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Abstract:

In this thesis, we describe three new and/or improved methods for the

analysis of finitely-presented groups and show their usefulness in a va-

riety of contexts.

The first procedure creates a labelled coset graph which can be used

for rewriting and also for finding expressions for subgroup elements in

terms of given generators. We use this procedure to find nice generat-

ing sets for torsion-free subgroups of finite index in ordinary triangle

groups, with implications for the study of regular maps and automor-

phism groups of compact Riemann surfaces.

Our second procedure is an improvement of the package PEACE by

Havas and Ramsay. This package uses coset enumeration to find a

proof for subgroup inclusion, by way of a proof word (which is a se-

quence of the elements of the supergroup and various brackets indi-

cating two methods of simplification, the equality of which proves the

inclusion). We use this procedure to find new generating sets and pre-

sentations for the special linear group SL(3,Z).

Finally, we give a version of the low-index subgroups algorithm with

added capabilities for finding specific types of subgroups by way of

avoiding the inclusion of specified words. We use this algorithm to

find torsion-free subgroups of Coxeter groups, with implications for

the construction of hyperbolic manifolds.
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Chapter 1

Introduction

The overall goal of this PhD thesis project was to develop new and/or

improved methods for dealing with finitely-presented groups. We aimed

to develop methods that may be helpful in a variety of contexts and

showcase some applications.

We succeeded in developing procedures in theMagma programming

language developed by Bosma, Cannon and Playoust [5], with appli-

cations in three different contexts: the construction and analysis of

regular maps, hyperbolic manifolds of small volume, and new presen-

tations and generating sets for special linear groups over the integers.

While these areas are quite different, they are tied together not only by

the role of finitely-presented groups but also by some common themes

such as torsion-free subgroups and finding alternative generating sets.

A finitely-presented group G = ⟨X |R ⟩ is a group generated by a

finite set X subject to a finite set R of relators, which are words on the

9
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elements of X ∪ X−1, all equal to the identity element of G, and are

enough to define G. Finite presentations give a succinct way to specify

a group, but many properties of the group can be difficult to determine

from a presentation. One such property is the finiteness of the group.

Even the trivial group can be defined by arbitrarily long presentations,

and the proof of the infamous ‘Word Problem’ attributed to Novikov

[35] and Boone [4] states that there is no algorithm that can determine

if a given word on the generators in an arbitrary finitely-presented

group is equal to the identity element.

Nevertheless, there are several methods that can be effective for

investigating the structure of finitely-presented groups, such as the

Reidemeister-Schreier rewriting process, Tietze transformations, coset

enumeration and the Low Index Subgroups algorithm (see [24]).

In this thesis project, we aimed to develop methods which may be

helpful in instances where such methods do not exist, or tend to fail,

or require substantial computing resources (memory and/or time).

Many methods, including those we have developed, apply to finite-

index subgroups of finitely-presented groups. The existence of certain

subgroups can tell us many things. For example, the presence of a

finite-index finite subgroup can help determine the order of a group

through Lagrange’s theorem, and the presence of a subgroup with in-

finite abelianisation proves that the group itself is infinite. All of the

procedures we have developed rely on coset enumeration in some way
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or another, and hence we consider only finite-index subgroups.

Our first procedure, which we have called CosGraphLabs, uses the

theory behind the Reidemeister-Schreier rewriting process and Tietze

transformations to create a labelled coset graph which can be used

for rewriting, and also for finding expressions for subgroup elements

in terms of given generators. Our testing shows that CosGraphLabs

outperforms the functions called ! and Rewrite already available in

Magma in terms of processing time.

We demonstrate the use of CosGraphLabs in finding ‘nice’ generat-

ing sets for torsion-free normal subgroups of ordinary triangle groups,

and expressions for the conjugates of those generators by the gener-

ators of the parent group. This extends (to the best of the author’s

knowledge, for the first time) the work of Leech in the 1960s [26] to

other triangle groups, and has implications for the study of regular

maps and large automorphism groups of compact Riemann surfaces.

Having such ‘nice’ generating sets is very useful for constructing covers

of such maps with abelian covering groups, for example.

The full code and results of the latter application can be found at

github.com/GLiversidge/CosGraphLabs.

Next, PEACE is a package developed by Havas and Ramsay [22, 23],

which we have rewritten with added functionality and usability and

called PEACEv2. PEACE and PEACEv2 use coset enumeration to give

‘proof words’ for element inclusion in subgroups. Unlike CosGraphLabs,
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PEACEv2 can be used with index 1 subgroups and thus can be used to

confirm alternative generating sets for a group. To the best of the

author’s knowledge there are no other packages which produce proofs

for subgroup inclusion.

We demonstrate the use of PEACEv2 in finding new generating pairs

for the special linear group SL(3,Z) and the corresponding new presen-

tations. These presentations are, to the best of the author’s knowledge,

the first known two-generator presentations for SL(3,Z). Furthermore,

we believe that (up to equivalence) only two presentations for SL(3,Z)
were previously known.

The full code and results can be found at

github.com/GLiversidge/PEACEv2.

Our final method, which we call LowIndAlg, is a variation of the Low

Index Subgroups algorithm, designed for finding specific subgroups by

avoiding the inclusion of given words. To the best of the author’s

knowledge, this is the first procedure usable within Magma with such

capabilities. Furthermore, the use of this procedure greatly outper-

forms previously available procedures in Magma in particular appli-

cations, with time reductions by a factor of over 400.



13

A similar function is available as an option within the GAP function

LowIndexSubgroupsFpGroup, but our testing shows that LowIndAlg

often greatly outperforms this function in terms of processing time.

To the best of the author’s knowledge, no such function is available in

Magma.

We demonstrate the use of LowIndAlg in finding torsion-free sub-

groups of Coxeter groups, with implications for the construction of

hyperbolic manifolds. This extends the work by Milnor, Lorimer and

Everitt [33, 27, 15] and corrects work by Lorimer [28], and fills the

remaining gaps in Milnor’s table. It also determines (up to equiva-

lence) all of the hyperbolic 3-manifolds of smallest possible volume

constructible from each rank 4 Coxeter group [p, q, r] with p, q, r > 2,

1/p+ 1/q ≥ 1/2 and 1/q + 1/r ≥ 1/2.

The full code and results can be found at

github.com/GLiversidge/LowIndAlg.





Chapter 2

Further Background

In this chapter we give some further background on topics mentioned

in Chapter 1 or needed later, including preliminaries on Tietze trans-

formations and the Reidemeister-Schreier rewriting process, Schreier

coset graphs, coset enumeration, the Low Index Subgroups algorithm,

manifolds and surfaces, orientably-regular maps, manifolds of small

volume and generators for special linear groups.

2.1 Preliminaries

A group homomorphism θ : G → H is called smooth if its kernel

K = ker θ is torsion-free. In particular, this means that the order of

every torsion element in G is preserved under the homomorphism θ.

In that case, the image of G under θ is called a smooth quotient of G.

For many finitely presented groups, such as triangle groups and some

Coxeter groups, all that is required for smoothness is that the orders

of the generators and their pairwise products (when those orders are

15
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finite) are preserved. For example, if G = ⟨x, y |x3, y4, (xy)5 ⟩ then the

quotient G/K is smooth if and only if the cosets Kx, Ky and Kxy

have respective orders 3, 4 and 5 in G/K.

Given a set X of symbols (sometimes called an ‘alphabet’), we may

associate with X an adjunct set X−1 = {x−1 : x ∈ X}, and then define

a word in or on X ∪X−1 (or sometimes more simply, a word in or on

X) to be any expression of the form xe11 x
e2
2 . . . xemm where xi ∈ X and

ei = ±1 for 1 ≤ i ≤ m. Also we call m the length of this word, and we

say that such a word is reduced if it contains no sub-expression of the

form xeii x
−ei
j with xi = xj.

Next, the free group on X is the set of all reduced words on X, en-

dowed with multiplication defined by concatenation of words followed

by reduction (elimination of sub-expressions of the form xeii x
−ei
j with

xi = xj). This group is denoted by F (X). Its identity element is the

empty word (of length 0). The group F (X) is generated by X, and

we say it has presentation ⟨X | ∅ ⟩, or simply ⟨X | ⟩, with the ‘∅’ (or
blank space) indicating that no relations hold in F (X) other than those

which are consequences of the group axioms. For example, if X = {x}
then F (X) is the infinite cyclic group, with element set {xm : m ∈ Z}.

More generally, let R be a set of words on X ∪X−1. Then the nor-

mal closure of R in F (X) is the normal subgroup N(R) = ⟨R ⟩F (X)

generated by the words in R and all their conjugates in F (X). For ex-

ample, the normal closure of {x} in F (x, y) is the subgroup N({x}) =
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⟨xw |w ∈ F (x, y) ⟩, where xw denotes the conjugate w−1xw of x by w.

The factor group F (X)/N(R) is then denoted as the group with

presentation ⟨X |R ⟩. The elements of X are usually referred to as the

generators for this group G, and the elements of R are the relators. A

relation in G is an equation of the form r = 1 where r ∈ R, or of the

form u = v where the equation uv−1 = 1 is deducible from the fact

that the relators are all trivial in G = F (X)/N(R).

The presentation ⟨X |R ⟩ is said to be finite if both X and R are

finite, and a group G is said to be finitely-presented if it admits a finite

presentation (or equivalently, is isomorphic to the group with presen-

tation ⟨X |R ⟩ for some finite X and R).

2.2 Tietze transformations

Tietze transformations are a family of procedures that involve adding

and/or removing generators and relators to or from a finite presenta-

tion, without changing the group described. If G = ⟨X |R ⟩ then the

following are Tietze transformations on G:

� T1 (Adding a relator): If r ∈ N(R) then G = ⟨X |R∪ {r} ⟩. This
means that the word r can be added as a relator of G.

� T2 (Removing a relator): If r ∈ R and r ∈ N(R\{r}) then G =

⟨X |R\{r} ⟩. This means that the word r can be removed from

the relators of G.
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� T3 (Adding a generator): If w is a word on X ∪ X−1 and y is a

symbol not in X ∪ X−1 then G ∼= ⟨X ∪ {y} |R ∪ {y−1w} ⟩. This

means that a symbol y representing the word w can be added to

the generators of G when also adding y−1w is added to the relators

of G.

� T4 (Removing a generator): If y ∈ X and w is a word on (X ∪
X−1)\{y, y−1} such that y−1w ∈ R is the only relator containing

y then G ∼= ⟨X\{y} |R\{y−1w} ⟩. This means that the symbol

y can be removed from the generators of G when also removing

y−1w from the relators of G.

Example 2.2.1 Let G = ⟨ a, b, c | a2, abc, c−1a−1b−1, (ab)4 ⟩.
We can show that G ∼= ⟨ a, b, d | a2, aba−1b−1, d−1ab, d4 ⟩ using Tietze

transformations.

First we have

aba−1b−1 = (abc)(c−1a−1b−1) ∈ N({a2, abc, c−1a−1b−1, (ab)4})

so by T1 we can add aba−1b−1 as a relator of G, giving

G = ⟨ a, b, c | a2, abc, c−1a−1b−1, (ab)4, aba−1b−1 ⟩.

Conversely, we have

c−1a−1b−1 = (abc)−1(aba−1b−1) ∈ N({a2, abc, (ab)4, aba−1b−1}), so by

T2 we can remove c−1a−1b−1 from the relators of G, giving

G = ⟨ a, b, c | a2, abc, (ab)4, aba−1b−1 ⟩.



2.2. TIETZE TRANSFORMATIONS 19

Next, by T4 we may remove the symbol c, along with the relator

abc, giving

G ∼= ⟨ a, b | a2, (ab)4, aba−1b−1 ⟩.

Then we can use T3 to add the symbol d representing the word ab,

which gives

G ∼= ⟨ a, b, d | a2, (ab)4, aba−1b−1, d−1ab ⟩.

Now we use T1 to add

d4 = (ab)4(d−1ab)−1((d−1ab)−1)d((d−1ab)−1)d
2

((d−1ab)−1)d
3

∈ N({a2, (ab)4, aba−1b−1, d−1ab}).

This gives

G ∼= ⟨ a, b, d | a2, (ab)4, aba−1b−1, d−1ab, d4 ⟩.

Finally we use T2 to remove the relator

(ab)4 = (d−1ab)d
−1

(d−1ab)d
−2

(d−1ab)d
−3

(d−1ab)d
−4

d4

∈ N({a2, aba−1b−1, d−1ab, d4}).

This gives

G ∼= ⟨ a, b, d | a2, aba−1b−1, d−1ab, d4 ⟩.

Note that the combination of the last two operations is equivalent

to using the equality d = ab in the relator (ab)4.
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When manipulating sets of relators the three following short cuts

can be used to replace relators.

Theorem 2.2.1 Let G = ⟨X |R ⟩. Then Tietze transformations T1

and T2 can be used to replace any relator r ∈ R by a conjugate rw of

r by any word w on X ∪X−1.

Proof. Let w be a word on X ∪X−1. Then rw ∈ N(R) so by T1,

G = ⟨X |R ∪ {rw} ⟩

Next (rw)w
−1

= w(w−1rw)w−1 = r ∈ N((R ∪ {rw})\{r}, so by T2,

G = ⟨X | (R ∪ {rw})\{r}) ⟩.

□

Theorem 2.2.2 Let G = ⟨X |R ⟩ and let r1 and r2 be two relators in

R. Then Tietze transformations T1 and T2 can be used to replace r2

by the relator r1r2.

Proof. First r1r2 ∈ N(R), so by T1

G = ⟨X |R ∪ {r1r2} ⟩.

Next, r2 = (r−1
1 )(r1r2) ∈ N((R ∪ {r1r2})\{r2}. Hence, by T2,

G = ⟨X |R ∪ {r1r2})\{r2} ⟩.

□
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Theorem 2.2.3 Let G = ⟨X |R ⟩ and suppose that yw−1 ∈ R for

some element y ∈ X and some word w on X ∪ X−1 and that r is a

relator in R containing w such that r = r1wr2 for some words r1, r2

on X ∪X−1. Then Tietze transformations T1 and T2 can be used to

replace r by the relator r1yr2.

Proof. First r1yr2 = (yw−1)r
−1
1 r ∈ N(R), so by T1

G = ⟨X |R ∪ {r1yr2} ⟩.

Next, r = ((yw−1)−1)r
−1
1 (r1yr2) ∈ N((R ∪ {r1yr2})\{r} and so by

T2,

G = ⟨X |R ∪ {r1yr2})\{r} ⟩.

This process may be repeated to remove multiple appearances of w.

□

2.3 Schreier transversals and generators

Given a group G and a subgroup H ≤ G, a subset U ⊆ G is called

a (right) transversal for H in G if the right cosets Hu for u ∈ U are

distinct and their union is G. In other words, a transversal for H in G

is a set of representatives of the (right) cosets of H in G. For example,

if G = ⟨x, y |xyx−1y−1, y2 ⟩ and H is the subgroup generated by x,

then both {1, y} and {x, y} are transversals for H in G.

Let G = ⟨X |R ⟩ and let H ≤ G. A Schreier transversal for H in G

is a transversal U with the property that if u = xe11 x
e2
2 . . . x

en−1

n−1x
en
n is a
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word on X ∪X−1 that lies in U then also xe11 x
e2
2 . . . x

en−1

n−1 lies in U . For

example, if G = ⟨x, y |xyx−1y−1, y2 ⟩ and H is the subgroup generated

by x, then the aforementioned {1, y} is a Schreier transversal for H in

G, but {x, y} is not.

The Reidemeister-Schreier rewriting process is a procedure for find-

ing a presentation for a subgroup H of finite index in a finitely pre-

sented group G. A description of the process can be found in Chapter

4 of [24], along with the following theorem on which the process is

based.

Theorem 2.3.1 Let G = ⟨X |R ⟩ be a finitely presented group. Let U

be a Schreier transversal for a subgroup H of finite index in G. For

g ∈ G let g denote the unique element u ∈ U such that Hg = Hu.

Then H is generated by the set

B = {ux(ux)−1 |u ∈ U, x ∈ X, ux ̸∈ U}.

Moreover, every element of the form uru−1 with r ∈ R and u ∈ U

can be expressed as a word in the elements of B, and if S is the set of

resulting expressions, then ⟨B |S ⟩ is a presentation for H.

The (non-trivial) elements of the form ux(ux)−1 with u ∈ U , x ∈ X

and ux ̸∈ U are called Schreier generators for the subgroup H (with

regard to U).
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2.4 Schreier coset graphs

A Schreier coset graph is a digraph associated with a group G, a gen-

erating set X for G, and a subgroup H ≤ G. The vertices of the

graph are the right cosets of H, and each vertex Hg is incident with

directed edges (Hg,Hgx) for all x ∈ X. These directed edges cor-

respond to multiplication of each coset Hg by each generator of G,

and each such edge is labelled by the corresponding generator. (The

associated reverse edges correspond to multiplication by the inverse of

each generator of G.) In essence, the Schreier coset graph for H in G

provides a graphical representation of the coset table for H in G.

For Example, if G = ⟨x, y |x6, y2, xyx−1y−1 ⟩ and H is generated by

x3 then the Schreier coset graph for H in G is given in Figure 2.1.

Figure 2.1: A Schreier coset graph
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In [10], Conder showed how a Schreier coset graph can be used

to illustrate the Reidemeister-Schreier rewriting process for finding a

presentation of a given subgroup H of finite index in G. Here we give

formal proofs for Conder’s observations.

Theorem 2.4.1 A spanning tree in the undirected form of the Schreier

coset graph for a finite index subgroup H of G = ⟨X |R ⟩ corresponds
to a Schreier transversal for H.

Proof. Let H be a finite index subgroup in the group G = ⟨X |R⟩.
We can obtain a Schreier transversal U from a spanning tree in the

undirected form of the Schreier coset graph for H in G as follows.

First, we include the identity element in U as a representative of the

trivial coset H. Then for each other vertex v, we include the product

of the generators and their inverses labelling the edges traversed on the

unique path in the spanning tree from the vertex corresponding to the

cosetH to the vertex v. By the definition of a Schreier coset graph, this

product is an element of the corresponding coset. Since there is exactly

one such path to each coset of H, we see that G = ∪u∈UHu and that

for each u, u′ ∈ U , if Hu = Hu′ then u = u′. Hence U is a transversal

for H in G. Furthermore, if u = xe11 x
e2
2 . . . x

en−1

n−1x
en
n ∈ U then the path

(H,Hxe11 , Hxe11 x
e2
2 , . . . Hxe11 x

e2
2 . . . x

en−1

n−1 , Hu) is the unique path from H

toHu in the spanning tree, and so (H,Hxe11 , Hxe11 x
e2
2 , . . . Hxe11 x

e2
2 . . . x

en−1

n−1 )

is the unique path from H to Hxe11 x
e2
2 . . . x

en−1

n−1 in the spanning tree, and

therefore xe11 x
e2
2 . . . x

en−1

n−1 ∈ U . Hence U is a Schreier transversal for H

in G.

□
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Theorem 2.4.2 Let H be a finite-index subgroup of G = ⟨X |R ⟩ and
let Γ be the Schreier coset graph for H in G. Let T be the set of

edges in a spanning tree of the undirected form of Γ and let U be the

corresponding Schreier transversal. The edges of Γ which are not in

T correspond to the Schreier generators of H, namely the elements of

the set B = {ux(ux)−1 |u ∈ U, x ∈ X, ux /∈ U}.

Proof. Each directed edge (Hu,Hux) of the Schreier coset graph goes

from the vertex Hu to the vertex Hux = Hux, and gives rise to an

element ux(ux)−1 ∈ H, which is either trivial (when ux ∈ U and so

ux = ux, and the given edge lies in the spanning tree T ), or a Schreier

generator in the set B (when the edge {Hu,Hux} lies outside T ).

□

Next, let G = ⟨X |R ⟩, H, U , Γ and T be as above. Label all edges

of Γ represented in T with the identity element 1H , and label every

other directed edge (Hu,Hux) of Γ with the corresponding Schreier

generator ux(ux)−1.

If g = ux, then gx−1 = uxx−1 = u = u, and hence also the reverse

arc (Hux,Hu) = (Hg,Hgx−1) can be associated with the pair (g, x−1),

because gx−1(gx−1)−1 = uxx−1u−1, which is the inverse of ux(ux)−1.

Theorem 2.4.3 Let G, H, U , Γ, T , B and the labelling of edges of Γ

be as above. Then the following hold :

(a) If w is any word on X ∪X−1, and u ∈ U , and W is the walk in Γ

defined by w from the vertex u, then the concatenation of the labels

on the walk W is equal to uwuw−1.
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(b) If a word w on X ∪ X−1 defines a closed walk W in Γ from the

vertex 1G to itself, then the concatenation of the labels on the walk

W is equal to w.

(c) If r ∈ R and u ∈ U , then the element uru−1 may be written as

a word in the elements of B by applying the relator r to vertex

of Γ corresponding to u, and concatenating the labels of the edges

traversed.

(d) If the word obtained by applying the relator r ∈ R to the vertex

corresponding to u ∈ U is wb for some b ∈ B, then the Schreier

generator b may be replaced by the word w−1, and the associated

edge of Γ may be labelled as such.

Proof. Part (a) is easily seen to be true by induction on the length

of w, because if we extend such a walk W by adding a further edge

from Hw to Hwx (where x ∈ X), then we concatenate uwuw−1

with uwx(uwx)−1 to get uwuw−1 uwx(uwx)−1 = uwx(uwx)−1, and

the analogous property holds if we replace x by x−1.

For part (b), by part (a) the labels of the given closed walk con-

catenate to 1Gw1Gw
−1

= ww−1. But since this walk is closed we must

have w = 1G, and hence the concatenation of the labels on this closed

walk is equal to w.

For part (c), first note that the concatenation of any labels must

give a word in the elements of B. Now let r be given by the word

xe11 x
e2
2 . . . x

en−1

n−1x
en
n on X ∪ X−1. Then the concatenation of the labels
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of the edges traversed by the application of r to u is equal to urur−1,

but r ∈ R and hence ur = u = u. Thus urur−1 = uru−1, and hence

the concatenation is uru−1, as required.

Finally, for part (d), observe that wb is a relator for H. By Theorem

2.2.3, every appearance of b in other relators may be replaced by w−1,

and then we may use Tietze transformations to remove the generator

b and the relator wb. Also re-labelling the edge of Γ associated with

b with the word w−1 will cause the concatenation of the labels of any

walk containing this edge to have the element b replaced by w−1, and

hence in particular, the concatenation of the labels of the closed walk

corresponding to r from the vertex u will be ww−1 = 1H .

□

CosGraphLabs applies parts (b) and (d) of the above theorem mul-

tiple times to find labels for the edges associated with the Schreier

generators, replacing the elements of B with a chosen set of generators

for H.

Example 2.4.1 Let G = ⟨R, S |R8, S8, (RS)2 ⟩. Then Figure 2.2

shows a labelled Schreier coset graph for the subgroup H generated

by

{R3S−1, R2S−1R,RS−1R2, S−1R3},

with generators labelled w, x, y and z, respectively. The spanning tree
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used corresponds to the Schreier transversal

U = {1G, R, S,R−1, S−1, R2, RS,RS−1},

and its edges have all been labelled 1H . (Note that the labelling of

the cosets H,HR, . . . , HR7 corresponds to the Schreier transversal

{1G, R, . . . , R7}.)

Figure 2.2: A labelled Schreier coset graph.

Next, note that the concatenation of the labels on the closed walk

defined by each generator of H from the vertex H to itself reduces to

the corresponding element w, x, y or z.

Also note that the concatenation of the labels on the edges of the
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closed walks defined by the relators R8 and (RS)2 from any vertex

reduces to 1H , since the corresponding relators uru−1 of H have been

used to label an edge as per Theorem 2.4.3 (d).

Applying the relators of G to each vertex in the graph gives us

a single relator xw−1y−1zwx−1yz−1 for H. The concatenation of the

labels on the closed walk defined by S8 from each vertex is simply a

conjugate of the concatenation of the labels on the closed walk defined

by S8 from another vertex. This happens because this walk is in fact

a Hamilton cycle. By Theorem 2.2.1 only one of these words needs to

be included as a relator.

The labelled graph not only provides an alternative to the Magma

function Rewrite, but also can be used to express any element of H

given in terms of the generators of G as a word in the chosen genera-

tors for H.

At the time of writing CosGraphLabs, we were unaware of the ca-

pability of Magma to do the latter via its function !, but our testing

shows the expressions found via CosGraphLabs tends to take less pro-

cessing time that those found using the inbuilt function in Magma,

and in some instances quite significantly so. Furthermore, rewriting

subgroups with CosGraphLabs was at least as fast as the Magma

function Rewrite, and in some instances quite significantly faster.
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2.5 Coset enumeration

Coset enumeration is a process for counting the number of cosets of a

finite-index subgroup H in a finitely-generated group G and determin-

ing the associated coset table.

While there is no formal algorithm for coset enumeration, there are

implementations that work quite well for most cases of interest. An

early implementation of coset enumeration was given in 1936 by Todd

and Coxeter [42].

Let G = ⟨X |R ⟩ and suppose H = ⟨Y ⟩ is a finite index subgroup of

G. Briefly, the procedure involves creating several tables concurrently.

� A coset table, which has a column for each x ∈ X ∪ X−1 and a

row for each coset. The (i, j)th entry of the coset table gives the

number of the coset obtained by right multiplication of the coset

numbered i by the element of X ∪X−1 used for column j.

� Generator tables. For each y ∈ Y we have a table with a single

row. If y is given by the word x1x2 . . . xn in the generators of G,

then the table for y will have n+1 entries. The first and last entry

are 1, and for 1 ≤ i < n the (i + 1)th entry is the number for the

coset corresponding to the action of xi on the coset given in the

ith entry.

� Relator tables. For each r ∈ R we have a table with a row for each

coset. If r is given by the word x1x2 . . . xn in the generators of G,

then the table for r will have n+1 entries. The first and last entry
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of each row are equal to the row number, and for 1 ≤ i < n then

the (i + 1)th entry is the number for the coset corresponding to

the action of xi on the coset in the ith entry.

At each step of the procedure a coset B is created, defined as the coset

given by the action of some generator x ∈ X ∪X−1 on some previously

defined coset A, filling the first gap in the coset table. Then the other

tables are updated according to the table rules.

When all entries of a particular row are filled we update the coset

table so that it is consistent with the table rules being satisfied. If an

entry of the coset table where we wish to put a coset B is already filled

with a coset A then we have a coincidence. By swapping the roles of A

and B if necessary, let us suppose that A < B. Then each appearance

of B in any table is replaced by A, and if the (i, B)th entry of the coset

table has been filled, and the (i, A)th entry has not, then this value is

copied to the (i, A)th entry. If both the (i, B)th entry and the (i, A)th

entry have been filled then we have another coincidence between those

two entries. Finally we remove the row B from the coset table and

each relator table and then rename each coset greater than B to make

the row numbers consistent with the coset names.

The procedure is complete when all tables have been filled.

Various improvements have been made over the last few decades,

most notably those of Felsch [16] and HLT (Haselgrove, Leech and

Trotter) [25], who suggested defining new cosets strategically to fill
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the generator tables or relator tables respectively.

Computer implementations of coset enumeration called ACE (Ad-

vanced coset enumerator)[21] and PACE (Parallel Advanced coset enu-

merator) [37] were developed in 1999 and 2000 respectively by Havas

and Ramsay, who subsequently developed PEACE in 2000 with the ad-

dition of ‘proof extraction’ (see [22, 23, 38]). Our implementation is

based on that of Havas and Ramsay (with their permission), with a

focus on increased usability.

The process involves tracking the definitions of new cosets, and the

generator or relator used in any deductions made when filling the coset

table. Records are maintained even for cosets which become inactive

due to a coincidence, as well as recording the generator or relator which

led to the coincidence and the equivalent coset. These records contain

all the information necessary to ‘explain’ each entry of the coset ta-

ble. The PEACE package uses this information to create proof words, a

sequence of generators of the supergroup G, as well as round brackets

surrounding some relators of G and square brackets surrounding some

generators of the subgroup H.

The proof is obtained by the equivalence of two methods of sim-

plification, one ignoring all brackets and removing sequential inverse

pairs, and the other removing round brackets and their contents, and

then removing only inverse pairs outside square brackets. It is easy

to see that the resulting words must be equal, since only words which

are equal to the identity in the supergroup are removed. Also it is
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easy to see that the first method of simplification will give a word in

the generators of the supergroup, but what is not obvious is that the

second method of simplification (when applied to proof words created

by the program) gives a word in the generators of the subgroup. This

will be explained in Chapter 4, but the implication is that the words

can be used to prove the inclusion of an element of the supergroup in

the subgroup, as well as giving a word for this element in the given

generators of the subgroup.

Our version is written as a function to be used in Magma. We re-

moved the option of changing the enumeration style, and instead use a

hybrid of the HLT and Felsch methods. We also removed the option of

trying equivalent presentations (by rearranging the relators in a variety

of ways), as they are unlikely to make much difference to the number

of cosets created with this style of enumeration. Havas and Ramsay

built the proof table after coset enumeration, but we build the proof

table as we perform enumeration. Our version has an additional proof

word table, which we build from the proof table on an ‘as-required’ ba-

sis. This increases the speed of production of proof words, especially

when multiple proof words are needed, because sections of the word

are likely to have been found already. Finally, we have also developed

methods to reduce the length of proof words.
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2.6 The Low Index Subgroups algorithm

The Low Index Subgroups algorithm (due to Sims [40]) uses the con-

cept of partial coset enumeration to find subgroups up to a given index.

Let G = ⟨X |R ⟩. To find subgroups of G up to index n, we begin

by enumerating a certain number of cosets (greater than n), using a

coset enumeration procedure, with no generator tables. Next we tra-

verse a search tree, with branches corresponding to the inclusion of

subgroup generators obtained through the forced coincidence of cosets

or obtained through filling gaps in the coset table with existing cosets.

After each branch point, enumeration is continued before moving to

the next branch point. The branch ends when complete coset collapse

occurs, that is, when the coset table reduces to that of the trivial sub-

group, or reduces to a partial or complete coset table for a subgroup

that is conjugate to one found already. Each complete coset table

found in the search corresponds to a subgroup of G, or to a conjugacy

class of such subgroups when the conjugacy test is applied.

Variations of this algorithm have been developed for finding spe-

cific types of subgroups, such as the ‘lowx’ package written by Peter

Dobcsányi for finding only normal subgroups of up to the given in-

dex. A much more effective procedure for the latter was developed

by Firth [17] (and his PhD supervisor Holt) by systematically con-

sidering the possible composition series for the finite quotient G/K

of the group by the normal subgroup K. The Low Index Subgroups

and Firth’s Low Index Normal Subgroups algorithms are implemented
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in Magma and GAP. The package lowx is available for download at

github.com/pdobsan/lowx.

Our variation LowIndAlg is an implementation of the Low Index

Subgroups algorithm, with the additional feature of an option to input

a list of ‘bad words’. This is a list of words on the generators of the

given group G, which are not allowed to occur as elements in any of

the subgroups produced (or in any of their conjugates). This feature

allows the user to search for subgroups of small index with particular

properties, such as torsion-free subgroups.

We use an HLT-Felsch hybrid style of enumeration to find subgroups

of a specific index (rather than in a range of indices). Specifically, if n

is the desired index, we enumerate up to n cosets. We create branches

first by forcing the coincidence of cosets and continuing enumeration,

and then by systematically considering possible ways to fill the coset

table without coincidence.

At the time of writing LowIndAlg we were unaware of the similar pro-

cedure available as an option within the LowIndexSubgroupsFpGroup

function in GAP, but we found that LowIndAlg often greatly outper-

forms LowIndexSubgroupsFpGroup in terms of processing time. Also,

we believe no such procedure is available in Magma.
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2.7 Manifolds and surfaces

An n-manifold is a topological space in which each point has a neigh-

bourhood that is homeomorphic to n-dimensional Euclidean space. A

2-manifold is called a surface. Examples of surfaces include a plane in

3-dimensional Euclidean space, the boundary of a 3-dimensional solid

such as a sphere or a torus, as well as the Klein bottle and Möbius strip.

A surface is called non-orientable if there exists a walk from one

point on the surface to the same point on the other side of the surface

without crossing any boundaries of the surface, and otherwise the sur-

face is orientable. The sphere and torus are both orientable, while the

Möbius strip and Klein bottle are both non-orientable.

The genus of a surface is the largest number of non-intersecting sim-

ple closed curves that can be drawn on the surface without separating

it. The sphere has genus zero, the torus and Möbius strip have genus

one and the Klein bottle has genus two.

2.8 Orientably-regular maps

A map is a 2-cell embedding of a connected graph or multigraph into a

surface, where 2-cell means the embedding breaks up the surface into

simply connected regions called the faces of the map. For example, the

embedding of a planar graph into the plane without edge-crossings is

a map. In this sense, maps can be seen as a generalisation of plane

maps to other surfaces.
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A map is called orientable if the underlying surface on which the

graph is embedded is orientable, and non-orientable if the surface is

non-orientable. The genus g of a map is the genus of the surface in

which the map is embedded. The genus of a map is related to the

Euler characteristic χ of the surface, with χ = 2 − 2g for orientable

surfaces and χ = 2− g for non-orientable surfaces.

The Euler characteristic is also related to the map by Euler’s for-

mula χ = V − E + F , where V is the number of vertices, E is the

number of edges and F is the number of faces of the map.

Figure 2.3: A polar map on the sphere (genus 0) with |V | = 2, |E| =
6 = |F | (copied from [44]).

An automorphism of a map is a bijection from the map to itself tak-
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ing vertices to vertices, edges to edges and faces to faces, and preserving

the incidences between these objects. For example, automorphisms of

the map in Figure 2.3 include swapping the two vertices without mov-

ing the edges of faces, or rotating the edges and faces one place around

to the right. Swapping the red and yellow faces without moving other

faces would not be an automorphism since that does not preserve the

incidence of the edge between the red and orange face with those two

faces.

A flag of a map is a triangle in its barycentric subdivision (obtained

by adding a line from a central point P of each face to each of the

vertices of that face, and a line from P to the midpoint of each edge of

that face). Accordingly, a flag can be identified as a triple consisting of

a vertex v, half of an edge e incident with v and a triangular section of

a face f incident with both v and e. In all but some degenerate cases,

a flag can be thought of more simply as an incident vertex-edge-face

triple. An arc of a map is an incident vertex-edge pair.

A map is called regular if its automorphism group is transitive on

its flags. An orientable map is called orientably-regular if its group of

orientation-preserving automorphisms is transitive on its arcs. If an

orientably-regular map has an automorphism a that reverses an edge

e but preserves an incident face then the map is called reflexible, and

otherwise the map is called chiral. Chiral maps occur in pairs, with

each map in the pair being like a mirror image of the other. Orientably-

regular maps which are reflexible are regular orientable maps. Chiral

maps are orientably-regular, but are not regular.



2.8. ORIENTABLY-REGULAR MAPS 39

Figure 2.4: A chiral map of type {6, 3} on the torus (copied from [14]).

Figure 2.5: The Klein map (a regular map of genus 3 with type {7, 3})
[45].

Regular and orientably-regular maps have an automorphism group

which acts transitively on vertices, edges and faces. It follows that all

faces have the same number of edges, say p, and all vertices have the

same degree, say q. The pair {p, q} is called the type of the map, and

despite the use of curly brackets, is considered as an ordered pair.
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Regular maps are closely related to triangle groups. The full or

extended triangle group ∆(ℓ,m, n) is the group with the presentation

⟨ a, b, c | a2, b2, c2, (ac)ℓ, (ab)m, (bc)n ⟩.

The ordinary triangle group or von Dyck group D(ℓ,m, n) is the

group with presentation

⟨x, y |xℓ, ym, (xy)n ⟩.

Now let G = ⟨ a, b, c ⟩ be any finite smooth quotient of the full trian-

gle group ∆(2, p, q), generated by elements a, b, c of order 2 such that

ac, ab and bc have orders 2, p and q, where p, q ≥ 2. Then a map

M = M(a, b, c) may be constructed from G by taking the vertices,

edges and faces as the right cosets in G of the subgroups V = ⟨ b, c ⟩,
E = ⟨ a, c ⟩ and F = ⟨ a, b ⟩, respectively, and with incidence defined

by non-empty intersection of these cosets. Then M is a regular map,

with type {p, q} and with G as its automorphism group (acting by

right multiplication on cosets). Also M is orientable if the subgroup

⟨ ab, bc ⟩ of G has index 2, and non-orientable if it has index 1.

Similarly if H = ⟨x, y ⟩ is a finite smooth quotient of the ordinary

triangle group D(2, p, q), generated by elements x and y of orders 2

and p such that xy has order q, then an orientably-regular map M of

type {p, q} can be constructed from H in the analogous way by taking

right cosets of V = ⟨R ⟩, E = ⟨RS ⟩ and F = ⟨S ⟩ where R = y
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and S = (xy)−1 = y−1x, and with H preserving orientation and acting

transitively on the arcs of M .

In this case H is called the rotation group of the map. If the map

is reflexible then H has index 2 in the full automorphism group, while

for a chiral map H is the full automorphism group of the map.

Lists by Conder of all regular orientable maps and all orientably-

regular but chiral maps of genus 2 to 301 are available at

www.math.auckland.ac.nz/∼conder. For each map in the list, the

following is included:

� the type of the map,

� the order of the full automorphism group of the map,

� defining relators for the full automorphism group of the map,

� the vertex multiplicity (the number of edges incident with a given

pair of adjacent vertices),

� the face multiplicity (the number of edges incident with a given

pair of incident faces).

For each such map of genus g from 2 to 12 we have found a ‘nice’

set of 2g generators for the torsion-free normal subgroup N in the as-

sociated ordinary triangle group D, such that the rotation group is

isomorphic to D/N . We have also determined the effect of conjuga-

tion by the generators of the triangle group D on the nice generators

of N . By nice we mean that this information about conjugation of the
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chosen generators of N by generators of D can be expressed succinctly.

See Chapter 3.

It is well known that the minimum number of generators for the

torsion-free normal subgroup N is 2g, where g is the genus of the

orientably-regular map M – or equivalently, for the orientable surface

S carrying M , upon which the finite quotient group D/N acts – and

moreover, thatN is isomorphic to the fundamental group of the surface

S, and has a presentation of the form

⟨ a1, b1, . . . , ag, bg | [a1, b1] . . . [ag, bg] = 1 ⟩.

These facts about a canonical presentation for N were explained in

[26], but without detailed justification. A proof of the first part of this

may be found in [2], and the rest is quite classical and may be found in

just about any good textbook on algebraic topology, such as [18] or [30].

Such generating sets (and the effect of the generators of the parent

group by conjugation on them) can be used to determine important

aspects of the structure of the fundamental group, as used many times

in work on regular maps and actions of triangle groups on Riemann

surfaces (see for example [3, 6, 9, 29]). Moreover, finding such gener-

ating sets extends the pioneering work by Leech [26] for the case of the

ordinary (2,3,7) triangle group, which was critical to the determina-

tion in [9] of all Hurwitz groups (conformal automorphism groups of

compact Riemann surfaces of maximum order) for genus 2 to 11905.
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2.9 Manifolds of small volume

The study of small-volume 3-manifolds dates back to the early twen-

tieth century. The smallest volume closed orientable hyperbolic 3-

manifold is the Weeks-Matveev-Fomenko manifold, discovered inde-

pendently by Weeks in [48] and Matveev and Fomenko in [31]; see [19].

The smallest volume non-compact 3-manifold is the (non-orientable)

Gieseking manifold, discovered by Gieseking in [20] 1912, see [1]. The

smallest volume non-compact orientable manifold is the figure 8 knot

complement and a ‘sibling’ of that one; see [8].

For n ≥ 3, an n-manifold M can be constructed from a torsion-free

finite-index subgroup Λ of a [k1, . . . , kn] Coxeter group Γ, by consider-

ing features of the natural permutation representation of Γ on the right

cosets of Λ. Furthermore, various properties of M may be computed

from the natural permutation representation of the Γ on the right

cosets of the Λ and from the parameters k1, . . . , kn. The [k1, . . . , kn]

Coxeter group is the finitely-presented group generated by n+ 1 invo-

lutions x1, . . . , xn+1 with (xixi+1)
ki = 1 for 1 ≤ i ≤ n and (xixj+1)

2 = 1

for 1 ≤ i < j ≤ n.

For example, the manifold M is orientable if and only if Λ is con-

tained in the index 2 subgroup of Γ generated by the products xixj of

the canonical generators of Γ, or equivalently, if and only if every one

of the generators of Λ is a word of even length in the canonical gen-

erators xi of Γ. For further details (and many examples), the reader

may refer to [15, 27, 33, 39].
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Various small volume 3-manifolds were constructed by Milnor [33],

Lorimer [28] and Everitt [15], by finding torsion-free subgroups of min-

imum possible index in [p, q, r] Coxeter groups with 1/p + 1/q ≥ 1/2

and 1/q+1/r ≥ 1/2. There are 15 such Coxeter groups: four spherical,

one Euclidean and ten hyperbolic. In the spherical cases, the group is

finite and hence there are no non-trivial torsion-free subgroups. In the

hyperbolic cases, Milnor found single examples for all triples [p, q, r]

except [3,5,3], [4,3,5], [5,3,6] and [6,3,6], and gave incomplete informa-

tion about them in a table, copied (with some minor simplifications)

below.

p, q, r V3(Σp,q,r) L.C.M least #(Γ/Π) V3(H
3/Π)

3, 5, 3 0.0390503 120 ?

4, 3, 5 0.035885 240 ?

5, 3, 5 0.0933255 120 120 11.199064

3, 3, 6 0.0422892 24 24 1.0149416

4, 3, 6 0.1057231 48 48 5.074708

3, 4, 4 0.0763305 48 48 3.66386

5, 3, 6 0.1715017 120 ?

3, 6, 3 0.1691569 12 12 2.029883

6, 3, 6 0.2537354 24 ?

4, 4, 4 0.2289914 16 16 3.66386

Table 2.1: Milnor’s table of hyperbolic 3-

manifolds of small volume
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Some spaces in the table have since been filled. Everitt found exam-

ples for [3,5,3] and [5,3,6]. Lorimer attempted to deal with the [4,3,5]

case, but due to poor health he made the mistake of looking for sub-

groups of the wrong index (120 instead of 240). The case of the [6,3,6]

Coxeter group was also left open.

Two facts help us to find the minimum possible index of torsion-free

subgroups. First, let m be the lowest common multiple of the orders of

all finite subgroups of a given group G. Then by considering the natu-

ral action of such finite subgroups on right cosets of a given subgroup

of finite index in G, it is easy to see that every finite subgroup must act

semi-regularly on the cosets, and hence every finite-index torsion-free

subgroup of G must have index km for some k ∈ N. Secondly, every

finite subgroup of an infinite [k1, . . . , kn] Coxeter group is conjugate to

a finite subgroup of Hi = ⟨x1, x2, . . . , xi−1, xi+1, . . . , xn ⟩ for some i in

the range 1 ≤ i ≤ n+ 1; see [15, 7].

The question of uniqueness of minimum-volume manifolds in [33]

has been answered negatively (for example see [15]), but the classifica-

tion up to isometry of such minimum-volume hyperbolic manifolds has

remained open. This question is equivalent to finding the isomorphism

classes of minimum-index torsion-free subgroups of the associated Cox-

eter groups; see [36], [34].
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We use these facts to find all isomorphism classes of minimum finite-

index torsion-free subgroups of the 11 non-spherical Coxeter groups de-

scribed above, filling the last two holes in Milnor’s table. See Chapter

5.

2.10 Generators for special linear groups

The special linear group SL(n,Z) is the group of all n×n matrices with

integer entries and determinant 1, with the group operation of matrix

multiplication. This group is generated by the transvections Tij for

1 ≤ i ̸= j ≤ n, where Tij is the n× n identity matrix with an extra 1

as its (i, j)th entry. One presentation for SL(n,Z) on these generators

is given in [32] by the relations

� [Tij, Tkℓ] = 1 for i ̸= ℓ and j ̸= k,

� [Tij, Tjk] = Tik for i, j, k all distinct, and

� (T12T
−1
21 T12)

4 = 1.

Other generating sets are known, but not many presentations are

known.

Trott showed in [43] that SL(n,Z) can be generated by an element

of order n and an element of infinite order, for all odd n. Tamburini,

Wilson, Vsemirnov and others showed that SL(n,Z) can be generated

by an element of order 2 and an element of order 3 whenever n ≥ 5,

and cannot be generated by such elements for n < 5 (see [41, 46, 47]).
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As far as we are aware, until 2022 there were (up to equivalence)

only two known presentations for the group SL(n,Z): the one above

in terms of the n2−n transvections, subject to the Steinberg relations

(see [32]), and another on three generators obtained with the help of

the former (see [13]).

Note that group presentations on a small number of generators

are not just aesthetically pleasing but can also be very helpful in

analysing the structure of the group and its homomorphic images.

Some important and well-known computational procedures such as the

LowIndexSubgroups algorithm and the LowIndexNormalSubgroups pro-

cedure work much faster when the number of generators (and relators)

is small.

The 3-generator presentation for SL(3,Z) given in [13] is as follows:

⟨x, y, z |x3, y3, z2, (xz)3, (yz)3, (xy)6, (x−1zxy)2, (y−1zyx)2 ⟩.

We used this presentation (and PEACEv2) to find several new 2-generator

presentations for SL(3,Z). We believe that these new presentations are

the only known finite presentations for SL(3,Z) on two generators.

This work led to the discovery of other new generating pairs for

SL(3,Z) and new generating pairs for SL(n,Z) for all n > 3 (see [12]),

but the latter work falls outside of the scope of this thesis.





Chapter 3

CosGraphLabs

3.1 CosGraphLabs algorithm

CosGraphLabs is a Magma function which takes a finitely-presented

group G = ⟨X |R ⟩ and a set {y1, . . . , yn} of elements of G which gen-

erate a finite index subgroup H and returns an array L of labels for

the edges of the Schreier coset graph for H in G as words in the given

generators of H. This labelled Schreier coset graph L can then be used

to find a presentation for H, and also for any element h ∈ H given by

a word in the generators of G, the graph L can be used to find a word

for h in the generators of H.

3.1.1 Definitions

Throughout the algorithm, group and subgroup generators are stored

as integers, and words in these generators are stored as arrays of the

49
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corresponding integers, with negative values used to indicate inverses.

The identity element is stored as an empty array. Since each coset

of H in G corresponds to a vertex in the Schreier coset graph for H

in G, the same integer value will be used to refer to the coset and it

corresponding vertex.

Let R be the set of relators of G, given as words in X ∪ X−1, and

let Rc be the set containing all cyclic rearrangements of r and their

inverses, for each r ∈ R. For example if R = {x2y} then

Rc = {x2y, xyx, yx2, y−1x−2, x−2y−1, x−1y−1x−1}.

We define L to be the array in which we will store the labels we

have assigned to the edges in the coset graph. The labels are words

in the elements of H, and the word L[v, g] at coordinates (v, g) gives

the label of the directed edge from the vertex v to the vertex obtained

by multiplication by the generator g ∈ G. Recall that this is equal

to uvg(uvg)
−1, where uv is the element in the Schreier transversal that

lies in the coset represented by the vertex v. This coordinate system

is the same as the coordinates in the coset table for H in G.

We start with L[v, g] = 0 for all v and all g, to signify that these

edges have not yet been labelled, and call these unlabelled edges zero

edges. Whenever we label an edge L[v, g] = w we must also label its

reverse as L[vg, g−1] = w−1. This can be assumed throughout the al-

gorithm.
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Example 3.1.1 Let G = ⟨x, y |x6, y2, xyx−1y−1 ⟩ and H be the sub-

group generated by x3, with coset table as given below in Table 3.1.

x y x−1 y−1

1 2 3 4 3

2 4 5 1 5

3 5 1 6 1

4 1 6 2 6

5 6 2 3 2

6 3 4 5 4

Table 3.1: Coset table for H in G

Then at some point during the algorithm, L might be as shown in

Table 3.2. At such a point, the graph has five (unlabelled) zero edges,

namely [3, x], [4, y], [5, x], [5, y], and [6, y]. Six of the edges have been

labelled with the identity element, namely [1, x], [1, y], [2, y], [3, y],

[4, x], and [6, x]. Recall that the identity element is represented by an

empty sequence, and so these entries are left blank in Table 3.2. The

final edge [2, x] has been labelled with the single generator of H, and

is indicated by the entries 1 (= L[2, x]) and −1 in Table 3.2.
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x y x−1 y−1

1

2 1 0

3 0

4 0 -1 0

5 0 0 0

6 0 0 0

Table 3.2: L

If H had more generators we would likely see longer labels such

as “1,2,3” and its inverse “-3,-2,-1”, where 1,2, and 3 refer to three

different generators of H. In subsequent sections we shall refer to the

labels as their intended values rather than sequences of integers.

3.1.2 Walks in the Schreier coset graph

Any word in the generators of G defines a walk in the Schreier coset

graph from each vertex, by taking the edges corresponding to succes-

sive letters of the word. Relators of G trace out a closed walk from

every vertex, and elements of H trace out a closed walk from coset 1.

By Theorem 2.4.3 (b), in order to get a presentation on the given

generators y1, . . . , yh of H, the concatenation of the labels of the edges

on the closed walk defined by each yi from coset 1 must reduce to yi

or to an element which is equal to yi in G. We say that the genera-

tor yi is labelled once all edges on the closed defined by yi from coset
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1 to itself have been labelled, and otherwise, we say that yi is unlabelled.

Example 3.1.2 In the Schreier coset graph corresponding to the coset

table in Table 3.1, the generator of x3 defines the closed walk ([1, x],

[2, x], [4, x]) from coset 1. If we call this generator a, then the concate-

nation of the labels on this walk in Table 3.2 would be 1Ha1H , which is

equal to a as required. The generator a is labelled in this table. Sup-

pose b = yxyx−1 were a second generator of H. Then this generator

would define the closed walk ([1, y], [3, x], [5, y], [2, x−1]) from coset 1.

The edges [3, x] and [5, y] are both zero edges, so this generator would

be unlabelled.

3.1.3 Labelling edges

The first step of the algorithm is to label the edges of a spanning tree

of the graph using the label 1H on each edge. As we add edges to the

spanning tree we record the vertices which have been connected to it

in a list T , which is initialised to contain the vertex associated with

coset 1. We systematically add edges as follows; for each v1 ∈ T , if

there is an edge [v1, g] from coset v1 to coset v2, and v2 /∈ T , then we

set L[v1, g] to 1H , and add v2 to T . Note that any spanning tree may

be used.

Example 3.1.3 In the Schreier coset graph corresponding to the coset

table in Table 3.1, we start with T = {1}, and first consider the edge

[1, x]. This edge goes from coset 1 to coset 2, which is not yet in T ,
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so we label the edge 1H , and then T becomes {1, 2}. Next we consider
the edge [1, y], and so forth.

Once all vertices have been added to T , the edges we have labelled

1H in the process will be the spanning tree.

Next, we use relations andH-generators to label as many other edges

of the Schreier coset graph as possible. By Theorem 2.4.3 (c), the con-

catenation of the labels on the closed walk defined by each relator from

each coset must be equal to the identity. We may use Theorem 2.4.3

(d) to label an edge if it is the only zero edge of a closed walk defined

by a relator from a particular coset.

Example 3.1.4 Let x3 be a relator of G which defines the closed walk

([2, x], [3, x], [4, x]) from coset 2. If [3, x] is a zero edge and [2, x]

and [4, x] are labelled a and bc respectively, then [3, x] can be labelled

a−1c−1b−1, which makes the concatenation of the labels on this walk

reduce to the identity.

Similarly, if the closed walk defined by a H-generator yi from coset

1 has only one zero edge, then we may use Theorem 2.4.3 (b) to con-

clude that the concatenation of the labels of this walk must reduce to

an element of G equal to yi, in order to label the edge. Note that H-

generators are applied only to coset 1, since the walk defined by some

generator y from some coset v will be closed only if Hvy = Hv, that

is, only if y lies in the conjugate v−1Hv, which is not assumed.
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Example 3.1.5 Let b = xyx2 be a generator of H which defines the

closed walk ([1, x], [2, y], [3, x], [4, x]) from coset 1. If the first three

edges are labelled 1H , a, and ab, respectively, and the edge [4, x] is a

zero edge, then we label it b−1a−2b so that the concatenation of the

labels on this walk reduces to b.

Since H-generators are applied only to coset 1, we simply keep track

of which H-generators are unlabelled, to avoid redundant processing.

For each unlabelled H-generator yi, if the closed walk defined by yi

from coset 1 has a single zero edge, then we label this edge so that the

concatenation of the labels of the edges of the closed walk will reduce

to yi.

On the other hand, relators are applied to every coset, and for those

we track ‘new entries’. For each new entry in L at coordinates [v, g],

we apply each relator r in the list Rc of all cyclic rotations and inverses

of relators in R having first letter g. If the walk defined by r from coset

v has a single zero edge, then we label this edge in such a way that the

concatenation of the labels of the edges of this walk will reduce to the

identity.

Example 3.1.6 Let G = ⟨x, y |x6, y2, xyx−1y−1 ⟩ and suppose [1, x] is

a new entry. Then we apply the relators x6, xyx−1y−1 and xy−1x−1y to

coset 1. The closed walk defined by each of these relators from coset 1

will contain the newly labelled edge [1, x] and hence their application

may yield a different result to any previous applications.
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By applying only the appropriate relators to new entries, we ensure

that every relator is applied to every vertex every time a zero-edge of

the related closed walk is labelled, while avoiding the reapplication of

relators to vertices from which the labels of associated walk remain

unaltered. This increases efficiency and ensures that the application of

relators will complete (although the graph might still have some zero

edges upon completion).

3.1.4 Temporary generators

A temporary generator is a label given to a zero edge temporarily, to

represent the corresponding Schreier generator. In many instances,

simply applying H-generators and relators does not produce a labelled

Schreier coset graph. In these cases, we take a copy L2 of L to experi-

ment with different combinations of zero edges labelled with temporary

generators. We then apply relators and H-generators until a label for

a zero edge which does not contain any of the temporary generators is

found, or no more labels of L2 can be found.

We have three procedures for selecting a set of zero edges to label

with temporary generators. In each procedure, we start with the small-

est possible number of temporary generators and increase this number

until a new label is found, or until all sets are exhausted, before moving

on to the next type of set selection.

In our first procedure, we select edges to ‘fill’ unlabelledH-generators.

For each unlabelled H-generator yi, if the walk defined by yi from coset
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1 has M +1 zero edges then we label M of them with temporary gen-

erators, and then the application of yi provides the label of the final

zero edge.

Example 3.1.7 Let a = x3y be a generator of H which defines the

walk ([1, x], [2, x], [3, x], [4, y]) from coset 1. If [1, x] and [2, x] are

both labelled with the identity then when M = 1 we would label the

edge [3, x] with a temporary generator, say t. Now the application of

a to coset 1 allows for the edge [4, y] to be labelled t−1a so that the

concatenation of the labels on this walk reduces to a.

In our second procedure, we select edges to ‘fill’ relators. For each

relator r ∈ R and each coset c, if the walk defined by r from coset c has

M +1 zero edges then we label M of them with temporary generators,

and then the application of r to c provides the label of the final zero

edge.

Example 3.1.8 Let r = x2y2 be a relator of G which defines the

closed walk [5, x], [3, x], [7, y], [4, y] from coset 5. If the edge [5, x]

is labelled aba and the remaining three edges are zero edges, then at

M = 2 we label [3, x] and [7, y] with temporary generators, say t1 and

t2. The application of r allows the final edge of the walk to be labelled

t−1
2 t−1

1 a−1b−1a−1.

In our third procedure, we systematically go through each possible

set of M zero edges.
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When using temporary generators, the application of relators and

H-generators must follow a slightly different procedure. We still apply

all unlabelled generators and apply relators to new entries, but the

actions taken as a result of these applications will vary, with each ap-

plication falling into one of seven categories.

First, if there is more than one zero edge in the walks defined by the

relator or generator then we take no action as in the main algorithm.

There are two categories involving closed walks with a single zero

edge. As in the main algorithm, we find the label such that the con-

catenation of the labels on the edges of the walk would reduce to the

generator associated with the walk, or the identity in the case of a walk

associated with a relator, and the choice of action depends on the label

we find. If the label contains temporary generators then it is assigned

to the zero edge in the copied labels, L2, and then we continue applying

generators and relators using this set of labels. If the label does not

contain any of the temporary generators then the label is assigned to

the corresponding zero edge in L, and then we discard L2 and return

to the main algorithm.

Example 3.1.9 Let r = x3 be a relator of G which defines the closed

walk [3, x], [10, x], [7, x] from coset 3. If [3, x] and [10, x] are labelled

abc and d respectively, then the label we find is w = d−1c−1b−1a−1. If

none of a, b, c, d is a temporary generator then we label the edge [7, x]

with w in L and discard L2. If (say) d is a temporary generator then
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we label [7, x] with w in L2, and leave L untouched.

The last four categories involve closed walks with no zero edges. In

these instances the concatenation of the labels for the edges of the walk

forms a relator for H, either as a word on its own if the walk is associ-

ated with a relator of G, or the word formed when it is concatenated

with the inverse of the associated generator. Our action again depends

on the presence of temporary generators in this word.

Example 3.1.10 Let a = x4 be a generator of H which defines the

closed walk ([1, x], [2, x], [4, x], [8, x]) from coset 1. Suppose in L2 these

edges have been labelled 1H , t1, t2 and t−1
2 t−1

1 a, respectively, where t1

and t2 are temporary generators. Next, let r = y2 be a relator of G

which defines the closed walk [5, y], [6, y] from coset 5. If the labels of

these edges are the words w1, w2 respectively, then the word w = w1w2

is a relator of H. The next step depends on the presence of t1 and t2

in w.

If the word contains no temporary generators then no action is taken.

If only one temporary generator ti appears in the word and it appears

only once in the word, then there is a conjugate of the word or its

inverse having the form wt−1
i , and since this is a relator of H, the gen-

erator ti can be removed from the presentation by Theorem 2.2.3. To

achieve this, we label the zero-edge associated with ti with the label w

in L. Then we discard L2 and return to the main algorithm.
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If the word contains more than one temporary generator and each

temporary generator appears more than once then no action is taken.

On the other hand, if at least one temporary generator (say ti) appears

only once then there is a conjugate of the word, or its inverse, having

the form wt−1
i , where w does contain temporary generators, but does

not contain ti. Then in this case, again ti can be removed from the

presentation, but we do this only in L2. Every appearance of ti or t
−1
i

in a label or labels in L2 is replaced with w or w−1, respectively. If

ti or t−1
i is replaced in a label then we check to see if this new label

contains any temporary generators. If the label does not contain any

temporary generators then we assign the label to the corresponding

edge in L, and then we discard L2 and return to the main algorithm.

If the label does contain temporary generators then we update the la-

bel in L2, and continue replacing appearances of ti and t−1
i . Once all

appearances of ti and t−1
i have been removed from the labels in L2 we

return to applying relators and generators.

Example 3.1.11 Continuing our previous example, if neither t1 nor t2

are in w then no action is taken, but if w1 = t1, and w2 contains neither

t1 nor t2, then in L we may label the edge [2, x] with the word w−1
2 and

discard L2. If w = t1abt2abt1t2, then both temporary generators appear

twice and so no action is taken. If w = t1at2a
−1t−1

2 , then t1 appears

only once and may be removed from L2, with any appearances of t1

being replaced by t2at
−1
2 a−1 and appearances of t−1

1 being replaced by

at2a
−1t−1

2 .

Once all new entries of L2 have been processed and any remaining
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unlabelled generators have been applied to coset 1 (with no new labels

created), we discard L2 and move on to the next set of zero edges. If

M reaches the maximum value for each selection type, then the incom-

plete labels are returned.

Note that maximum values for each selection type are calculated as

follows:

� The maximum value for filling unlabelled generators is equal to

the maximum length of the given generators.

� The maximum value for filling relators is equal to the maximum

length of relators in G.

� The maximum value for systematic sets is equal to the number of

unlabelled edges.

These values ensure that all possible sets are explored while guarantee-

ing that the function CosGraphLabs will terminate. Note that while

the function will terminate, it is not guaranteed to return a Schreier

coset graph without zero-edges. In other words, the labels on the coset

graph are not guaranteed to be complete. If the labels are incomplete

then they may not be used for rewriting, but they can provide words

for a particular element h of H, provided that the walk defined by h

from coset 1 does not traverse any zero edges.

3.1.5 Using the labelled Schreier coset graph

To get a presentation for H with generators {y1, . . . , yn}, we use L to

obtain the relations for H. For each r ∈ R and each coset v, the con-
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catenation of the labels of the walk defined by r from v gives a relator

for H. For each generator yi of H, the labels of the walk defined by yi

(when given as a word in the generators of G) from the coset 1 reduce

to a word wi for yi in the generators of H, and we can add wiy
−1
i to

the relators for H.

Example 3.1.12 If r ∈ R defines the closed walk [3, a], [4, b], [6, b2]

from coset 3 and these edges are labelled xy, xy2 and y−1z2 respectively,

then the word xyxyz2 is a relator of H. If y = abc is a generator of H,

and defines the closed walk [1, a], [2, b], [5, c] from coset 1, and these

edges are labelled 1H , x
2y, x2, respectively, then the word x2yx2y−1 is

a relator of H.

To see that this gives a presentation, first note that by Theorems

2.2.1 and 2.2.2, the edges of the spanning tree correspond to the el-

ements of a Schreier transversal U and all other edges correspond to

elements of the associated Schreier generators B. As previously stated

the labels of the edges are obtained by the application of Theorems

2.2.4 and 2.2.6 along with Tietze transformations and each is equal to

the Schreier generator associated with that edge. By Theorem 2.3.1 the

relators required to form a presentation for H on the Schreier genera-

tors B is the set S of expressions in the elements of B for the elements

{ur−1u |u ∈ U, r ∈ R}. By Theorem 2.2.5 the expression for the ele-

ment uru−1 may be obtained by the concatenation of the labels on the

closed walk defined by r from the vertex w. The additional relations

of H given by wiy
−1
i for each yi are required to account for any use

of T3 Tietze transformations performed based on Theorem 2.2.4 (that
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the concatenation of the labels on the walk defined by yi are equal to

yi).

The set of relators found in this way often results in more relators

than are required to define a presentation for H. We exclude some of

the obviously redundant relators found, by simply not adding them to

the list of relators. The concatenation of the labels on the closed walk

defined by a relator from some coset may reduce to the identity, and

thus does not need to be added. Finally some relators may be cyclic

rearrangements of earlier relators or their inverses, and these too can

be ignored.

The presentation given may be very long, in which case application

of the Magma function SimplifyLength to H can be helpful.

To convert a word w given in the generators of G to a word w′ in

the generators of H, take the concatenation of the labels of the edges

in the walk defined by w from coset 1. If this walk is not closed, then

w /∈ H, and in that case no word w′ is possible.
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3.2 Application

For a given orientably-regular map of type {p, q}, let D be the associ-

ated ordinary triangle group, that is, the group given by the presenta-

tion

D = ⟨R, S | (RS)2, Rp, Sq ⟩.

Let N be the torsion-free normal subgroup of D such that the rota-

tion group of the map is isomorphic to D/N . We use Conder’s list of

regular orientable maps and list of orientably-regular but chiral maps

to find nice generating sets for N for such maps of genus 2 to 12.

Recall that such generating sets (and the effect of the generators

of the parent group on them) can be used to determine important

aspects of the structure of the fundamental group; see for example

[3, 6, 9, 29, 26].

For each such map of genus g, we let G be the associated ordinary

triangle group, let ind be the order of the rotation group and let r

be the set of defining relators (as given in Conder’s list) which do not

contain the letter T (indicating an orientation-reversing automorphism

for regular maps) and are not relators of G. This set r is then a set of

defining relators for the rotation group of the map.

Let the set niceGs be the set of generators found. To establish

that the set niceGs generates the intended subgroup we show that the

subgroup generated is normal, torsion-free, of the correct index and
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contains the required elements. To be considered ‘nice’ the set must

have the minimum possible number of generators. The set should be

comprised of conjugates of elements of r by elements of G if possible,

and the conjugates of the elements of niceGs by the generators of G as

words in the elements of niceGs should be reasonably short.

The set niceGs is found by trial and error. In most instances exper-

imenting with different sets of conjugates (by words in the generators

of G) of the elements in r results in a set of nice generators relatively

easily. If this proves to be more difficult, a generating set (although

probably not a nice one) may be found by using the LowIndexNormal-

Subgroups algorithm. Then we experiment with sets involving one or

more of these generators along with various conjugates of elements of r.

To show that the subgroup generated by niceGs is normal, we may

simply use the Magma function IsNormal or show that the conjugate

of each element in niceGs by each of the generators of G is in the sub-

group. The latter can be shown using the labelled Schreier coset graph

of the subgroup generated by niceGs in the group G.

To show that the subgroup generated by niceGs is torsion-free we

consider the action of G on the cosets of this subgroup by multipli-

cation. If the permutations induced by RS R and S have orders 2,

p, and q, respectively, then the subgroup is torsion-free. (Note that

those permutations will be semi-regular, because the given subgroup

is normal in G.)
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The subgroup generated by niceGs must contain all the elements of

r, since these are the relators of the rotation group. We try to use the

elements of r to build the set, so often they appear in niceGs. If there

are elements of r which are not in niceGs then we can use the labelled

Schreier coset graph to establish their inclusion. The supplementary

function getLabs(L,G, niceGs, r) gives the words for the elements

of r in the elements of niceGs as obtained from the labelled Schreier

coset graph L. Note that the given G and niceGs must be the same as

those used by CosGraphLabs to obtain L.

The index required can be calculated from the order of the full au-

tomorphism group of the map, which is given in Conder’s list. If the

map is regular the rotation group has index 2 in the full automorphism

group, and hence has order equal to half the order of the full automor-

phism group. If the map is chiral then the full automorphism group

is the rotation group, and hence the order is the same. The index of

the subgroup generated by niceGs must be equal to the order of the

rotation group.

Recall that the minimum possible number of generators is 2*g, that

is, twice the genus of the corresponding map.

The creation of the labelled Schreier coset graph enables us to as-

certain if the set niceGs will give rise to reasonably short words (in

the elements of niceGs for conjugates of the elements of niceGs by

the generators of G. The longer the algorithm CosGraphLabs takes to

complete the more likely it is that the results will contain longer words.



3.2. APPLICATION 67

Hence, if the algorithm takes more than a few seconds, we try a new set

of generators. Once the algorithm completes, the required words are

easily obtained using the supplementary function getConjLabs(L,G,

niceGs, s), where L is the labels as returned by CosGrapgLabs and s

is the set of elements of G by which we wish to conjugate the elements

of niceGs. Note that the given G and niceGs must be the same as

those used by CosGraphLabs to obtain L.

To perform the tasks in Magma we first run the following tests on

the set niceGs:

ind eq Index(G, sub<G|niceGs>); //correct index

IsNormal(G, sub<G|niceGs>); //normal

f,Q:=CosetAction(G, sub<G|niceGs>);

[Order(f(w)): w in [R*S, R, S]] eq [2,p,q]; //torsion-free

#niceGs eq 2*g; //correct number of generators

If each of these tests return true then we find the required labels, using

the following code:

L:=CosGraphLabs(G, niceGs);//graph labels

getConjLabs(L,G, niceGs, [R,S,R*S]);//conjugate labels

getLabs(L,G, niceGs, r);//defining relator labels

If the function CosGraphLabs takes more than a few seconds we try

a different set of niceGs. If the function CosGraphLabs completes in

reasonable time and if each of the labels returned by getConjLabs

and getLabs are no more than a few lines long then we declare the set
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niceGs a nice generating set.

Finally, we note that the results of the computations we have carried

out for the maps of genus 2 to 12 can be checked independently in a

least two different ways, as follows:

1. Adding the conjugacy relations to the canonical presentation for

the triangle group and the using the Simplify function to give

a group that is verifiably isomorphic to the given triangle group

using the SearchForIsomorphism function, and/or

2. Verifying that the conjugacy relations are satisfied in all finite quo-

tients of the given triangle group of up to a specified order, and/or

in all transitive permutation representations of the given triangle

group on up to a specified number of points.
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3.3 Results

In the following tables we give the nice generating sets that we found for

each regular orientable map of genus 2 and 3, as given in Conder’s list

of regular orientable maps (see www.math.auckland.ac.nz/∼conder).

For each such map, in the first row of the corresponding table, we list

the following:

� the ‘name’, as given in Conder’s list,

� the ‘type’ of the map, given in the form {p, q}, where p is the order

of R and q is the order of S (while RS has order 2),

� the ‘order’ of the full automorphism group of the map, and

� the ‘index’ of the normal subgroupN in the ordinary triangle group

G.

The subsequent rows correspond to the generators in the nice generat-

ing set for N . For each generator we list the following:

� the ‘generator’, as a word in R and S and the label we have given

it, in the form ui,

� the ‘R-conjugate’ of this generator ui,

� the ‘S-conjugate’ of ui, and

� the ‘RS-conjugate’ of ui.
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R2.1 Type {3, 8} Order 96 Index 48

Generator R-conjugate S-conjugate RS-conjugate

(RS−3)2 = u1 u4 u2 u−1
1

(S−1RS−2)2 = u2 u−1
3 u4 u3 u−1

4 u−1
1

(S−2RS−1)2 = u3 u−1
3 u2u

−1
1 u4 u−1

4 u3u
−1
2

(S−3R)2 = u4 u−1
4 u−1

1 u−1
1 u1u

−1
2

Table 3.3: Nice generating set for R2.1

R2.2 Type {4, 6} Order 48 Index 24

Generator R-conjugate S-conjugate RS-conjugate

(RS−1)2 = u1 u2 u2 u3

(S−1R)2 = u2 u−1
1 u3 u−1

2

(S−2RS)2 = u3 u−1
2 u−1

4 u4 u1

(S−3RS2)2 = u4 u−1
2 u3u2u1 u−1

1 u−1
3 u1u4u2u

−1
1

Table 3.4: Nice generating set for R2.2

R2.3 Type {4, 8} Order 32 Index 16

Generator R-conjugate S-conjugate RS-conjugate

S−2R2S−2 = u1 u−1
2 u1u

−1
2 u3u

−1
4 u−1

1

u2

u2 u−1
3 u1u4

S−3R2S−1 = u2 u−1
2 u1u3 u3 u−1

3 u2u4

S−4R2 = u3 u−1
2 u1u4 u4 u−1

4 u−1
1 u2u

−1
3 u4

S−5R2S = u4 u−1
2 u1u4u

−1
3 u2 u−1

1 u−1
4 u−1

1 u2

Table 3.5: Nice generating set for R2.3
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R2.4 Type {5, 10} Order 20 Index 10

Generator R-conjugate S-conjugate RS-conjugate

SR2S = u1 u2u4u
−1
3 u−1

1 u2 u−1
1

R2S2 = u2 u−1
1 u3 u−1

2

S−1R2S3 = u3 u1u
−1
2 u−1

1 u4 u2u4u
−1
3 u−1

1 u−1
4 u−1

2

u1

S−2R2S4 = u4 u1u2u4u
−1
3 u−1

1 u−1
4

u−1
2

u−1
3 u−1

1 u2u4 u2u
−1
1 u−1

4 u−1
2 u1

Table 3.6: Nice generating set for R2.4

R2.5 Type {6, 6} Order 24 Index 12

Generator R-conjugate S-conjugate RS-conjugate

SR2S = u1 u1u2u3u4u
−1
3 u−1

1 u2 u−1
1

R2S2 = u2 u−1
1 u3 u−1

2

S−1R2S3 = u3 u1u
−1
2 u−1

1 u4 u2u
−1
3 u−1

2

S−2R2S4 = u4 u1u2u
−1
3 u−1

2 u−1
1 u−1

3 u−1
1 u2u3u

−1
4 u−1

3 u−1
2

Table 3.7: Nice generating set for R2.5
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R2.6 Type {8, 8} Order 16 Index 8

Generator R-conjugate S-conjugate RS-conjugate

R3S−1 = u1 u2 u4 u4u
−1
2 u3u

−1
4 u−1

1 u2

u−1
3

R2S−1R = u2 u3 u4u
−1
2 u3u

−1
4 u−1

1 u2

u−1
3

u4u
−1
2 u−1

4

RS−1R2 = u3 u4 u4u
−1
2 u−1

4 u4u
−1
3 u−1

4

S−1R3 = u4 u−1
2 u3u

−1
4 u−1

1 u2u3

−1u4

u4u
−1
3 u−1

4 u−1
4

Table 3.8: Nice generating set for R2.6

R3.1 Type {3, 7} Order 336 Index 168

Generator R-conjugate S-conjugate RS-conjugate

(RS−2)4 = u1 u3 u2 u4

(S−1RS−1)4 = u2 u−1
1 u3 u−1

2

(S−2R)4 = u3 u−1
2 u4 u−1

3

(S−3RS)4 = u4 u−1
2 u−1

4 u−1
6 u−1

1

u−1
3 u−1

5

u5 u1

(S−4RS2)4 = u5 u−1
3 u−1

6 u6 u1u5u2u6u3

(S−5RS3)4 = u6 u1u6u4u2 u−1
2 u−1

4 u−1
6 u−1

1

u−1
3 u−1

5

u−1
4 u−1

6 u−1
1

Table 3.9: Nice generating set for R3.1
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R3.2 Type{3, 8} Order 192 Index 96

Generator R-conjugate S-conjugate RS-conjugate

(SR−1S)3 = u1 u2u4u6 u2 u−1
1

(R−1S2)3 = u2 u−1
1 u3 u−1

2

(S−1R−1S3)3 = u3 u−1
5 u−1

3 u−1
1 u4 u−1

6 u−1
4 u−1

2

(S−2R−1S4)3 = u4 u1u4u
−1
5 u−1

3 u−1
1 u5 u1u3u5u

−1
4 u−1

1

u−1
6 u−1

3

(S−3R−1S5)3 = u5 u1u3u
−1
2 u6 u2u4u

−1
3

(S−4R−1S6)3 = u6 u1u3u5u
−1
4 u−1

2 u−1
5 u−1

3 u−1
1 u2u4u6u

−1
5 u−1

3

Table 3.10: Nice generating set for R3.2

R3.3 Type {3, 12} Order 96 Index 48

Generator R-conjugate S-conjugate RS-conjugate

SRS−2RS3 = u1 u2u
−1
1 u2 u3u

−1
2

RS−2RS4 = u2 u−1
1 u3 u−1

2

S−1RS−2RS5 =

u3

u1u5u
−1
6 u−1

3 u−1
1 u4 u1u

−1
2

S−2RS−2RS6 =

u4

u1u5u
−1
4 u−1

1 u5 u2u6u
−1
5 u−1

2

S−3RS−2RS7 =

u5

u1u
−1
4 u−1

1 u6 u2u
−1
5 u−1

2

S−4RS−2RS8 =

u6

u1u3u
−1
4 u−1

1 u−1
4 u−1

1 u2u6 u2u4u
−1
5 u−1

2

Table 3.11: Nice generating set for R3.3
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R3.4 Type {4, 6} Order 96 Index 48

Generator R-conjugate S-conjugate RS-conjugate

(RS−2)2 = u1 u3 u2 u−1
1

(S−1RS−1)2 = u2 u−1
2 u6u3 u3 u−1

4 u−1
3 u−1

1

(S−2R)2 = u3 u4 u−1
1 u5

(R−1S−2R2)2 =

u4

u−1
4 u−1

3 u−1
1 u5 u−1

5 u1u
−1
2

(RS−1R2S)2 = u5 u2 u6 u3

(S−1RS−1R2S2)2 =

u6

u−1
2 u−1

5 u−1
4 u3u

−1
4 u−1

3 u−1
3 u−1

6 u−1
5

Table 3.12: Nice generating set for R3.4

R3.5 Type {4, 8} Order 64 Index 32

Generator R-conjugate S-conjugate RS-conjugate

SRS−1RS2 = u1 u1u3u5u
−1
4 u−1

1 u2 u2u4u6u
−1
5 u−1

2

RS−1RS3 = u2 u−1
1 u3 u−1

2

S−1RS−1RS4 =

u3

u−1
6 u−1

3 u−1
1 u4 u1u3u5u

−1
4 u−1

2

S−2RS−1RS5 =

u4

u1u
−1
3 u−1

1 u5 u2u
−1
4 u−1

2

S−3RS−1RS6 =

u5

u1u3u6u1u4u
−1
5 u−1

3

u−1
1 u2u

−1
3 u−1

1

u6 u2u
−1
1 u−1

6 u−1
4 u−1

2

S−4RS−1RS7 =

u6

u1u3u
−1
5 u−1

3 u−1
1 u−1

5 u−1
3 u−1

1 u2u4u
−1
6 u−1

4 u−1
2

Table 3.13: Nice generating set for R3.5
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R3.6 Type {4, 8} Order 64 Index 32

Generator R-conjugate S-conjugate RS-conjugate

(RS−1)2 = u1 u2 u2 u3

(S−1R)2 = u2 u−1
1 u3 u−1

2

(S−2RS)2 = u3 u−1
2 u−1

4 u−1
6 u4 u1

(S−3RS2)2 = u4 u−1
2 u−1

4 u5u4u3

u2u1

u5 u1u6u4u2u
−1
1

(S−4RS3)2 = u5 u−1
2 u−1

4 u6u4u2 u6 u−1
3 u−1

5 u−1
1

(S−5RS4)2 = u6 u−1
2 u−1

4 u−1
5 u4u2 u−1

1 u−1
3 u−1

5 u−1
3 u−1

5 u−1
6 u5u3

Table 3.14: Nice generating set for R3.6

R3.7 Type {4, 12} Order 48 Index 24

Generator R-conjugate S-conjugate RS-conjugate

S−3R2S−3 = u1 u−1
4 u5u

−1
6 u−1

1 u2u
−1
3

u4u
−1
5 u6u1u6u

−1
5 u4

u2 u−1
4 u3u

−1
2 u3u

−1
4 u5

u−1
6 u−1

1 u2u
−1
3 u4

S−4R2S−2 = u2 u−1
4 u5u

−1
6 u−1

1 u2

u−1
3 u4u

−1
5 u6u

−1
5 u4

u3 u−1
4 u3u

−1
2 u1u

−1
2 u3

u−1
4 u5u

−1
6 u−1

1 u2

u−1
3 u4

S−5R2S−1 = u3 u−1
4 u5u

−1
6 u−1

1 u2u
−1
3

u4u
−1
5 u4

u4 u−1
4 u3u

−1
2 u1u5

S−6R2 = u4 u−1
4 u5u

−1
6 u−1

1 u2

u−1
3 u4

u5 u−1
4 u3u

−1
2 u1u6

S−7R2S = u5 u−1
4 u5u

−1
6 u−1

1 u2 u6 u−1
4 u3u

−1
2 u1u6u

−1
5

u4

S−8R2S2 = u6 u−1
4 u5u

−1
6 u−1

1 u3 u−1
2 u3u

−1
4 u5u

−1
6

u−1
1 u2u

−1
3 u4u

−1
5 u6

u−1
4 u3u

−1
2 u1u6u

−1
5

u4u
−1
3 u4

Table 3.15: Nice generating set R3.7
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R3.8 Type {6, 6} Order 48 Index 24

Generator R-conjugate S-conjugate RS-conjugate

S−1R3S−2 = u1 u3 u2 u4

S−2R3S−1 = u2 u−1
2 u−1

5 u−1
4 u2u3u

−1
2 u−1

5 u−1
4 u6

u4

u−1
4 u−1

6 u4

R−1S−1R3S−2R =

u3

u6 u4 u−1
4 u−1

3 u−1
1

R4S−2RS = u4 u−1
4 u−1

6 u4u5u2u
−1
3

u−1
2

u5 u1

S−1R4S−2RS2 =

u5

u−1
1 u5u2 u2u

−1
3 u−1

2 u−1
2 u−1

5 u−1
4 u6u4

R−2S−1R3S−2R2 =

u6

u−1
4 u−1

6 u4u5u2u
−1
3

u−1
2 u−1

1 u2u3u
−1
2 u−1

5

u−1
4 u6u4

u−1
4 u−1

3 u−1
1 u1u

−1
2 u−1

1

Table 3.16: Nice generating set for R3.8

R3.9 Type {7, 14} Order 28 Index 14

Generator R-conjugate S-conjugate RS-conjugate

SR2S = u1 u2u4u6u
−1
5 u−1

3 u−1
1 u2 u−1

1

R2S2 = u2 u−1
1 u3 u−1

2

S−1R2S3 = u3 u1u
−1
2 u−1

1 u4 u2u
−1
3 u−1

2

S−2R2S4 = u4 u1u2u
−1
3 u−1

2 u−1
1 u5 u2u3u

−1
4 u−1

3 u−1
2

S−3R2S5 = u5 u1u2u3u
−1
4 u−1

3 u−1
2

u−1
1

u6 u2u3u4u
−1
5 u−1

4 u−1
3

u−1
2

S−4R2S6 = u6 u1u2u3u4u
−1
5 u−1

4

u−1
3 u−1

2 u−1
1

u−1
5 u−1

3 u−1
1 u2u4u6 u2u3u4u

−1
3 u−1

1 u−1
6

u−1
4 u−1

2 u1

Table 3.17: Nice generating set for R3.9
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3.10 Type{8, 8} Order 32 Index 16

Generator R-conjugate S-conjugate RS-conjugate

S−1R2S−1 = u1 u−1
1 u−1

3 u2 u2 u−1
2 u−1

4 u3

S−2R2 = u2 u−1
1 u−1

3 u−1
5 u4u2 u3 u−1

2 u−1
4 u−1

6 u5u3

S−3R2S = u3 u−1
1 u−1

3 u−1
5 u4u1 u4 u−1

2 u−1
4 u−1

6 u5u2

S−4R2S2 = u4 u−1
1 u−1

3 u−1
5 u4u1

u6u5u3u1

u5 u−1
2 u−1

4 u−1
6 u5u2

u−1
1 u−1

3 u−1
5 u6u4u2

S−5R2S3 = u5 u−1
1 u−1

3 u−1
5 u4u1

u6u3u
−1
4 u5u3u1

u6 u−1
2 u−1

4 u−1
6 u5u2

u−1
1 u−1

3 u−1
5 u4u

−1
5

u6u4u2

S−6R2S4 = u6 u−1
1 u−1

3 u−1
5 u4u1u6

u3u
−1
2 u−1

4 u−1
6 u−1

1

u−1
4 u5u3u1

u−1
1 u−1

3 u−1
5 u−1

2 u−1
4 u−1

6 u5u2

u−1
1 u−1

3 u−1
5 u4u1

u−1
2 u−1

5 u6u4u2

Table 3.18: Nice generating set for R3.10

R3.11 Type {8, 8} Order 32 Index 16

Generator R-conjugate S-conjugate RS-conjugate

SR2S = u1 u1u2u3u4u5u6u
−1
5

u−1
3 u−1

1

u2 u−1
1

R2S2 = u2 u−1
1 u3 u−1

2

S−1R2S3 = u3 u1u
−1
2 u−1

1 u4 u2u
−1
3 u−1

2

S−2R2S4 = u4 u1u2u
−1
3 u−1

2 u−1
1 u5 u2u3u

−1
4 u−1

3 u−1
2

S−3R2S5 = u5 u1u2u3u
−1
4 u−1

3

u−1
2 u−1

1

u6 u2u3u4u
−1
5 u−1

4

u−1
3 u−1

2

S−4R2S6 = u6 u1u2u3u4u
−1
5 u−1

4

u−1
3 u−1

2 u−1
1

u−1
5 u−1

3 u−1
1 u2u3u4u5u

−1
6 u−1

5

u−1
4 u−1

3 u−1
2

Table 3.19: Nice generating set for R3.11



78 CHAPTER 3. COSGRAPHLABS

R3.12 Type {12, 12} Order 24 Index 12

Generator R-conjugate S-conjugate RS-conjugate

R5S−1 = u1 u−1
2 u−1

3 u−1
4 u−1

5 u6

u5u4u3u2

u2 u2u
−1
1 u−1

2

S−1R5 = u2 u−1
1 u3 u−1

2

S−2R5S = u3 u−1
1 u−1

2 u1 u4 u−1
2 u−1

3 u2

S−3R5S2 = u4 u−1
1 u−2

2 u−1
3 u2

2u1 u5 u−1
2 u−2

3 u−1
4 u2

3u2

S−4R5S3 = u5 u−1
1 u−2

2 u−2
3 u−1

4 u2
3

u2
2u1

u6 u2u1u
−1
2 u−1

3 u−1
4 u−1

5

u−1
6 u−1

1 u−1
2 u−1

3 u−1
4

u−1
5 u6u5u

2
4u

2
3u2

S−5R5S4 = u6 u−1
2 u−1

3 u−1
4 u−1

5 u−1
6

u−1
1 u−1

2 u−1
3 u−1

4 u−1
5

u6u5u
2
4u

2
3u

2
2u1

u6u5u4u3u2u
−1
1

u−1
2 u−1

3 u−1
4 u−1

5 u−1
6

u2u1u
−1
2 u−1

3 u−1
4 u−1

5

u−1
6 u−1

1 u−1
2 u−1

3 u−1
4

u−1
5 u−1

6 u5u4u3u2u1

u6u5u4u3u2u
−1
1 u−1

2

Table 3.20: Nice generating set for R3.12

The results for all regular orientable maps and orientably-regular

(but chiral) maps with genus from 2 to 12 can be found at

github.com/GLiversidge/CosGraphLabs.
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3.4 Comparable algorithms

3.4.1 Rewriting functionality

In order to determine isomorphisms among the torsion-free subgroups

of [p, q, r] Coxeter groups found using LowIndAlg, as will be explained

in Chapter 5, we needed to find presentations for those subgroups. For

this reason, we compared the functionality of CosGraphLabs against

that of the Magma function Rewrite, by measuring the time taken

for finding such presentations, and more specifically for finding presen-

tations for representatives of the conjugacy classes of the minimum in-

dex torsion-free subgroups of the Coxeter groups [3,3,6], [3,4,4], [3,5,3],

[3,6,3], [4,3,4], [4,3,6], [4,4,4] and [6,3,6]. We did not compare times for

rewriting the minimum index torsion-free subgroups of the remaining

Coxeter groups [4,3,5], [5,3,5], [5,3,6] simply because the Magma ver-

sion was taking far too long for those.

Note that there are two versions of Rewrite available in Magma,

differentiated only by their inputs. The capability of CosGraphLabs

to rewrite a subgroup with specified generators is most similar to the

call Rewrite(G,∼H), and so it is this version we have used in our time

comparisons. The other version of the Magma function is obtained

with the call Rewrite(G,H). The latter version is significantly faster,

but often results in a presentation on a set of generators different from

those given.
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CosGraphLabs was consistently faster or as fast as the Rewrite func-

tion. The maximum time taken to rewrite the subgroups for any one

Coxeter group was 0.34 seconds for CosGraphLabs for the 11 subgroups

of the group [4,3,6]. In stark contrast, the maximum time for Rewrite

was 2272.42 seconds for the 7 subgroups of the Coxeter group [3,5,3].

We created the following procedure to obtain time data for the

Rewrite procedure.

test_rewrite:=procedure(G, L)

start:=Realtime();

start1:=start;

for Hgens in L do

H:=sub<G|Hgens>;

Rewrite(G,~H);

print H;

print "time taken=", Realtime()-start1;

start1:=Realtime();

end for;

print "time taken=", Realtime()-start;

end procedure;
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We used the following procedure to obtain time data for rewriting via

CosGraphLabs.

test_CGL1:=procedure(G, L)

start:=Realtime();

for Hgens in L do

reWrite2(G,Hgens);

end for;

print "time taken=", Realtime()-start;

end procedure;

Time Taken

Coxeter Group Number of subgroups Rewrite CosGraphLabs

3,3,6 1 0.13 0.02

3,4,4 13 7.21 0.24

3,5,3 7 2272.42 0.33

3,6,3 2 0.02 0.02

4,3,4 2 0.02 0.02

4,3,6 11 6.28 0.34

4,4,4 12 0.31 0.07

6,3,6 12 8.61 0.14

Total 60 2295.00 1.18

Table 3.21: Comparison of times for rewriting

a subgroup on specified generators.
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3.4.2 Functionality for obtaining words

We compared the functionality of CosGraphLabs for obtaining words

against the Magma function ! by measuring the time taken and the

length of words found in the application described in Section 3.2. As

can be seen in Table 3.22, the maximum time taken by CosGraphLabs

to find the required information for any map in the table was 0.24 sec-

onds (namely for the map R10.5), while in stark contrast the maximum

time taken by the Magma function ! was 4032.69 seconds (namely

for the map R12.2). The average length of all words found for each

map was comparable: 444 for !, and 454 for CosGraphLabs.

We created the following procedure to obtain time and length data

for !:

mag_test:=procedure(G,niceGs,R, S, r)

start:=Realtime();

sum:=0; max:=1; n:=0;

H:=sub<G| niceGs>;

for g in niceGs do

n:=#(H ! g);

if n gt max then

max:=n;

end if;

sum+:=n;

n:=#(H ! (g^S));

if n gt max then

max:=n;
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end if;

sum+:=n;

n:=#(H ! (g^R));

if n gt max then

max:=n;

end if;

sum+:=n;

n:=#(H ! (g^(R*S)));

if n gt max then

max:=n;

end if;

sum+:=n;

end for;

for g in r do

n:=#(H ! g);

if n gt max then

max:=n;

end if;

sum+:=n;

end for;

print "max length:", max;

print "total length:", sum;

print "time taken", Realtime()-start;

end procedure;

To obtain time and length data for the same process using CosGraphLabs

we added print statements for time and length to CosgraphLabs and
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supplementary procedures and used the following code.

L:=CosGraphLabs(G, niceGs);

getConjLabs(L,G, niceGs, [R,S,R*S]);

getLabs(L,G, niceGs, r);

Map ! CosGraphLabs

Name Total length Time taken Total length Time taken

R2.1 25 0 21 0.01

R2.2 25 0 21 0.01

R2.3 47 0 39 0

R2.4 26 0 38 0

R2.5 36 0 32 0

R2.6 39 0 41 0

R3.1 49 0.01 39 0.02

R3.2 53 0 49 0.1

R3.3 51 0 45 0.01

R3.4 39 0 33 0

R3.5 67 0 61 0

R3.6 53 0 47 0

R3.7 111 0 119 0

R3.8 71 0 63 0.01

R3.9 76 0 70 0

R3.10 115 0 109 0

R3.11 76 0 70 0.01

R3.12 215 0.01 129 0
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Map ! CosGraphLabs

Name Total Length Time taken Total Length Time taken

R4.1 83 0 67 0.02

R4.2 88 0.01 82 0

R4.3 73 0 65 0.02

R4.4 90 0.01 82 0.01

R4.5 167 0 155 0.01

R4.6 131 0.01 127 0.01

R4.7 64 0 56 0.01

R4.8 195 0.01 163 0.01

R4.9 150 0.01 130 0.01

R4.10 132 0 170 0.01

R4.11 132 0.01 124 0

R4.12 455 0.08 255 0.03

R5.1 135 0 163 0.04

R5.2 77 0 67 0.02

R5.3 67 0.02 59 0.03

R5.4 122 0.01 100 0.02

R5.5 160 0 178 0.01

R5.6 193 0.01 133 0.01

R5.7 135 0.04 125 0.01

R5.8 191 0.01 167 0.01

R5.9 77 0.01 89 0.01

R5.10 118 0 108 0.01

R5.11 310 0.01 314 0.01



86 CHAPTER 3. COSGRAPHLABS

Map ! CosGraphLabs

Name Total Length Time taken Total Length Time taken

R5.12 100 0.01 90 0

R5.13 104 0 94 0.01

R5.14 204 0.01 194 0.02

R5.15 204 0 194 0

R5.16 236 0 230 0.02

R6.1 229 0 243 0.02

R6.2 93 0.04 81 0.01

R6.3 123 0 109 0.01

R6.4 188 0.56 176 0.01

R6.5 221 0.09 209 0.01

R6.6 145 0 148 0.01

R6.7 141 0 128 0.01

R6.8 160 0 128 0.01

R6.9 226 0 214 0.01

R6.10 416 0 404 0.02

R6.11 292 0 286 0.02

R6.12 298 0 286 0.01

R6.13 344 0.01 334 0.01

R7.1 93 0.02 79 0.05

R7.2 305 0.04 219 0.02

R7.3 297 0.1 337 0.02

R7.4 249 3.86 235 0.01

R7.5 493 0.03 479 0.01
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Map ! CosGraphLabs

Name Total Length Time taken Total Length Time taken

R7.6 452 0.38 630 0.04

R7.7 546 0.01 614 0.07

R7.8 543 0 505 0.02

R7.9 396 0.01 388 0.05

R7.10 396 0 382 0.02

R7.11 506 0 462 0.07

R7.12 360 0.01 346 0.04

C7.1 216 0.01 290 0.01

C7.2 189 0 177 0.02

R8.1 137 0.02 121 0.04

R8.2 109 0.01 93 0.02

R8.3 318 39.38 302 0.01

R8.4 677 0.03 673 0.02

R8.5 229 0.03 213 0.01

R8.6 840 0 654 0.02

R8.7 250 0.05 232 0.01

R8.8 348 0 438 0.04

R8.9 516 0.01 506 0.07

R8.10 516 0 500 0.02

R8.11 490 0.01 682 0.04

C8.1 706 0.02 764 0.02

R9.1 260 0.02 232 0.04

R9.2 147 0.01 129 0.04
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Map ! CosGraphLabs

Name Total Length Time taken Total Length Time taken

R9.3 415 0.02 417 0.04

R9.4 270 0.01 266 0.03

R9.5 1283 0.27 1041 0.04

R9.6 427 0.01 441 0.02

R9.7 200 0.01 202 0.02

R9.8 222 0 204 0.02

R9.9 238 1.06 270 0.02

R9.10 443 2.63 469 0.05

R9.11 257 0.01 237 0.01

R9.12 395 439.64 377 0.03

R9.13 813 0.07 795 0.02

R9.14 415 0.02 561 0.04

R9.15 187 0 167 0.02

R9.16 225 0.01 229 0.02

R9.17 489 0.01 471 0.02

R9.18 642 0.01 630 0.02

R9.19 281 0.01 263 0.01

R9.20 371 0 399 0.02

R9.21 422 0.01 528 0.03

R9.22 700 0.01 1040 0.02

R9.23 994 0.02 788 0.07

R9.24 927 0.01 909 0.05

R9.25 889 32.12 783 0.03



3.4. COMPARABLE ALGORITHMS 89

Map ! CosGraphLabs

Name Total Length Time taken Total Length Time taken

R9.26 492 0.01 474 0.03

R9.27 592 0.01 574 0.03

R9.28 267 0 249 0.02

R9.29 917 0 1653 0.1

R9.30 652 0.02 640 0.09

R9.31 652 0.01 634 0

R9.32 708 0 698 0.04

R10.1 264 0.02 242 0.04

R10.2 453 0.01 447 0.03

R10.3 521 0.07 441 0.03

R10.4 319 0 303 0.03

R10.5 373 0.01 511 0.24

R10.6 225 0.02 205 0.04

R10.7 275 0.01 279 0.03

R10.8 455 0.01 463 0.04

R10.9 507 0.13 487 0.03

R10.10 523 0.09 967 0.05

R10.11 460 3504.62 460 0.03

R10.12 1045 0.1 1041 0.03

R10.13 369 0 349 0.02

R10.14 1077 0.02 867 0.06

R10.15 510 0.01 476 0.03

R10.16 385 0 365 0.02
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Map ! CosGraphLabs

Name Total Length Time taken Total Length Time taken

R10.17 333 0.38 313 0.01

R10.18 1147 82.09 1033 0.16

R10.19 1065 709.58 1089 0.03

R10.20 343 0 349 0.05

R10.21 910 20.37 840 0.05

R10.22 804 0.02 790 0.13

R10.23 804 0.01 784 0.01

R10.24 852 0.01 844 0.05

C10.1 279 0.03 309 0.04

C10.2 965 0.29 795 0.03

C10.3 696 0.02 730 0.04

R11.1 463 0.25 483 0.04

R11.2 443 0 421 0.09

R11.3 49 2737.55 551 0.03

R11.4 1213 0.19 1191 0.03

R11.5 578 0.01 350 0.02

R11.6 364 0 344 0.02

R11.7 473 0 451 0.03

R11.8 891 0.16 687 0.05

R11.9 436 7.67 426 0.02

R11.10 494 0 536 0.02

R11.11 972 0.04 956 0.16

R11.12 972 0.01 950 0.03
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Map ! CosGraphLabs

Name Total Length Time taken Total Length Time taken

R11.13 944 0.01 1004 0.08

R11.14 1040 0.01 1028 0.07

C11.1 418 0.03 514 0.03

C11.2 688 0.02 528 0.02

C11.3 1249 0.05 1143 0.1

C11.4 346 0.02 314 0.01

C11.5 890 0.01 778 0.03

C11.6 3253 0.08 3867 0.18

R12.1 407 0.46 381 0.03

R12.2 53 4032.69 650 0.04

R12.3 1493 0.26 1489 0.04

R12.4 453 5.06 429 0.02

R12.5 440 0.05 416 0.02

R12.6 525 0.01 449 0.05

R12.7 744 0.01 720 0.14

R12.8 553 0.01 533 0.02

R12.9 1156 0.05 1138 0.21

R12.10 1156 0.02 1132 0.03

R12.11 1216 0.02 1206 0.08

C12.1 1814 0.06 2182 0.05

C12.2 1457 0.13 2309 0.05

Table 3.22: Time and length comparison data





Chapter 4

PEACEv2

4.1 The PEACEv2 Procedure

PEACEv2 takes a finitely presented group G = ⟨X |R ⟩ and a set γ =

{g1, . . . , gn} of elements of G which is known to generate a subgroup

H of finite index in G, and returns a list L of information which is

used by the ProveWord algorithm to create proof words. Proof words

are sequences of generators of G as well as square and round brackets

which can be used to show that a word w in the generators of G can

be written as an expression in the elements of H.

4.1.1 Definitions

In the algorithm, the generators of G and the cosets of H in G are

assigned integer values. A coset may be referenced by more than one

integer, with the different integers corresponding to different definitions

of the coset. The coset H can always be referenced by the integer 1.

93
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The list L contains the following information:

� T : The coset table forH in G, with T [c, g] being the coset resulting

from right multiplication of the coset c by the generator g, and

T [c, g−1] being the coset resulting from right multiplication of the

coset c by the inverse of the generator g.

� A: The auxiliary table. In PEACEv2, cosets cannot be renamed as

they are in many implementations of coset enumeration because

the redundant cosets are used in the formation of proof words.

There are two consequences of this: the row of the coset table which

corresponds to the coset c might not be the cth row, and there

might be multiple cosets which are equal to cg for each generator g.

These cosets will be equivalent, but will have different definitions.

We use an auxiliary table to keep track of information relating to

definitions, redundancies and positions in T . More specifically:

– A[c, 1] gives the row of T which corresponds to the coset c, or

0 if the row has been removed.

– A[c, 2] is 0 if c is active, or is the integer representing the equiv-

alent coset when c is made redundant.

– A[c, 3] gives the integer representing the coset from which c was

defined or zero if c is coset 1.

– A[c, 4] gives the integer representing the generator used in the

definition of c or zero if c is coset 1.

� P : The proof table. Each time an entry of T is changed, the reason

for the change is recorded in P . If [c, g] are the coordinates of the
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entry changed, then the reason is recorded in the corresponding

entry of P . Note that P [c, g] may contain multiple entries, each

corresponding to a different but equivalent coset. The format of

entries in P will be described later in this chapter.

� Q: The redundancy proof table. If A[c, 2] = c2 ̸= 0, then Q[c]

gives the reason for the redundancy c = c2. The format of entries

in Q will be described later in this chapter.

� W : The proof word table. Each entry of W [c, g] gives the proof

word for cg = c2, for some coset c2. These entries correspond to

the entries in P [c, g].

� V : The redundancy proof word table. If A[c, 2] = c2 ̸= 0, then

V [c] will give the proof word for the equivalence of the cosets c and

c2.

While building the coset table, PEACEv2 tracks which subgroup gen-

erator or group relator led to each deduction and coincidence, and

records this information in P or Q, respectively. The algorithm Prove-

Word translates this information into proof words, and stores each

word found in W and V .

4.1.2 Proof words

The sequence of characters in a proof word can be partitioned into

three types of proof items.

� Type 1 proof items are the generators of G which are outside any

set of brackets.
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� Type 2 proof items are the sequences of the generators ofG enclosed

in round brackets. These sequences of generators of G are either

an element of the relator set R, the inverse of an element of R, or

a cyclic rotation of an element of R or its inverse.

� Type 3 proof items are the sequence of the generators of G enclosed

in square brackets. These sequences are the given generators of H

or their inverses.

A deduction about how the given word w can be written as an expres-

sion in terms of the generators of H can be obtained from the proof

word via the equality of two different methods of simplification, one

giving an expression in the generators of G, and the other giving an

expression in the generators of the subgroup H.

In the first simplification method s1, we remove all brackets (but not

their contents), so that we have a sequence of type 1 items. Then we

remove all consecutive inverse pairs (of the form gg−1), giving a word

in the generators of the group G.

In the second method s2, we remove all type 2 items. We keep type

1 and 3 proof items separate, removing consecutive inverse pairs if

they are of the same type. In s2, any sequence of type 1 proof items

between two type 3 items will cancel out. The reason for this may not

be immediately obvious so we will explain why in the next paragraph.

Type 1 proof items describe definitions of new cosets, and so we

can think of the type 1 proof items as edges of a spanning tree in a
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graph of all cosets created (even redundant ones). Type 2 and 3 proof

items can be thought of as a loop from a coset to itself, with type 2

at all cosets but type 3 only at coset 1. Hence the type 1 proof items

occurring between two type 3 items must describe a walk from coset

1 to itself. If the type 1 proof items did not cancel, it would imply

the existence of a cycle in the spanning tree. Thus s2 will always give

some (possibly empty) sequence of type 3 items, which are (possibly)

suffixed and (possibly) prefixed by type 1 items.

Example 4.1.1 Figure 4.1 shows a graphical representation of proof

items. The points 1, 2, 3 and 4 are the cosets H, Ha, Ha−1 and Ha2

respectively, where a is a generator of G. The blue cycles at each

vertex correspond to a relator b of G and the pink cycle at vertex 1

corresponds to a generator c of H.

Suppose b = a6 and c = a3. Then the walk given by the edges

(c, a, a, b, a−1, b−1, a−1c) gives the proof word

[a3]aa(a6)a−1a−1[a3].

Simplification under s1 gives

[a3] a a (a6) a−1 a−1 [a3]

= a3 a a a6 a−1 a−1 a3

= a12
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Figure 4.1: Graphical representation of proof items

Simplification under s2 gives

[a3] a a (a6) a−1 a−1 [a3]

= [a3] a a a−1 a−1 [a3]

= [a3][a3]

Using these two methods of simplification, we obtain the equality

s1(w) = s2(w), which can be rearranged to give a word in the genera-

tors of H on one side, and a word in the generators of G on the other.

For example, the equations in Example 4.1.1 prove that a12 = c2. Note

that c2 = a6 = 1G, so this result is quite trivial and is intended for
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illustrative purposes only.

The intended purpose is to prove that a particular word in the gen-

erators of G gives an element of the subgroup H. We know from the

coset table whether or not this is true, but the proof table of PEACEv2

gives a justification.

4.1.3 Proof table entries

Every time we add a new entry to the coset table T , we must update

the inverse entry, and record both entries in P . A proof table entry

consists of two parts. The first is the integer representing the coset

that the entry responds to, specifically the integer in the new entry

in T . The second is a sequence of coset numbers separated by proof

items or equal signs. This sequence tracks the reason for the new entry.

If we define a new coset c2 as the result of multiplying c1 by g,

then we add proof table entries with an empty sequence to P [c1, g] and

P [c2, g
−1] corresponding to c2 and c1 respectively, to signify that this

is a definition, and not a deduction.

Suppose that tracing a word w from some coset c results in a sin-

gle gap at index i, and hence gives the deduction c1g = c2, for some

cosets c1 and c2 and some generator g. The proof table entry of such

a deduction is built as follows: First, we trace the end of w from the

(i+1)th element to the last element, from coset c2 to coset c. At each



100 CHAPTER 4. PEACEV2

step, we record the element of w used and the current coset number.

Next, we record w−1, using square brackets if w is a generator of H,

and round brackets if w is a relator of G. Finally, we trace the start of

w from the first element to the (i− 1)th element, from coset c to coset

c1, recording generators and cosets traversed.

Example 4.1.2 If w = xyz is a relator of G and i = 2, then in this

instance the generator g involved in the deduction is equal to y and we

obtain the entry “c2, z, c, (z
−1y−1x−1), c, x, c1” for c2y

−1 = c1 and the

entry “c1, x
−1, c, (xyz), c, z−1, c2” for c1y = c2.

If tracing a word w from some coset c results in the primary coin-

cidence c1 = c2 at index i, then the redundancy proof table entry of

such a coincidence is built as follows: First, we trace the end of w from

the ith element to the last element, from coset c2 to coset c. At each

step, we record the element of w used and the current coset. Next, we

record w−1, using square brackets if w is a generator of H and round

brackets if w is a relator of G. Finally, we trace the start of w from

the first element to the (i − 1)th element, from coset c to coset c1,

recording the generators and cosets traversed.

Example 4.1.3 If w = xy is a generator of H and i = 2, then in

this instance the coset c must be equal to 1 and we obtain the entry

“c2, y1, [y
−1x−1], 1, x, c1”. If c1 < c2, then we record this entry in Q[c2],

and otherwise we record “c1, x
−1, 1, [xy], 1, y−1, c2” in Q[c1].
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If we have a secondary coincidence c1 = c2 resulting from two chains

of coincidences “x1,=, . . . ,=, xj,= c1” and “y1,=, . . . ,=, yk,=, c2 and

the proof entry w for x1 = y1, then the redundancy proof table entry

of such a coincidence is built as follows: First, we add the inverse of

the first chain: “c1,=, xj,=, . . . ,=, x1”. Then we add all but the first

entry (x1) and the last entry (y1) of w. Then we add the second chain

“y1,=, . . . ,=, yk,=, c2”.

Each proof table entry provides justification for the change in the

coset table. The entries indicate partial proof words, given by the

proof items between cosets. The equals signs and the generators of G

are used to indicate a relationship between cosets which has already

been established, either by definition or deduction. Note that the proof

words formed by excluding the coset numbers and equality signs will

reduce to the generator of G associated with the column of the coset

table entry, or if the word is to justify a coincidence of cosets then it

will reduce to the identity under s1.

4.1.4 Processing coincidences

To process the coincidence of c1 and c2, we first build the proof table

entry for the primary coincidence c1 = c2. We begin the coincidence

list with the entry (c1, c2). For each pair (c′1, c
′
2) in the coincidence list,

we obtain the non-redundant representative of each coset, namely r1

and r2, respectively, using column 2 of A. Suppose r1 < r2. Then non-

zero entries from the row of T corresponding to r2 need to be copied

to the row corresponding to r1 if the entry in the corresponding col-
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umn is 0, while new coincidences may result if this entry is non-zero.

Special care needs to be taken if the entry in either row is r1 or r2;

in that case, the relevant column and corresponding inverse column of

T are both updated to r1 and coincidences r1 = x are added for each

entry x in the relevant column or the inverse column in either row, for

x /∈ {0, r1, r2}. Any new coincidences obtained in this way are called

secondary coincidences.

Example 4.1.4 If the row of T corresponding to coset r1 is [0, 1, 2, 3]

and the row of T corresponding to coset r2 is [4, 0, 5, 6], then we have

the secondary coincidences of cosets 2 and 5, and cosets 3 and 6, and

the row of T corresponding to r1 becomes [4, 1, 2, 3]. If the row of T

corresponding to r1 is [1, r2, 2, 3] and the row of T corresponding to r2

is [4, 5, 6, r1], then we have the secondary coincidences of cosets 1 and

4, cosets r1 and 5, cosets r1 and 3, and cosets 2 and 6, and the row of

T corresponding to r1 becomes [1, r1, 2, r1].

When an entry x is copied in the column corresponding to genera-

tor g, we add the proof table entry “r1,=, r2, g, x” to P [r1, g]. For a

secondary coincidence x = y in the column corresponding to generator

g, we use the proof entry “x, g, r1,=, r2, g
−1, y” to build a secondary

coincidence redundancy proof table entry. Then we add (x, y) to the

coincidence list.

Example 4.1.5 If the row of T corresponding to coset r1 is [0, 1, 2, 3]

and the row of T corresponding to coset r2 is [4, 0, 5, 6], and if g is the
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generator of G corresponding to column 1, then the proof table entry

“r1,=, r2, g, 4” is added to P [r1, g]. The sequence “5, g, r2,=, r1, g
−1, 2”

is used to build the secondary coincidence entry for the coincidence of

cosets 2 and 5.

Finally, we remove the row corresponding to r2 from the coset table

and update columns 1 and 2 of A accordingly. We repeat this process

until there is nothing left in the coincidence list.

4.1.5 Applying relators and generators to cosets

To apply the relator r to the coset c, with parameter m, we first scan

r forwards from c. If c1 is the current coset, then for each k, if rk is the

kth element of r, then if the coset table entry corresponding to [c1, rk]

is non-zero, then set c1 = T [c1, rk]. We repeat this process until a zero

entry is reached. If no zero entry is reached and c1 ̸= c, then we have

the coincidence c1 = c to process.

If a zero entry is found as the result of multiplication of c1 by rf ,

then we scan r backwards from c, with current coset c2, until either

a zero entry is found as the result of multiplication of c2 by r−1
b or

until the fth element of r is reached. If a zero entry is found as the

result of the multiplication of c2 by r−1
f , then to satisfy r we must have

c1rf = c2. In that case, we update T accordingly and build the appro-

priate proof table entry.
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If a zero entry is found at index b ̸= f and m ≥ b−f , then we define

a new coset c3 with c3r
−1
b = c2. In that case, we update A and T

accordingly. If T [c1, rf ] is now defined, then we continue the forward

scan, updating c1 and f , and we set c2 = c3 and move to the next

generator in r (that is, we subtract 1 from b). We repeat this process

until b = f . Again we must have c1rf = c2, so we update accordingly

and build the proof table entry.

If no zero entry is found, then some coset c2 is reached with c2r
−1
f =

c3 already defined, and we have the coincidence c3 = c1 to process.

Example 4.1.6 If h = x2y2 is a generator of H we wish to apply, we

start with c1 = 1. Suppose T [1, x] = 3, T [3, x] = 4, and T [4, y] = 5. If

T [5, y] = 6 then we have the coincidence of cosets 1 and 6 to process.

If T [5, y] is 0 then f = 4 and c1 = 5. Next, we scan r−1 from coset 2,

starting with c2 = 1. If T [1, y−1] = 7 then we have the coincidence of

cosets 5 and 7 to process. If T [1, y−1] = 0 then we update T so that

T [1, y−1] = 5, and add a proof table entry to correspond with coset 5

and with the sequence “1, [y−2x−2], 1, x, 3, x, 4, y, 5”, to P [1, y−1].

Example 4.1.7 Let r = yzyz2 be a relator of G we wish to apply to

coset 2. If T [2, y] = 3 and T [3, z] = 0 then we have have c1 = 3 and

f = 2. Next, we let c2 = 2 and scan r−1 from 2. If T [2, z−1] = 6 and

T [6, z−1] = 0 then c2 = 6 and b = 4. If m = 1 then b − f = 2 > m

so we do nothing. If m ≥ 2 then we define a new coset c3. If n is the

number of cosets already defined then c3 = n+1. We update T so that

T [6, z−1] = n+1 and add a proof table entry to P [6, z−1] to correspond
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with the coset n+ 1 and with a empty proof table sequence. Next we

set c2 = n+ 1, b = 3 and consider T [n+ 1, y−1]. Since this row of the

coset table was added in the previous step this entry will be 0, so we

add another coset n+ 2 and set T [n+ 1, y−1] = n+ 2 and add a proof

table entry with empty sequence to P [n+1, y−1]. Now c2 = n+2 and

b = 2 = f . Finally we set T [3, z] = n + 2 and add a proof table entry

with the sequence “3, y−1, 2, (yzyz2), 2, z−1, 6, z−1, n+ 1, y−1, n+ 2” to

P [3, z].

4.1.6 Simplifying proof words

To keep the length of proof words reasonably short, we have a few

methods of simplification. First note that items can be inverses of each

other only if they are of the same type. Given two proof words w1 ̸= w2,

if s1(w1) = s1(w2) and s2(w1) = s2(w2), then as proof words they are

equivalent. We can simplify proof words by replacing sections of the

word with shorter equivalent words. We do this using five methods:

1. Consecutive inverse items can be removed since they will be re-

moved under both s1 and s2. For example the section [xy][y−1x]

can be removed.

2. If two inverse items i1 and i2 of type 1 are separated by a single

type 2 item i3, and either i1 is equal to the last element of i3, or

i2 is equal to the first element of i3, then moving i1 and i2 inside

the brackets of i3 gives a cyclic rearrangement i4 of i3. Since i3

is a relator of G, so is any cyclic rearrangement of it. Hence the

proof word section (i1, i3, i2) can be replaced by i4. For example
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the section x(yx)x−1 can be replaced by (xy).

3. If two inverse items of type 2 have the word w1 between them, they

may be removed if s1(w1) = 1G. Under s1 this section will reduce

to the identity, while under s2 the type 2 items will be removed

anyway. Note that w1 can contain any combination of item types.

For example the section (x4)x(yz)x−1[xz−1](y−1x−1)(x−4) may be

replaced by x(yz)x−1[xz−1](y−1x−1).

4. If two consecutive type 3 items are the inverse of each other, then

the square brackets can be removed. Under s2 these items will

be adjacent, and hence can be removed, and removing brack-

ets does not affect the simplification under s1. The word be-

tween the inverse pair may contain items of type 1 and/or 2.

For example the section [xy−1]y(x4)y−1[yx−1] may be replaced by

xy−1y(x4)y−1yx−1 = x(x4)x−1 = (x4).

5. If there are two inverse items i1 and i2 of type 2, with no type

3 items between them, and the word formed by the type 1 gen-

erators between them reduces to 1G, then the brackets may be

removed from i1 and i2. Under s2 this section will reduce to

the identity, while under s1 the brackets will be removed anyway.

For example the section (xy)z(x4)z−1(y−1x−1) can be replaced by

xyz(x4)z−1y−1x−1.

There are other ways of rearranging proof words which may result in

a shorter equivalent word, but finding the shortest possible proof is

infeasible, so we employ only the techniques described above in the



4.1. THE PEACEV2 PROCEDURE 107

main algorithm.

Included in the code are two additional procedures for simplifying

words, which may be useful if the proof word is particularly long.

The first procedure searches for sections w of the proof word which

have the property that s1(w) is a relator of G and s2(w) = 1G. Such

sections can be replaced by a single type 2 proof item equal to s1(w).

The second procedure can be used if there is a H-generator x with

xn = 1G as a relator of G. Any section w of the proof word which sim-

plifies to xn as an element of H under s2 can be simplified by removing

the square brackets of each type 3 item and adding n copies of x as a

sequence of type 1 items, and then adding the type 2 item xn. This

may increase the length of the proof word but will reduce the length

of the simplification under s2.

Whenever we join two simplified proof words w1 and w2, we need

only check for inverse pairs across the point of concatenation. By doing

this, we greatly reduce processing time.

We carry out each method in the order listed. If an item is removed

from a word, we must check across the point of concatenation of the

two sides of that item. If an item is replaced, then we have two points

of concatenation to check.
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4.1.7 Building proof words from proof table en-

tries

The tables W and V contain full proof words. The entries of W cor-

responding to the coset c1 and the generator g are the proof words for

c1g = c2, for each c2 described in P . The c1th entry of the table V

contains the proof word for c1 = c2, where c2 is the representative of

c1 as given by A[c1, 2]. These proof words are created using P and Q,

along with entries already filled in W and V .

Filling the entirety of both tables can be quite time-consuming, and

is not always required, so we fill in the entries as they are used. By

storing each proof word that we find, we reduce processing time, since

they are often used multiple times.

To create a proof word w for c1g = c2 or c1 = c2, we first find

the appropriate proof entry p from P or Q. If |p| = 0, then this is a

definition, and so w = g. Note that redundancies cannot be definitions.

Otherwise, |p| ≥ 3, and in that case we consider three consecutive

elements of p at a time, say d1, d2, d3. The first and third elements will

be cosets (given as integers), and the middle element d2 will be a string.

If d2 is ‘=’, then this section of p describes a coincidence, and so we

get the proof word from V and add it to the end of w. Then we set

d1 = d3, and consider the two subsequent elements of p.
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If d2 is a generator of G, then this section of p describes the deduc-

tion or definition d1d2 = d3. We find the appropriate word in W and

add it to the end of w. Then we let d1 = d3, and consider the two

subsequent elements of p.

Otherwise, d2 will be a subgroup generator or a group relator. We

add d2 to the end of w. Then we set d1 = d3 and continue by consid-

ering the two subsequent entries of p.

We repeat until we reach the end of p. Whenever we find a proof

word, we add it to the appropriate position in V or W . If at any point

we find that we need an entry of W or V that has not yet been filled,

then we create the required proof word, recursively building w.

Example 4.1.8 Suppose we wish to find the proof word w for 3x = 6.

We first consider the proof table entry of P [3, x] associated with the

coset 6. If this entry is an empty sequence, then w = x and we are done.

Otherwise suppose that this entry is the sequence “3, x, 8, (z2), 8, z−15, z−1, 6”.

If the entry of W [3, x] associated with coset 8 is the word x then we

start with w = x. Next we add the relator (z2) of G to get w = x(z2).

If the entry of W [8, z−1] associated with coset 5 is filled with the word

z−1 then we add this to the end of w to get w = x(z2)z−1. Now suppose

the entry of W [5, z−1] is not yet filled. Then we must find the proof

word w1 for 5z
−1 = 6.
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Suppose the entry of P [5, z−1] associated with coset 6 is “5, z−1,

9,=, 6,” and let the entry of W [5, z−1] associated with the coset 9 be

z−1. Then we start with w1 = z−1. Next we consider the proof table

entry V [9]. If this is not yet filled we must find the proof word w2 for

9 = 6 by considering the redundancy proof table entry Q[9]. We then

add this w2 to the end of w1 (checking for any simplifications) to obtain

w1 = z−1w2. Finally we add w1 to the end of w to get w = x(z2)z−2w2.

To get a proof word w1 verifying that the word h ∈ H given in terms

of the generators of G is in H, we first let c1 = 1. Let ci+1 be the entry

of T corresponding to [ci, hi], where hi is the ith element of h. For

each i, we retrieve/create the corresponding entry of W and add it to

the end of w1. If this process concludes at coset 1, then h ∈ H, while

otherwise, h is in the coset reached.

4.1.8 Running PEACEv2

First, we apply each generator h of H to coset 1 with parameter

m = |h| + 1. Next, we check each new entry of T . Suppose there

is a new entry corresponding to coset c and generator g. If c is still

active, then for each rotation r of relators of G having first element g,

we apply r to coset c with parameter m = 0. If all new entries have

been checked and there are no holes in T , then we are finished.

If all new entries have been checked and there are still holes in T ,

then we add a new coset by filling the first hole in the table. If the first
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hole of T occurs in the row corresponding to coset c1 in the column

corresponding to generator g, then we add a new coset c2 with c1g = c2.

We then update T , A and P accordingly, and return to checking new

entries.

Like PEACE, this procedure is not guaranteed to complete in the sense

that a complete coset table might not be obtained, and in fact this is

not possible if the subgroup H is not of finite index. But, maximum

values for the number of rows in the coset table and number of passes

through the main loop are in place to avoid any infinite loops that may

occur.

Note that the proof words obtained are in fact self justifying, so the

soundness of each result is self evident.

4.1.9 Coset definitions

Columns 3 and 4 of A store the necessary information to find the defi-

nition for each coset c. The entry A[c, 3] gives the integer representing

the coset from which c was defined, and A[c, 4] gives the integer rep-

resenting the generator used in the definition. Recursively taking each

generator used until we reach coset 1 then gives the definition of c.

If H is the trivial subgroup, then finding the definition of each coset

gives a representative for each element of G. Similar properties hold

for normal subgroups and their quotients.
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4.2 Application

Recall that given a finitely presented groupG and a set γ = {g1, . . . , gn}
of words in the generators of G, such that γ generates G, the PEACEv2

procedure can give a proof that each generator of G can be written

as a word in the elements of γ. This can be useful when finding new

presentations for groups from presentations already known.

Using the 3-generator presentation for SL(3,Z) given by Conder,

Robertson and Williams in [13], namely

SL(3,Z) ∼= ⟨x, y, z |x3, y3, z2, (xz)3, (yz)3, (Xzxy)2, (Y zyx)2, (xy)6 ⟩,

we obtain several new 2-generator presentations for SL(3,Z).
The proof words can be found by running the file PEACEv2.m from

github.com/GLiversidge/PEACEv2 then using the code below, with

the appropriate elements of G for u and v and the desired word for w.

G<x,y,z>:=Group<x,y,z|x^3, y^3, z^2, (x*z)^3, (y*z)^3,

(x^-1*z*x*y)^2, (y^-1*z*y*x)^2, (x*y)^6>;

u:= z;

v:= x*y;

w:="y";

L:=PEACEv2(G, {u,v});

proveWrd(~L, w, ~pfwrd);

pfwrd;
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The simplification of the word pfwrd with method s2 gives an expres-

sion for y in terms of the elements u and v. We can either use the

expression for y to solve for an expression for x in the elements u and

v, or repeat the process using the following code.

w2:="x";

proveWrd(~L, w2, ~pfwrd2);

pfwrd2;

Note that we use the same variable L, and the formation of this

proof word is likely to be faster since all partial proof words found in

the creation of pfwrd have been stored in L.

Finally, we use Tietze transformations to add the new symbols u = z

and v = xy and replace appearances of x, y and z in the relations with

the appropriate word in terms of u and v. This can be by hand, or

simply with the use of copy and paste.

These presentations led to further work on generating pairs for

SL(n,Z) for n ≥ 3 (see [12]). Two of the main discoveries in [12]

are as follows: SL(n,Z) is generated by two elements of infinite order,

for all n ≥ 2, and is generated by an element of order 2 and an element

of infinite order, for all n > 2. This was achieved by completing partial

work on this topic by previous authors, but using different approaches,

which are beyond the scope of this project and so we do not give the

details here.
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4.3 Results

All presentations could potentially be reduced in length, but we give

them as produced by PEACEv2 to illustrate the use of this package.

Note that in proof words we write (w)k only for w and k such that

(w)k is a type 2 proof word item. Furthermore we use the case inverse

notation a−1 = A for compactness.

Letting u = z and v = xy, we obtain the proof word:

xY X(x3)(XZ)3(ZxY X)2xyX[z][xy]X(z2)x[z]x(z2)X2(x3)(XZ)3x

[Y X][Z][xy](Y 3)y(yXzx)2(zy)3Y [Z]Y (Z2)y[Y X][Z]X(Z2)x[Y X][Z]

[xy](Y 3)yX(xyXz)2(zx)3(X3)xY xY X(x3)(XZ)3(ZxY X)2xyX[z][xy]X

(z2)x[z]x(z2)X2(x3)(XZ)3x[Y X][Z][xy](Y 3)y(yXzx)2(zy)3Y [Z]Y (Z2)y

[Y X][Z]X(Z2)x[Y X][Z][xy]Y 2X(xyXz)2(zx)3(X3)xy2.

Simplification under s1 is achieved by removing all brackets and can-

celling adjacent inverse pairs. The result is y.

Simplification under s2 is achieved by removing the contents of all

() brackets and cancelling adjacent inverse pairs. The result is:

[z][xy][z][Y X][Z][xy][Z][Y X][Z][Y X][Z][xy]

[z][xy][z][Y X][Z][xy][Z][Y X][Z][Y X][Z][xy].
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This shows that y = (uvuV UvUV UV Uv)2 and

x = vy−1 = v(V uvuvuV uvUV U)2.

This gives the following presentation, with generators of orders 2

and 6:

SL(3,Z) ∼=⟨u, v |u2, v6, (v(V uvuvuV uvUV U)2)3, (uvuvuV uvuV uV )6,

((uvuvuV uvuV )2uV )3, ((vuV uvuV uV uv)2u)3,

(Uv(V uvuvuV uvuV u)4(vuV uvuV uV uvu)2)2 ⟩.

If we let u = xz and v = yz, then we obtain the following presenta-

tion, with generators of order 3:

SL(3,Z) ∼=⟨u, v |u3, v3, ((uv)3UvUV UvuvuV UV uvuV uV UV )3,

(uvuvUvUV UvuvUV UV uvuV uV UV )2,

(UV UV uvuV uV UV uvuvUvUV UvuvuV UV uvuV uV UV

(uv)3UvUV Uvuv)2,

(V UV uvuV uV UV UV UvuvUvUV UvuvUV UV uvuV uV

UV UvuvuvUvUV Uvuvu)2,

(uV UV uvuV uV UV (uv)3UvUV Uvuvu)6 ⟩.
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If we let u = xz and v = yx, then we obtain the following presenta-

tion, with generators of orders 3 and 6:

SL(3,Z) ∼=⟨u, v |u3, v6, (V u)4, (V UvUvuvUvuV uV uvu)3,

(vuV UvUv(UV uV )2uvu)3, (vu(V UvUv(UV uV )2uvU)2)3,

((UV UvUv(UV uV )2uv)3uV UvUvuvUvuV uV uvUvU)2,

(UV UvUvuvUvuV uV uvUV uV UvUv(UV uV )2uvUv)2 ⟩.

If we let u = xy and v = Xyz, then we obtain the following presenta-

tion, with generators of orders 6 and 6:

SL(3,Z) =⟨u, v |u6, (uvUvUV )6, ((uV u)2V Uv)3,

((vUvUV u)3vUvU)2, (v2UvUV uvUvU2(vUV uvU)3)3,

((vuV uV U)2(vUvUV u)3vUv)2, ((vUv)2UV u)3,

(uvU(vUV uvUvU 2)2(vUV uvU)3v(UvuV uV )2)2 ⟩.

If we let u = z and v = xY , then we obtain the following presentation,

with generators of order 2 and infinite order:

SL(3,Z) =⟨u, v |u2, (V UvuvUV UvuV uV )6,

(V (V UvuvUV UvuV uV )2)3, (u(V UvuvUV UvuV uV )2)3,

(uV (V UvuvUV UvuV uV )2)3, (V u(V UvuvUV UvuV uV )2)2,

(vuV (V UvuvUV UvuV uV )2)2, ((V UvuvUV UvuV uV )4V )6 ⟩.
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If we let u = x and v = xY z, then we obtain the following presen-

tation, with generators of order 3 and infinite order:

SL(3,Z) =⟨u, v |u3, ((vUV 2uV uv)2uvUV 2UV UvUv2uV UV Uvu)3,

((uvUV 2uV uvuv)2UV 2UV UvUv2uV UV Uv)2,

((vUV 2uV uvuvU)2V 2UV UvUv2uV UV Uvu)3,

((uvUV 2uV uvuv)2UV 2UV UvUv2uV UV Uvu(vUV 2uV uv)2

uvUV 2UV UvUv2uV UV Uv)3,

((vUV 2uV uvU)2UvUV 2UV UvUv2uV UV Uvu

(vUV 2uV uvuvU)2V UvUv2uV UV Uvu)2,

((UvuvUV 2uV uv)2uvUV 2UV UvUv2uV UV )2,

((uvUV 2uV uv)2uvUV 2UV UvUv2uV UV Uv)6 ⟩.

Proof words for all the above presentations can be found at

github.com/GLiversidge/PEACEv2.
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4.4 Comparable algorithms

The PEACE package on which PEACEv2 is based is written in the pro-

gramming language C and uses make files to compile, so it is not par-

ticularly accessible. Our aim was to improve the usability of PEACE by

creating the function PEACEv2 implemented in Magma. Implementing

the function in a computational language commonly used for computa-

tional group theory allows users to benefit from the procedure without

having to open a separate package (and copying all the information

required).

PEACE also has lots of options for experimenting with coset enu-

meration types and different equivalent presentations. We’ve removed

these options and instead added functionality for reducing the results

obtained. This allows for users to benefit from the procedure even with

limited knowledge of the coset enumeration process and style.

By building a complete table of words as required we reduce run-time

when requesting multiple proof words, allowing for faster exploration

of the proof words available.

Both PEACE and PEACEv2 have the capability of producing proof

words, which, to the best of our knowledge, is unique to these al-

gorithms. Proof words allow users to manually check the results if

desired, an option which I think will particularly interest students or

those new to computational group theory.



Chapter 5

LowIndAlg

5.1 LowIndAlg Algorithm

LowIndAlg takes a finitely-presented group G, an integer M and a list

B of words in the generators of G, and returns a list of generating sets

for a complete set of representatives of conjugacy classes of subgroups

of G that have index M and do not contain any conjugate of any word

in B.

The main mechanism for avoiding conjugates of words in B is by

applying the words in B to each coset (just as relators are applied

in traditional forms of coset enumeration), but instead of using these

applications to fill the coset table, we use them to find coincidences of

cosets that will result in a word in B, or a conjugate of a word in B,

appearing in the subgroup. We wish to avoid such coincidences, and

call them excluded coincidences. We call coincidences which have not

(yet) been excluded allowed coincidences.

119
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5.1.1 Definitions

Let C be a (partial) coset table for a subgroup of G, and let C[c, g] be

the entry corresponding to the coset c and generator g ∈ G. Note that

entries in C occur in pairs: if we assign C[c1, g] = c2 then we always

assign C[c2, g
−1] = c1. This may be assumed throughout the algorithm.

Let L be the list of coset labels, with L[c1] giving a word w in the

generators of G such that w is in the coset c1. Let E be the list of

allowed coincidences. If c1 < c2 are cosets and c2 ∈ E[c1], then the co-

incidence c1 = c2 is allowed. Otherwise, the coincidence is not allowed.

Let X be the list of excluded words. This is initially filled using B.

Before adding a word w to X, we simplify w by removing any appear-

ances of the relators of G and taking conjugates by generators of G to

get the least representative of w. By taking least representatives and

not taking duplicates, we minimize the size of X. Note that g−1wg is

equivalent to w since if w ∈ H for some subgroup H of G, then for any

g ∈ G, g−1wg ∈ g−1Hg which is in the conjugacy class of H. Let X[g]

be the list of all cyclic rearrangements and inverses of excluded words

that have first element g.

Similarly, let R be the list of relators of G, and let R[g] be the list of

all cyclic rearrangements and inverses of relators of G, that have first

element g.



5.1. LOWINDALG ALGORITHM 121

5.1.2 Processing the coincidence of two cosets

Let c1 < c2 be the two cosets to be processed. If c2 ̸∈ E[c1] then we

kill this branch of the search tree, in the same way as branches are

killed in the standard Low Index Subgroups algorithm (described in

Section 2.4) when they lead only to conjugates of subgroups already

found. Otherwise, we compare information from row c2 with informa-

tion from row c1 of the coset table.

For each column g, if C[c2, g] ̸= 0, then we have two cases de-

pending on the value of C[c1, g]. If C[c1, g] = 0, then we assign

C[c1, g] = C[c2, g]. If C[c1, g] ̸= 0 then we have a new coincidence

C[c1, g] = C[c2, g], and we then add this to a list to process later. Once

each column has been compared, we update E by disallowing any co-

incidence c1 = c3 such that the coincidence c2 = c3 is not allowed.

Finally, we remove the coset c2, and move on to the next coincidence

in the list.

Example 5.1.1 Suppose we wish to process the coincidence of the

cosets 6 and 7. If the corresponding rows of C are [3, 0, 4, 0] and

[0, 5, 9, 0], respectively, then row 6 becomes [3, 5, 4, 0] and the pair 4

and 9 is added to the list of coincidences to process later. If 6 appears

only in E[2] and E[4] and 7 appears only in E[4] and E[5], then 6

is removed from E[2], but remains in E[4]. If E[6] = {8, 9, 10} and

E[7] = {9, 10, 11} then E[6] becomes the set {9, 10}.
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5.1.3 Applying the relator r to the coset c

Let ri be the ith element of r. Starting with c1 = c, we scan r by

letting ci+1 = C[ci, ri], provided that this value is non-zero. If no zero

entries are found and the scan completes at the coset c′ ̸= c, then we

have a coincidence c′ = c which we process immediately.

If the scan is incomplete, with C[ci, ri] = 0, then starting from

c′|r| = c we scan r backwards by letting c′j−1 = C[c′j, r
−1
j ], provided this

value is non-zero. If C[c′i, r
−1
i ] = ci−1 ̸= 0, then we have a coincidence

ci = c′i−1 which we process immediately. If C[c′i, r
−1
i ] = 0, then we can

satisfy the relator by assigning C[ci, ri] = c′i. If C[c′i+1, r
−1
i+1] = 0 then

we can satisfy the relator by adding a single coset n and assigning

C[ci, ri] = n and C[n, ri+1] = c′i+1. If C[c′i+2, r
−1
i+2] = 0 then there

are two possibilities. If ci = c′i+2 and ri = r−1
i+2 then we can satisfy

the relator by adding a single coset n and assigning C[ci, ri] = n and

C[n, ri+1] = n. Otherwise, if ci ̸= c′i+2 or ri ̸= r−1
i+1 then we need two

cosets n−1 and n, and we assign C[ci, ri] = n−1, and C[n−1, ri+1] = n,

and C[n, ri+2] = c′i+2. If C[c′j, r
−1
j ] = 0 for j < i+ 2 then we could add

cosets to complete the scan, but in this implementation we restrict the

value of j to i+ 2.

Example 5.1.2 Suppose we wish to apply the relator r = xyxy to the

coset 2. Let C[2, x] = 3, C[3, y] = 4, and C[4, x] = 5. If C[5, y] = 6

then we have the coincidence of cosets 2 and 6 to process. If C[5, y] = 0

then we let c2 = 2 and scan r−1 from coset 2. If C[2, y−1] = 7 then we

have the coincidence of the cosets 5 and 7 to process. If C[2, y−1] = 0

then we set C[5, y] = 2 to satisfy the relator r.
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Example 5.1.3 Suppose we wish to apply the relator r = xyx−1y−1x

to coset 3, and C[3, x] = 4 and C[4, y] = 0. Then we scan r−1 from

coset 3. If C[3, x−1] = 4 then we can complete the relator by adding a

single coset n, when the current number of cosets is n − 1 < M . We

define C[4, y] = n and then set C[n, x−1] = n to complete the scan.

5.1.4 Continuing enumeration

We fill as many entries in the coset table as possible, starting by pro-

cessing all new entries. For an entry corresponding to the coset c and

generator g, we first scan each word in X[g] from c as far as possible.

If the scan completes at the coset c, then we kill this branch of the

search tree. If the scan completes at the coset c2 ̸= c, then we update

E to disallow the coincidence c = c2. Next, we apply all relators in

R[g] to coset c, allowing only the addition of single cosets as long as

|C| ≤ M .

Example 5.1.4 Suppose that C[2, y] = 3 is a new entry and X[y] =

{yx}. If C[3, x] = 2 then we kill this branch of the tree. If C[3, x] = 4

then we remove 4 from E[2] and then apply all relators in R[y].

Once all new entries have been processed, we check to see if the coset

table is complete. If the coset table is complete then we have found a

subgroup. If |C| = M then we add this to the list of subgroups. This

branch of the search tree is now complete.
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If the coset table is incomplete then we have two cases. If |C| < M

then we add cosets. First we apply each relator of G to each coset,

until at least one coset has been added. If no cosets have been added

then we fill the first hole in the table. If this hole is in row c and column

g then we add a coset to the coset table and assign C[c, g] = |C|. If

|C| ≥ M then we have filled as much of the table as possible, so we

add new generators, creating new branches of the search tree.

5.1.5 Adding new generators/branches

First we add new generators by forcing the coincidence of cosets. For

each coset j in each list E[i], we create a new branch and continue

enumeration with the coincidence i = j, then remove j from E[i].

This branch is equivalent to adding the subgroup generator given by

w = L[i]L[j]−1. If we are on the first level of the search tree, that is,

we are adding the first generator of a subgroup, then we add w to X,

which excludes conjugate subgroups. If we are adding other genera-

tors, then excluding conjugate subgroups is more complicated, so we

remove them at the end. If adding the generator w to X, we must first

update E by scanning w from each coset c1. If the scan completes at

the coset c2 then we disallow the coincidence c1 = c2.

Example 5.1.5 Let E[1] be empty and let E[2] = {5, 8} where L[2] =

x, L[5] = xy and L[8] = xyx. Our first branch created will add the

generator xy−1x−1 by forcing the coincidence of cosets 2 and 5. If this

is the first generator added then once this branch is complete we add

xy−1x−1 to X. E[2] will become the set {8} and other sets in E may
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also be updated by the application of xy−1x−1 to other cosets. We then

add a branch with the generator y−1x−1 by forcing the coincidence of

cosets 2 and 8.

Next, we add generators by filling holes in the coset table. If our

first hole is in row c1 and column g, then this position could be filled

by any coset c2 which has 0 in the column g−1. For each possible c2

we create a new branch and continue enumeration with C[c1, g] = c2.

In this second method of adding branches, we don’t allow any coinci-

dences. If a coincidence is required, then the branch is killed. This is

equivalent to adding the generator given by L[c1]gL[c2]
−1.

Example 5.1.6 Let C[2, x] = 0, C[6, x−1] = 0, L[2] = x and L[6] =

yxy. We create a branch with the added generator x2y−1x−1y−1 by

setting C[2, x] = 6. We then continue applying relators. If any relator

causes any coincidences then the branch is killed.

These two methods ensure that every possibility is explored. The

first method covers the coincidence between cosets, the second covers

each possible way a partial coset table may be completed without co-

incidence. Once all possible coset tables have been explored, then all

conjugacy classes have been explored. Furthermore, note that there is

a finite number of ways to fill a coset table of a subgroup with a given

index, so the algorithm is guaranteed to complete.
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Once all branches have been completed or killed, we filter the list

of subgroups found. For each set of conjugate subgroups in the list,

we remove all but one subgroup of the set and then the list is returned.



5.2. APPLICATION 127

5.2 Application

Recall that manifolds may be constructed from Coxeter groups and

that there has been particular interest in small volume 3-manifolds,

constructed from minimum-index torsion-free subgroups of [p, q, r] Cox-

eter groups with 1/p + 1/q ≥ 1/2, 1/q + 1/r ≥ 1/2 and p, q, r ≥ 3.

There are 15 such Coxeter groups and until recently the minimum-

index of a torsion-free subgroup was known for all except the [4, 3, 5]

and [6, 3, 6] Coxeter groups.

Our initial attempt to use the Low Index Subgroup algorithm as

implemented in Magma for the [4, 3, 5] case took a very long time,

with the algorithm often failing, and eventually completing after over

12 weeks. In the meantime, we implemented LowIndAlg in Magma.

This algorithm was able to find exactly 14 conjugacy classes of torsion-

free subgroups of index 240 in the [4,3,5] Coxeter group within 7 hours,

and exactly 12 conjugacy classes of torsion-free subgroups of index 24

in the [6,3,6] Coxeter group in less than a second.

In the case of searching for torsion-free subgroups of Coxeter groups

given by the presentation

[p, q, r] = ⟨ a, b, c, d | (ab)p, (bc)q, (cd)r, a2, b2, c2, d2, (ac)2, (ad)2, (bd)2 ⟩,

every torsion element is conjugate to an element of one of the maxi-

mally finite subgroups generated by a subset S of {a, b, c, d}, and so

the list B contains words representing elements of each such subgroup.
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The conjugacy classes of torsion-free subgroups of index n can be

found by running the LowIndAlg.m file and then running LowIndAlg(G,

n, B), with the appropriate group G, and the appropriate list B.

Once all conjugacy classes of torsion-free subgroups are found, we

check for isomorphisms between representatives of each class. If two

subgroups have different abelianisations or have different numbers of

subgroups of a particular index, then they cannot be isomorphic. If no

differences are found then theMagma function SearchForIsomorphism

may provide an isomorphism between the pair (if one exists). By check-

ing abelianisations and the number of subgroups of index up to 8 we

were able to draw up a list of representatives not isomorphic to any

other(s), and find isomorphisms between pairs of the remaining ones,

except one pair in the [5,3,6] Coxeter group. This is the pair of conju-

gacy classes listed as numbers 19 and 20 in Table 5.11. We were able

to determine that this pair gives two distinct isomorphism classes, by

considering the number of homomorphisms onto PSL(2,11). There are

552 such homomorphisms for representative 19 and 556 for represen-

tative 20.
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5.3 Results

For completeness we list each of the infinite Coxeter groups listed in

Milnor’s table in [33], as well as the one other listed in [15], which

although not hyperbolic is infinite, and so has torsion-free subgroups

from which manifolds may be constructed. For each group we give the

minimum index of torsion-free subgroups in column 2, the number of

conjugacy classes of minimum-index torsion-free subgroups in column

3, and the number of isomorphism classes of minimum-index torsion-

free subgroups in column 4.

[p, q, r] Index Congugacy classes Isomorphism classes

[3, 3, 6] 24 1 1

[3, 4, 4] 48 13 8

[3, 5, 3] 120 7 7

[3, 6, 3] 12 2 1

[4, 3, 4] 48 18 9

[4, 3, 5] 240 14 12

[4, 3, 6] 48 11 10

[4, 4, 4] 16 12 6

[5, 3, 5] 120 12 8

[5, 3, 6] 120 77 77

[6, 3, 6] 24 12 8

Table 5.1: Conjugacy and isomorphism classes

of minimum-index torsion-free subgroups of se-

lected Coxeter groups
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In Tables 5.2 to 5.12 we list generating sets for minimum-index

torsion-free subgroups of the 11 Coxeter groups in Table 5.1. We give

one generating set for each conjugacy class of subgroups, as found by

the LowIndAlg. No attempt has been made to shorten the words used

to express the generators in each set. In each case, the abelianisation

of the torsion-free subgroup is the first homology group of the corre-

sponding manifold. The abelianisation of each subgroup can be found

using the AQInvariants command in Magma.

The [3,3,6] Coxeter group has exactly one conjugacy class and hence

only one isomorphism class of minimum-index torsion-free subgroups,

as given in Table 5.2.

Among the 13 conjugacy classes of minimum-index torsion-free sub-

groups of the [3,4,4] Coxeter group, there are three pairs and one triple

containing isomorphic subgroups. The pairs occur in Table 5.3 as num-

bers 4 and 7, numbers 5 and 9, and numbers 12 and 13. The triple

occurs in Table 5.3 as numbers 1, 2 and 11.

Among the seven conjugacy classes of minimum-index torsion-free

subgroups of the [3,5,3] Coxeter group, two contain isomorphic sub-

groups. This pair occurs in Table 5.4 as numbers 6 and 7.

The two conjugacy classes of minimum-index torsion-free subgroups

of the [3,6,3] Coxeter group contain isomorphic subgroups. They are

both given in Table 5.5.
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Among the 18 conjugacy classes of minimum-index torsion-free sub-

groups of the [4,3,4] Coxeter group, there are two pairs, two triples

and one set of four containing isomorphic subgroups. The pairs occur

in Table 5.6 as numbers 2 and 10, and numbers 9 and 14. The triples

occur in Table 5.6 as numbers 3, 13 and 16, and numbers 4, 8 and 18.

The set of four occurs in Table 5.6 as numbers 5, 6, 15 and 17.

Among the 14 conjugacy classes of minimum-index torsion-free sub-

groups of the [4,3,5] Coxeter group, there are two pairs containing

isomorphic subgroups. These pairs occur in Table 5.7 as numbers 4

and 10, and numbers 5 and 13.

Among the 11 conjugacy classes of minimum-index torsion-free sub-

groups of the [4,3,6] Coxeter group, there is one pair containing iso-

morphic subgroups. This pair occurs in Table 5.8 as numbers 3 and 4.

Among the 12 conjugacy classes of minimum-index torsion-free sub-

groups of the [4,4,4] Coxeter group, there are three pairs and one set

of four containing isomorphic subgroups. The pairs occur in Table 5.9

as numbers 1 and 8, numbers 4 and 6, and numbers 11 and 12. The

set of four occurs in Table 5.9 as numbers 3, 5, 7 and 9.

Among the 12 conjugacy classes of minimum-index torsion-free sub-

groups of the [5,3,5] Coxeter group, there are four pairs containing

isomorphic subgroups. These pairs are given in Table 5.10 as numbers

2 and 4, numbers 6 and 9, numbers 8 and 10, and numbers 11 and 12.
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All of the 77 conjugacy classes of minimum-index torsion-free sub-

groups of the [5,3,6] Coxeter group in Table 5.11 are isomorphism

classes of such subgroups.

Among the 12 conjugacy classes of minimum-index torsion-free sub-

groups of the [6,3,6] Coxeter group, there are four pairs containing

isomorphic subgroups. These pairs occur in Table 5.12 as numbers 2

and 9, numbers 3 and 7, numbers 4 and 10, and numbers 6 and 11.

No. Generating Set Abelianisation

1 {dcdcdba, dcbcb} Z
Table 5.2: Generating sets for minimum-index

torsion-free subgroups of [3,3,6]
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No. Generating Set Abelianisation

1 {dcb, cdcbc, abdcdcbca} Z2 ⊕ Z⊕ Z
2 {dcb, cdcbc, abcdcabca} Z2 ⊕ Z⊕ Z
3 {dcb, abcdbca} Z4 ⊕ Z
4 {dcb, abdcdbca} Z⊕ Z
5 {dcb, abacdbca} Z8 ⊕ Z
6 {abcbadcdba, cdcb, dcbc} Z⊕ Z
7 {abdcbca, cdcb} Z⊕ Z
8 {cdcb, abdcdbca} Z⊕ Z
9 {abdcbca, cbdcbdcbc, dcdcb} Z8 ⊕ Z
10 {bdcbc, cdcba} Z2 ⊕ Z
11 {bdcbc, acbdcba, dcabdcdba} Z2 ⊕ Z⊕ Z
12 {bdcbc, dcabadcdba, acbadcba} Z2 ⊕ Z2 ⊕ Z
13 {dcdbcb, acbadcba, bdcdcbc} Z2 ⊕ Z2 ⊕ Z

Table 5.3: Generating sets for minimum-index

torsion-free subgroups of [3,4,4]
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No. Generating Set Abelianisation

1 {cdcbadcdcbcbcb, cdbaba} Z29

2 {cdcbacdbcdba, cdbaba} Z35

3 {cdcbacdbcdcbcbcb, cdbaba, bcbcbacbcdbcdbcdbc} Z29

4 {cdcbadcdbcdbcdba, cdbaba, bcbcbadbcdbcba} Z9

5 {dcbcbaba, adcbcdbc} Z11 ⊕ Z11

6 {dcbcbaba, cbadcdbcba, bcbdcdbcdbca} Z2 ⊕ Z18

7 {dcbcbaba, cbdcbdcdbcba, cbadcdbacdba} Z2 ⊕ Z18

Table 5.4: Generating sets for minimum-index

torsion-free subgroups of [3,5,3]

No. Generating Set Abelianisation

1 {abdcdc, cdb} Z2 ⊕ Z
2 {cbacdc, bca} Z2 ⊕ Z

Table 5.5: Generating sets for minimum-index

torsion-free subgroups of [3,6,3]
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No. Generating Set Abelianisation

1 {dcba, bcbdcabacd} Z3 ⊕ Z
2 {bcbabcd, cdcba, bcdacbacdc} Z⊕ Z
3 {bcbacbcd, cdcba, bcdacbacdc} Z2 ⊕ Z⊕ Z
4 {bcbadcdbcd, cdcba, bcdacbacdc} Z4 ⊕ Z
5 {bcbadcdcbcd, cdcba, bcdacbacdc} Z2 ⊕ Z2 ⊕ Z
6 {bdcdacbacdc, bcbacbcd, cdcba} Z2 ⊕ Z2 ⊕ Z
7 {bacdcbacdc, bcbadbca, dcdcba} Z4 ⊕ Z4

8 {bacdcbacdc, bcbadcbca, dcdcba} Z4 ⊕ Z
9 {bacdcbacdc, dcdcba, bcbacdcbca} Z2 ⊕ Z2 ⊕ Z
10 {bcbabcd, bcdcba, babcdc} Z⊕ Z
11 {bcbadbcd, bcdcba, babcdc} Z2 ⊕ Z
12 {bcdcba, babcdc, bcbacbcd} Z⊕ Z⊕ Z
13 {bcbadcbcd, bcdcba, babcdc} Z2 ⊕ Z⊕ Z
14 {bcbadcdbcd, bcdcba, babcdc} Z2 ⊕ Z2 ⊕ Z
15 {bcbadcbcd, badbcdc, bcdcba} Z2 ⊕ Z2 ⊕ Z
16 {bcbadcbcd, bcdcba, bacdcbcdc} Z2 ⊕ Z⊕ Z
17 {bcbadcdbcd, bcdcba, bacdcbcdc} Z2 ⊕ Z2 ⊕ Z
18 {bcbadbca, badbcdc, bdcdcba} Z4 ⊕ Z

Table 5.6: Generating sets for minimum-index

torsion-free subgroups of [4,3,4]
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No. Generating Set Abelianisation

1 {bcbadcdcdbacdc, cdcbadcdcbcdcdbcdcab, dcba} Z28 ⊕ Z
2 {bcbacdcbcdcdcbcb, dcba, cdcabacdcdbcdcdabacd} Z4 ⊕ Z4 ⊕ Z
3 {dcbcdcba, cdcbcdab, dcabadcdcdbacdcbab} Z2 ⊕ Z2 ⊕ Z
4 {bcbadcdcdbacdc, dcdbcdcba, adcdcbcdab} Z13 ⊕ Z
5 {bcdcdbcdcba, dcdcbcdaba, bcbadcdbcdcdab} Z4 ⊕ Z4 ⊕ Z
6 {cdcabacdcdbcdcdc, badcba, bcbacdcdbacd,

bcdcbacbcdcdba}
Z11 ⊕ Z11

7 {bcbadcdcdbacdc, dcabacdcdbcdcdbcdc, badcba} Z2 ⊕ Z
8 {badcba, dcabacdcbcdcdbcd, bcbadcdcdbacdcdc} Z87

9 {bcbacbacdcdc, dcbadcdbcdcdbcdcba, badcdcba} Z4 ⊕ Z28

10 {dcbadcdbacdc, bacdcbca, bcbacdcbacd} Z13 ⊕ Z
11 {bacdcbca, abadcdbcdcdbcd, dcbadcdbcdcdbcdcba,

bcbadcdcdbacdcdc}
Z2 ⊕ Z

12 {abadcdcdbcdcdbcd, dcbadcdbacdc, bacdcbca,
bcbacdcbcdcdbacd}

Z2⊕Z2⊕Z2⊕
Z2

13 {bcbacdcbcdcdbacdc, dcbadcdbacdc, bacdcbca,
abadcbcdcdbcd}

Z4 ⊕ Z4 ⊕ Z

14 {abadbcdcdbcdcb, bcbacdcdbacd, dcbadcdbcdcdba,
badcdcdbca}

Z3 ⊕ Z15

Table 5.7: Generating sets for minimum-index

torsion-free subgroups of [4,3,5]
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No. Generating Set Abelianisation

1 {adcdcba, dcbcb} Z8 ⊕ Z
2 {acdcdcba, dcbcb} Z⊕ Z
3 {abcdcdacdbca, dcbcb, dcabcdcdbca} Z2 ⊕ Z2 ⊕ Z
4 {cdcdcb, dcdcbcb, abacbacdc, cdcdcabdcdcdbacdc,

abdcdcbca}
Z2 ⊕ Z2 ⊕ Z

5 {dcdcbcb, cdcdcba, bacbacdc, cdcdcabdcdcdbacdc} Z2 ⊕ Z2 ⊕ Z
6 {babcdbca, dcdcbcb, acdcdcba, dcabdcdcdbca,

cdcdcbcdcdcb}
Z2 ⊕ Z⊕ Z

7 {badcdcbca, dcdcbcb, adcdcdcba, dcabdcdcdbca,
cdcdcbcdcdcb}

Z2 ⊕ Z4 ⊕ Z

8 {(dcb)2, cdcdcb, abadcbca} Z2 ⊕ Z⊕ Z
9 {cdcbdcdcdb, babcdbca, (dcb)2, acdcdcba,

dcabdcdcdbca}
Z2 ⊕ Z⊕ Z

10 {dcba, dcdcdcbcb} Z4 ⊕ Z
11 {dcabcdcdcbcb, bcdbcaba, badc} Z2 ⊕ Z4 ⊕ Z

Table 5.8: Generating sets for minimum-index

torsion-free subgroups of [4,3,6]
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No. Generating Set Abelianisation

1 {abcd, cdb} Z8 ⊕ Z
2 {acbdcdc, abacd, cdb} Z4 ⊕ Z
3 {abacd, acbcadc, cdb} Z2 ⊕ Z⊕ Z
4 {abcdc, cdb} Z⊕ Z
5 {acbacd, abcadc, cdb} Z2 ⊕ Z⊕ Z
6 {bca, cbcd} Z⊕ Z
7 {bca, cbdcd, abdacdc} Z2 ⊕ Z⊕ Z
8 {cbacdc, bca} Z8 ⊕ Z
9 {abdcd, bca, cbdacdc} Z2 ⊕ Z⊕ Z
10 {badc, cbcd} Z⊕ Z
11 {abcdc, badc, cbacd} Z2 ⊕ Z2 ⊕ Z
12 {cbdcd, badc, abdacdc} Z2 ⊕ Z2 ⊕ Z

Table 5.9: Generating sets for minimum-index

torsion-free subgroups of [4,4,4]
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No. Generating Set Abelianisation

1 {dcba, badcbdcb, dcabacdcdbacdcdc} Z35

2 {bacdcdbcdc, bcbacdcbacdcdc, dcba,
dcabadcdcbcdcb}

Z48

3 {bcbadbcdcdbacd, dcba, badbcdcb} Z29

4 {bcbadbacdc, dcba, badbcdcdcbcb} Z48

5 {bcbadbacdc, dcabadcdcdbcdcdbacdc, dcdcba,
badcdbca}

Z15 ⊕ Z15

6 {bcbadcdcdbacdc, dcdcba, badcdbca} Z5 ⊕ Z5 ⊕ Z5

7 {abadcdcbcdcdcbcb, bdcdcbca, bacdbacd,
bcbadcdbcdcdbacd}

Z5 ⊕ Z15

8 {bcbacbcdcdbacd, bdcdcbca, abadcbacdcdc,
badcbcdc}

Z3 ⊕ Z3

9 {bdcdcbca, bcbadcdbcdcdbacd, badcbcdc} Z5 ⊕ Z5 ⊕ Z5

10 {abadcdcdbcdc, bacdcdbcdcdc, bdcdcbca,
bcbadcdcdbacdcdc}

Z3 ⊕ Z3

11 {bdcdcbacdc, bacdbacd, bcbadcdcba, acbacdbcdc} Z5 ⊕ Z5 ⊕ Z5

12 {bcbadbacdc, bcdcbdcdcdbacd, badcdbca, abacdbcd} Z5 ⊕ Z5 ⊕ Z5

Table 5.10: Generating sets for minimum-index

torsion-free subgroups of [5,3,5]
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No. Generating Set Abelianisation

1 {dcbdcdbcdcd, adcbcdcba, ababdcdcbcdcaba, dcbcb,
adcdcdcbcdcdbacdc, abacbacbcdcdcaba}

Z2⊕Z2⊕Z4⊕
Z

2 {adcdcbcdcba, ababdcdcdbcdcaba, dcbdcdbcdcd,
dcbcb, abacbadcbcbababa, abacbcdcdbcdaba,

(acdcdba)2}

Z2⊕Z2⊕Z2⊕
Z2 ⊕ Z

3 {ad(cdcb)2a, abcdcadcbaba, dcbdcdbcdcd, dcbcb,
cdcabdcdcdcdbcdcdcbacdcdc, ababdcdbcdaba,

cdcabcacbdcdbcdcacbacdc}

Z2⊕Z2⊕Z⊕Z

4 {adcdcbcdcba, abcdcadcbaba, dcbcb, dcbdcdbcdcd,
cdcabcacbdcdbcdaba, cdcabdcdcdcdbcdcdcbacdcdc}

Z2⊕Z2⊕Z⊕Z

5 {adcdcbcdcba, dcbdcdbcdcd, cdcabcdcadcbaba,
dcbcb, cdcabdcdcdcdbcdcdcbacdcdc}

Z2⊕Z2⊕Z⊕Z

6 {adcdcdbcdcba, abcdcadcbaba, dcbdcdbcdcd, dcbcb,
ababdcdbcdaba, dca(bcdcdc)2bacdc}

Z2⊕Z2⊕Z⊕Z

7 {abcdcadcbaba, dcbdcdbcdcd, acdcbcdcdba, dcbcb,
dcdcabd(cdcdcb)2acdcdc}

Z2⊕Z2⊕Z⊕Z

8 {ababadcdbcdbababa, dcbdcdbcdcd(acdcdba)2,
ac(bcdcdc)2bacdcd, acbcdcdcdbaba, dcbcb}

Z2⊕Z2⊕Z⊕Z

9 {acbd(cdcdcb)2acdcd, ababadcdbcdbababa, dcbcb,
abababcbdcbdcdbcdcbdcbababa, dcbdcdbcdcd,

acbcdcdcdbaba, (acdcdba)2}

Z2⊕Z2⊕Z⊕Z

10 {acbd(cdcdcb)2acdcd, dcbdcdbcdcd, acbcdcdcdbaba,
abababcbdcdcdbcdbababa, dcbcb, (acdcdba)2}

Z2⊕Z2⊕Z⊕Z
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11 {a(cbcdcd)3cbacdcd, dcabadcdbcdcdcbca, dcbcb,
dcbdcdbcdcd, acdcdcbcdcdba, abcdcbcaba,

acbacbcdcbacdcbca}

Z2⊕Z2⊕Z8⊕
Z

12 {acbdcdcdcbcdcdbacdc, dcbdcdbcdcd, dcbcb,
acbcdcdcdbaba, abcdcdcbacdcd}

Z2 ⊕ Z4 ⊕ Z

13 {adcdcba, dcbcb, cdcabcdcdcabcdcd} Z12 ⊕ Z
14 {dcdcbabdcdcbcdcdcbacdc, adcdcba, dcbcb,

dcdcbacdcdcbcabcdcd}
Z12 ⊕ Z

15 {dcabdcdcdbcdacbcdcd, dcababcdbcdcdbcacbcdcd,
acdcdcba, dcdcbca(cbdcd)5cbdcb(dcdbc)5acbcdcd,

dcdcdbcdcdbca, dcdcbcacbab(dcdbc)4acbcdcd,

dcbcb}

Z

16 {dcdcbcacba(cdcdb)4cacbcdcd, acdcdcba,
dcabdcdcdbcdacbcdcd, dcababdcdbcdcdbcacbcdcd,

dcdcbca(cbdcd)5cbdcb(dcdbc)5acbcdcd, dcbcb,

dcdcdbcdcdbca}

Z

17 {dcdcbcacbadcdbcdcacbcdcd, acdcdcba, dcbcb,
dcdcbdcbdcd(bcdcd)2, abdcdbcdcdbca}

Z2 ⊕ Z8 ⊕ Z

18 {acdcdcba, dcabdcbdcd(bcdcd)2, dcbcb,
(dcdcbca)2cbcdcd}

Z

19 {dcdcbcdabdcdcdbcdcadcbcdcd, (adcdbca)2, dcbcb,
adcdcdcba}

Z2 ⊕ Z8 ⊕ Z

20 {(adcdbca)2, dcdcbcdacdcbdcdacbcdcbadcbcdcd,
adcdcdcba, dcbcb, dcdcbcdacbdcdcdbcdadcbcdcd}

Z2 ⊕ Z8 ⊕ Z
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21 {adcdcbcdcba, acdcdbcdcdba, dcb(dcdbc)3dcd,
dcbcb, ababdcdbcaba, aba(dcdcb)2aba}

Z2⊕Z2⊕Z⊕Z

22 {adcdcbcdcba, acdcdbcdcdba, abadcbdcdcdbcaba,
abacdcbdcdcdbaba, dcb(dcdbc)3dcd, dcbcb,

dcdcbacbcaba}

Z2⊕Z2⊕Z⊕Z

23 {adcdcbcdcba, ababcdbcaba, dcb(dcdbc)3dcd, dcbcb,
abcdcdcababa, cdcdca(bcdcdc)2bacdc}

Z2 ⊕ Z6 ⊕ Z

24 {adcdcbcdcba, abababcbdcacdbacdcdc,
dcbcb, cdcabdcdcdcaba, dcb(dcdbc)3dcd,

cdcdca(bcdcdc)2bacdc}

Z2 ⊕ Z2 ⊕ Z

25 {adcdcbcdcba, cdcabadcdbcdcd, dcbcb,
aba(cdbcd)3cd, (dcdcb)4dcbdcd(bcdcd)3,

cdcdca(bcdcdc)2bacdc}

Z2 ⊕ Z2 ⊕ Z

26 {adcdcdbcdcba, dcb(dcdbc)3dcd, acdcbcdcdba,
dcbcb, ababdcdbcaba, aba(dcdcb)2aba}

Z2⊕Z2⊕Z⊕Z

27 {adcdcdbcdcba, abcdcdcdababa, dcb(dcdbc)3dcd,
(abadcbdcaba)2, dcbcb, cdcabd(cdcdcb)2acd}

Z2 ⊕ Z2 ⊕ Z

28 {adcdcdbcdcba, dcb(dcdbc)3dcd, dcbcb,
dcabcdcdcdbababa, cdcabdcdcdcbcdcdcbacd}

Z2 ⊕ Z6 ⊕ Z

29 {adcdcdbcdcba, abadcdbacdc, acbabdcdbcdcd,
(dcdcb)4dcb(dcdbc)3dcd, cdcabd(cdcdcb)2acd,

dcbcb}

Z2 ⊕ Z2 ⊕ Z

30 {adcdcdbcdcba, acb(dcdcbc)2dcdcbacd,
dcbcb, dcdcbdcbdcd(bcdcd)2, cdcabdcdaba,

acbacbdcbadcdcdcbca}

Z2 ⊕ Z4 ⊕ Z
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31 {dcdcbdcbdcd(bcdcd)2, cdcdcabd(cdcdcb)2acdcd,
dcbcb, abdcdcbacdc, abacbcdcaba, abcdcdcababa}

Z4 ⊕ Z4 ⊕ Z

32 {dcdcbdcbdcd(bcdcd)2, dcdcabdcdaba, dcbcb,
cdcdcabd(cdcdcb)2acdcd, abdcdcbacdc}

Z4 ⊕ Z4 ⊕ Z

33 {ad(cdcdb)2acd, dcdcbdcbdcd(bcdcd)2, dcbcb,
abdcdcdbacdc, ab(cdcbcd)2cdcbd(cdcdcb)3ca,

abadcdbcdcba, acbacdcd(bcdcdc)2bca}

Z4 ⊕ Z

34 {abdcdcdcbacdc, dcb(dcdbc)3dcd, dcbcb,
acbcdcdcdbaba, dcdca(bcdcdc)2bca}

Z2 ⊕ Z4 ⊕ Z

35 {abdcdcdcbacdc, ababacdcd, dcbcb,
dcdca(bcdcdc)2bca, (dcdcb)4dcb(dcdbc)3dcd}

Z12 ⊕ Z

36 {abdcdcdcbacdc, acbadc(bcdcd)2, dcbcb,
abacbacdcd, dcdca(bcdcdc)2bca,

(dcdcb)4dcb(dcdbc)3dcd}

Z12 ⊕ Z

37 {cdcabadcbdcdbcdcd, abadcdbacdcd, dcbcb,
abcdcdcbacdcdc, dca(bdcdc)2dbcdcdbca,

(dcdcb)2dcbdcdbcdcd}

Z2 ⊕ Z⊕ Z

38 {dcdcabdcdcdcbcdcba, cdcabdcdcdcbcdcdba,
dcbcb, dcabacbdcdbcdcd, (dcdcb)2dcbdcdbcdcd,

abadcdcbca}

Z2 ⊕ Z⊕ Z

39 {ad(cdcdb)2acd, cdcdcb, ababcdcdcdacbcdcaba,
abacbacdbcdcdcaba, dcdcbcb, abacbdcdcdbcdaba,

acdbcdcba}

Z2⊕Z2⊕Z⊕Z

40 {adcdcbcdcba, cdcdcb, abacdcbadcdcdbaba,
dcdcbcb, abacbadcbcdaba, (acdcdba)2}

Z2⊕Z2⊕Z4⊕
Z
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41 {bdcdcdcbca, dcdcbcb, bacdcdcbcdcbdcdcdcbab,
babacdcdbcdcab, ba(dcdcbc)2ab, d(cdcdcb)2acdcd}

Z2 ⊕ Z6 ⊕ Z

42 {a(bdcdc)2bcdcdcbdcdcdc(bcdcd)3ba, dcdcbcb,
ba(dcdcbc)2dcdba, abad(cdcdb)3a, (bcdcdc)2,

adcdcdbca}

Z2 ⊕ Z4 ⊕ Z

43 {dcdcbcb, acbd(cdcdcb)2cdcdbca, (bcdcdc)3,
acbcdcdcadbcdcdc, adcdcdcba}

Z2 ⊕ Z12 ⊕ Z

44 {dcdcbcb, acbd(cdcdcb)2cdcdbca, (bcdcdc)3,
acbdcdcdcadbcdcdc, adcdcdcba}

Z2 ⊕ Z16 ⊕ Z

45 {badcbdcdcdbab, dcdcbcb, adcdcdbca, (bcdcdc)3,
abd(cdcdcb)2cdcdba, ba(cdcbd)2cab}

Z2 ⊕ Z48 ⊕ Z

46 {dcabdcdcbcdcdbacdcd, dcdcbcb, (cdcdcb)6,
badcdbcdcdcbcdcdc, abadcdcdcbcdcdcb,

abdcdcdcbca}

Z12 ⊕ Z

47 {(dcb)2, adcdcbcdcba, cdcdcb, abadcbcdcdba,
cdca(bdcdc)3dcdbcdcdcbacdcdc,

acbadbcdcdcbacdcdc}

Z2⊕Z2⊕Z⊕Z

48 {(dcb)2, bdcdcdcbca, dcabdcdcadcdcbcdab,
cbdcdbcdcdbacd, bacbdcadcdbcdcab}

Z2 ⊕ Z⊕ Z

49 {(dcb)2, bdcdcdbcdc, abadbcdcdbca,
bacdcbcdcdcbca, abcdcdcbacdcdc,

dca(bdcdc)2dbcdcdbca}

Z6 ⊕ Z⊕ Z

50 {dca(bdcdc)2dcbcdcdcbca, (dcb)2, bdcdcdbcdc,
badbca, abcdcdcbacdcdc, dcabacdbacdc}

Z2⊕Z2⊕Z⊕Z
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51 {acbcdcdcbacdcd, (dcb)2, bdcdcdbcdc,
badcdcdcbcdcdcba, abacdbacdcdc,

cdca(bdcdc)2dbcdcdba}

Z2 ⊕ Z⊕ Z

52 {bd(cdcdb)4acdcd, cdcdcabacdcdcbcdcdbacdcd,
dcdcdcbcb, cdcba}

Z3 ⊕ Z⊕ Z

53 {dcdca(bdcdc)2bcdcdcbdcdcdc(bcdcd)3bacdcd,
badcdc(bcdcd)2bacdcd, dcdcdcbcb, cdcba}

Z15 ⊕ Z

54 {dcdcabdcdcbcdcdcbdcdcdc(bcdcd)2bacdcd,
ba(dcdbc)2dcdbacdcd, dcdcdcbcb, bdcdcba,

acbadcbcdcdbacdcd}

Z2 ⊕ Z10 ⊕ Z

55 {bdcdcdba, cdcabdcdcbcdcdcbdcdcdc(bcdcd)2bacdc,
dcdcdcbcb, bacdcbcd, acbabcdcdbacdc}

Z2 ⊕ Z10 ⊕ Z

56 {bdcdcdba, cdcabdcdcbcdcdcbdcdcdc(bcdcd)2bacdc,
acbadcbcdcdcbacdc, cdcabadbcdcdbacdc, dcdcdcbcb,

bacdcbcd}

Z2 ⊕ Z10 ⊕ Z

57 {bdcdcdcba, dcbacbdcdcdcbcdabcd, adcdcbab,
acdcdcbcdcdcbacdc, dcdcdcbcb, cdcabacdcbabcd,

dcbadcdcbdcdcdcbcdcabcd}

Z4 ⊕ Z

58 {adcdcbcdcba, bcdcdcbcd, cdcdcabdcdcbab,
cdcabdcdaba, dcdcdcbcb, cdcdca(bcdcdc)2bacdc}

Z2 ⊕ Z6 ⊕ Z

59 {adcdcdbcdcba, abcdcdcdababa, bcdcdcbcd,
acbdcdcbab, dcdcdcbcb, cdcabd(cdcdcb)2acd}

Z2 ⊕ Z6 ⊕ Z

60 {bcdcdcbcd, dcabacdbcdcdcbca, bacdbca,
abcdcdcbacdcdc, dcdcdcbcb, dca(bdcdc)2dbcdcdbca}

Z⊕ Z
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61 {bacbcdcdb, abad(cdcdcb)2, dcdcdcbcb,
dcdca(bdcdc)2dcbcdcdb, abdcdcdcbca}

Z4 ⊕ Z

62 {dcdca(bdcdc)2dbcdcba, bacbacdcd, abdcdcbacdc,
(bdcdc)2dcbcdcdcb, dcdcdcbcb}

Z2 ⊕ Z8 ⊕ Z

63 {badbca, abdcdcdbacdc, a(cbcdcd)2cbacdcd,
(bdcdc)2dcbcdcdcb, dcdcdcbcb}

Z4 ⊕ Z⊕ Z

64 {bacdcbacd, abcdcdbacdcd, abadbacdc,
acbdcdcbcdcdcbcdcdba, (bdcdc)2dcbcdcdcb,

dcdcdcbcb}

Z4 ⊕ Z⊕ Z

65 {bcdcdcbdcdcdcbcdcdb, a(cbdcd)2cbacdcdc,
bacdcbacd, abcdcdcbacdcd, dcdcdcbcb, abadcbacdc}

Z12 ⊕ Z

66 {bacdcbacdc, cdca(bcdcd)2b, abcdcdcbacdcdc,
dcabcdcdcbdcdcdcbcdcdbacd, abacdcdbacd,

dcdcdcbcb}

Z

67 {bcdbcdacdcbcab, cdcbacdcdc, dcba,
dcdcdcdbcdcdcb, badcbdcadcdbcdcdab}

Z2 ⊕ Z⊕ Z

68 {dca(bdcdc)2bcdcdcb, badcdcdbacd, dcba,
bcbcdcdcbacdcdc}

Z24 ⊕ Z

69 {dca(bdcdc)2bcdcdcb, bacdcdbcdc, dcba,
bcbdcdcdcbacdcdc, bcba(cdcb)2}

Z2 ⊕ Z

70 {bcbacdcbcdcdc, dca(bdcdc)2dbacdcdc, bacdcdbacd,
dcba, bcdcbdcdcbcdc}

Z2 ⊕ Z2 ⊕ Z

71 {dca(bdcdc)2dbacdcdc, babcdcd, cdcba,
(bcdc)2dcbcd, bcbadcdcdbacdcdc}

Z2 ⊕ Z2 ⊕ Z
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72 {dcdcba, (bdcdc)3dcbcdcdbacd, cbacdcdc, babcdc,
acbacbcdcdbacd}

Z2 ⊕ Z2 ⊕ Z

73 {bacdbcdcdb, dcabadcdcbcdcdcb, dcdcba,
bdcdcbdcdcbdcdcdcbcdcdbacd, cbacdcdc,

acbacbcdcdbacd}

Z2 ⊕ Z2 ⊕ Z

74 {acbacdcbcdcdcb, dcdcba, (bdcdc)3dbcdcdcbacd,
cbacdcdc, babcdc, dcabadbcdcdcbacd}

Z2⊕Z6⊕Z⊕Z

75 {dcdcba, dcabadcbcdcdcb, (bdcdc)3dbcdcdcbacd,
cbacdcdc, babcdc, acbacdbcdcdcbacd}

Z2⊕Z2⊕Z⊕Z

76 {bcdcbdcdcdcbacd, bdcdcbdcdcdcbacdcdc, dcdcba,
babacdc, bcbadcdcdcbca}

Z2 ⊕ Z6 ⊕ Z

77 {bcdcdbacd, cdcdcdbcdcdcbcb, bacdcbdcdcdbab,
ba(dcdcbc)2ab, bdcdcbca, bcbadbab}

Z2⊕Z2⊕Z⊕Z

Table 5.11: Generating sets for minimum-index

torsion-free subgroups of [5,3,6]
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No. Generating Set Abelianisation

1 {cdcabdcdcb, abacd, dcbcb} Z4 ⊕ Z
2 {cdcabacdcb, abacd, dcbcb} Z2 ⊕ Z⊕ Z
3 {abdacdc, acbacdcd, dcbcb} Z2 ⊕ Z4 ⊕ Z
4 {abdcdcb, dcbcb} Z4 ⊕ Z
5 {cdcabacdcb, cdcdb, adcbcb} Z2 ⊕ Z4 ⊕ Z
6 {acbcdacdc, cdcdb, abdcb} Z2 ⊕ Z2 ⊕ Z
7 {acbcdacdc, cdcdb, adcdcbcb} Z2 ⊕ Z4 ⊕ Z
8 {cdcdb, dcbdcb, abcdacdc, acbadcd} Z2 ⊕ Z2 ⊕ Z2 ⊕ Z
9 {bca, cdcdcabdcdc, dcbdcb} Z2 ⊕ Z⊕ Z
10 {bcbcdcdcd, bca, dcbacdcd} Z4 ⊕ Z
11 {badc, dcbdcb, dcabacdcb} Z2 ⊕ Z2 ⊕ Z
12 {bacdc, dcbdcb, dcabcdcdc} Z⊕ Z⊕ Z

Table 5.12: Generating sets for minimum-index

torsion-free subgroups of [6,3,6]

The above results have been published in [11]. An extended version,

including details about determining isomorphisms between conjugacy

classes of minimum-index torsion-free subgroups for each of the 11

Coxeter groups from Table 5.1 is available at

github.com/GLiversidge/LowIndAlg.
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5.4 Comparable algorithms

The LowIndAlg function is to the best of the author’s knowledge the

only such function available inMagma. In our application of LowIndAlg

we compared our results to those found via alternative methods using

the Low Index Subgroups algorithm available in Magma. The most

notable time difference occurred in a case where the Low Index Sub-

groups algorithm completed after over 12 weeks, whereas LowIndAlg

completed the task within 7 hours, as explained in Section 5.2.

We were unaware of the option to exclude words in the implemen-

tation of the low index algorithm in GAP. We expected this GAP

option to be very similar to LowIndAlg, but our testing revealed that

LowIndAlg often runs far more quickly.

In five of the eleven cases, both LowIndAlg and the GAP function

LowIndexSubgroupsFpGroup took less than a second, but in the other

six cases, namely [3,4,4], [3,5,3], [4,3,5], [4,3,6], [5,3,5] and [5,3,6], GAP

was clearly slower than LowIndAlg:

� For [3,4,4], LowIndAlg took 1.84 seconds while GAP took 2.93

seconds;

� For [3,5,3], LowIndAlg took 45.01 seconds while GAP took 4966.14

seconds (over 80 minutes);

� For [4,3,6], LowIndAlg took 2.35 seconds while GAP took 3.61

seconds;
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� For case [5,3,5], LowIndAlg took 282.65 seconds (under 5 minutes)

while GAP took over three days;

� For cases [4,3,5] and [5,3,6], LowIndAlg took 24742.83 and 21517.99

seconds (under 7 and 6 hours respectively), while GAP had taken

over eleven days before we abandoned those two GAP jobs.



Bibliography

[1] C. Adams. The noncompact hyperbolic 3-manifold of minimum

volume. Proc. Amer. Math. Soc., 100:601–606, 1987.

[2] M.A. Armstrong. Calculating the fundamental group of an orbit

space. Proc. Amer. Math. Soc., 84:267–271, 1982.

[3] K. Asciak, M.D.E. Conder, S. Pavlikova, and J. Siran. Orientable

and non-orientable regular maps with given exponent group. J.

Algebra, 620:519–533, 2023.

[4] W.W. Boone. The word problem. Ann. of Math., 70:207–265,

1959.

[5] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra

system. I. The user language. J. Symbolic Comput., 24(3-4):235–

265, 1997.

[6] M.R. Bridson, M.D.E. Conder, and A.W. Reid. Determining Fuch-

sian groups by their finite quotients. Israel J. Math, 214:1–41,

2016.

151



152 BIBLIOGRAPHY

[7] B. Brink and R.B. Howlett. A finiteness property and an au-

tomatic structure for Coxeter groups. Math. Ann., 296:179–190,

1993.

[8] C. Cao and G.R. Meyerhoff. The orientable cusped hyperbolic 3-

manifolds of minimum volume. Invent. Math., 146:451–478, 2001.

[9] M. Conder. The genus of compact Riemann surfaces with maximal

automorphism group. J. Algebra, 108:204–247, 1987.

[10] M. Conder. Group actions on graphs, maps and surfaces with max-

imum symmetry, volume 1 of Groups St Andrews 2001 in Oxford,

chapter 11, pages 63–91. Cambridge University Press, Cambridge,

2003.

[11] M. Conder and G. Liversidge. Small volume 3-manifolds con-

structible from string Coxeter groups of rank 4. J. Algebra,

635:775–789, 2023.

[12] M. Conder, G. Liversidge, and M. Vsemirnov. Generating pairs

for SL(n,Z). 2023. In preparation.

[13] M.D.E. Conder, E. Robertson, and P. Williams. Presentations for

3-dimensional special linear groups over integer rings. Proc. Amer.

Math. Soc., 115:19–26, 1992.

[14] David Eppstein. Image: k7 on torus.

en.wikipedia.org/wiki/File:7x-torus.svg. Accessed:5/11/2023.

[15] B. Everitt. Coxeter groups and hyperbolic manifolds. Math. Ann.,

330:127–150, 2004.



BIBLIOGRAPHY 153

[16] H. Felsch. Programmierung der Restklassenabzählung einer
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