, entropy being a function of the probability distribution
associated to a process, such a quantification requires i) knowing that the process
is indeed unpredictable, and ii) knowing the probability distribution modelling
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its behaviour. Although one can empirically estimate the distribution from the
output of an RNG, the entropy calculated from such data can only be interpreted
as a measure of randomness if (i) is satisfied, and this cannot be directly verified
from the empirical data alone.

There are thus two legitimate notions of randomness to be reconciled: that of
process randomness (which is applicable to RNGs—viewed as processes— them-
selves), and that of product randomness (which is applicable to the strings—i.e.
objects—obtained from RNGs). The distinction between these notions is impor-
tant for understanding tests of randomness.

1.2.2 Random number generators (RNGs)

An ideal random number generator is normally taken to be a random process
producing the same probability distribution as the ideal (but unphysical) unbiased
coin. It thus produces bits sequentially, thereby generating a sequence x = x5 . ..
with each bit x; being equiprobable, i.e. p(x; = 0) = p(x; = 1) = 1/2, and with
successive bits produced independently. Hence, all strings = of length k have
probability p(x) = 27% and, in the infinite limit, one obtains the Lebesgue measure
over all infinite sequences [44]. This type of ideal source has maximal entropy. It is
important to recognise that this conception of an ideal RNG embodies the notion
of random processes, not products, and concerns the distribution produced by said
process and not its output.

If one tries to implement such a device in practice, two issues immediately
become apparent.

Firstly, how is one to know that the process exploited is really random and
actually produces the expected ideal distribution? This issue touches on the inter-
pretation of probability [88] (although this is beyond the scope of this thesis). For
example, a physical process thought to be represented by the uniform distribu-
tion might only exhibit epistemic randomness, and a more precise, deterministic
model of the process might be possible which reveals its non-randomness. The
most direct way to avoid such possibilities is to harness an indeterministic process
to ensure its unpredictability [14].

Secondly, how does one test or verify the randomness of a RNG given that
one only has access to (finite) strings produced by it? Although the concepts
of process and product randomness are indeed distinct, they are nonetheless re-
lated: long enough strings produced by an ideal RNG will, with high probabil-
ity, be incompressible, while in the infinite limit the sequences produced will be
Martin-Lof random (and thus also incomputable) with probability 1 but not with
certainty: an ideal coin can in principle produce non-random or even computable
sequences. However, as mentioned earlier, the randomness of sequences is already
an incomputable property. Thus, one can do no better than verifying finitely many



19

properties of randomness to gain confidence in a RNG.

1.2.3 Pseudo-Random Generators (PRNGs)

The predominant approach to generating randomness is to use algorithms to pro-
duce “pseudo-randomness”, and such PRNGs are ubiquitous as a result of their
practicality and speed. However, the very fact that such devices use computa-
tional methods to produce their outcomes distinguishes them from ideal RNGs.
PRNGs typically use a short string from an external source—generally assumed
to be random—as an initial “seed” for an algorithm [84]. Thus, PRNGs can only
produce computable sequences, whereas such sequences should be produced only
with probability 0 by an ideal RNG. Instead, effort is made to make PRNGs dif-
ficult to distinguish from an ideal RNG given limited (typically polynomial time)
computational resources [85], so that the PRNG appears to be a high entropy
source. This provides a degree of security against cryptographic attacks, even if
the resulting distribution (induced by the distribution over the initial seeds) is far
from uniform in reality.

PRNGs generally produce sequences that satisfy many intuitive aspects of
randomness—such as the equidistribution of the bits produced—and pass most
standard statistical tests of randomness despite their computability. Nonetheless,
deficiencies resulting from the non-randomness of PRNGs are regularly exploited
(see, e.g., [32]) and much of the interest in quantum randomness has been driven
by the potential to avoid the shortcomings of PRNGs.

1.2.4 Quantum randomness

For some time now, quantum mechanics has garnered interest as a potential source
of randomness for RNGs. Such interest stems from the fact that certain quantum
phenomena, such as the radioactive decay of an atom or the detection of a pho-
ton having passed through a beamsplitter, are generally taken to be “intrinsically
random” under the standard interpretation of quantum mechanics [18].

The simplest way to generate quantum random bits is via the standard beam
splitter which can be realized with the Hadamard transformation H: When applied
to |0), H creates a superposition state

1
V2
The probability to obtain via measurement 0 is equal to the probability to
obtain 1 and equal to 1/2.

We will first discuss these claims in a more detail—since it is important to base
the randomness of QRNGs on more formal grounds rather than simply assuming

(10) +[1)).
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such randomness—before discussing one approach to the generation of quantum
randomness in more detail.

Claims about quantum randomness originate with the fact that, as a formal
theory, quantum mechanics differs fundamentally from classical physics in that
not all observable properties are simultaneously defined with arbitrary precision.
Instead, quantum mechanics, via the Born rule, only specifies the probabilities with
which individual measurement outcomes occur for the measurement of a physical
quantity—i.e., a quantum observable. Formally, if a system is in a quantum state
|¢) and one measures an observable A with spectral decomposition A = ). a;F;,
where we adopt the notation P; = |i)(i| for rank-1 projection observables, then one
obtains outcome a; with probability

P(ailv) = [(i[¥)]*. (1.4)

Thus, whereas randomness in classical physics is due to incomplete knowledge
of the precise initial conditions of a system (e.g., as in chaotic systems) [107],
in quantum mechanics it is intrinsic to the standard interpretation of the formal
theory.

Nonetheless, the Born rule is a purely formal statement, and interpreting the
probability distribution specified by the Born rule remains the subject of ongoing
debate. The orthodox interpretation, however, is that the distribution should be
understood ontically as representing an indeterministic phenomenon [18]. Cru-
cially, this interpretation is more than a mere assumption: several well-known
no-go theorems rule out classical statistical interpretations of quantum random-
ness.

Bell’s Theorem [29] is the most well-known of these results, and shows that
a classical, local hidden variable theory cannot reproduce the statistics of quan-
tum correlations that are observed [23] between entangled particles. The Kochen-
Specker Theorem [100], although perhaps lesser known, pinpoints this breakdown
in determinism in a more precise way: it shows that, for any quantum system with
more than 2 dimensions, it is logically impossible to predetermine all measurement
outcomes prior to measurement in a noncontextual fashion (i.e., in a way which
is independent of other compatible—and thus non-disturbing—measurements one
can perform).

More recently, this theorem has been refined to show that the only observables
that can be predetermined in a noncontextual way are those for which the Born
rule assigns the probability 1 to a particular outcome [11, 17|. More precisely, we
say that an observable A is value definite for a system prepared in a state |¢) if it
has a predetermined measurement outcome vy (A). The stronger result shows that
for systems of more than 2 dimensions, if we assume that any such value definite
observables should be noncontextual, then A is value definite if and only if |¢)) is
an eigenstate of A; all other observables must be value indefinite.
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This result makes the extent of quantum value indefiniteness—and thus
indeterminism—clear and pinpoints which measurements are protected by such
formal results. This not only allows some QRNGs to be based more rigorously on
physical principles but also to clarify the link between quantum randomness and
indeterminism. Crucially, this result also allows one to show that the measurement
of such value indefinite observables satisfies a strong form of unpredictability [16],
proving that one really cannot provide better predictions than the Born rule spec-
ifies, and thus giving a stronger theoretical grounding to claims about the form of
quantum randomness proposed for QRNGs.

Below are more details.

We assume the following premises:

e Admissibility. This assumption guarantees agreement with quantum me-
chanics predictions. Fix a set O of one-dimensional projection observables on
C" and the value assignment function v : O — {0,1}. Then v is admissible
if for every context C' of O, we have that ) .. v(P) = 1. Accordingly, only
one projection observable in a context can be assigned the value 1.

e Non-contextuality of definite values. Every outcome obtained by mea-
suring a value definite observable is non-contextual, i.e. it does not depend
on other compatible observables which may be measured alongside it.

e Eigenstate principle. If a quantum system is prepared in the state |¢),
then the projection observable P, is value definite.

Theorem 2 (Localised Kochen-Specker Theorem [12, 15, 104, 19]). Assume a
quantum system prepared in the state 1) in a dimension n > 3 Hilbert space C",
and let |¢) be any quantum state such that 0 < |(|¢)| < 1. If the following three
conditions are satisfied: i) admissibility, ii) non-contextuality and iii) eigenstate
principle, then the projection observable Py is value indefinite.

Theorem 2 states that, under the given assumptions, any quantum state |¢)
that is neither orthogonal nor parallel to |¢)) is value indefinite. This result has
two major consequences:

1. it shows how to construct a value indefinite observable effectively,

2. it guarantees that the status of “value-indefiniteness” is invariant under minor
errors in measurements: this is a significant property as no measurement is
exact.

How “good” is such a 3D-QRNG, i.e. what randomness properties can be cer-
tified for their outcomes? For example, can we prove that the outcomes of the
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3D-QRNG are “better” than the outcomes produced by any pseudo-random num-
ber generator (PRNG)?

For certification, we use the following assumption, which is motivated by the
fact that a computable sequence is the strongest form of “deterministic hidden
variable":

e epr principle: If a repetition of measurements of an observable generates a
computable sequence, then these observables are value definite.

Based on the Eigenstate and epr principles, we can prove that the answer to
the last question is affirmative: Any infinite repetition of the experiment measuring
a quantum value indefinite observable generates an incomputable infinite sequence
1Ty ...: no PRNG has this randomness property.

A stronger result is true. A sequence x is bi-immune if no algorithm can
generate infinitely many correct values of its elements (pairs, (i, z;)).

Theorem 3 ([6, 19]). Assume the Figenstate and epr principles. An infinite
repetition of the experiment measuring a quantum value indefinite observable in
C® always generates a b-bi-immune sequence x € AY, for every b > 2.

In particular, every sequence generated by the 3D-QRNG is 3-bi-immune.

Theorem 4 ([19]). Assume the epr and Figenstate principles. Let x be an infinite
sequence obtained by measuring a quantum value indefinite observable in C° in an
infinite repetition of the experiment E. Then, no single bit x; can be predicted.



Chapter 2

Quantum Randomness

2.1 Quantum Random Generators (QRNGs)

The properties of quantum measurements make them an ideal candidate for ran-
dom number generation: if one measures an observable for which the Born rule
predicts a uniform distribution, then the QRNG embodies a perfect coin. More-
over, the results discussed above show that—subject to very reasonable physical
assumptions about how classical objects should behave—this distribution cannot
be given an epistemic interpretation and the corresponding measurement outcomes
are thus truly of indeterministic origin. The attractiveness of QRNGs is further
enhanced by the possibility of obtaining high bitrates and the simplicity of their
physical models. This is in contrast to RNGs based on classical physics, such as
chaotic systems.

Early QRNGs relied on features such as radioactive decay [132], but simpler
systems based, for example, on measuring the polarisation [95, 141, 135] or detec-
tion times [142] of photons, have become the norm due to the practical advantages
they provide. Such approaches have led to the development of commercial QRNGs,
such as ID Quantique’s Quantis [94].

Many successful QRNGs exploit two-dimensional systems to generate random-
ness (e.g. Quantis uses the polarisation of photons). This greatly simplifies the
design and production of such devices but neither Bell’'s Theorem (which re-
quires entanglement) nor the Kochen-Specker Theorem (which requires at least
3-dimensional systems) are applicable, and these QRNGs thus lack the rigorous
theoretical certification that quantum mechanics can provide, even if it may be
reasonable to think that the measurements they exploit should still be indeter-
ministic.

The most direct approach to overcoming this shortcoming is to use higher
dimensional systems for which the value indefiniteness of measurement outcomes

23
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is, via the Kochen-Specker Theorem in the version of Theeorem 2, provable [13, 7|
to certify a QRNG. Such certification is necessarily “device dependent”—that is,
it relies on knowledge of the functioning of the QRNG—but nonetheless allows
the randomness of the device to be more formally grounded. A simple example
of a QRNG certified in this way was proposed in [13, 7| for spin-1 particles, but
its principle is applicable to any 3-dimensional system (i.e., an implementation
of a qutrit). The approach proposed was to prepare a qutrit in the state |0)
before measuring the observable A = ao|0")}0'| + a1|1") (1’| 4+ a2|2')(2'| for which
the orthonormal basis {|0'),[1"),|2)} is chosen such that (0]0') = 0 and (0|1") =
0]2) = % (see Figure 2.1 below). Since the state |0) is thus an eigenstate of
the projection observable Py = |0')0/], this observable is value definite with value
v(Py) = 0—that is, the measurement outcome ay never occurs.! However, by
the results of |7, 17], both Py = |[I'X1'| and Py = |2')(2| are value indefinite
and, moreover, both outcomes a; and as occur with probability 1/2 according to
the Born rule 1.4. Thus, the QRNG operates as an ideal coin certified by value
indefiniteness.

A QRNG based on this proposal has recently been implemented experimen-
tally [104], not with spin-1 particles but by exploiting a superconducting trans-
mon coupled to a microwave cavity as a qutrit. Figure 2.1 shows a schematic of
the QRNG proposed in [13, 7] based on the implementation used by Kulikov et
al. [104]. This implementation was used to generate a large number of bits, and in
the subsequent sections we will analyse sample sequences produced by this QRNG
implementation. In particular, we will look to detect differences between such se-
quences and pseudo-random sequences arising from algorithmic properties of the
sequences.

This approach to certifying a QRNG via value indefiniteness implies some
additional interesting algorithmic properties of the output sequences of the device
if one is willing to accept slightly stronger physical assumptions (in particular,
about whether being able to compute properties in advance implies well-defined
physical properties). Specifically, it was shown in [7] that such a device, if used
repeatedly ad infinitum to generate an infinite sequence x of bits, will produce
a sequence that is strongly incomputable (technically, “bi-immune” [75]) not just
with probability 1, but with certainty. Although such a result will not alone
lead to observable advantages for finite strings — recall that, from the Born rule,
an ideal QRNG will produce an incomputable sequence with probability 1—this
nonetheless highlights the differences between pseudo and quantum randomness
in relation to computability.

More recently there has also been growing interest in a different type of QRNG

I This is, of course, only true in the ideal case. In the non ideal scenario, any such outcomes
can simply be discarded.
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Figure 2.1: Schematic showing the QRNG based on the Kochen-Specker Theorem
as implemented in [104]. A transmon qutrit system is initially prepared in the state
|0) (with respect to the computational basis By = {|0), |1),|2)} by thermal cooling.
The system is then measured in the basis By = {|0'),|1"),]2')} with (0]0') = 0
and (0[1) = (0|2) = \/Lﬁ In practice, this measurement is performed by first
performing the inverse basis transformation on the system and measuring in the
basis B;. Since [(0]0')|> = 0, this outcome never occurs in an ideal implementation,
so the outcomes a; and ay corresponding to [1)1’| and |2')2'| are mapped to a

binary sequence.

which can provide a stronger form of certification but requires initial random
seeds as input. (Such devices are thus technically randomness expansion devices,
rather than RNGs.) Typically, such devices rely on violating a Bell inequality,
which allows one to certify that the QRNG indeed uses a value indefinite system
without assuming a priori anything about the workings of the device [127, 58,
108]. Such certification is thus termed “device independent”, and allows one to
place lower bounds on the entropy of the source; it is particularly important in
cryptographic settings, where one perhaps does not wish to trust the workings of
a given RNG. Such schemes are very costly, however: not only is an initial random
seed required, but one also must separate the QRNG into two space-like separated
(or at least isolated) components and the stringent requirements of loophole-free
Bell tests reduce the obtainable bitrate by several orders of magnitude compared
to “standard” QRNGs [127].

Other related randomness expansion schemes have also been proposed which
are less experimentally demanding but require additional physical assumptions [90].
In particular, we note that “noncontextuality inequalities” obtainable from proofs
of the Kochen-Specker Theorem can be used to provide such a certification [145,
71, 119]. In doing so, rather than trusting outright that the QRNG uses a system
in which the Kochen-Specker Theorem applies, one actively verifies this under a
weaker physical assumption about the workings of the device. Nonetheless, such
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schemes are still significantly more demanding than that described in Fig. 2.1.
Here we thus focus on the similar device-dependent type scheme described in de-
tail above. Indeed, our focus is on testing the algorithmic properties of individual
strings produced by a QRNG; such tests are complementary to those aimed at
certifying the indeterministic nature of the process itself, and the simplicity of this
scheme, along with its high bitrate, facilities such an analysis.

2.2 Testing RNGs

While it is crucial to have a good theoretical understanding of any RNG, there
are several reasons why testing experimentally their outputs is nonetheless crucial.
Firstly, one can never be sure that the implementation of a RNG matches its
theoretical description, a fact that is equally as true for hardware RNGs as for
software RNGs. Indeed, in the extreme limit, one might not wish to trust any
theoretical claims about a given RNG, and thus confidence in the RNG can only
be gained from performing carefully selected tests. Secondly, thorough testing gives
one the opportunity to detect any issues with assumptions made in the theoretical
analysis of a device or in its practical deployment (e.g., if the distribution of seeds
does not match that assumed theoretically the performance of a RNG might be
compromised ).

It is nonetheless important to recognise that experimental testing can never al-
low one to perfectly characterise a device. Instead, with access to only finite strings
produced by it and the ability to perform a finite number of tests, one can only
ever gain increasing confidence in the operation of the device. One can never be
certain, for instance, that the output obtained was not a simply atypical behaviour
obtained purely by chance. This is doubly true since, as we discussed earlier, ran-
domness is characterised by an infinity of properties, so one must carefully choose
the tests one performs.

The issues arising when testing the outputs of RNGs can be illustrated point-
edly with an example. Imagine a device which deterministically outputs the digits
of the binary expansion of m = mmyms... starting from the 10'°th bit. If we
are unaware of the behaviour of this device and believe it to be a RNG, its out-
put will appear extremely random to us; indeed, 7 passes all standard statistical
tests of randomness [111] despite the fact that it is not even known to be Borel
normal [151, 24|. Nevertheless, the sequence produced by this box would be com-
putable and thus not random at all. Similarly, any attempt to estimate the entropy
of the source from the empirically observed distribution would lead one to believe
the source to be a highly random process, despite the fact it is completely deter-
ministic.

Standard statistical tests of randomness focus on properties of the distribution
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of bits or bit strings within sequences, properties more closely related to Borel
normality than algorithmic complexity. Many such tests were developed with the
aim of testing PRNGs, where reproducing such statistical predictions is a primary
issue, particularly since failing to do so may leak information about the seed and
thus break the security of the PRNG [105]. QRNGs? have generally been tested
against similar tests, such as the NIST [130] and DIEHARD |[112] batteries, and
generally perform well. For example, Quantis is officially certified as passing these
tests on 1000 samples of 1 million bits [94]. Such tests, however, far from confirm
the randomness of the device; indeed, analysis of longer sequences (of 232 bits)
revealed (albeit it very small) bias and correlation amongst the output bits [4].

Such statistical non-uniformity is, however, to be expected in RNGs exploiting
physical phenomena due to experimental imperfections and instability [13]|. Inas-
much as this form of non-uniformity is small enough for the required application,
this is not necessarily problematic as long as a QRNG remains certified by value
indefiniteness: unlike for PRNGs, where non-equidistribution is often a symptom
of deeper issues, the unpredictability of QRNGs is a result of the indeterministic
nature of the device, and is thus assured even if the resulting distribution is bi-
ased [16]. Moreover, bias can be reduced by careful post-processing [149, 125, 5],
allowing quantum indeterminism to still be exploited sufficiently. Although testing
such properties is crucial in order to ensure any bias remains tolerably low, such
tests do not directly probe crucial advantages of quantum randomness, such as the
degree of algorithmic randomness or incomputability of their output.

Some authors have also looked at the compressibility of quantum random se-
quences using standard compression algorithms [103| as a proxy for direct tests of
Kolmogorov complexity. In practice, however, just like the aforementioned tests,
this approach fundamentally relies on statistical properties of the sequence and
suffers from similar problems as the above tests (such as being fooled by com-
putable sequences). Indeed, it is not possible to directly compute the Kolmogorov
complexity since it is an incomputable quantity. Nevertheless, one may still ask
whether there are useful tests that indirectly probe this to try and differentiate
PRNGS—which always produce computable sequences—from QRNGs [49]. In the
following sections we investigate more closely this question.

2 As we discussed in the previous section, we restrict our discussion henceforth to standard
QRNGs, rather than device-independent randomness expansion schemes. These devices
remain the standard approach to QRNGs in practice, and developing tests for their output
remains a crucial problem despite the increased interest in device-independent QRNGs.
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2.3 Testing incomputability and algorithmic ran-
domness

In this section we describe several tests based on algorithmic properties which we
use to study random bits obtained from both PRNGs and the QRNG detailed
in Figure 2.1. We tested 80 sequences of 2?¢ bits® obtained from each of the
following six sources: the initial bits of the binary representation of 7w (which can
be seen as a form of pseudo-randomness [24]), the PRNG used by Python v3.5.4
(a Mersenne Twister algorithm) [115], Random123 v1.09 [131], PCG v0.98 [123],
xoroshiro128-+ [110], and the QRNG described in Section 2.1 (see [104]).

2.3.1 Tests of Borel normality

As mentioned earlier, the notion of Borel normality was the first mathematical def-
inition of algorithmic randomness [40], and although, like many standard tests of
randomness, it focuses on the distribution of bits within a sequence, it is nonethe-
less worth looking at in its own right.

An infinite sequence x € {0,1}* is (Borel) normal if every binary string ap-
pears in the sequence with the right frequency (which is 27" for a string of length
n). Every Martin-Lo6f random infinite sequence is Borel normal [44], but the con-
verse implication is not true: there exist computable normal sequences, such as
Champernowne’s sequence mentioned earlier. Normality is invariant under finite
variations: adding, removing, or changing a finite number of bits in any normal
sequence leaves it normal.

The notion of normality was subsequently transposed from infinite sequences
to (finite) strings [44]. In doing so, one has to replace limits with inequalities, and
one obtains the following definition. For any fixed integer m > 1, consider the
alphabet B,,, = {0,1}" consisting of all binary strings of length m, and for every
1 < ¢ < 2™ denote by N/ the number of occurrences of the lexicographical ith
binary string of length m in the string x (considered over the alphabet B,,). By
|z|,, we denote the length of z over B,,; |x|; = |z|. A string = € B,, is Borel
normal (with accuracy m) if for every integer 1 < m < log, log, |z| and each
1 <5 <2™ we have:

N ()

’x|m

1
~ log, |z

—m

(2.1)

Almost all algorithmic random strings are Borel normal with accuracy m [44];
in particular, they have approximately the same number of Os and 1s. Furthermore,

3 The sequences were obtained from 10 longer sequences of 22 bits, each obtained during
separate experimental runs. We split them further into smaller sequences in order to provide
a more detailed statistical analysis.
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Figure 2.2: Borel normality test: Box-plot showing the distribution of the quantity
max HJTE:) - 2"”‘) log, || for the 80 strings of length |z| = 22¢ bits produced

by each the six RNGs tested.

if all prefixes of a sequence are Borel normal, then the sequence itself is also Borel
normal.

The fact that Borel normality for finite strings is only defined up to the accuracy
function arises from the fact that the definition is well behaved (and converges to
the definition for sequences in the limit) if the right-hand-side of Eq. 2.1 is replaced
by any decreasing computable real function in |z| converging to 0. Fixing a specific
accuracy function allows one to test explicitly the normality of finite sequences (and
such tests have previously been performed on strings produced by QRNGs [49, 139,
114]), but such a choice of accuracy function is necessarily somewhat arbitrary.
However, the relative normality of strings can be tested by comparing the values

of a metric based on 2.1; a reasonable choice of such a metric is the quantity
lm

|z
1 <75 < 2™ We recorded this metric for the six sources of random bits under
consideration, and the resulting distributions are shown in Figure 2.2.

The results show clearly that the bits produced by the QRNG are significantly
less normal than those produced by the other sources. This is, however, not surpris-
ing, since the experiment implementing the QRNG was known to exhibit bias due
to experimental imperfections [104]. Although it is possible to use normalisation
procedures to unbias a source, simple techniques significantly reduce the length of
the output strings (and thus the obtainable statistical power) and can alter various
computability theoretic properties of a sequences [5]; conversely, the consequences
of more complicated techniques on such properties of the output are poorly un-
derstood, so we opted against performing any such normalisation. Nonetheless, as

max ( ) log, |z| over the values m = 1,...,|log,log, |z|| and each
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discussed at the end of Section 2.2, a sufficiently small bias may be less problematic
in practical applications for QRNGs than for traditional PRNGs.

While examining the normality of sequences produced by any RNG is impor-
tant, this algorithmic property fails to test properties of algorithmic randomness
or incomputability in the way we aim to do. The example of Champernowne’s
sequence again testifies to this. To probe such behaviour of QRNGs we thus need
to delve further into algorithmic properties of randomness.

2.3.2 A Martin-Lof test of incomputability

Is it possible to give formally a test which rejects every computable sequence as
nonrandom? Martin-Lof randomness is an important, if not the most important,
form of algorithmic randomness and is based on the notion of Martin-Lof test of
randomness. A test of randomness is defined by a uniformly computably enumer-
able shrinking sequence of constructive open sets in Cantor space (the components
of the test) whose intersection is a constructive null set (with respect to Lebesgue
measure); see [44] for more details. A sequence passes the test if it is not contained
in this null set. A sequence is Martin-Lof random if it passes all Martin-Lof tests.
There exist countably many such tests: some test normality, others test the law
of large numbers, etc. The answer to the question above is affirmative: such a
Martin-Lof test exists.

Testing incomputability rather that randomness directly is an important initial
step: indeed, all algorithmically random sequences are incomputable and it is
this property of randomness that PRNGs fail most starkly, since they necessarily
produce computable sequences. Moreover, the robustness of incomputability to
bias in a sequences makes such tests potentially more robust in practice. To
specify a Martin-Lof test for computability, we must define the sequences contained
in its nth component for all integers n > 0. To do so, one can take the nth
component to be the union of all ¢{0,1}*{0,1}* for which there is an e such
that 0(0) = ©.(0),...,0(e+n+1) = g.(e+n+1) and o € {0,1}*. This is
an open computably enumerable class that contains all computable sets, as each
computable set has a computable characteristic function ¢.. Furthermore, the
measure of the nth component is bounded from above by Y 27"7¢"2 which in
turn is bounded from above by 277!, as the string o derived from ¢, has length
e+n+2 and is a prefix of the set for which ¢, computes the characteristic function.

It is not difficult to see that the above test for computability depends on the
enumeration (p.), and there is no obvious “natural” choice. Furthermore, invari-
ance under finite variations renders the test unsuitable for finite experiments. As a
result, it is necessary to consider more indirect methods to test the incomputability
of sequences produced by RNGs.
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2.3.3 Chaitin-Schwartz-Solovay-Strassen tests

In this section we propose and carry out several related tests based on a rather
different property of random sequences: their ability to de-randomise the Solovay-
Strassen probabilistic test of primality [140]. In contrast with most standard tests
of randomness which check specific properties of strings of bits, these tests are
based on the behaviour of the strings with respect to certain “secondary” tasks.
We first briefly describe the Solovay-Strassen primality test and the advantage
offered in this task by random strings, before presenting the tests themselves.

The Solovay-Strassen test checks the primality of a positive integer n: take k
natural numbers uniformly distributed between 1 and n — 1, inclusive, and, for
each i(= iy,...,14), check whether a certain, easy to compute, predicate W (i, n)
holds (W is called the Solovay-Strassen predicate). If W (i,n) is true then “i is a
witness of n’s compositeness”, hence n is composite. If W (i,n) holds for at least
one ¢ then n is composite; otherwise, the test is inconclusive, but in this case the
probability that n is prime is greater than 1 — 27*. This is due to the fact that at
least half the i’s between 1 and n — 1 satisfy W (i, n) if n is composite, and none
of them satisfy W (i, n) if n is prime [140].

Chaitin and Schwartz [55] proved that, if ¢ is a large enough positive inte-
ger and s is a long enough c-Kolmogorov random binary string, then n is prime
if and only if Z(s,n) is true, where Z is a predicate constructed directly from
O(logn) conjunctions of negations of W predicates (see Section 2.3.3 below for
more details). The crucial fact is that the set of c-Kolmogorov random strings is
highly incomputable: technically the set is immune, that is, it contains no infinite
computably enumerable subset [44]. As a consequence, de-randomisation is thus
non-constructive, and thus without practical value.

Drawing on this result, we propose several tests that operationalise it in order
to test the randomness of a sequence based on whether certain numbers obtained
from RNGs succeed in witnessing the compositeness of well chosen targets. We
will make particular use of Carmichael numbers as these target composites. A
Carmichael number is a composite positive integer n satisfying the congruence
b»~! =1 (mod n) for all integers b relatively prime to n. Although Carmichael
numbers are composite, they are difficult to factorise and thus are “very similar”
to primes; they are sometimes called pseudo-primes. Many Carmichael numbers
can pass Fermat’s primality test, but less of them pass the Solovay-Strassen test.
Increasingly Carmichael numbers become “rare”.*

In what follows we thus present four different tests based on the Chaitin-
Schwartz Theorem and the Solovay-Strassen test. Since the proposed tests rely
directly on the algorithmic randomness of a string, they can potentially give direct

4 There are 1,401,644 Carmichael numbers in the interval [1,10'8].
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empirical evidence of incomputability, in stark contrast to most tests of random-
ness. For example, the Borel normality test discussed previously is unable to do
so: the normality of Champernowne’s sequence mentioned earlier is evidence of
this.

Since the Chaitin-Schwartz Theorem relies on the Kolmogorov randomness of
the sequences it involves, these tests also go beyond the previous one in not only
probing incomputability, but also algorithmic complexity more generally. Indeed,
an ideal QRNG should produce c-Kolmogorov random strings with very high prob-
ability, while PRNGs produces strings of very low Kolmogorov complexity (since,
in the limit, they are computable). Nonetheless, we focus on probing the incom-
putability of strings from (QRNGs rather than their Kolmogorov complexity or
randomness, a doubly motivated choice. Firstly, the fact that incomputability is
a weaker property than Kolmogorov randomness and less affected by bias means
that any difference between pseudo and quantum randomness will potentially be
easier to observe. Secondly, as mentioned earlier, subject to an additional phys-
ical assumption, QRNGs can be shown to produce incomputable sequences with
certainty, and not just probability one |7].

As in [49], we conduct various statistical tests to determine whether any ob-
served difference is statistically significant or not. If a difference is found to be
significant, we then look at whether this really provides evidence of incomputabil-
ity or not. As it is not a priori clear what distribution the various test met-
rics we employ should follow, we utilise the non-parametric and distribution free
Kolmogorov-Smirnov test for two samples [59] to determine whether two datasets
differ significantly. This test returns a p-value® indicating the probability, given the
observed test statistic, that the observed distributions were indeed drawn from the
same distribution. We conclude that “the difference between the two datasets is
statistically significant” if the p-value is less than 0.005. We choose this relatively
strict p-value to lower the chance of false positives arising from the fact that we
will perform several tests between several different data sources: the probability
of observing a spurious difference (simply by chance) on at least one of the many
tests is much higher than the critical p-value of 0.005 of obtaining such a spurious
result on any single test. A higher critical p-value (such as the commonly used
0.05) would mean such false positives would be highly probable.

When no significant difference is found by the Kolmogorov-Smirnov test, we
additionally check whether the test metric distribution is consistent with a normal
distribution by performing a Shapiro-Wilk test [134];% if it is,” we then use the

5 Exact p-values are only available for the two-sided two-sample tests with no ties.

6 More precisely, the Shapiro-Wilk test examines the null hypothesis that the samples
Z1,---,%n come from a normally distributed population. This test is appropriate for small
samples, since it is not an asymptotic test.

" Here we consider evidence for non-normality to be a p-value below 0.05.
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Figure 2.3: First Chaitin-Schwartz-Solovay-Strassen test on 80 samples: Box-plot
showing the distribution in the minimum number of witnesses needed to verify the
compositeness of all Carmichael numbers of at most 16 digits.

(parametric) Welch ¢-test [152], which is a version of Student’s test, to determine
whether there is a significant difference between the means of the test statistics
for the different RNGs under the assumption of normally distributed test metrics.

First Chaitin-Schwartz-Solovay-Strassen test

The first test we look at, which was previously used in [49], probes directly the
efficacy of a set of random bits in simulations (in our case for checking primality).

We performed this test on all of the 246,683 Carmichael numbers n with at most
16 digits as computed in [126], using strings of bits from each random source to
specify the numbers tested as potential witnesses of compositeness. More precisely,
for a fixed & (see below) and each Carmichael number n we take & strings of [log, n |
bits from the source string and reject and resample those which specify the binary
representation of a number greater than n — 1. These k strings, interpreted as the
binary representation of k numbers iy,..., 7, serve as the witnesses to test the
primality of n (i.e., the ¢ in W(i,n)). Initially we take & = 1 and increase k until
all the Carmichael numbers are correctly determined to be composite.

The metric for the test is taken to be the smallest k£ such that at most k
witness numbers were required to obtain a verdict of non-primality for all of the
Carmichael numbers. For each k, new bits are read from the sample string for
each Carmichael number to be tested; we only restart reading from the start of
the string (and thus recycling bits) when there was a need to try a larger value of
k to pass this test.

Figure 2.3 shows the performance of the 80 bit strings from each RNG (i.e., the
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same ones as tested for Borel normality in Section 2.3.1) using the metric described
above.

The full results of the statistical analysis of this test (as well as the following)
are given in the Appendix. The Kolmogorov-Smirnov tests found no statistical
significant difference between any of the sources of randomness (see Table 2.1). The
Shapiro-Wilk tests showed that the distribution of test statistics were not normally
distributed (see Table 2.2), so further parametric tests were not performed. This
test therefore did not provide any evidence of significant differences between the
RNGs, let alone evidence of incomputability of the QRNG.

Table 2.1: Kolmogorov-Smirnov tests for the first Chaitin-Schwartz-Solovay-
Strassen test with the metric that records the minimum number of witnesses
needed to verify the compositeness of all Carmichael numbers of at most 16 digits.

p-values s Python Random123 QRNG xoroshirol28+
PCG 0.8186  0.8186 1 1 1
s 0.9976 0.9976 0.5596 1
Python 0.9976 0.5596 0.9976
Random123 0.9976 1
QRNG 0.9780

Table 2.2: Shapiro-Wilk tests of normality for the first Chaitin-Schwartz-Solovay-
Strassen test with the metric that records the minimum number of witnesses
needed to verify the compositeness of all Carmichael numbers of at most 16 digits.

PCG 0 Python Random123 QRNG =xoroshirol128+
p-value <1074 <107% <104 <104 <1074 <104

Second Chaitin-Schwartz-Solovay-Strassen test

We next consider a closely related (and similarly motivated) test with a slightly
different metric. For each Carmichael number n, we repeatedly obtain a witness
from the string being tested (in the same manner as in the first test and using
new bits for each Carmichael number) until the compositeness of n is successfully
witnessed. For this test metric we take the total number of bits used (for a given
string to test) to confirm the compositeness of all 16 digit Carmichael numbers.
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We calculate this as the sum, over all such Carmichael numbers n, of [log,n]
times the number of Solovay-Strassen trials needed to witness the compositeness
of n. (In this way, bits that are read but then rejected because they give a witness
larger than n do not contribute to the metric.)
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Figure 2.4: Second Chaitin-Schwartz-Solovay-Strassen test: total number of bits
required to verify the compositeness of all Carmichael numbers of at most 16 digits
using (a) the 80 strings from each RNG, and (b) the complement of these strings.
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Figure 2.4(a) shows a boxplot of the results for the 80 strings from each RNG
being tested. The visible difference between the QRNG and the other sources
is confirmed by the Kolmogorov-Smirnov tests (see Table 2.3), which showed
a statistically significant difference between the QRNG and w, Random123 and
xoroshiro128+-. There is not, however, a general trend of normality for the test
metric across all sources (in particular, there is weak evidence to reject normality
of the distribution for the Python strings; see Table 2.4), so it is not appropriate
to use Welch’s t-test to look for a difference between the QRNG and Python.

Although a significant difference was found between the QRNG and most the
other sources, this is not necessarily a result of the incomputability we wish to test.
Indeed, we have already seen from the Borel normality test that the QRNG has a
small statistical bias, so we should thus verify that the difference seen here is not
also a result of this bias. As mentioned earlier, we opted against trying to normalise
the data to see if the bias is indeed to origin of the effect, not only because, with the
amount of data available to us, this would markedly reduce our statistical power,
but also because the effect of normalisation on the algorithmic complexity of the
sequence is not entirely understood. Instead, a simple way to test whether bias
is behind the observed differences is to perform the same test on the complement
of the strings we have tested (i.e., exchanging 0 and 1). Since this transformation
preserves randomness and incomputability, if the difference observed is evidence
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of such properties it should not be affected by such a transformation.

Figure 2.4(b) shows the result of the test on the complemented sequences. Here
we see that again there is an apparent difference between the QRNG and some
of the other sources. This is confirmed by the Kolmogorov-Smirnov tests (see
Table 2.5) to be the case between the QRNG and 7, Python and Random123.
In this case, the test metric is consistent with being normally distributed (see
Table 2.6), so it is reasonable to use Welch’s t-test to try and confirm this difference
further under an assumption of normality. Doing so (see Table 2.7) shows that
there is indeed a statistically significant difference between the QRNG and all the
other sources on the complemented strings.

Table 2.3: Kolmogorov-Smirnov tests for the second Chaitin-Schwartz-Solovay-
Strassen test with the “bit counting” metric on the non-complemented (i.e., origi-
nal) bits.

p-values s Python Random123 QRNG xoroshirol128-+
PCG 0.6953  0.4383 0.922 0.0132 0.6953
T 0.4383 0.8219 0.0045 0.9794
Python 0.0814 0.0537 0.5625
Random123 0.0014 0.5625
QRNG 0.0026

Table 2.4: Shapiro-Wilk tests of normality for the second Chaitin-Schwartz-
Solovay-Strassen test with the “bit counting” metric on the non-complemented
(i.e., original) bits.

PCG s Python Random123 QRNG xoroshirol28+
p-value 0.4892 0.2003 0.04867 0.5951 0.1669 0.0808

However, as is clear from Figure 2.4(b), this difference is in the opposite di-
rection to (and of the same magnitude as) that in Figure 2.4(a): in the latter the
QRNG appears to perform better, while in the former, it performs worse. It thus
appears that this difference was indeed due to the bias of the QRNG rather than
incomputability. Nonetheless, we note that it is strange that biased sequences
(in particular, biased towards having more zeroes) perform better in proving the
compositeness of Carmichael numbers; we are not aware of any number theoretic
explanation for this.
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Table 2.5: Kolmogorov-Smirnov tests for the second Chaitin-Schwartz-Solovay-
Strassen test with the “bit counting” metric on the complemented bits.

p-values s Python Randoml123 QRNG xoroshirol28+
PCG 0.4383  0.3307 0.2424 0.05372 0.5625
v 0.4383 0.1202 0.0045 0.5625
Python 0.5625 0.0026 0.8219
Random123 0.0014 0.2424
QRNG 0.0132

Table 2.6: Shapiro-Wilk tests of normality for the second Chaitin-Schwartz-
Solovay-Strassen test with the “bit counting” metric on the complemented bits.

PCG s Python Randoml123 QRNG xoroshirol128+
p-value 0.199 0.2433 0.0754 0.4401 0.0518 0.9673

To conclude, this test shows that the QRNG behaves significantly differently
from almost all the other sources on this test (whether we use either the original
bits or the complemented bits), but that this difference is likely due to the bias
of the QRNG. Understanding better why this bias makes such a difference would
nonetheless be interesting.

Third Chaitin-Schwartz-Solovay-Strassen test

While the above tests are inspired by the Chaitin-Schwartz Theorem [55], they do
not directly test the predicate Z(s,n) appearing therein that we mentioned earlier.
A key difference between these tests and the previous ones is the method they use
to convert strings of random bits into potential witnesses to test.

Consider s = s ... S;,—1 a binary string (of length m) and n an integer greater
than 2. Let k be the smallest integer such that (n — 1)¥*! > 2™ — 1; we can thus
rewrite the number whose binary representation is s into base n — 1 and obtain
the unique string didy_1 . .. do over the alphabet {0,1,...,n — 2}, that is,

k m—1
Zdi(n —1)' = Z 542"
i=0 =0

The predicate Z(s,n) is defined by
Z(S,J) :—|W(1+d0,n)/\~--/\—|W(1—i—dk,1,n), (22)
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Table 2.7: Welch t-tests for the second Chaitin-Schwartz-Solovay-Strassen test
with the “bit counting” metric on the complemented bits.

p-values s Python Randoml123 QRNG xoroshirol28+
PCG 0.6422  0.3796 0.1265 0.0034 0.9454
™ 0.6343 0.2287 0.0004 0.6795
Python 0.4683 0.0001 0.3964
Random123 <1074 0.1271
QRNG 0.0020

where W is the Solovay-Strassen predicate from Section 2.3.3. The digits of s
(rewritten in base n — 1) define the witnesses used to test the primality of n.
The main result from [55] is:

Theorem 5. For all sufficiently large c, if s is a c-Kolmogorov random string of
length £(£ 4 2¢) and n is an integer whose binary representation is £ bits long, then
Z(s,m) s true if and only if n is prime.

In order to carry out these tests we first fix ¢. For each Carmichael number n
(with an /-bit binary representation) we take ¢ = £ — 1.8
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Figure 2.5: Third Chaitin-Schwartz-Solovay-Strassen test: Box-plot showing the
distribution of total number of bits used to identify all 16-digit Carmichael numbers
as composite by (a) the 80 strings from each RNG, and (b) the complement of these
strings.
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8 This is somewhat arbitrary; other choices could of course be made, but would make little
difference to our test.
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The metric of the third test has some similarities to that used in the second
test. For each such n we take ¢ (¢ +2c) bits. Rewriting s in base n —1 as described
above, we then compute W (1 + d;,n) for 0 < j < k until the first j is found such
that W (1+4d;,n) holds (and the compositeness of n is thus witnessed). The metric
itself is then taken as the sum (over all 16-digit Carmichael numbers n tested) of
J % [logy(n—1)]. Note that, if no first j < k is found such that W (1+d;, n) holds
(which occurs very rarely), then we simply count all the bits used when testing
that Carmichael number, i.e., ¢ (¢ + 2¢). Figures 2.5(a) shows the performance
of the 80 strings from each of the six sources according to this metric. In order
to be able to do decouple any potential difference between the QRNG and the
other sources due to algorithmic randomness from those resulting from the bias of
the QRNG, we similarly perform the same test on the complement of each of the
strings, the results of which are shown in Figure 2.5(b).

The results of the Kolmogorov-Smirnov tests on the data shown in Figures 2.5(a)
and 2.5(b) are given in Tables 2.8 and 2.11, respectively. No statistically significant
differences between any of the sources were found, reinforcing the impression given
by Figure 2.5 that the RNGs all give similar results. The Shapiro-Wilk test shows
(see Tables 2.9 and 2.12) that there is no strong evidence against the normality of
test metric for the non-complemented strings (but there was weak evidence against
it for the complemented ones), so we were able to use Welch’s t-test to look for
any further evidence of differences between the sources on these strings (see Ta-
ble 2.10). No significant differences between the sources were found by these tests
either. We therefore conclude that the third Chaitin-Schwartz-Solovay-Strassen
test with this metric, which counts the total number of bits required to verify
the compositeness of all Carmichael numbers of at most 16 digits, failed to find
significant differences between the QRNG and the PRNGs tested.

Table 2.8: Kolmogorov-Smirnov tests for the third Chaitin-Schwartz-Solovay-
Strassen test with the “bit-counting” metric for the non-complemented (i.e., origi-
nal) bits for all Carmichael numbers of at most 16 digits.

p-values s Python Random123 QRNG xoroshirol28+
PCG 0.2694  0.4821 0.2988 0.4013 0.1054
T 0.6953 0.4383 0.3307 0.4383
Python 0.8186 0.5625 0.5625
Random123 0.9794 0.8219

QRNG 0.8219
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Table 2.9: Shapiro-Wilk tests of normality for the third Chaitin-Schwartz-Solovay-
Strassen test with the “bit-counting” metric for the non-complemented (i.e., origi-
nal) bits for all Carmichael numbers of at most 16 digits.

PCG s Python Randoml123 QRNG xoroshirol28+
p-value 0.2076 0.4921 0.3337 0.1956 0.7608 0.1347

Table 2.10: Welch t-tests for the third Chaitin-Schwartz-Solovay-Strassen test
with the “bit-counting” metric for the non-complemented (i.e., original) bits for
all Carmichael numbers of at most 16 digits.

p-values T Python Randoml123 QRNG xoroshirol28+
PCG 0.2838  0.81 0.5227 0.4335 0.2437
T 0.4186 0.6833 0.8401 0.911
Python 0.6956 0.584 0.3653
Random123 0.8585 0.6096
QRNG 0.7629

Table 2.11: Kolmogorov-Smirnov tests for the third Chaitin-Schwartz-Solovay-
Strassen test with the “bit-counting” metric for the complemented bits for all
Carmichael numbers of at most 16 digits.

p-values s Python Random123 QRNG xoroshirol28+
PCG 0.5596 0.9794 0.173 0.9794 0.3307
T 0.922 0.8219 0.8219 0.6953
Python 0.5625 0.9194 0.6953
Random123 0.4383 0.1201
QRNG 0.8219

Fourth Chaitin-Schwartz-Solovay-Strassen test

The final test is based more closely on the Chaitin-Schwartz Theorem out of the
tests we consider. Rather than looking at how many witnesses need to be tested
until a Carmichael number’s compositeness is verified, we look directly at the
ability of the entire set of witnesses evaluated in 2.2 to verify the compositeness
of a number. In other words, we look for direct violations of the Chaitin-Schwartz
Theorem: a violation appears when for all j =0,...,k—1, W(1+4d;,n) are false;
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Table 2.12: Shapiro-Wilk tests of normality for the third Chaitin-Schwartz-
Solovay-Strassen test with the “bit-counting” metric for the complemented bits
for all Carmichael numbers of at most 16 digits.

PCG s Python Randoml123 QRNG xoroshirol28+
p-value 0.4616 0.6708 0.6067 0.94 0.9355 0.0239

that is, all tests wrongly conclude that n is “probably prime”.

However, as the Solovay-Strassen test guarantees that W(1+d;, n) is true with
probability at least one half when n is a composite number, it quickly becomes
difficult, in practice, to observe such violations for even the smallest Carmichael
numbers used in the previous tests. In order to observe some violations with the
length of random strings (and time) we have access to, we have to severely restrict
ourselves and be content with testing the performance of the strings on only the
odd composite numbers less than 50: 9,15, 21,25, 27,33, 35,39, 45,49. For these
numbers, we compute Z(s,n) by reading /(¢ + 2¢) bits and following the same
procedure as in the third test. When Z(s,n) = 1, a violation of the Chaitin-
Schwartz Theorem is thus observed. Since testing this predicate a single time on
the ten numbers above would give insufficient statistics to observe any difference
between the sources, we then repeated the above procedure reading from then
2nd bit of each string, then the 3rd, etc., until all the random bits have been
used. The metric is thereby taken as the average number of violations observed
for the 10 composites tested (where the average is taken over all the repetitions).
Figures 2.6(a) and 2.6(b) show the results of this test for the 80 strings of each
of the six sources used in the previous tests: again, the tests in the former figure
use the original strings from each source while the tests in the latter use the
complemented strings.

We apply the same statistical tests to determine whether there are any sta-
tistically significant differences in performance between the different RNGs. The
results of the Kolmogorov-Smirnov tests for the data in Figures 2.6(a) and 2.6(b)
are given in Tables 2.13 and 2.15, respectively. Unlike the results for the previ-
ous metrics, the QRNG exhibits significantly different behaviour on the original
(i.e., non-complemented) strings from the PCG, Python and Random123 PRNGs.
However, no significant difference is found on any of the complemented strings.
The Shapiro-Wilk tests (see Tables 2.14 and 2.16) find strong evidence against the
normality of the distribution of the test metric, so Welch’s t-test was not applied
to see if further evidence of significant differences was present.
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Figure 2.6: Fourth Chaitin-Schwartz-Solovay-Strassen test: Box-plot showing the
distribution of the average count of violations of the Chaitin-Schwartz Theorem
for all odd composite numbers less than 50 by (a) the 80 strings from each RNG,
and (b) the complement of these strings.

Table 2.13: Kolmogorov-Smirnov tests for the fourth Chaitin-Schwartz-Solovay-
Strassen test with the “violation-count” metric for non-complemented (i.e., origi-
nal) bits for all odd composite numbers that are less than 50.

p-values s Python Randoml123 QRNG xoroshirol28-+

PCG 0.318 0.2414 0.602 0.0027 0.9976

7r 0.692 0.8186  0.05397 0.9976
Python 0.9194  0.0004 0.8186
Random123 0.0047 0.8186
QRNG 0.0348

Table 2.14: Shapiro-Wilk tests of normality for the fourth Chaitin-Schwartz-
Solovay-Strassen test with the “violation-count” metric for non-complemented (i.e.,
original) bits for all odd composite numbers that are less than 50.

PCG T Python Randoml123 QRNG xoroshirol28+
p-value < 10~* 0.0040 0.0002 0.0056 0.0115 0.0148
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Table 2.15: Kolmogorov-Smirnov tests for the fourth Chaitin-Schwartz-Solovay-
Strassen test with the “violation-count” metric for the complemented bits for all
odd composite numbers that are less than 50.

p-values T Python Random123 QRNG xoroshirol28+
PCG 0.692 0.9194 0.9194 0.1725 0.5596
T 0.5596 0.9976 0.692 0.2414
Python 0.692 0.1725 0.8186
Random123 0.5596 0.5596
QRNG 0.0135

Table 2.16: Shapiro-Wilk tests of normality for the fourth Chaitin-Schwartz-
Solovay-Strassen test with the “violation-count” metric for the complemented bits
for all odd composite numbers that are less than 50.

PCG s Python Randoml123 QRNG xoroshirol28+
p-value 0.06601 0.02957 < 10~* 0.0080 <1074 0.0017

Again, the reason for the apparently significant differences in performance be-
tween the QRNG and some of the sources (at least for the non-complemented
strings) is unclear, and further investigation is required. The fact that only very
small composite numbers were able to be tested means that, in the absence of
strong evidence of differences between the sources, the results should be interpreted
cautiously. Indeed, the Chaitin-Schwartz Theorem is an asymptotic result, and a
significant difference on larger composites (ideally Carmichael numbers), would be
preferable. We thus cautiously conclude that the fourth Chaitin-Schwartz-Solovay-
Strassen test with the violation-count metric potentially identifies differences be-
tween QRNGs and the other sources, but that further testing and study is needed
to confirm the robustness of the initial results observed here.

2.4 Conclusions

In this chapter, we study the ability to formulate tests that probed the incom-
putability and algorithmic randomness of strings produced by QRNGs. Standard
tests used to assess the quality of strings produced by PRNGs and QRNGs alike
focus on simple statistical properties of the sequences, yet the most marked differ-
ences between QRNGs and PRNGs are the algorithmic properties of strings pro-
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duced by such devices. Such tests thus provide an important and novel approach
to evaluating the performance of QRNGs. This type of test, which probes the ran-
domness of outputs of QRNGs, is complementary to the certification of a QRNG
as exploiting random processes, either via theoretical analysis of the device [13, 7|
or the use of device-independent randomness expansion schemes [127, 58|.

The properties of incomputability (and, consequently, of algorithmic random-
ness too) mean that one must resort to indirect tests of incomputability in prac-
tice, and we discussed several such approaches. We considered testing the Borel
normality of sequences—a necessary property of algorithmic randomness—which
probes the bias of a sequence rather than its incomputability per se. This served
as a useful preliminary probe for the analysis of later tests. We then focused on
a different approach based around the Chaitin-Schwartz Theorem, which shows
a practical consequence of algorithmic randomness in probabilistic primality test-
ing algorithms. We proposed four different tests based on this result which, in
principle, could exhibit advantages due to the incomputability—as well as the
algorithmic randomness—of sequences from QRNGs over PRNGs.

To assess the practical utility of these tests, we applied them to long sequences
generated by various RNGs: a QRNG (described in Section 2.1), and several
different PRNGs. Two of the tests (the first and the third) failed to find any
significant differences between the QRNG and the PRNGs. A significant difference
was, on the other hand, observed, for the second test. However, we were able to
show that the difference was due to a small bias present in the strings produced by
the QRNG rather than a result of any incomputability. Indeed, this highlighted
a key challenge: the need to decouple the incomputability from the bias within
the test results, since the tests can in general be affected by both these elements.
To this end, we examined the performance of tests on the complement of the
strings as well as the strings themselves, but conclude that care should be taken
to formulate tests that are not affected by the bias of a sequence. This task is
complicated, however, by the fact that the effect of using a biased distribution
in probabilistic primality testing is not well understood theoretically. For future
studies, it would thus be desirable to have sufficiently long strings to analyse
from a certified QRNG for which the bias is sufficiently small so as to not be a
limiting factor for the tests. Conversely, one should also study further the effect
of normalisation procedures [149, 5] on such metrics, so that such tests can be
properly analysed when applied to normalised, rather than raw, sequences of bits.

Our fourth test, which was designed to follow more faithfully the Chaitin-
Schwartz Theorem and to be potentially more robust to bias (but, unfortunately,
more demanding to apply in practice), produced ambiguous results. In particular,
significant differences were found only on the non-complemented strings, but it was
not clear whether these differences were entirely due to bias, as one would expect
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the complemented strings to show a similar difference in the opposite direction,
which was not observed. Due to the practical limitations of this test and small
numbers tested, further testing (and, probably, refinements of the test itself) on
more data are needed to understand this effect better.

While our tests failed to find any conclusive experimental evidence of incom-
putability of quantum randomness, they provide an important study for the devel-
opment of new types of tests aimed at probing algorithmic properties of quantum
randomness. Indeed, being based on the Chaitin-Schwartz Theorem, the tests in
fact probe the stronger property of c-Kolmogorov randomness, and this fact poten-
tially contributes to the difficulty in observing indirect effects of incomputability.
The development of further tests to this end, as well as additional experimental
studies, are therefore merited.

We finish by reiterating that tests of the output of QRNGs, such as we describe
here, complement, rather than replace, the certification by value indefiniteness
of a QRNG. Indeed, just as with standard statistical tests of RNGs, even if no
difference between QRNGs and PRNGs is found on the tests, it is important that
QRNGs are verified to pass such tests. QRNGs certified by the Kochen-Specker
Theorem, such as the one used to provide the data for this paper [104], can also
be used to perform device-independent randomness expansion [145, 71, 119, and
it would be interesting to combine algorithmic tests like we develop here with such
an approach, although producing sufficient amounts of data for this to be possible
remain a challenge.

All the test data (i.e., random strings), programs and results are available
online in [9].



Chapter 3

Solving the Maximum Common
Subgraph Isomorphism Problem via
Quantum Annealing

3.1 Introduction

Quantum computing is a field of increasing interest to computer scientists that
involves taking advantage of quantum effects to perform computations that differ
significantly from those of classical computers. Certain types of problems, such as
simulations of quantum systems, which are considered to be too hard for classical
computers, may be solved by quantum computers within a reasonable time. Even
though it is still debatable if exponential speed-up on certain types of problems
can be achieved by quantum computers, the possibility of a huge advantage still
drives people to develop new types of quantum machines. In this area, developing
quantum algorithms is essential.

D-Wave machines are based on a process known as quantum annealing. These
quantum computers solve discrete optimisations problems like Ising problem or
the Quadratic Unconstrained Binary Optimisation (QUBO) problem. D-Wave
machines take advantage of quantum tunnelling to find the global minimum of
objective functions. Various problems can be reformulated as QUBOs, so they
can be solved by these machines [37, 120, 124]. This method has the potential to
solve hard graph problems, such as the graph isomorphism problem [155], graph
partitioning [146] and many others [57, 74, 144].

Subgraph isomorphism encompasses both the maximum clique problem and
the task of determining the presence of a Hamiltonian cycle in a graph. As a
result, it falls into the category of NP-complete problems. Cook’s seminal paper
from 1971 [61], which established the Cook-Levin theorem, also demonstrated the

46



47

NP-completeness of subgraph isomorphism. This was accomplished by employing
a reduction from 3-SAT that involved cliques. Since finding a subgraph isomor-
phism is NP-complete, and the MCS problem is a more complex version of this,
it inherits the NP-completeness property [83]. The maximum common subgraph
isomorphism problem has a wide impact in bioinformatics [39], alignment of chem-
ical structures [76], computer vision and pattern matching [60, 69], etc. By solving
this problem, we get the largest common subgraph of the two input graphs. There
are two variations of this problem that have been studied a lot [39, 76]: the maxi-
mum common induced subgraph isomorphism (MCISI) problem and the maximum
common edge subgraph isomorphism (MCESI) problem.

However, both MCISI and MCESI do not consider the ratio of the number
of common edges to common vertices. We introduce restrictions on how dense
the common subgraphs are (a graph is denser when it has more edges with the
same number of vertices). By maximising the density of the common subgraph,
we can obtain a common subgraph that is more closely connected. The k-densest
subgraph problem aims to identify the subgraph with the highest density, precisely
on k vertices. This problem serves as a generalization of the clique problem and,
consequently, is NP-hard in arbitrary graphs. Our problem of k-densest common
subgraph isomorphism is at least as hard as the k-densest subgraph problem, since
we are seeking the k-densest common subgraph shared by the two input graphs.

In this chapter we first propose QUBO formulations for the problems MCISI,
MCESI and k-densest maximum common subgraph isomorphism. We first give
their definitions and their QUBO formulations. Then we prove the correctness of
these formulations. Finally, we run MCISI and MCESI algorithms on the D-Wave
2X machine instances of graphs that represent some small organic molecules and
analyse the experimental data. We also give a short discussion for the reason why
k-densest maximum common subgraph isomorphism algorithm is not suitable to
run on D-Wave 2X machines.

3.2 QUBO formulations for the maximum com-
mon subgraph isomorphism problem

In [50] QUBO formulations for the subgraph isomorphism problem and the induced
subgraph isomorphism problem are provided. An improved QUBO formulation
that reduces the number of variables was proposed in [154]. Solving the graph
isomorphism problem decides whether the two graphs are isomorphic. Solving the
subgraph (induced subgraph) isomorphism problem decides whether one graph is
isomorphic to a subgraph (induced subgraph) of the other graph. A simple example
of these three problems are shown in Figure 3.1. In Figure 3.1(a), the two graphs
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are isomorphic to each other. In Figure 3.1(b), there is an isomorphism between
the left graph and an induced subgraph of the right graph. In Figure 3.1(c), the
left graph is isomorphic to a subgraph of the right graph. However, the solutions
of all three problems cannot show the common substructure shared by two graphs
of arbitrary sizes. In order to obtain this piece of information, we can solve the
maximum common subgraph isomorphism problem to determine the largest shared
sub-structure. We will build our QUBO formulation for the maximum common
subgraph isomorphism problem by extending the idea in [50]. Before we show our
QUBO formulation, we first describe the notation that we will use, then we give a
detailed definition of the problems.

3.3 Definition and notation

We denote the integers modulo n by Z, = {0,...,n — 1} and a repeated cross

product by
Lo X+ X Loy =7
—_———

m times

The domain of f, denoted Dom(f), is all x € X where f(x) is defined and the
image of f, denoted Im(f), is the set of f(z) for all z € Dom(f). A partial function
f:X --+Y is called a partial (total) function if Dom(f) C A (Dom(f) = A).

Definition 6. A labeled graph (adding weights to a simple graph) can be repre-
sented by a four-tuple G = (V, E, «, ), where

o V is the set of vertices,

o £ CV xV isthe set of edges,

e a:V — Ly is a function assigning labels to vertices,
o 3:FE — Lg is a function assigning labels to edges.

If u,v € V then we denote an edge connecting u and v by uv. Alternatively,
we say (u,v) € E.

Definition 7. Given a graph G = (V, E,«, 3), a subgraph of G is a graph S =
(Vs, Es, as, Bs), where

L VSQV;
° ESgEﬂ(V5XVS),

o as =y,
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(a) Isomorphic graphs

?@l

) Graphs that shares an isomorphic
1nduced subgraph

) Graphs that shares an isomorphic
subgraph

Figure 3.1: Examples of isomorphic graphs, isomorphic induced subgraph and
isomorphic subgraph
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o Bs=p ’ES-

Definition 8. Given a graph G = (V, E, «, 3), an induced subgraph of G is a graph
I = (V1, Er, a1, Br), where

o V;CV,
oEI:Eﬂ(VIxV}),
'Oq:afv,:

o Br=0|g-
Definition 9. A bijective function v : Vi — Vs is a graph isomorphism between
graphs Gy = (Vi, By, aq, 1) and Gy = (Va, Ea, ag, Ba) if

o a;(v1) = as(Y(vy)) for all vy € Vi and as(ve) = a1 (¢~ (va)) for all vy € Vs,

e for any edge e; = (v1,v]) € Ey, there exists an edge eo = (Y(v1),9(v])) € Es,
such that B1(e1) = Pa(ea), and for any edge es = (ve,vh) € Esy, there exists
an edge ey = (v~ (vy), "1 (v})) € E1, such that Bi(e1) = Ba(e2)

Definition 10. An injective function ¢ : Vi — Vi is a subgraph isomorphism
between graphs G1 = (V1, E1, a1, 51) and Gy = (Va, Es, e, B2) if there exists a
subgraph S of the graph Gs, such that ¢ is a graph isomorphism between G1 and
S.

Definition 11. An injective function ® : Vi — Vs is an induced subgraph iso-
morphism between graphs Gv = (Vi, By, aq, 1) and Gy = (Va, By, ag, o) if there
exists an induced subgraph I of the graph Gs, such that ® is a graph isomorphism
between G1 and 1.

Definition 12. Given graphs Gy = (Vi, Ey, a1, 1) and G = (Va, B, as, fBs), S
1s a common subgraph of both G1 and G5 if there exists a subgraph isomorphism
between S and G1, and a subgraph isomorphism between S and G.

Definition 13. Given graphs Gy = (Vi, Ey, aq, 1) and G = (Va, Es, s, 52), I is
a common induced subgraph of both Gy and G5 if there exists an induced subgraph
1somorphism ® between I and G, and an induced subgraph isomorphism between

I and Gsy.

Next, we give the definition for the maximum common subgraph isomorphism.
Since it is both meaningful to find the maximum common induced subgraph and
the maximum common subgraph, we give the definitions for both choices. For the
maximum common induced subgraph isomorphism, it is enough to maximise the
number of vertices. For the maximum common subgraph isomorphism, it is more
meaningful to maximise the number of edges, otherwise we are likely to end up
with a solution that contains only isolated vertices.
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Definition 14. The maximum common induced subgraph (MCIS) is the common
induced subgraph between G = (Vi, E1, a1, 1) and Gy = (Va, Fa, ag, B2) with the
largest number of vertices compared to the other common induced subgraphs of G4
and Go.

Definition 15. The maximum common edge subgraph (MCES) is the common
subgraph between G1 = (Vi, E1, a1, 1) and Gy = (Va, By, e, B2) with the largest
number of edges compared to the other common subgraphs of Gi and Gs.

Observation 16. If the graphs Gy = (Vi, Ey,aq,01) and Gy = (Va, By, g, B2)
have a maximum common induced subgraph I = (Vi, Er, oy, Br), ®1 is an induced
subgraph isomorphism from I to Gi and ®5 is an induced subgraph isomorphism
from I to Go, then the maximum common induced subgraph isomorphism (MCISI)
1s a bijective partial function v : Vi --» V5. For every vy € Vi, we have

Oy (P (v1)),  if v € Im(Dy),

= 3.1
(1) {undeﬁned, otherwise. (3:1)

Observation 17. If the graphs G1 = (Vi, Ey,aq,01) and Gy = (Va, By, g, 52)
have a mazimum common edge subgraph S = (Vs, Es,as,fs), ¢1 is a subgraph
isomorphism from S to G1 and ¢o is a subgraph isomorphism from S to G, then
the mazimum common edge subgraph isomorphism (MCESI) is a bijective partial
function v : Vi — V. For every vy € Vi, we have

(o) = {¢2<¢; (vr), if v € Im(6),

. (3:2)
undefined, otherwise.

Next we give some examples and explain when MCISI or MCESI should be
used. In Figure 3.2 we have two input graphs, so solving the MCISI may give us
a mapping from 0 to a, 1 to b and 3 to d, while solving the MCESI may give us
a mapping from 0 to a, 1 to b, 2 to ¢ and 3 to d. Note that the above solutions
are not unique. The solutions are different because MCISI requests the common
subgraph to be an induced subgraph of both input graphs and MCESI does not.
MCISI has a tighter restriction due to the requirement of being induced subgraph.
MCISI can be used when we are looking for exactly the same sub-structure while
we will use MCESI for detecting a similar sub-structure.

Definition 1. Given graphs Gy = (Vi, Ey,aq,01) and Gy = (Va, Ea, as, 52), S
18 a common subgraph of both G1 and G if there exists a subgraph isomorphism
between S and G, and a subgraph isomorphism between S and G.

Before we show our QUBO formulation, we first describe the notation that we
will use, then we give a detailed definition of the problems.
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Figure 3.2: An example to show the difference between MCISI and MCESI.

Definition 2. The density of the graph G = (V, E) is defined by
|E| ,
V- (V] -1)/2

A QUBO objective function is a quadratic binary function. We can extract
a QUBO matrix from the objective function by setting the binary variables as
row and column of the matrix and the coefficient of each quadratic term as the
corresponding entry. The QUBO matrix can be view as an adjacency matrix for a
graph. The variables are vertices while the products of variables are edges. Since
the D-Wave systems use the Chimera graph as their hardware graph (host graph),
a minor-embedding is needed to be done in order to map the QUBO graph (guest
graph) into the host graph. Details for minor-embedding can be found in [65].

DENS(G) =

3.4 Classical algorithms to solve the maximum com-
mon subgraph isomorphism problem

Since the maximum common subgraph isomorphism problem can be reduced to
the maximal clique problem, a lot of work has been done via this reduction. A
clique of a graph is a subgraph of that graph, such that all pairs of vertices in
the subgraph have an edge to connect them. A maximal clique is a clique of the
graph that has the largest number of vertices. In order to reduce the maximum
common subgraph isomorphism to the maximal clique problem, a compatibility
graph needs to be constructed first. A compatibility graph is a graph generated
from two input graphs Gy = (Vi, E1) and Gy = (Va, E3). The vertex set is the
set V1 x Vi, Two vertices (vy,u1), (ve,us), v1,u; € Vi,v9,us € Vi are adjacent
when viu; € Ey and vouy € By, or viuy ¢ Ep and vauy ¢ Es. Then by solving the
maximal clique problem of the compatibility graph gives us the solution for the
maximum common subgraph isomorphism problem [27, 106].

Another class of algorithms uses backtracking algorithms to solve the problem.
Since the isomorphism can be represented by vertex mappings, if we build up the
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mapping by adding one vertex at a time, then a tree structure can be generated
that backtracking algorithms help reduce the time of traversal. Algorithms based
on backtracking are discussed in [53, 148].

The works above are exact solvers for the maximum common subgraph prob-
lem. There are also heuristic solvers that are faster but only give approximate
results. Genetic algorithms are one important class in this paradigm. A genetic
algorithm uses tools such as crossover, mutation, clone, etc. to generate a new
population from the old ones. A fitness function is defined to make sure the new
population has higher fitness. The speed and performance of this approach depend
on the design of the fitness function. Different fitness functions are developed in
[150, 41, 147]. Funabiki and Kitamichi [82] have used another combinatorial op-
timisation method that they call two-Stage Discrete Optimisation Method. They
have used a greedy algorithm to find candidates and then a randomised discrete
method to refine the result. Simulated annealing has been used by Barakat and
Dean in [26].

3.5 QUBO formulation for MCISI

Starting with the definition of MCISI, we will design penalty terms in the QUBO
objective function according to the features of MCISI. Let us work with the two
graphs G = (V3, Ey, ay, 1) and Gy = (Va, By, g, B2). We denote the MCIS of G4
and Gy as I = (V, B, ar, ;) and the MCISI from G; to Gy as 7. That means
there exists an induced subgraph Iy = (Vy,, Er,, ap,, fr,) of Gi and an induced
subgraph I, = (V1,, B, ar,, f1,) of Ga, such that:

o as(v1) = ap(y(vr)) for all v; € Vy,, and ap,(v2) = ar (v H(ve)) for all
vy € V, (injective);

e for any edge e; = (vq1,v]) € Ey,, there exists an edge es = (y(v1),7(v})) €
Ey,, such that g, (e1) = Br,(e2), and for any edge ey = (vq,vy) € EY,, there
exists an edge e; = (7 Y(ve),7y ' (v})) € Er,, such that Br,(e1) = Br,(e2)
(edge-preserving);

e if any pair of vertices (vy,v]) ¢ Ej,, then (y(v1),v(v})) ¢ Ey,, and if any
pair of vertices (vq,v4) ¢ Ep,, then (v !(vy),v ' (v})) ¢ FEr, (non-edge-
preserving).

We then build the QUBO objective function of MCISI by translating those
three features into penalty terms, which are terms with positive coefficients. We
design penalty terms so that any assignments that do not fit into these features will
add a positive value into the final result; they will not be picked as the solution
of the problem since a D-Wave machine will choose the assignments that give
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the minimum value of the objective function. Let Vi = {ug,uy, ..., u,, 1} and
Vo = {vy,v2,0p,-1}. For every u € V4, v € V5, a variable z,, is used to represent
the possible vertex mapping between u and v. Let x € Z5'"* with

X = (xuo,vm Lugwrs s Tugwny 1) Lur,woy « =) Lupg 1,002 xunlflﬂ)’r@fl)'

Then we define a function 7 : V; x V] x Vo x Vo — 7Z to identify the possible
mapping between an edge in G; to an edge in GG, with respect to the vertex labels
and edge labels. Let e; = (u,u’), u,u’ € V; and ey = (v,0), v,v" € V4,

0, aj(u) =as(v),a;(v) = az(v') and Fi(er) = Fa(es),

. (3.3)
1, otherwise.

T(u,u/,v,v/):{

The pre-calculated function 7 can reduce the density of the QUBO matrix concern-
ing the structure of the input graphs. This is important for solving the problem
on the D-Wave 2X machine.

We define the objective function by

F:Zmm™ SR,
F(x) = A[H(x) + P(x) + N(x)] — BM(x), A,Be€R", (3.4)

where

H(X) = Z Z L Z Lo + Z Z Ly Z Ty | (35)

ueVr veVs v eVy veVy ueW; w'evy
v’ #v u'F#u

P(x) = Z Z <:UW, Z T T (u, u',0,0") | (3.6)
uu'€E; vEVL v'e€Va

N(X) = Z Z <mu,v Z xu’,v’ev,v’)7 (37)
uu/¢E vEV2 v'eVa

M(x)=> "> . (3.8)
ueVy veVsy

We request B to be sufficiently smaller than A, which is needed in later proofs.
Here e, ,s can be calculated by e, , =1 if vv’ € E, and e, ,» = 0 otherwise.

The function H (x) is designed to ensure that the mapping is injective. P(x) en-
sures that the mapping is edge-preserving. Penalties are only applied to impossible-
edge mappings with respect to both the vertex label and the edge label. With the
help of 7, some of the entries of the QUBO matrix may be updated to zero. N(x)
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ensures that the mapping is non-edge-preserving. M (x) ensures that the number
of vertices is maximised. All these claims will be shown in later proofs.

The following part is to show that this objective function indeed solves the
maximum common induced subgraph isomorphism problem. We define F to be
the set of all common subgraph isomorphisms between G; and G5. We now specify
a decoder function

D : 73" -5 F,

the purpose of which is to interpret the isomorphism encoded in x so that we can
obtain a vertex mapping. The domain of D contains all vectors x € Z5'"? that
can be ‘decoded’ into such functions. That is

Za:w <1, foralluel;

veVr

Dom(D) :{X € 73

and Z Ty <1, for allv e Vg}

ueVy

and
D(x) W, if x € ]?om(D),
undefined, otherwise.

Here ¢ : Vi --» V4 is a partial function that for every u € Vi, ¥(u) = v, u € V}
and v € V3, if and only if z,,, = 1.

Lemma 18. For all x € Z5*™*, H(x) = 0 if and only if D(x) is injective.

Proof. We first show that if H(x) = 0, then D(x) is injective.
Since H(x) only contains the sum of products of two binary variables, which
are non-negative, H(x) = 0 if and only if all products have value zero.

The first part of H(x), D ,cr, Dvevy (xuﬂ, > vevs :L’u,v/> = 0 if and only if

v'#v
all products have value zero. For every fixed u, the products can only be in the

following three cases:

1. all elements of {z,,|v € V2} have value zero;
2. exactly one element of {z, ,|v € V2} has value one;

3. more than one element of {z, ,|v € Vo} have value one.

In the first case: Y i, <xu,v > wevy Tuw | = 0, since all elements {z,, | v €
v’ #v
V4} have value zero. In the second case: since v’ # v and there is only one z,,,
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can have value one, z,, and z,, cannot simultaneously have value one. That

means every product in ) (azu,v > ey xuﬂ,/) has value zero. In the third
v'#v

case: since at least two elements of {z,, | v € V2} have value one, there exists

an z,, = 1 and an x,,, = 1 while v # v’. We then have at least one product in

ZUG% Ty Zy//evz Ty | has value one.

In order to h:ve H(x) =0, for every u € Vi, the variables’ assignment should
be in either the first case or the second one. If it is in the first case, then that u
is mapped to no vertex in V5. If it is in the second case, then that u is mapped to
exactly one vertex in V5.

Similarly, we have the second part of H(x) = 0 if and only if no two elements
of V7 is mapped to the same element in V5 by D(x). That means x € Dom(D).
Therefore, we have if H(x) = 0, then D(x) is injective.

We then show that if D(x) is injective, then H(x) = 0.

Let us assume D(x) is injective. Then for each u € Vj, the value of all elements
of {zy,lv € Vo} will fall into the first two cases. Hence, the sum of all these
products are zero. That means H(x) = 0.

Therefore, H(x) = 0 if and only if D(x) is injective.

O

Lemma 19. If H(x) = 0 then P(x) = 0 if and only if D(x) is edge-preserving.

Proof. Assume H(x) = 0 and let v = D(x), we know that ¢ is an injective
function by Lemma 18. For brevity, define

P (x) = Z <:L‘u,v Z xu/,vlT(u,u',v,v'))

veVs v'eVa

Then
P(X) = Z Pu,u/<x>'

uu' €Eq

Now 7(u,u,v,v") is a pre-computed constant that is either 0 or 1. Therefore
P, .(x) is a linear combination of non-negative terms and is thus non-negative.
Then it follows that

P(x) =0 if and only if P,/ (x) =0, for all uu’ € E.

Let us assume that P(x) = 0. We know that P, ,(x) = 0 and we can expand
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P, ./ (x) to obtain

Pou(x) =) Tuy (wu/,vﬂ(u, U, 0,00) + Tyr o, T(u, 0 0, 01) + -
veVa

/
+ mu,vn2,17(ua u,v, Ung—l))
=0.
Because 1) is injective we have two cases:

1. 2y, =0 for all v € V5, so uw’ is not an edge in the common subgraph.

*

2. there exists a unique element zj , with value one in {z,, | v € V2} and

similarly we have z7, , in {z, | v € Va}.

It then follows that we have

)

Pu u/ (X) - xﬂj,v (xul,’UOT(u7 ulv v, UO) + xu’,vl7—<u7 ula v, Ul) + -
+ x%vn2717-(ua u/7 v, Ung—l))

=, (:EZ,W,T(U, v, v’)))
= 7(u,u’,v,v").

We know P, ,/(x) = 0, thus 7(u, v/, v,v") = 0. From the definition of 7(u, v, v,v") =
0, we know a possible edge mapping exists between wu’ and vv’ for all uu’ € Ej.
Similarly, a possible edge mapping exists between uu’ and vv’ for all vv' € FEj.
Thus D(z) is edge-preserving.

Conversely, assume that D(z) is edge-preserving and H (x) = 0 while P(x) # 0.
Since H(x) = 0, 1 is injective and we have the same two cases as above. There
then exists a wu' that is an edge of the common subgraph, such that P, ,/(x) # 0.
Because it is in the second case, we have

Py (x) &z 2 o 7(u,u',0,0") # 0 & 7(u,u’,v,0") # 0.

It follows that there exists no vv’ € Es, such that a possible edge mapping exists
between uu’ and vv’. Hence v is not edge-preserving. A contradiction arises.
Therefore we have P(x) = 0 if and only if D(x) is edge-preserving. H

Lemma 20. If H(x) = 0 then N(x) = 0 if and only if D(x) is non-edge-
Preserving.
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Proof. An analogue of the proof of Lemma 19 proves this lemma. [

Corollary 21. For allx € Zy*™*, A[H(x)+ P(x)+ N(x))] = 0 if and only if D(x)

1 an injective, edge-invariant function.

Proof. All three components, H(x), P(x), N(x) are non-negative. We also know
from Lemma 18 and 19 that H(x) = 0 if and only if D(x) is injective and P(x) = 0
if and only if D(x) is edge-preserving. Lemma 20 shows N(x) = 0 if and only if
D(x) is non-edge-preserving. Hence for all x € Zy*"?*, A[H (x)+ P(x)+N(x))] =0
if and only if D(x) is an injective, edge-invariant function. ]

Lemma 22. min(Im(F)) < 0.
Proof. If x = (0,...,0), then F(x) = 0. Hence min(Im(F)) < 0. O

Lemma 23. If x = minF(x) then D(x) is an edge-invariant injection.

Proof. Assume F'(x) is the minimum value of F'. By Lemma 22, we have F'(x) < 0.
Suppose that D(x) is not an injective, edge-invariant function. That is, A[H (x) +
P(x) + N(x)] > 0. For B sufficiently smaller than A we have F(x) > 0. A
contradiction arises. Therefore, we have D(x) is an edge-invariant injection. [

Theorem 24. If x = minF(x) then D(x) is a solution to MCISL.

Proof. By Lemma 23 we know that D(x) is an injective, edge-invariant function.
Suppose that D(x) is not a solution to MCISI and instead we have an x’ such that
D(x') is. Since D(x') is a solution of MCISI, it must be an injective, edge-invariant
function. Hence A[H (x')+ P(x') + N(x')] = 0. However, M (x') > M(x) as D(x’)
is a solution to MCISI and thus the corresponding common induced subgraph
of D(x)" has more vertices than the corresponding common induced subgraph of
D(x). So we obtain F(x') < F(x). However, this is not possible, since F'(x) is the
minimal value of F'. Hence D(x) is a solution to MCISL O

3.6 QUBO formulation for MCESI

Following a similar path, we will design penalty terms in the QUBO objective
function according to the features of MCESI. Let us work with the two graphs
G1 = (W1, Ey,aq, B1) and Gy = (Va, By, g, B2). We denote the MCES of Gy and G,
as S = (Vs, Es, ag, Bs) and the MCESI from G to Go as y. This means there exists
a Subgraph 51 = (VSU ES1 ) OéSl?ﬁSl) of Gy and a Subgraph Sy = (5527 E527 sy, ﬁSQ)
of G, such that:

e ag (v1) = as,(y(vy)) for all v; € Vs, and ag,(v2) = ag, (7" (v2)) for all
vy € Vg, (injective);
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e for any edge e; = (v1,v]) € Eg,, there exists an edge e; = (y(v1),7(v])) €
Es,, such that 8g,(e1) = Bs,(e2), and for any edge es = (vy,v5) € Es,, there
exists an edge e; = (v '(v2),7 ' (v})) € Es,, such that Ss,(e1) = Bs,(e2)
(edge-preserve).

Then we use the same variable system and function 7 to encode these features into
the QUBO objective function. We define the objective function of MCESI as

F:Zp™ SR,
F(x) = A[H(x) + P(x)] — BM(x), A, B € R", (3.9)
by

Hx) => > 2w Y tuw [+ D | 2uw > 7w | (3.10)

ueVp velr V' EVy veVy ueV; u' ey

v'#v u' #u
P(x) = Z Z (%,v Z Ty T (u, ' v,0") |, (3.11)

uu' EE1 veEVL v'eVy

M(X) = Z Z ('xu,vxu’,v’) . (312)

uu' €E1 vv' €

We request B to be sufficiently smaller than A.

The function H(x) is designed to add penalty when the mapping is not injec-
tive. P(x) adds penalty when the mapping is not edge-preserving. M (x) adds
penalty when the number of edges is not maximised.

We then prove the correctness of this objective function.

Corollary 25. For all x € Z3'", A[H(x) + P(x))] = 0 if and only if D(x) is an
mjective, edge-preserving function.

Proof. Both H(x) and P(x) are non-negative functions. We also know from
Lemma 18 and 19 that H(x) = 0 if and only if D(x) is injective and P(x) = 0 if
and only if D(x) is edge-preserving. Hence it follows that A[H(x) + P(x)] = 0 if
and only if D(x) is an injective, edge-preserving function. O]

Lemma 26. If x = minF(x) then D(x) is an edge-preserving injection.

Proof. Assume F(x) is the minimum value of F'. By Lemma 22, we have F(x) <
0. Suppose that D(x) is not an injective, edge-preserving function. That is,
A[H(x) + P(x)] > 0. For B sufficiently smaller than A we have F(x) > 0. A
contradiction arises. Therefore, we have D(x) is an edge-preserving injection.

O
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Theorem 27. If x = minF(x) then D(x) is a solution to MCESIL.

Proof. By Lemma 26 we know that D(x) is an injective, edge-preserving function.
Suppose that D(x) is not a solution to MCESI and instead we have an x’ such
that D(x’) is. Since D(x’) is a solution of MCESI, it must be an injective, edge-
preserving function. Hence A[H(x') + P(x')] = 0. However, M(x') > M(x) as
D(x') is a solution to MCESI and thus the corresponding common edge subgraph
of D(x’) has more edges than the corresponding common edge subgraph of D(x).
So we obtain F(x') < F(x). However, this is not possible, since F(x) is the
minimal value of F. Hence D(x) is a solution to MCESI. O

3.7 QUBO formulation for the k-densest common
subgraph isomorphism

We first give the definition of the problem:
k-densest common subgraph:

Instance:  Two graphs G = (V4, E1) and Gy = (Va, Es), ny = |V4], na = |Val,
a positive integer k < min(ny, no).

Question: Find a common subgraph G’ = (V', E') of G; and G5 with order k,
such that DENS(G'(V’)) = max{DENS(G" (V")) | G" = (V", E")
is a common subgraph of G| and G, with order k}.

Unlike the standard maximum common subgraph isomorphism problem, which
maximise the number of vertices or edges of the common subgraph, in the k-densest
common subgraph isomorphism problem we maximise the density of the common
subgraph with a fixed order k. The solution usually implies a more complex
substructure shared by the two input graphs compared to low density solutions.
In Figure 3.3, we show an example of the 4-densest common subgraph isomorphism
between two graphs. We use A and B to denote different vertex label. We use
subscriptions to distinguish different atoms. In Figure 3.3, one of the possible
solution for the 4-densest subgraph isomorphism problem is: A, is mapping to A,
Ag to Ab, Bl to Ba, B2 to Bb.

We will design penalty terms in the QUBO objective function according to
the features of the above definition of the k-densest common subgraph. Let us
work with two graphs G = (Vi, By, aq, 1) and Gy = (Va, Es, e, 52). We denote
the k-densest common subgraph isomorphism from G; to G5 as . That means
there exists a subgraph G| = (Vg Egr, aq,, Be;) of Gi and a subgraph G =
(Va,, Eays oy, Bay) of Ga, such that:

o ag (v1) = ag(v(v)) for all v € Vi, and agy (v2) = agr (v (v2)) for all
vy € Vi (injective);
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Figure 3.3: Example for two graphs that shares a 4-densest common subgraph

e for any edge e; = (v1,v]) € Eg;, there exists an edge ex = (y(v1),7(v})) €
Egy, such that Sqr (e1) = By (e2), and for any edge ey = (v2,v5) € Egy, there
exists an edge ey = (77'(v2), 7' (vh)) € Eg, such that Sgr(e1) = fey(e2)
(edge-preserving);

o [Vor| = [Vey| = k.

We build the QUBO objective function of the k-densest common subgraph by
translating those three features into penalty terms, which are terms with positive
coefficients. Any assignments that do not fit into these features will add a positive
value into the solution of the objective function. Thus, these cases will not be
picked as potential solutions of the problem since the D-Wave machines will pick
up the assignments that result the minimum value of the objective function. Let
Vi = {ug,u, ..., up,—1} and Vo = {vy,v9,0,, 1}. For every u € Vi, v € V5, a
variable z,, is used to represent the possible vertex mapping between u and v.
Let x € Z3'"* with

X = (xUO:'UO7 Lug,v1s -+« s Lug,vny—11 Lut,vor -+«

$un1717vn2727 xunlflyvn271>‘
We define a function 7 : Vi x Vi x Vo x Vo — Z to identify the possible mapping
between an edge in (G; to an edge in G5 with respect to the vertex labels and edge
labels. Let e; = (u,u’) for u, v’ € V} and ey = (v,v) for v,v" € Vs,
0, aq(u) = as(v),
ar(t) = as(v)
and fBi(e1) = Ba(e2),

1, otherwise.

T(u, v’ v,0") =

(3.13)

We define the objective function by
F 75" — R,
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F(x) = A[H(x) + P(x) + N(x)] — BM(x), (3.14)

where

Hx) =Y > | T > Tuw (3.15)

ueVy veVs v eV
v'#v
+ Z Z T Z A (3.16)
vEVL ueVy u'eVy
u'#u
Px) =Y > (xu > T (3.17)
uu' €E1 veVs v'eVs

7(u, v, v, U’)) , (3.18)

N(x) = (Z P k) : (3.19)

ueVy veVs
M<X) = Z Z (xu,v Z xu’,v’) . (320)
uu'€Ey veEVL v'E€Va

A, B € RT. We request B to be sufficiently smaller than A, which is needed in
later proofs. Here e,, can be calculated by e,,, = 1 if vo’ € Ey and e,,» = 0
otherwise.

The function H (x) is designed to ensure that the mapping is injective. P(x) en-
sures that the mapping is edge-preserving. Penalties are only applied to impossible-
edge mappings with respect to both the vertex label and the edge label. With the
help of 7, some entries of the QUBO matrix may be updated to zero. N(x) en-
sures that the common subgraph has order k. M (x) ensures that the density of the
common subgraph is maximised. All these claims will be showed in later proofs.

After the QUBO objective function is in place, now show that this objective
function indeed solves the maximum common induced subgraph isomorphism prob-
lem. We define F to be the set of all common subgraph isomorphisms between G
and Gy. We specify a decoder function

D(x) : Zy'"™* — F.

The purpose of which is to interpret the isomorphism encoded in x so that we can
obtain a vertex mapping. The domain of D contains all vectors x € Z5'" that
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can be ‘decoded’ into such functions. That is

qu,v <1,VueW

veEVL

Dom(D) :{x ez

and Z Ty < 1,Vv € Vg}

ueVy

and
D(x) = Y, if x € ]?om(D),
undefined, otherwise.

Here ¢ : V; — V4 is a partial function that for every u € Vi, ¥(u) = v, u € V; and
v € Va, if and only if z,,, = 1.

Lemma 28. For all x € Z5*™*, H(x) = 0 if and only if D(x) is injective.

Proof. We first show that if H(x) = 0, then D(x) is injective.

Since H(x) only contains sum of products of two binary variables, which are
non-negative, H(x) = 0 if and only if all products have value zero.

The first part of H(x), > ,cr, Dvers (muﬂ, > vevs :UW,/> = 0 if and only if

v'#v
all products have value zero. For every fixed u, the products can only be in the

following three cases:

1. all elements of {z,, | v € V5} have value zero;
2. exactly one element of {z,, | v € V5} has value one;

3. more than one element of {z,, | v € V2} have value one.

In the first case: > .y, (xw, Y wevy Tuw | = 0, since all elements {z,, | v €
v/ #v

V5 } have value zero. In the second cases: since v' # v and there is only one z,,

can have value one, z,, and z,, cannot simultaneously have value one. That

means every product in ) . (xw > vevs xw/) has value zero. In the third
v #v

case: since at least two elements of {z,, | v € V2} have value one, there exists

an x,, = 1 and an z,,, = 1 while v # v". We then have at least one product in

> vevy | Tuw Dovers Tuw | that has value one.
v/ #v
In order to have H(x) = 0, for every u € Vj, the variables’ assignment should
be in either the first case or the second one. If it is in the first case, then that u
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is mapped to no vertex in V5. If it is in the second case, then that u is mapped to
exactly one vertex in V5.

Similarly, we have the second part of H(x) = 0 if and only if no two elements
of V; is mapped to the same element in V5 by D(x). That means x € Dom(D).
Therefore, we have if H(x) = 0, then D(x) is injective.

We show that if D(x) is injective, then H(x) = 0.

Let us assume D(x) is injective. Then for each u € V, the value of all elements
of {x,, | v € Vo} will fall into the first two cases. Hence, the sum of all these
products are zero. That means H(x) = 0.

Therefore, H(x) = 0 if and only if D(x) is injective.

O

Lemma 29. If H(x) =0 then P(x) = 0 if and only if D(x) is edge-preserving.

Proof. Assume H(x) = 0 and let v = D(x), we know that v is an injective
function by Lemma 28. For brevity, define

P (x) = Z <:puﬂ) Z xu/,UIT(u,u',v,v'))

veVr v'eVy

Then
P(X) = Z Pu7u’(x)‘

Now 7(u,u',v,v") is a pre-computed constant that is either 0 or 1. Therefore,
P, .(x) is a linear combination of non-negative terms and is thus non-negative.
Then it follows that

P(x) =0 if and only if P, ,/(x) = 0,Vuu' € Ej.

Let us assume that P(x) = 0. We know that P, ,(x) = 0, and we can expand
P, . (x) to obtain

Pu,u’ (X) = Z Lyv (xu’,voT(ua u/7 v, UO)

vEVS
/
+ Ty T(u, w0, 01) + -

/
+ xuﬂ)nz—l’r(uv u,v, Un2—1))
=0.
Because 1) is injective we have two cases:

1. 2y, =0 for all v € V5, so uw’ is not an edge in the common subgraph.
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2. There exists a unique element z7, , with value one in {z,, | v € V5}, and

similarly we have z, , in {z, | v € Va}.

It then follows that we have

Pu/u/ (X) = 'TZ,'U (xu’,voT(Uw ulv v, UO)
+ Ty T(w, 0 0, 01) -

/
+ xu,vnzflT(uu u,v, Ung—l))

=T,, (1’2171}/7'(111, v, v’))
= 7(u,u’,v,v").

We know P, ,(x) = 0, thus 7(u,v,v,v") = 0. Hence, a possible edge mapping
exists between uu’ and vv’ for all wu’ € F;. Similarly, a possible edge mapping
exists between uu’ and vv’ for all vv’ € Ey. Thus, D(z) is edge-preserving.

Conversely, assume that D(z) is edge-preserving and H (x) = 0 while P(x) # 0.
Since H(x) = 0, 9 is injective, and we have the same two cases as above. There
then exists a wu' that is an edge of the common subgraph, such that P, ,/(x) # 0.
Because it is in the second case, we have

Py (x) & a2 7 (u, 0, v,0") # 0

& 7(u,u’,v,0") #0.

It follows that there exists no vv’ € Fy, such that a possible edge mapping exists
between uu’ and vv’. Hence, v is not edge-preserving. A contradiction arises.
Therefore, we have P(x) = 0 if and only if D(x) is edge-preserving. O

Lemma 30. N(x) = 0 if and only if D(x) maps exactly k vertices in Gy to k
vertices in Gs.

Proof. If N(x) = 0, then »_ .. > cy, Tuw = k. That means the common sub-
graph has order k.

If D(x) maps exactly k vertices in G to k vertices in G5, then there are exactly
k variables has value 1. Thus, > .. >, cy, Tup = k and N(x) = 0. O

Corollary 31. For allx € Z5'", A[H(x)+ P(x)+ N(x))] = 0 if and only if D(x)
s an injective, edge-preserving function that maps exactly k vertices in Gy to k
vertices in Go.
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Proof. All three components, H(x), P(x) and N(x) are non-negative. We also
know from Lemmas 28 and 29 that H(x) = 0 if and only if D(x) is injective and
P(x) = 0 if and only if D(x) is edge-preserving. Lemma 30 shows N(x) = 0 if
and only if D(x) maps exactly k vertices in G to k vertices in G5. Hence, for
all x € Zy*"*, A[H(x) + P(x) + N(x))] = 0 if and only if D(x) is an injective,
edge-preserving function that maps exactly k vertices in GG; to k vertices in Gy. [

Lemma 32. min(Im(F)) < 0.

Proof. It x = (0,...,0), then F(x) = 0. Hence, min(Im(F")) < 0. H
——
nino times

Lemma 33. If x = min F(x) then D(x) is an edge-preserving injection that maps

exactly k vertices in G to k vertices in Gs.

Proof. Assume F'(x) is the minimum value of F'. By Lemma 32, we have F'(x) < 0.
Suppose that D(x) is not an injective, edge-preserving function that maps exactly
k vertices in Gy to k vertices in Gy. That is, A[H(x) + P(x) + N(x)] > 0. For B
sufficiently smaller than A we have F'(x) > 0. A contradiction arises. Therefore,
we have D(x) is an edge-invariant injection. O

Theorem 34. If x = min F(x) then D(x) is a solution to the k-densest common

subgraph isomorphism problem.

Proof. By Lemma 33 we know that D(x) is an injective, edge-preserving function
that maps exactly k vertices in Gy to k vertices in Go. Suppose that D(x) is not
a solution to the k-densest common subgraph isomorphism problem, and instead
we have an x’ such that D(x’) is. Since D(x') is a solution of the k-densest
common subgraph isomorphism problem, it must be an injective, edge-preserving
function that maps exactly k vertices in Gy to k vertices in Go. Hence, A[H (x') +
P(x') + N(x')] = 0. However, M(x') > M(x) as D(x') is a solution to the
k-densest common subgraph isomorphism problem and thus the corresponding
common subgraph of D(x)" has more vertices than the corresponding common
subgraph of D(x). So we obtain F(x') < F(x). However, this is not possible,
since F'(x) is the minimal value of F. Hence, D(x) is a solution to the k-densest
common subgraph isomorphism problem. O

3.8 Experiments on a D-Wave 2X machine

We have used a D-Wave 2X machine to test the performance of our QUBO for-
mulations. We first used a classical solver to find the optimal answers for the
QUBO matrices and decode them into the solutions of corresponding maximum
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common subgraph isomorphism problems. Then we compared them with the so-
lutions from a classical maximum common subgraph isomorphism solver. After
these checks, we run these instances on a D-Wave 2X machine and collect data
for further analysis. Since our QUBO formulation for both MCISI and MCESI
needs to have a logical variable for each possible vertex mapping and the QUBO
matrix is quite dense, we do not have enough resources (qubits) to run for large
graphs. Hence, only small graphs that represent some small organic molecules are
used to generate instances for the D-Wave 2X machine. We represent some simple
molecules as graphs in Figure 3.4. All these molecules are very small; they contain
no more than nine atoms. Different atoms are given different labels, such as C, O
and H. Different covalent bonds are labelled as single lines and double lines.

5

(a) Methanol (b) Ethane
020%020%0 L
() 02020202020
(¢) Carbonic acid (d) Oxalic acid
) @
02020 020202020
) 00
(e) Methane (f) Ethanol

Figure 3.4: Input graphs

We have used the QUBO formulations in Section 3.2 to generate the corre-
sponding QUBO matrices for MCISI and MCESI corresponding to the chosen
graphs. Then the QUBO matrices were used by the default embedding program
from D-Wave to generate the corresponding embedding. We repeated this process
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for all possible pairs of graphs in the list in Figure 3.4. Finally, we have sent
the batch of problems to the D-Wave machine for processing. The following table
shows the performance of the D-Wave 2X runs.

In the experiments, we used the majority voting feature that the D-Wave API
provides. When a broken chain appears, it will force the qubits in the same chain
to have the same value as that of more than half the qubits. The tables show how
effective the algorithm works on the D-Wave 2X machine. The first column shows
which pair of molecule graphs was used as input. The second column shows the
length of the max chain after we have performed minor embedding. The third
column shows the average chain length of all logical variables. The fourth column
is the count of correct solutions out of 5000 rounds with post-processing. The
fiftth column is the count of correct solutions out of 5000 rounds without post-
processing. The correct solutions, here, refer to the solution obtained from a brute
force classical solver that generates all subgraphs of the input graphs and then
finds the maximum common subgraphs between them. We count the solutions
that match the results from the classical solver we mentioned earlier. Figure 3.5
and Figure 3.6 show that when both the maximum chain length and average chain
length are small enough, the performance is quite good: a majority of the graph
pairs have a high count of correct answers. However, when chain length grows, the
performance drops significantly. This is consistent with other experiments [91].

The D-Wave API provides a post-process function that classically optimises the
quantum machine’s output [64]. According to this document, a D-Wave machine
will break the embedded graph into several low tree-width subgraphs, then it
will run local search for those subgraphs and combine the results to update the
global result. Since the embedded graph contains all constraints for the problem,
while the subgraphs only contain part of the constraints, it is possible that the
post-processing may give a wrong answer. We run the same examples with the
post-processing on and off to see whether this explanation makes sense. Figure 3.5
and Figure 3.6 show that when the chain length is long but not too long, without
post-optimisation, we may get a bit more correct answers. However, when the
chain length is short, the post-processing improves the quality of the answers.
These facts give some support to the explanation. More importantly, one has to
be careful about when to turn the post-processing on. For the current problem,
verifying answers is as difficult as finding them. Therefore, even when we know
that some of the correct answers may be discarded by the post-processing, we may
still want to apply the post-processing, as it is too time consuming to investigate
when the post-processing makes mistakes. However, for the problems like integer
factoring, where it is hard to find the answers, but very easy to verify them, the
situation is different. For such cases it is advisable to turn the post-processing off
to avoid discarding correct answers.



input pair max chain | average chain count of correct count of correct answers
of graphs length length answers with post-process | without post-process
CarbonicAcid _CarbonicAcid 4 2.57 4855 3070
CarbonicAcid _Ethane 4 3.14 0 532
CarbonicAcid_ Ethanol 6 4.47 0 1
CarbonicAcid_Methane 3 2.44 0 11
CarbonicAcid _Methanol 3 2.41 5000 4505
CarbonicAcid _OxalicAcid 6 4.61 0 0
Ethane CarbonicAcid 5 3.64 1 12
Ethane Ethane 16 12.05 0 0
Ethane Ethanol 14 10.77 0 0
Ethane_Methane 8 6.5 402 255
Ethane Methanol 9 7.03 0 0
Ethane OxalicAcid 5 3.75 2820 533
Ethanol CarbonicAcid 6 4.35 0 0
Ethanol Ethane 18 12.17 0 0
Ethanol FEthanol 18 13.41 0 0
Ethanol _Methane 9 7.19 53 86
Ethanol Methanol 12 7.74 0 0
Ethanol OxalicAcid 6 5.3 6 0
Methane CarbonicAcid 3 2.44 4955 4662
Methane Ethane 9 6.42 0 0
Methane Ethanol 9 7.11 0 0
Methane Methane 5 3.58 1371 545
Methane Methanol 5 3.94 499 506
Methane OxalicAcid 4 3.1 4466 3744
Methanol _CarbonicAcid 5 3.25 5000 3423
Methanol Ethane 9 7.11 0 0
Methanol Ethanol 10 7.51 0 0
Methanol Methane 5 3.70 179 55
Methanol Methanol 5 4.05 12 14
Methanol _OxalicAcid 5 4.0 4952 3763
OxalicAcid_ CarbonicAcid 7 5.0 0 0
OxalicAcid _Ethane 5 3.81 7 21
OxalicAcid _Ethanol 6 5.05 1 3
OxalicAcid Methane 3 2.7 0 28
OxalicAcid _Methanol 6 4.35 3609 1132
OxalicAcid _OxalicAcid 9 7.25 0 0

Figure 3.5: Maximum common induced subgraph isomorphism results.
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input pair max chain | average chain count of correct count of correct answers
of graphs length length answers with post-process | without post-process
CarbonicAcid _CarbonicAcid 6 3.28 308 217
CarbonicAcid _Ethane 3 2.71 5000 4998
CarbonicAcid _ Ethanol 4 3.11 0 8
CarbonicAcid_Methane 2 1.66 5000 4978
CarbonicAcid _Methanol 3 2.25 24 1196
CarbonicAcid _OxalicAcid 7 4.22 0 0
Ethane CarbonicAcid 4 3.64 4004 3513
Ethane Ethane 19 11.67 0 0
Ethane Ethanol 14 10.32 0 0
Ethane_Methane 10 7.53 0 0
Ethane Methanol 8 6.61 0 0
Ethane OxalicAcid 5 4.43 1821 1170
Ethanol CarbonicAcid 5 4.23 58 1
Ethanol Ethane 14 10.82 0 0
Ethanol FEthanol 18 11.0 0 0
Ethanol _Methane 10 6.34 26 10
Ethanol _Methanol 10 7.59 0 0
Ethanol OxalicAcid 7 4.55 0 0
Methane CarbonicAcid 4 2.55 4995 4966
Methane Ethane 10 8.03 0 0
Methane Ethanol 9 7.42 0 0
Methane Methane 6 4.70 167 20
Methane Methanol 6 4.58 99 287
Methane OxalicAcid 4 2.7 5000 4978
Methanol _CarbonicAcid 4 2.91 3559 147
Methanol Ethane 10 6.92 0 0
Methanol Ethanol 10 7.66 0 0
Methanol Methane 6 4.64 34 253
Methanol Methanol 5 4.27 22 2
Methanol _OxalicAcid 6 3.42 1012 53
OxalicAcid_ CarbonicAcid 5 3.83 62 3
OxalicAcid _Ethane 10 3.0 5000 3259
OxalicAcid _Ethanol 8 3.15 0 0
OxalicAcid Methane 2 1.6 5000 4963
OxalicAcid _Methanol 5 2.57 1384 550
OxalicAcid _OxalicAcid 9 5.70 0 0

Figure 3.6: Maximum common edge subgraph isomorphism results.
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It would be interesting to compare the run times obtained with the quantum
solution with those obtained with the state of art heuristic classical solvers. How-
ever, the comparison would not make much sense unless larger scale problems
could be solved on the quantum annealing machine (the heuristic classical solvers
mentioned in Section 3.4 are capable of solving much larger scale problems).

3.9 Conclusions and future work

We have proposed QUBO formulations for the problems MCISI and MCESI,
proved their correctness in Section 3.2. Then we solved instances for some small
organic molecules on a real D-Wave machine and analysed the experimental data,
Section 3.8. Very small scale problems can be solved by the D-Wave 2X machine
with high enough success probabilities; however, for larger scale problems, the
accurate rate drops significantly. With 5,000+ qubits and a 15-way qubit con-
nectivity for its Pegasus architecture, D-Wave Advantage can embed larger scale
problems and may have a better performance than its predecessors. It will be
interesting to run more experiments for these problems with the new machine.

In the current version of our algorithm, we have set no restrictions on the
connectivity of the common subgraphs. The density of a graph can be defined as
the ratio of the size of the graph (number of edges) and the size of the complete
graph with the same order (number of vertices). Since we are investigating the
common sub-structure shared by two graphs, a denser common subgraph may have
a better chance to give the relevant information. Therefore, one possible future step
is to add in some constraints that will force the answer to be denser. We could also
investigate methods that require fewer logical variables and/or fewer interactions
among the logical variables. The former may help to extract the information
of interest and the latter may improve chances to solve larger problems on the
same machine. Investigation of quantum-classic hybrid methods, which break
down the problem classically and solve the smaller scale problems on the quantum
machines, is one of our future directions. We can start with Qbsolve and Hybrid
Solver System (HSS). If larger scale problems could be solved on future quantum
annealing machines, then meaningful comparisons between the proposed quantum
algorithms and the state of art heuristic classical ones would be possible.

We have proved that our QUBO formulation can solve the k-densest common
subgraph isomorphism problem. However, the associated graph will be complete
for our guest graph, because of N(x) in Eq 3.15. After embedding onto D-Wave
host graph we would expect very long chains. The chain length will greatly affect
the rate to get correct answers due to the current hardware’s unreliability for long
chains. In [93], a sparser input graphs pair results a lower density QUBO matrix.
Thus, after embedding, fewer number of variables are used. However, the density
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of input graphs will not affect the density of the QUBO graphs in our proposed
algorithm. Note that in [93], the rate of getting a correct solution is not good
enough, therefore, we expect even worse results if we try inputs of a similar size
on a D-Wave machine. Hence, this paper’s results are purely theoretical.

Unlike the algorithm for MCISI and MCESI, we introduced restrictions to the
density of the common subgraph. That means it is possible that the algorithm will
give output graphs with low connectivity. This implies relatively simple structure.
In this paper, we require the density to be maximised. Even though full connec-
tivity among vertices of the output graph is not guaranteed, it is very unlikely to
have isolated vertices or subset of the vertices which are connected with each other
but not to the complement of this subset.

Due to the fact, we can re-run the problem with a different k, we can retrieve
a series of common subgraphs with different values of k. Among these graphs, we
can pick the most interesting one to perform further analysis. We can run the
problem with all possible values of k£ of the QUBO objective function and then
pick the common subgraph with maximum density. However, since when k = 2,
the density of the densest subgraph is always 1 (unless there is no edges in one
or both of the input graphs). Therefore, it is more reasonable to set up a lower
bound for k£ when we search for the densest common subgraph.

The only place in the objective function that k affects is N(x). The value of
D uev; Davev, Tup changes when k changes. This is the only negative term in the
objective function. It is possible that after changing k, we have a non-complete
QUBO graph. However, it is very likely that this QUBO graph only has a few edges
missing compared to the complete graph of the same order. Therefore, if we use
complete graph embedding all the time. We do not need to compute embedding
at all. It is another example of hybrid quantum-classical computing as proposed
in [8].

Combining the results in [93] and [51], we proposed a QUBO formulation for
solving the k-densest common subgraph isomorphism problem. We can use this
QUBO formulation to solve the densest common subgraph isomorphism problem
with a lower bound for the order of the common subgraph by running all possible
k and picking the output that has the largest density.



Chapter 4

Final Remarks

The results in this thesis fall into two categories:

1. Experimental testing of the quality of quantum randomness.

2. Quantum annealing fast solutions for two important computational NP-hard
problems:

(a) the maximum common subgraph isomorphism problem,

(b) the k-densest common subgraph isomorphism problem.

The quality of quantum randomness assessed via the analysis of very long
strings of outputs has been studied in detail. These new tests have been cited and
used in a few articles, including

e Martinez, A. C., Solis, A., Diaz Hernandez Rojas, R., U'Ren, A. B., Hirsch,
J. G., & Pérez Castillo, I. (2018). Advanced statistical testing of quantum
random number generators. Entropy, 20, no. 11 (2018): 886. https://www.
mdpi.com/1099-4300/20/11/886.

e Martinez, A.C., Solis, A., Rojas, R.D.H., U’'Ren, A.B., Hirsch, J.G. and
Castillo, I.P., 2018. Testing randomness in quantum mechanics. arXiv
preprint arXiv:1810.08718.

New results in this direction have been recently obtained in

e Agiiero Trejo, J. M. and Calude, C. S., and Dinneen, M. J. and Fedorov, A.
and Kulikov, A. A. and Navarathna, R. and Svozil, K. How Real Is Incom-
putability in Physics? Report CDMTCS-572, https://www.cs.auckland.
ac.nz/research/groups/CDMTCS/researchreports/download.php?selected-
id=872.
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Both problems in the second part of the thesis have been reformulated in an
equivalent mathematical forms as QUBO problems and the correctness of these
formulations was proved. The QUBO formulation for solving the the k-densest
common subgraph isomorphism problem can be used to solve the densest common
subgraph isomorphism problem with a lower bound for the order of the common
subgraph by running all possible k£ and picking the output that has the largest
density. The quality of these solutions was tested experimentally on the D-Wave
2X machine. The results show the advantage of quantum annealong solutions over
the classical ones.

These results, particularly the mathematical ones, will be more useful wwhen
the technology of D-Wave will advance.
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Appendix A

Solving QUBOs on a D-Wayve
Machine

We use the following Python code to run the Maximum Common Subgraph Prob-
lem QUBOs on D-Wave.

#!/usr/bin/env python
# QUBO (with embedding) -> Ising -> DWave
# scale Ising in range [-.8 to 1]

import sys, time, math, traceback

from dwave_sapi2.remote import RemoteConnection

from dwave_sapi2.util import get_hardware_adjacency

from dwave_sapi2.embedding import embed_problem,
unembed_answer

from dwave_sapi2.util import qubo_to_ising,
ising_to_qubo

from dwave_sapi2.core import solve_ising

from sys import exc_info
# read input
line=sys.stdin.readline () .strip() .split ()

print (’header:’,line)
n=int (line [0])

38



#Q = defaultdict (int)
Q = {3
for i in range(n):
line=sys.stdin.readline () .strip () .split ()
for j in range(n):
t = float(line[j])

if t==0: continue
if i <= j: Q[(i,j)]=Q.setdefault((i,j),0)+t
else: QL(j,i)1=Q.setdefault ((j,i),0)+t

print (’°Q=",Q)
(H,J,ising_offset) = qubo_to_ising(Q)

embedding=eval (sys.stdin.readline ())

print ’embedding=’, embedding

qubits = sum(len(embed) for embed in embedding)
print ’Physical qubits used= %s’ % qubits

# create a remote connection using url and token and
connect to solver

#

url = "https://affi.qcc.isi.edu/sapi”

token = "secrete_token_key"

solver_name = "DW2X"

print (’Attempting to connect to network...?’)

try:
remote_connection = RemoteConnection(url, token)
solver = remote_connection.get_solver(solver_name)

except:

print (’Error: Y%s %s %s’ % sys.exc_info () [0:3])
traceback.print_exc ()

#print (’Solver properties:\n%s\n’ % solver.properties)
A = get_hardware_adjacency(solver)

# Embed problem into hardware
(h0, jO, jc, new_emb) = embed_problem(H, J, embedding,
)
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assert new_emb==embedding
# compute scale s so in range [-.8,1]

maxH=0.0

if len(hO): maxH=max(abs(min(hO0)),abs(max(h0)))
maxJ=max (abs (min(jO.values())),abs(max(jO.values())))
maxV=max (maxH/2.0,maxJ)

s = 0.8/maxV

hi= [val*s for val in hO]

j1 = {}

for (key, val) in jO.iteritems():
jll[keyl=valxs

assert max(hl) <= 2.01

assert min(hl) >= -2.01

assert max(jl.values()) <= 1.01
assert min(jl.values()) >= -0.81

j1.update(jc)
# call the solver

print ’batch 1: with post-process on and programming
time 1000’
for spins in [2]: # [[2,4,8,16]:
#break
annealT ,progT,readT=20,1000,100 # had progT=100 on
first runs
print ’annealT=’,annealT,’progT=’,progT,’readT=",readT
,’spins=’,spins, ’post=optimize’
result = solve_ising(solver, hl, jl1, num_reads=5000,
annealing_time=annealT,\
programming_thermalization=progT,
readout_thermalization=readT, postprocess=’
optimization’,\
num_spin_reversal_transforms=spins,auto_scale=False

)
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print ’result:’, result

#newresult = unembed_answer (result[’solutions’],
new_emb, broken_chains=’discard’, h=H, j=J)
newresult = unembed_answer (result[’solutions’],
new_emb, broken_chains=’vote’, h=H, j=J)

print ’newresult:’, newresult

print ’batch 2: with post-process off and programming
time 100’
for spins in [2]: # [[2,4,8,16]:
#break
annealT ,progT,readT=20,100,100 # had progT=100 on
first runs
print ’annealT=’,annealT,’progT=’,progT,’readT=’,readT
,’spins=’,spins, ’post=None’
result = solve_ising(solver, hl, jl1, num_reads=5000,
annealing_time=annealT,\
programming_thermalization=progT,
readout_thermalization=readT, postprocess=None,\
num_spin_reversal_transforms=spins,auto_scale=False

)

print ’result:’, result

#newresult = unembed_answer (result[’solutions’],
new_emb, broken_chains=’discard’, h=H, j=7J)
newresult = unembed_answer (result[’solutions’],
new_emb, broken_chains=’vote’, h=H, j=J)

print ’newresult:’, newresult

print ’batch 3: with post-process off and programming
time 1000’

for spins in [2]: # [[2,4,8,16]:
#break
annealT ,progT,readT=20,1000,100 # had progT=100 on
first runs
print ’annealT=’,annealT,’progT=’,progT,’readT=",readT
,’spins=’,spins, ’post=None’
result = solve_ising(solver, hl, j1, num_reads=5000,
annealing_time=annealT,\
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programming_thermalization=progT,
readout_thermalization=readT, postprocess=None,\
num_spin_reversal_transforms=spins,auto_scale=False

)

print ’result:’, result

#newresult = unembed_answer (result[’solutions’],
new_emb, broken_chains=’discard’, h=H, j=7J)
newresult = unembed_answer (result[’solutions’],
new_emb, broken_chains=’vote’, h=H, j=1J)

print ’newresult:’, newresult

preembed Nan Subgraph.py

We use the following BASH script to enumerate through several test cases.

#!/bin/bash

for n in Subgraph_Isomorphism/MCISI/QUBO/*.H; do

echo; echo ’testing’, $n

time ./preembed_Nan_Subgraph.py < $n | tee ${n%H}d.
out

sleep 1

done

for n in Subgraph_Isomorphism/MCESI/QUBO/*.H; do

echo; echo ’testing’, $n

time ./preembed_Nan_Subgraph.py < $n | tee ${n%H}d.
out

sleep 1

done

run_ Nan QUBOs_on_Dwave.sh





