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Abstract  

Background 

Asthma remains a significant global health concern, leading to substantial morbidity and 

mortality despite advancements in treatment. Various pharmacological interventions, 

including inhaled corticosteroids (ICS), long-acting beta-agonists (LABA), and short-acting 

beta-agonists (SABA), are widely used to manage the condition. However, the effectiveness 

of these treatments in reducing asthma-related mortality continues to be an area of extensive 

research and debate. This study aims to assess the impact of asthma medications on mortality 

rates. 

Method 

This study analysed 2,240,628 patients who received asthma medications in New Zealand 

from 2008 to 2021, using data from the Ministry of Health. Focusing on fluticasone with 

salmeterol and budesonide with eformoterol, we employed Bayesian methods with the 

Weibull distribution. Python were used for statistical modelling, estimating parameters 

through posterior sampling and calculating highest density intervals to ensure robust and 

reliable findings. 

Result 

Patients on budesonide with eformoterol (B) had a higher shape parameter (alpha = 0.61) and 

lower scale parameter (beta = -1.33) compared to those on fluticasone with salmeterol (F), 

indicating different survival distributions. The Highest Density Intervals (HDIs) for these 

differences were [ 0.17, 1.06] for alpha and [-2.07, -0.59] for beta. Additionally, significant 

differences were observed in patients who transitioned medications, with a mean beta 

difference of 6.16 (HDI [5.54, 6.78]) for those moving from F to B. These findings highlight the 

varying impacts of asthma treatments on patient mortality, with transitions between 

medications also influencing survival outcomes. 
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Conclusion 

Our study reveals significant differences in mortality outcomes based on asthma medication 

types and transitions, with budesonide with eformoterol showing different survival patterns 

compared to fluticasone with salmeterol. These findings underscore the need for tailored 

asthma management strategies to improve patient survival. 
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1. Introduction 

Asthma is a chronic respiratory condition characterised by airway inflammation, bronchoconstriction, 

and mucus production, leading to recurrent episodes of wheezing, breathlessness, chest tightness, 

and coughing. The prevalence of asthma has been increasing globally, affecting individuals of all ages 

and contributing to significant morbidity and mortality. Despite advances in understanding the 

pathophysiology of asthma and the development of a range of effective therapeutic interventions, 

asthma-related mortality remains a public health concern (Wang et al., 2023) . 

The management of asthma involves a combination of pharmacological and non-pharmacological 

strategies aimed at controlling symptoms, preventing exacerbations, and improving the quality of life 

for patients. Pharmacological treatments primarily include the use of short-acting beta-agonists 

(SABA), inhaled corticosteroids (ICS), long-acting beta-agonists (LABA), leukotriene receptor 

antagonists (LTRA), and biologics targeting specific pathways involved in asthma pathogenesis. These 

treatments have been shown to reduce symptoms and exacerbations, yet their impact on asthma-

related mortality is an area of ongoing research and debate. Notably, the increased use of inhaled 

corticosteroids has been proposed as a key factor in the declining trend of asthma mortality rates in 

New Zealand following the epidemic of asthma deaths linked to high-dose inhaled fenoterol in the 

1970s (Faisal & Yunus, 2019). 

Asthma mortality is influenced by multiple factors, including the severity of the disease, adherence to 

treatment, access to healthcare, and socio-economic status. Moreover, the variability in response to 

treatment among individuals with asthma underscores the need for personalised approaches to 

management. For example, doubling inhaled corticosteroids for mild asthma exacerbations is a widely 

adopted strategy in Australia to reduce exacerbations, as supported by national and international 

guidelines (A. Douglass & Reddel, 2005).  

The use of beta-2-agonists has been associated with asthma-related deaths, particularly noted in 

studies from New Zealand in the late 1970s, which led to a revaluation of therapeutic strategies. New 

therapies targeting specific pathways involved in asthma pathogenesis, such as omalizumab for 

patients with severe persistent asthma, have shown promise in improving outcomes and reducing 

mortality rates (Beasley, 2007). 

Understanding how different asthma treatments influence mortality is crucial for optimising 

therapeutic strategies and improving patient outcomes. This thesis aims to investigate the relationship 

between asthma treatments and mortality. By examining clinical studies, population health data, and 
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mechanistic insights, this research will explore the effectiveness of various treatment modalities in 

reducing asthma-related deaths. The findings will contribute to a more nuanced understanding of 

asthma management and provide evidence-based recommendations for clinical practice. 

The scope of this research includes a comprehensive analysis of existing asthma treatments and their 

relationship with asthma-related mortality. The focus will be on pharmacological treatments such as 

inhaled corticosteroids (ICS), long-acting beta-agonists (LABA) and short-acting beta agonists (SABA). 

The research will include: 

• Assessment of the impact of asthma medications on mortality rates, considering potential 

confounding factors such as transition from one medication to another. 

• An analysis of clinical studies and population health data from New Zealand. 

• Identification of knowledge gaps relating to asthma medication and mortality, including gaps 

in research methodology. 

• Utilisation of New Zealand datasets and novel modelling techniques to address these gaps and 

provide robust answers to the research questions. 

The research will exclude: 

• Effects of asthma treatments on non-mortality related outcomes such as quality of life, 

mental health, and specific disease progressions. 

• Case studies or anecdotal evidence that do not provide robust data on the relationship 

between asthma treatments and mortality. 

The primary aim of this research is to investigate the relationship between asthma treatments and 

mortality. The mathematical modelling approach for this research will employ Bayesian survival 

analysis using the Weibull distribution to assess the impact of asthma medications on mortality rates. 

The objectives are: 

• Assess the impact of asthma medications on mortality rates, controlling for potential 

confounders. 

• Compare findings from New Zealand with international studies on asthma medication and 

mortality risks. 

This report is organised into five sections: 

• Introduction section provides the background information, the scope of the research, aims 

and objectives, and an outline of the report. 

• Literature review section looks at the existing literature on polypharmacy and its effects on 

older adults, highlighting key findings and identifying gaps that this research aims to address. 
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• Methods and Material section details the research methodology, including data sources, study 

population, modelling approach, and analytical techniques used to achieve the research 

objectives. 

• Presentation of findings section shows the results of the study, including statistical analysis 

and key findings.  

• Discussion section discusses the findings and provides recommendations for future research  

• Summary section summarises the findings and conclusion  

2. Literature Review 

Asthma is a significant public health issue, with a considerable impact on morbidity and mortality 

worldwide. Various pharmacological treatments have been developed to manage asthma symptoms 

and prevent severe exacerbations that can lead to death. Inhaled corticosteroids (ICS), long-acting 

beta-agonists (LABA), and short-acting beta-agonists (SABA) are among the most commonly used 

medications in New Zealand. The effectiveness of these treatments in reducing asthma-related 

mortality has been the subject of extensive research. 

2.1  Impact of asthma treatments on mortality 

A number of studies have investigated the impact of different asthma medications on mortality 

rates. Inhaled corticosteroids (ICS) are widely recognised for their role in reducing inflammation and 

preventing exacerbations. A study by Faisal and Yunus (2019) found that the increased use of ICS 

was associated with a significant decline in asthma mortality rates in New Zealand following an 

epidemic of asthma deaths linked to high-dose inhaled fenoterol in the 1970s (Faisal & Yunus, 2019).  

Long-acting beta-agonists (LABA), when used in combination with ICS, have also been shown to 

improve asthma control and reduce mortality. However, the use of LABA alone has raised concerns 

due to potential risks of severe exacerbations, as highlighted in studies from the late 1990s and early 

2000s. For instance, Wijesinghe et al. (2008) utilised meta-analysis and regression models to 

examine the risk associated with LABA use, concluding that combination therapy significantly 

mitigates this risk .(Wijesinghe et al., 2008). 

Short-acting beta-agonists (SABA) are typically used for immediate relief of asthma symptoms. While 

effective in managing acute symptoms, reliance on SABA without concurrent anti-inflammatory 

treatment (such as ICS) has been linked to increased mortality risk. This has led to recommendations 

for SABA to be used primarily as a rescue medication, with ICS as the mainstay of long-term 

management. 
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2.2  Overseas studies on asthma medication and mortality risks 

Research from various countries provides insights into the impact of asthma medications on 

mortality. Studies from the United States, the United Kingdom, and Australia have examined the 

relationship between different asthma treatments and mortality rates. 

Ulrik and Frederiksen (1995) conducted a cohort study in United Kingdom involving 1,075 

outpatients, utilising logistic regression to assess the association between high-dose ICS and asthma 

mortality. The study found that high-dose ICS was associated with a 20% reduction in asthma 

mortality, emphasising the importance of adherence to maintenance therapy. The study used 

logistic regression, which is appropriate for assessing associations between a categorical outcome 

(mortality) and predictor variables (e.g. ICS usage). This method is suitable for this type of cohort 

data which allows for control of confounding variables. The study was limited to outpatient data, 

which may not capture the full story for asthma severity. (Ulrik & Frederiksen, 1995)  

Tatham and Gellert conducted a meta-analysis in United States using pooled data from multiple 

randomised controlled trials (RCTs) and applied fixed-effects and random-effects models to evaluate 

the mortality risk associated with LABAs. The analysis highlighted a 30% increased mortality risk 

when LABAs were used without ICS, which led to revisions in treatment guidelines. The standardised 

mortality rate for asthma had not shown consistent improvement despite the advent of new 

treatments, indicating the need for better management strategies  The study used Meta-analysis 

which is appropriate for synthesising results from multiple studies, increasing statistical power and 

generalisation ability. The use of both fixed and random effects models helps account for variability 

between studies. But on the other hand, Meta-analysis relies on the quality of the included studies. 

Any biases or limitations in the original studies can affect the overall findings. Additionally, 

heterogeneity in study designs and patient populations can complicate interpretation. There is a 

need for more standardised reporting in asthma studies to improve the quality of meta-analyses. 

(Tatham & Gellert, 1985). 

Douglass and Bowes conducted a time-series analysis using national asthma mortality data and 

intervention timelines to evaluate the impact of changes in treatment guidelines. They applied 

interrupted time-series analysis to assess the effect of increasing ICS use on mortality rates. Their 

findings supported the increased use of small-particle inhaled corticosteroids as a beneficial strategy 

in managing uncontrolled asthma Interrupted time-series analysis is appropriate for evaluating the 

impact of policy changes or interventions over time. It allows researchers to assess trends before 

and after an intervention while controlling for underlying trends. Time-series analyses can be 

affected by confounding factors that change over time and are not accounted for in the model. 
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Additionally, while this method can suggest associations, it does not prove causation. Further studies 

are needed to confirm these findings and explore underlying mechanisms.  (Douglass & Bowes, 

1990). 

2.3  New Zealand studies on asthma treatment and mortality 

Studies have shown that the Māori population, in particular, experienced higher mortality rates 

compared to other ethnic groups, underscoring the need for targeted interventions and improved 

access to healthcare services. 

Ellison-Loschmann et al. conducted a comprehensive analysis of asthma mortality rates among 

Māori and non-Māori from the 1960s to the early 2000s. They found that asthma mortality rates 

were disproportionately higher among Māori, with peak rates in 1979 being twice as high for Māori 

(7.4 per 100,000) compared to non-Māori (3.7 per 100,000). The study utilised longitudinal data and 

time-series analysis to examine trends and seasonal patterns over several decades (Ellison-

Loschmann et al., 2008). The use of longitudinal data allowed for the observation of changes over 

time, which is appropriate for analysing trends. However, the study could have benefited from more 

advanced statistical methods to control for potential confounders. 

Crengle et al. explored the rural-urban disparities in asthma mortality rates among Māori in New 

Zealand. Their study showed that rural Māori experience greater asthma mortality rates compared 

to their urban counterparts. This research employed population-level data and logistic regression 

models to assess the impact of rurality on asthma outcomes, highlighting significant health 

inequities and disparities in access to quality healthcare services (Crengle et al., 2022). Logistic 

regression is suitable for examining the relationship between a binary outcome (mortality) and 

multiple predictor variables (rural vs. urban residence). However, the study might have been 

improved by incorporating spatial analysis techniques to account for geographical variations more 

precisely. 

Phillips et al. examined broader mortality trends among Māori and non-Māori in New Zealand, 

focusing on the life expectancy gaps between these groups from the early 1980s to the mid-2010s. 

The study found that the life expectancy gaps increased significantly during the 1980s and 1990s but 

have since decreased. In the most recent period analysed (2012-2014), the life expectancy gap 

between Māori and non-Māori was 7.3 years for males and 6.8 years for females. This study used 

decomposition analysis and Cox proportional hazards models to analyse cause-specific mortality, 

including asthma-related deaths(Phillips et al., 2017). Decomposition analysis helps to understand 

the contributions of different causes of death to overall mortality differences, while Cox proportional 
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hazards models are useful for assessing the impact of various covariates on survival time. Despite 

these strengths, the study could have been enhanced by incorporating more granular data to 

examine intra-group variations and using more recent data to capture ongoing trends. 

2.4  Knowledge gaps in asthma medication and mortality 

Despite the extensive research, several knowledge gaps remain regarding asthma medication and 

mortality. These gaps include: 

• The long-term effects of transitioning from one medication to another on mortality 

outcomes. 

• The need for more comprehensive studies that control for potential confounders such as 

environmental factors. 

Additionally, there are methodological gaps in existing research, including variations in study design, 

data collection methods, and analytical approaches. Addressing these gaps is crucial for developing a 

more accurate understanding of the relationship between asthma treatments and mortality. 

Our study aims to fill these gaps by employing a comprehensive and innovative approach to 

analysing the relationship between asthma medications and mortality. Here are the key aspects that 

make our methods unique and innovative: 

• Bayesian Survival Analysis with Weibull Distribution: We utilise Bayesian survival analysis, 

leveraging the Weibull distribution to model time-to-event data. This approach allows us to 

incorporate prior information and provides a full probabilistic framework for parameter 

estimation, offering a more nuanced understanding of the impact of asthma medications on 

mortality rates. 

• Integration of Comprehensive Datasets: By utilising extensive datasets from the New 

Zealand Ministry of Health (MoH), our study benefits from a rich source of longitudinal data, 

which enhances the robustness and reliability of our findings. This comprehensive dataset 

allows us to control for a wide range of potential confounders, including environmental 

factors and socio-economic variables. 

• Advanced Modelling Techniques: Our approach includes advanced modelling techniques 

such as Bayesian hierarchical models and parametric Bayesian survival models. These 

methods are more flexible and robust in handling complex relationships and non-

proportional hazards, addressing the limitations of traditional methods like the Cox 

proportional hazards model. 
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• Methodological Innovation: Our study addresses methodological gaps in existing research 

by standardising data collection methods and employing rigorous analytical approaches. The 

use of Bayesian methods allows for the integration of prior knowledge and the continuous 

updating of estimates as new data becomes available, enhancing the validity and reliability 

of our findings. 

2.5  Utilisation of New Zealand datasets and Bayesian Analysis 

This research seeks to address these knowledge gaps by utilising comprehensive datasets from New 

Zealand Ministry of Health (MoH). By applying novel modelling techniques, including Bayesian 

analysis, this study aims to provide robust answers to key research questions. 

Cox proportional hazards model has a long history of successful application in  medical research as 

seen in most of the literatures that were previously referenced in. For example, de la Cruz et al. 

(2021) highlighted the application of Cox models in predicting recidivism but found that Bayesian 

regression models and deep neural networks provided superior predictive performance. This 

illustrates the evolving landscape of survival analysis, where traditional methods like the Cox model 

are complemented by more advanced techniques. (de la Cruz et al., 2021)  We have chosen the 

Bayesian methods because Bayesian methods offer greater flexibility, probabilistic interpretation, 

and robustness in complex or small-sample scenarios. 

Bayesian modelling has become increasingly popular in medical research due to its ability to 

incorporate prior knowledge and provide probabilistic interpretations of model parameters. For 

instance, Kim et al. (2013) used Bayesian inference to improve the accuracy of multivariate meta-

analysis in evaluating cholesterol-lowering drugs. This approach allows for the integration of 

complex data structures and provides a more nuanced understanding of treatment effects (Kim et 

al., 2013). 

Historical data received from the MoH can be used to define the priors in our modelling process, 

which provides more reliable estimates in situations where we have a small sample size or highly 

censored data. The Cox model relies on the assumption of proportional hazards, meaning that the 

hazard ratios are constant over time. The model can produce biased or misleading results if this 

assumption is violated. Bayesian methods can be more flexible in handling non-proportional 

hazards. The Cox model provides hazard ratios and p-values but does not provide direct probabilistic 

statements about parameters. Bayesian methods offer a full probabilistic interpretation, and 

complete characterisation of uncertainty in parameter estimates through posterior distributions. 

This can give more insights than point estimates and confidence intervals.  



Literature review 

8 
 

We have also considered the Bayesian Cox modelling, which combines Bayesian with Cox 

Proportional hazards model. The Bayesian Cox model is specifically designed for survival analysis, 

focusing on time-to-event data and the effect of covariates on survival times. Like the Bayesian, 

Bayesian Cox models incorporate prior distributions, allowing for the integration of expert 

knowledge or previous study results into the survival analysis. But the reason why we did not choose 

this is because it does not allow us to explore further than survival analysis. Bayesian approaches are 

not confined to survival analysis. They can be used in a variety of fields and for different types of 

data, offering more general applicability compared to the specialised focus of Bayesian Cox models. 

If the proportional hazards assumption of the Cox model is violated, other Bayesian methods, such 

as parametric Bayesian survival models or Bayesian hierarchical models, might be more appropriate. 

These methods do not rely on the proportional hazards assumption and can model more complex 

relationships.(Sheidaei et al., 2022) 

A simple way of thinking about what Bayesian Analysis is would be to imagine you have travelled to 

an unknown planet with a blue sun above. What is the probability of the sun rising the next day? For 

the purpose of simplicity, we know the sun rises every day on Earth, so the priors are stated, and we 

would assume the blue sun will 100% the next day. You observe the blue sun rise on the first day, 

which reinforces your prior belief. If the sun doesn't rise one day, you adjust your belief, now 

estimating there's a 50% chance it will rise the following day. This process continues, each day's 

observation updating your probability estimate, reinforcing your belief about the blue sun's 

behaviour based on accumulating evidence. Bayesian analysis allows you to incorporate new data 

iteratively and continuously improve your predictions about the sun's rising pattern. Now, consider 

using the Cox Proportional Hazards model instead. You still want to know how often the blue sun 

rises, but you start with no prior assumptions based on Earth. You begin by observing and recording 

each day whether the sun rises. Over time, you gather data on sunrise frequency and other relevant 

factors, such as planetary rotation speed or weather patterns. Using this data, you build a Cox 

Proportional Hazards model to estimate the likelihood of the sun rising, analysing the time intervals 

between sunrises. This model assumes the hazard, or risk, of the sun not rising is proportional over 

time. As you collect more data, you update your model to refine the hazard ratio, adjusting for any 

identified factors affecting the sun's rise. Bayesian analysis incorporates prior knowledge (e.g. sun 

rises every day on Earth) to inform initial estimates, while the Cox model starts with no such priors 

and relies entirely on observed data. Bayesian analysis updates probabilities iteratively with each 

new piece of evidence, continuously refining the belief about the sun's rise. The Cox model updates 

the hazard ratio based on collected data, focusing on proportional hazards over time. Bayesian 

analysis offers a full probabilistic framework, allowing for updates and handling for small sample 
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sizes or incomplete data effectively. Although simpler and computationally efficient, the Cox model 

requires the assumption of proportional hazards and may struggle with complex data structures. 

The Bayesian t-test offers several advantages over traditional frequentist methods, particularly in 

medical research. Bayesian methods allow for the incorporation of prior information, which is 

particularly useful in medical research where previous studies and clinical expertise can inform the 

analysis. This approach can improve the robustness and reliability of the results, especially in studies 

with small sample sizes or highly censored data. For example, Bayesian t-tests provide a framework 

for integrating expert knowledge or previous study results, thus enhancing the analysis of complex 

datasets.(Kelter, 2020) Bayesian t-tests offer a full probabilistic interpretation of model parameters, 

providing a complete characterisation of uncertainty through posterior distributions. This contrasts 

with the frequentist approach, which relies on point estimates and confidence intervals. Bayesian 

methods can yield richer information about the effect sizes and group means, allowing for better 

conclusions (Gronau et al., 2020) . Bayesian t-tests are flexible and can handle non-standard data 

situations, such as outliers or non-normal distributions. They are also well-suited for dealing with the 

Behrens-Fisher problem, which involves comparing means from two populations with different 

variances (Kelter, 2022) . Bayesian methods can improve the sensitivity and specificity of statistical 

tests by controlling for false discovery rates and detecting more truly significant effects. This is 

particularly important in fields like proteomics and genomics, where the detection of subtle 

differences is crucial (Millikin et al., 2020). 

In summary, Bayesian methods allow for the incorporation of prior information and provide a 

probabilistic framework for making inferences about the parameters of interest. This approach is 

particularly useful in medical research, where prior studies and clinical expertise can inform the 

analysis. Bayesian models can account of uncertainty and variability in the data, which then gives 

credible estimates of the impact of asthma treatments on mortality.  

 

3. Methods and material 

This study consists of all individuals who has received asthma related medications in New Zealand 

between 1st January 2008 and 31 December 2021 ( 2,240,628 ). The data we used are taken from 

New Zealand Ministry of Health consisting of sex, age, medication name, date of death, and dosage 

the patient had taken over the time period. The permanent table generated is called Cohort. We 

used Microsoft SQL Server Studio (SMSS) from a Virtual Machine (VM) based in the University of 
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Auckland (UoA) to access and analyse data. After forming permanent tables on the SMSS, we are 

able to code in Jupyter Notebooks from another Virtual Machine to perform statistical analysis from 

tables in SMSS. The reason for looking at this is that there is evidence that LABA may be associated 

with mortality as seen in the literature review. salmeterol and eformoterol are two different types of 

LABA salmeterol has been around longer and has a slower onset of action compared with 

eformoterol which has a faster onset and is now the first option recommended in our guidelines.  

The data is useful for us to see how these two LABA compare in terms of mortality. There is also due 

to limiting raw computing power, we had to narrow it down to two medications: fluticasone with 

salmeterol and budesonide with eformoterol. 

3.1 Use of artificial intelligence 

I have used ChatGPT on SMSS Querying and forming skeleton codes in Jupyter notebooks. 

Particularly, due to the limiting compute power, the style of which I have written queries in SMSS is 

unoptimized which would have taken a long time to run or taken more RAM which the VM cannot 

run at all. It can help me form temporary and permanent tables as well as making comments in 

sections of the query to refresh memories in the future. In which I can store temporary data into 

further query on instead of saving all these into the RAM. Running the queries with the least amount 

of common table expression (CTE)’s also allows for the queries to run in parallel instead of in series 

which lowers the compute power and wait times for the queries to complete. 

In Jupyter notebooks where I need to write Python codes to perform statistical analysis, I used 

ChatGPT to help me better improve and structure my codes in areas such as connecting to SMSS or 

giving me the skeleton codes for different distributions. In instances where I needed quick 

information about distributions for example, I would ask ChatGPT similar questions, and it could 

break up the answer to an easier to understand manner, if it fails to do so, I can ask it to explain the 

answer in more details. After enough understanding, I could go to Wikipedia to validate if what 

ChatGPT produced were correct and consistent with what Statistics By Jim states.  

3.2  Documentation and Reproducibility 

For the purpose of reproducible research, I try to use literal programming wherever possible. 

Specifically, naming variables and documents more easily understandable to the human eye. I 

named the documents in Jupyter Notebooks to be what methods it is using or the purpose of the 

document with its corresponding dates and which notebook it was cloned from. I have also written 

an introduction at the start of every document to explain the purpose of the notebook in what it 

wants to achieve and what it has achieved in the past where the document was cloned from. The 
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variables in my queries and codes are named as what they are such as medName in my SQL queries 

or meds_of_interest in my codes in Jupyter notebooks. Comments are made wherever there could 

be confusion in the future which could be reminded to the reader what the code or query is trying to 

achieve. Conclusions are also made to the results in Jupyter Notebooks to help the ease of reading in 

the future. 

3.3  Formation of Cohort Table 

Data about the patients prescribed with the medications in interest were first collected 

through SMSS. This process includes the formulation of the Cohort table with the SQL 1 

query. Patient’s information such as age and National Health Index (NHI) are included in this 

table. After initial cleaning and experimenting with the original cohort table, we realised we 

need to reduce the sample size due to our limiting compute power. We then selected 

Fluticasone with salmeterol (F) and Budesonide with eformoterol (B) as our medication of 

interest. SQL 2 query shows how this was done in SMSS to update the Cohort table. The last column 

of the Cohort table displays this information as either F, B, F_B, B_F or others. The group types are 

determined if the patient had been prescribed with such medications in history. F and B refers to if 

the patient had stayed on the one specified medication over the course of treatment. F_B and B_F 

refers to if the patient had made a transition from F to B or B to F in history. Other refers to patients 

who are not in these 4 groups. 

After formulation of the data, we started estimating of priors for the Weibull Distribution. We have 

experimented with Wald (Inverse Gaussian) and Normal distribution and saw that it did not fit our 

data as well as what the Weibull distribution did as seen in the estimating of age distribution plot 

shown in Fig 1 constructed from Code 1. A Weibull distribution is assumed to be more suitable for 

our problem, mainly because Weibull distribution is defined for non-negative data, making it 

suitable for modelling time-to-failure and life data, where negative values are not meaningful. The 

Normal distribution, on the other hand, is symmetric and can take on negative values, which may 

not be appropriate for these our study as we do not allow negative age of death. Wald Distribution is 

similar to the Weibull Distribution as they are both right skewed. But Wald primarily models hazard 

functions that have an initial high hazard rate that decreases over time. This is reflected in Fig 2 as 

well as Wald is leaning more to the left than the other two distributions. It is less flexible than the 

Weibull distribution in modelling different hazard shapes.  
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3.4  Choice of distribution for modelling age of death 

 

Figure 1 Age Distribution with Estimated Parameters for Budesonide with Eformeterol 

The reason behind the choosing of Weibull Distributions is because when estimating the age of 

death of patients, we can simply assume the patient cannot die before birth (age of 0). So, we 

looked for distributions that can be positively (right) skewed with the correct parameters. The four 

distributions that we experimented are Wald (Inverse Gaussian), Logit-normal, Rice, and Weibull. 

We first estimated the parameters and evaluated how they compare with current data. We fitted 

these distributions to our data and found that Weibull gave the best fitting (see in Figure 1). In the 

Logit-Normal and Rice distribution, we experimented with different estimated parameters but the 

HDI’s (Highest Density Interval) included 0 which makes the range of credible values for the 

parameter include zero. The Logit-Normal distribution mostly looks at the scale and spread of the 

data rather than specific pinpoints, so we eventually turned to other distributions. We also 

experimented with the Gaussian Mixture model which similarly to the Weibull Distribution, provides 

a wide range in terms of skewness when set with the adequate parameters. This was eventually 

abandoned as Weibull Distribution was already giving promising results. This distribution could be 

experimented further and compared against Weibull in the future.  

The analytic form of the Weibull distribution is as follows: 
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Figure 2 Probability density function of Weibull distribution (Pymc, n.d.) 

Weibull, this distribution is characterised by its flexibility in modelling different types of hazard 

functions, which describe the likelihood of an event occurring over time. The probability density 

function (PDF) of the Weibull distribution is defined by two parameters: the scale parameter (𝜆) and 

the shape parameter (𝑘). The scale parameter 𝜆 stretches or compresses the distribution along the 

x-axis, affecting the spread of the data. The shape parameter 𝑘 determines the shape of the 

distribution; when 𝑘=1, it simplifies to an exponential distribution, 𝑘<1 indicates a decreasing hazard 

function, and 𝑘>1 indicates an increasing hazard function. 

The packages I have used for the modelling of distributions in my Python environment are included 

in the Appendix as Package Code. A detailed description of the packages and parameters used are 

below. 

From table 1, I have extracted the relevant group types using Code 2. The code uses several key 

Python packages, including SQLAlchemy, SciPy, PyMC, ArviZ, Pandas, NumPy, and Matplotlib, to 

connect to the database, extract and filter data, and perform probabilistic modeling.  

To start, SQLAlchemy is utilised to establish a connection to the SQL Server database using Windows 

Authentication. The connection string, defined as `connection_str`, specifies the database details 

and the driver required for the connection. An engine is created with 

`create_engine(connection_str)`, allowing for database interactions. A SQL query is executed to 

extract data from the Cohort table, filtering out records with unspecified or invalid gender, non-

positive study differences, and non-positive ages. The result is loaded into a Pandas DataFrame for 

further processing. 

The dataset is then filtered to include only deceased patients who have been treated with either 

"Fluticasone with salmeterol" or "Budesonide with eformoterol". This subset of data is crucial for 

analysing the effects of these medications on different patient groups. The unique group types 

within this subset are identified, and the analysis proceeds by modelling the age distribution of 

deceased patients within each group using a Bayesian framework. 

For each group type, a Bayesian model is defined using PyMC. The priors for the Weibull distribution 

parameters, alpha and beta, are specified as half-normal distributions with given standard 

deviations. The likelihood function, representing the observed age data, is modelled using the 
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Weibull distribution with the defined priors. Posterior sampling is performed to estimate the 

parameters, with 1000 samples and 500 tuning steps to ensure convergence. In machine learning 

sense, this could be understood as learning rates and learning steps. The higher the number, the 

bigger the iterations, which is why I have chosen those specific numbers. The results, including the 

model and trace data, are stored for each group type. 

To visualize the results, trace plots of the posterior distributions are generated using ArviZ and saved 

as PNG files. Summaries of the Weibull parameters, including mean and highest density intervals 

(HDI), are printed for each group type, providing insights into the parameter estimates. Additionally, 

differences in alpha and beta parameters between group types are calculated. The mean, standard 

deviation, and HDIs for these differences are summarised in DataFrames and saved as CSV files for 

further analysis. These summaries facilitate a comparative analysis of the parameter estimates 

across different patient groups, highlighting any significant variations in the effects of the 

medications. 

In table 2, the medication group types are from the cohort table generated as shown in table 1. Main 

difference is everyone in this table is deceased after receiving such medications. Similar to table 1, F 

and B refers to if the patient had only taken these two specific medications over the course of 

treatment and had not made any transition from one to another. B_to_F refers to if the patient has 

made the switching of medication B to F at least once during the study time, they are in this group 

type and will never be able to return back to B or F only. The same idea applies for  group F_to_B. 

Alpha refers to the shape parameter 𝑘 difference. This could be interpreted as an indicator in 

estimated mean standard deviation of age of death between the specified groups. Beta refers to the 

scale parameter 𝜆  difference. This could also be interpreted as an indicator in estimated mean age 

of death between the two groups. 

 

 

 

 

4. Results 

In total 2,240,628 people has received asthma related medications in this study. Their characteristics 

at the time of inclusion are reported in Table 1. 
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Table 1. Population characteristics at time of inclusion. 

 Population Characteristics 

 N % 

All 2,240,628 100% 

Sex 

Male 1,058,117 47.22% 

Female 1,182,511 52.78% 

Age 

0-9 492,075 15.83% 

10-19 316,433 10.18% 

20-29 286,731 9.22% 

30-39 328,398 10.57% 

40-49 380,690 12.25% 

50-59 405,969 13.06% 

60-69 386,690 12.44% 

70-79 304,052 9.78% 

80-89 170,267 5.48% 

90+ 37,023 1.19% 

Medication Group Type 

Budesonide with eformoterol 

(B) 

17,342 0.77% 

Fluticasone with salmeterol (F) 6,531 0.29% 

B_to_F 10,652 0.48% 

F_to_B 31,194 1.39% 

Other 2,174,909 97.07% 
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The population is nearly evenly split between males (47.22%) and females (52.78%), 

indicating a balanced representation of genders in the dataset. The age distribution shows 

that the majority of the population falls within the age range of 0-9 years (15.83%), with a 

noticeable decline in the proportion of older age groups. This distribution is typical for a 

general population where younger age groups tend to be more numerous. A small 

proportion of the population is treated with budesonide with eformoterol (0.77%) or 

fluticasone with salmeterol (0.29%). Additionally, there is a significant movement between 

medications, with 0.48% of patients switching from budesonide to Fluticasone (B_to_F) and 

1.39% switching from fluticasone to budesonide (F_to_B). The vast majority (97.07%) of the 

population falls into the "Other" category, which indicates that these patients are either not 

using the specified medications or are using different treatments. This suggests that the 

focus on Budesonide and Fluticasone represents a small subset of the overall medication 

usage. 

 

Table 2. Summary of difference in age at death for different medication group types 

Parameter 

Difference 

Mean SD HDI 3% HDI 97% 

alpha (B - F) 0.61 0.24 0.17 1.06 

beta (B - F) -1.33 0.39 -2.07 -0.59 

alpha (B - B_to_F) 0.89 0.17 0.58 1.22 

beta (B - B_to_F) 2.59 0.25 2.13 3.05 

alpha (B - F_to_B) 1.92 0.17 1.61 2.25 

beta (B - F_to_B) 4.83 0.26 4.34 5.33 

alpha (B - Other) 1.11 0.16 0.81 1.42 

beta (B - Other) 1.97 0.23 1.54 2.41 

alpha (F - B_to_F) 0.29 0.19 -0.08 0.64 

beta (F - B_to_F) 3.91 0.32 3.31 4.53 

alpha (F - F_to_B) 1.32 0.19 0.94 1.67 
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beta (F - F_to_B) 6.16 0.33 5.54 6.78 

alpha (F - Other) 0.50 0.18 0.14 0.84 

beta (F - Other) 3.30 0.31 2.72 3.88 

alpha (B_to_F - 

F_to_B) 

1.03 0.07 0.89 1.17 

beta (B_to_F - 

F_to_B) 

2.25 0.14 1.99 2.52 

alpha (B_to_F - 

Other) 

0.22 0.05 0.12 0.31 

beta (B_to_F - Other) -0.61 0.08 

 

 

-0.77 -0.45 

alpha (F_to_B - 

Other) 

-0.81 0.06 -0.92 -0.71 

beta (F_to_B - Other) -2.86 0.12 -3.10 -2.63 

 

The table above presents the differences in the shape (alpha) and scale (beta) parameters 

between various medication groups. The mean, standard deviation (SD), and Highest 

Density Interval (HDI) for the parameter differences are provided. Here, F refers to 

fluticasone with salmeterol and B refers to budesonide with eformoterol. The differences in 

the shape and scale parameters (alpha and beta) between budesonide with eformoterol (B) 

and fluticasone with salmeterol (F) indicate notable variations in the estimated age of death. 

For instance, budesonide with eformoterol shows a higher shape parameter (alpha) and a 

lower scale parameter (beta) compared to fluticasone with salmeterol. Significant 

differences are also observed between other groups, such as those transitioning from one 

medication to another (B_to_F and F_to_B). These differences highlight variations in 

survival times and risk profiles across different treatment groups. The Highest Density 

Intervals (HDIs) provide a credible range for the parameter differences, helping to 

understand the uncertainty around these estimates. For some comparisons, the HDI ranges 

do not include zero, suggesting significant differences between the groups. 
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The following trace plots illustrate the posterior distributions and the sampling chains for 

the shape (alpha) and scale (beta) parameters of the Weibull distribution for different 

medication groups. 

 

Figure 3. Trace plot of age at death for Group B in Table 2 

The posterior distribution of the shape parameter shows a peak around 8.4, indicating a 

specific tendency in the age of death distribution for the B group. The posterior distribution 

of the scale parameter peaks around 80, showing the spread of the age distribution 

 

 

Figure 4. Trace plot of age at death for Group F in Table 2 

The posterior distribution of the shape parameter shows a peak around 7.9, which is lower 

than the B group, suggesting different age of death distribution characteristics. The 

posterior distribution of the scale parameter peaks around 81.5, indicating a different 

spread compared to the B group. 
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Figure 5. Trace plot of age at death for Group B_to_F in Table 2 

The posterior distribution shows a peak around 7.7, indicating the shape of the age of death 

distribution for patients who switched from budesonide with eformoterol to fluticasone 

with salmeterol. 

 

 

Figure 6. Trace plot of age at death for Group F_to_B in Table 2 

The shape parameter peaks around 6.7, which is lower than the B_to_F group, indicating 

different age of death distribution characteristics. The scale parameter peaks around 75.4, 

showing a different spread compared to the B_to_F group. 

 



Results 

20 
 

 

Figure 7. Trace plot of age at death for Group Other in Table 2 

The posterior distribution of the shape parameter peaks around 7.45, indicating the shape 

of the age of death distribution for the "Other" group. The posterior distribution peaks 

around 78.1, showing the spread of the age distribution for this group. 

 

The B_to_F and F_to_B groups show distinct parameter distributions compared to the 

groups that did not switch medications, indicating the impact of medication transitions on 

the age of death distributions. 

 

Table 3 Medication taken in all of cohort 

Medication Taken 

Beclomethasone dipropionate 331,296 7.26% 

Budesonide 279,208 6.12% 

Budesonide with eformoterol 216,728 4.75% 

Dexamethasone 148,673 3.26% 

Eformoterol fumarate 33,371 0.73% 

Eformoterol fumarate dihydrate 345 0.01% 

Fluticasone 553,893 12.14% 
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Fluticasone furoate with 

vilanterol 

74,846 1.64% 

Fluticasone with salmeterol 220,574 4.84% 

Indacaterol 2,141 0.05% 

Methylprednisolone 2,472 0.05% 

Prednisolone 292,765 6.42% 

Prednisone 1,052,627 23.08% 

Salbutamol 1,190,613 26.10% 

Salmeterol 78,256 1.72% 

Terbutaline sulphate 83,836 1.84% 

 

The most frequently taken medications are Salbutamol (26.10%) and Prednisone (23.08%), 

indicating their widespread use in the population.  Fluticasone (12.14%) and Budesonide 

(6.12%) are commonly used inhaled corticosteroids. Budesonide with eformoterol (4.75%) 

and Fluticasone with salmeterol (4.84%) are notable combination therapies used by a 

significant portion of the population. Indacaterol and Methylprednisolone are among the 

least frequently taken medications, each accounting for just 0.05% of the population

 

5. Discussions 

5.1  Key findings 

The analysis presented in Tables 1 and 2 offers significant insights into the population 

characteristics, medication usage, and the differences in age at death among various medication 

groups. Here we summarise and interpret the key findings from these tables to provide a 

comprehensive understanding of the results. 

Table 1 details the demographics and medication usage of the 2,240,628 individuals included in the 

study. The key observations are as follows: 
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• The population is almost evenly divided by gender, with 47.22% male and 52.78% female. 

• The age distribution shows a higher proportion of younger individuals, with 15.83% aged 0-9 

years, decreasing steadily across older age groups. 

• Regarding medication usage, a small fraction of the population is treated with budesonide 

with eformoterol (0.77%) or fluticasone with salmeterol (0.29%). Notably, there is a 

significant transition between medications, with 0.48% of patients switching from 

budesonide with eformoterol to fluticasone with salmeterol (B_to_F) and 1.39% switching 

from fluticasone to budesonide (F_to_B). The majority (97.07%) fall into the "Other" 

category, suggesting diverse medication usage outside the primary focus of budesonide and 

fluticasone. 

Table 2 presents the differences in the shape (alpha) and scale (beta) parameters between various 

medication groups, indicating variations in estimated age at death. The key findings are: 

• Budesonide with eformoterol (B) shows a higher shape parameter (alpha) and a lower scale 

parameter (beta) compared to fluticasone with salmeterol (F), suggesting that patients on 

budesonide with eformoterol have a different distribution of age at death compared to 

those on fluticasone with salmeterol. 

• Patients who transitioned from fluticasone with salmeterol to budesonide with eformoterol 

(F_to_B) have significant differences in both alpha and beta parameters compared to those 

on fluticasone (F). Specifically, the mean difference in the scale parameter (beta) is -6.16 

years, indicating that transitioning from fluticasone to budesonide is associated with a 

significantly lower age at death. 

• Conversely, those who transitioned from Budesonide with eformoterol to fluticasone with 

salmeterol (B_to_F) show a mean difference of 3.91 years in beta compared to fluticasone, 

suggesting a higher age at death after the transition. 

• Compared to the "Other" medication group, both budesonide and fluticasone groups show 

significant differences in the age at death distributions. Budesonide with eformoterol has a 

mean difference of 1.97 years (beta) compared to the "Other" group, while fluticasone with 

salmeterol has a difference of 3.30 years (beta). 

Table 3 lists the different medications taken by the cohort. The most frequently used medications 

are: 

• Salbutamol (26.10%) and Prednisone (23.08%), indicating their widespread use for 

immediate relief and long-term management. 
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• Fluticasone (12.14%) and Budesonide (6.12%) are commonly used inhaled corticosteroids. 

• Combination therapies such as Budesonide with eformoterol (4.75%) and Fluticasone with 

salmeterol (4.84%) are also notable. 

In summary, in Table 2, we highlighted three significant comparisons between different medication 

groups based on the differences in the shape (alpha) and scale (beta) parameters of the Weibull 

distribution, which model the age of death. 

Alpha (B - F): The difference in the shape parameter between Budesonide with eformoterol (B) and 

Fluticasone with salmeterol (F) is 0.61, with a mean difference and an HDI ranging from 0.17 to 1.06. 

This indicates a notable variation in the age of death distribution's shape, suggesting that B leads to 

a slightly more spread-out distribution of ages at death compared to F. 

Beta (B - F): The scale parameter difference is -1.33, with an HDI from -2.07 to -0.59, showing that 

the age of death distribution for B is less than F. Patients on B have a shorter mean age at death 

compared to those on F. 

Alpha (F - F_to_B): The shape parameter difference between F and F_to_B is 1.32, with an HDI from 

0.94 to 1.67. This substantial difference indicates that switching from F to B significantly alters the 

age of death distribution's shape, making it more spread out for the F group. 

Beta (F - F_to_B): The scale parameter difference is 6.16, with an HDI from 5.54 to 6.78. This 

suggests that, on average, patients on F live approximately 6.16 years longer than those who 

transitioned from F to B. This is the largest observed difference in our study, indicating a significant 

impact of the medication switch on survival. This box is also highlighted to indicate its importance. 

Beta (B_to_F - Other): The scale parameter difference between patients from B_to_F and the 

"Other" group is -0.61, with an HDI from -0.77 to -0.45. This indicates that B_to_F group has a 

slightly lower mean age at death compared to the "Other" group, highlighting the impact of this 

medication switch on survival. 

Significant differences are observed in both alpha and beta parameters for patients who transitioned 

between medications (B_to_F and F_to_B). These differences underscore the potential impact of 

medication switches on survival times. The transitions from one medication to another appear to 

affect the age of death distribution, with notable variations in the shape and scale parameters. 

The trace plots (Figures 3) provide visual insights into these parameter estimates. For instance, the 

trace plot for the B group shows a peak around 8.4 for the alpha parameter and 80 for the beta 
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parameter, indicating specific tendencies in the age of death distribution for this group. Similar 

interpretations can be made for the other groups, showing the distinct parameter distributions and 

the impact of medication transitions. 

 

5.2  Comparison with the existing literature. 

 Previous studies have extensively investigated the role of different asthma medications in 

influencing mortality rates. Inhaled corticosteroids (ICS) are widely recognised for their effectiveness 

in reducing inflammation and preventing exacerbations. For instance, Faisal and Yunus (2019) 

demonstrated a significant decline in asthma mortality rates in New Zealand with increased use of 

ICS, following the asthma deaths epidemic linked to high-dose inhaled fenoterol in the 1970s. 

Similarly, combination therapy of ICS with LABA has been shown to improve asthma control and 

reduce mortality, while the use of LABA alone has raised concerns due to potential risks of severe 

exacerbations (Wijesinghe et al., 2008). Short-acting beta-agonists (SABA), though effective for 

immediate relief, have been linked to increased mortality risk when used without concurrent anti-

inflammatory treatment, underscoring the importance of ICS as the gold standard of long-term 

management. 

Research from countries like the United States, the United Kingdom, and Australia also supports the 

beneficial impact of ICS on reducing mortality. For example, Ulrik and Frederiksen (1995) found a 

20% reduction in asthma mortality associated with high-dose ICS use in the UK, while Tatham and 

Gellert (1985) highlighted a 30% increased mortality risk with LABA use without ICS in the US. 

Douglass and Bowes (1990) further emphasised the positive impact of increased ICS use through 

interrupted time-series analysis, which showed improved outcomes in asthma management. 

Studies focusing on the New Zealand context have highlighted disparities in asthma mortality rates 

among different population groups. Ellison-Loschmann et al. (2008) reported disproportionately 

higher asthma mortality rates among Māori compared to non-Māori, with significant peaks in the 

late 1970s. Crengle et al. (2022) identified rural-urban disparities in asthma mortality rates among 

Māori, with rural Māori experiencing greater mortality rates. These findings underscore the need for 

targeted interventions and improved access to healthcare services for these populations. 

Previous studies used various methodologies to analyse the impact of asthma medications on 

mortality. Faisal and Yunus (2019) utilised epidemiological analysis to examine trends in asthma 

mortality rates over time. Wijesinghe et al. (2008) conducted a meta-analysis and regression models 
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to assess the risks associated with LABA use, focusing on combination therapy with ICS. Ulrik and 

Frederiksen (1995) employed logistic regression to assess the association between high-dose ICS and 

asthma mortality. Tatham and Gellert (1985) used meta-analysis with fixed and random-effects 

models to evaluate mortality risk associated with LABA use without ICS. Douglass and Bowes (1990) 

applied interrupted time-series analysis to assess the impact of increased ICS use on mortality rates. 

Ellison-Loschmann et al. (2008) conducted longitudinal data and time-series analysis to examine 

trends in asthma mortality rates among different ethnic groups. Crengle et al. (2022) utilised logistic 

regression models to explore rural-urban disparities in asthma mortality rates among Māori. 

Our study uses Bayesian survival analysis with the Weibull distribution to model time-to-event data, 

unlike the traditional regression or meta-analysis approaches used in previous studies. This method 

allows for the incorporation of prior information and provides a probabilistic framework for 

parameter estimation, offering a better understanding of the impact of asthma medications on 

mortality rates. By leveraging extensive datasets from the New Zealand Ministry of Health (MoH), 

our study integrates comprehensive longitudinal data. This enhances the robustness and reliability 

of our findings. 

Our Bayesian approach provides a full probabilistic interpretation of model parameters, allowing for 

a more comprehensive understanding of uncertainty and variability in the data. This is a significant 

improvement over the point estimates and confidence intervals provided by traditional methods. 

The use of parametric Bayesian survival models allows us to model non-proportional hazards, 

addressing a key limitation of the Cox proportional hazards model, which assumes proportional 

hazards. The Bayesian hierarchical models we use are more flexible and robust in handling complex 

relationships and small sample sizes, providing more reliable estimates in situations where 

traditional methods may struggle. 

5.3  Strengths and weaknesses of my methods and data 

One of the primary strengths of our Bayesian approach is its ability to provide a full probabilistic 

interpretation of model parameters. This allows for a more comprehensive understanding of 

uncertainty and variability in the data, which is a significant improvement over the point estimates 

and confidence intervals provided by traditional methods. Traditional methods like logistic 

regression and Cox proportional hazards models typically offer point estimates and confidence 

intervals, which do not fully capture the uncertainty and variability in parameter estimates. 

Additionally, the use of parametric Bayesian survival models in our study allows for the modelling of 

non-proportional hazards. This flexibility is crucial because it addresses a key limitation of the Cox 
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proportional hazards model, which assumes proportional hazards. This assumption, if violated, can 

lead to biased or misleading results in traditional models. Our Bayesian methods enable more 

accurate modelling of complex survival data, providing a clear advantage over conventional 

approaches. 

Our methods are more adaptive and can provide more reliable estimates in situations where 

traditional methods may struggle. Traditional methods like logistic regression and fixed/random-

effects models used in meta-analyses may not be as flexible or robust in handling complex data 

structures or small sample sizes. 

However, our Bayesian methods are not without weaknesses. One significant drawback is their 

computational complexity. Bayesian methods, particularly those involving hierarchical models and 

complex distributions like the Weibull distribution, can be computationally intensive and require 

significant computational resources and expertise. In contrast, traditional methods like logistic 

regression and Cox proportional hazards models are generally less computationally demanding and 

easier to implement, making them more accessible for researchers with limited computational 

resources. 

The complexity of interpreting the probabilistic outputs of Bayesian models is another potential 

weakness. These outputs, such as posterior distributions, can be more complex to interpret and 

communicate to stakeholders who are more familiar with traditional point estimates and confidence 

intervals. Traditional methods provide more straightforward results (e.g., hazard ratios, odds ratios) 

that are easier to interpret and communicate to a broad audience, including non-specialists. 

Bayesian models can be sensitive to the specification of the model structure and priors. Incorrect 

model specification can lead to biased results, requiring rigorous model checking and validation. 

While traditional methods also require appropriate model specification, they are generally perceived 

as less sensitive to the exact form of the model compared to Bayesian methods. 

We are also only comparing two medications within the SABA group. F and B do not necessarily have 

a high usage when compared to the whole asthma patient’s population as seen in Table 3. Our 

conclusions could have been more reliable and important if the sample size was a lot higher. 

We did not control for other covariates such as the severity of the patient’s conditions which may 

eventually determine the likelihood of a patient’s survival after treatment. The patient’s ability to 

access to healthcare services were also not considered. Because the data were collected from MoH, 

we were unable to determine if the patient had taken the prescribed medication according to 

instructions or even taken the medication at all. 
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Lastly, we could not conclude with an integer that specifies the age of death difference between 

patients in different medication groups. Alpha and Beta are only parameters of the Weibull 

Distribution which means the numbers from table 2 only indicate that there is a substantial 

difference. We could not conclude with actual digits that specifies how much longer the patient 

could have lived if the patient did not make the transition for example. 

5.4  Where to next 

In terms of next steps, we could consider the severity of the patients through the ranking of 

medication groups that the patient is taking. The table could be called Severity steps and based on 

what medication the patient is taking or has taken in the specified date, we could rank the severity 

of the patient’s conditions based on the medication group he/she lies in. Medication groups could 

be classified as SABA, LABA, or ICS. An exemplar query is shown in SQL query 3 of the appendix.  

we could also calculate the yearly dosage of the patient before death which in conjunction with the 

severity steps, we will have a better understanding of the patient’s condition. An exemplar query is 

shown in SQL query 4 of the appendix. There are three queries in the box. We should be mindful 

however, when in SMSS, we shouldn’t allow for null values in between column names which is why I 

have used dynamic PIVOT query to put “_” in between medication names to fill in blank spaces in 

the column names. This is calculated by putting an identifier on the life status of the patient. We 

could then calculate the patterns in the dosage for the living. We could also calculate the yearly 

dosage of specific medications before death which eventually lead to a pattern of dosage which may 

result in probable cause of patient’s death. 

 

Figure 8. Utilisation of the weibull_stats function 

In order for better conclusions about the parameter estimations. We could also utilise code 2  in the 

Appendix which converts the Weibull  parameter estimates into  actual numbers through reversion 

in the Weibull formula. The PyMC package does not have such function which could convert 

estimated parameters back to  estimated numbers. Figure 8 shows the usage of the Weibull_stats 

function. The input to the function is simply the two numbers from estimated parameters which 

were calculated beforehand.
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6. Summary 

In conclusion, asthma is a chronic respiratory condition that significantly impacts global health, 

contributing to substantial morbidity and mortality. Various pharmacological treatments, including 

inhaled corticosteroids (ICS), long-acting beta-agonists (LABA), and short-acting beta-agonists (SABA), 

are widely used to manage asthma symptoms and prevent severe exacerbations. The effectiveness of 

these treatments in reducing asthma-related mortality has been extensively studied, with findings 

indicating that ICS, particularly when used in combination with LABA, can significantly reduce mortality 

rates. However, the use of LABA alone has been associated with increased mortality risks, and reliance 

on SABA without concurrent anti-inflammatory treatment has been linked to higher mortality rates. 

Specifically, this study has found that there is strong indication that patients who have transitioned 

from fluticasone with salmeterol to budesonide with eformoterol have significant differences in 

mortality rate, their mean difference in scale parameter (beta) is -6.16 which indicates transitioning 

from fluticasone with salmeterol to budesonide with eformoterol  is associated with a significantly 

lower age at death.  

This study uses Bayesian methods with the Weibull distribution to model mortality rate. By using 

extensive datasets from the New Zealand Ministry of Health, this study integrates comprehensive 

longitudinal data, allowing for the control of a wide range of potential confounders. The findings 

indicate significant differences in mortality outcomes based on medication types and transitions, with 

Bayesian methods offering greater flexibility and robustness compared to traditional statistical 

approaches. The study highlights that patients on Fluticasone with salmeterol tend to have a higher 

mean age of death compared to those on Budesonide with eformoterol or those who transitioned 

between these medications. This research provides new insights into the survival times associated 

with different asthma treatments, informing clinical decisions and guiding further research on the 

impact of medication transitions. 

To advance this work, future research should focus on expanding the scope of analysis to include 

additional asthma medications, such as prednisone and salbutamol, which are more frequently used. 

This would provide a more comprehensive understanding of the impact of various asthma treatments 

on mortality. Further studies should also explore the long-term effects of transitioning between 

different medications, controlling for a broader range of confounders, such as environmental factors 

and genetic predispositions. Additionally, methodological improvements, including the use of more 

advanced Bayesian hierarchical models and parametric survival models, can enhance the robustness 

of findings. Collaborative efforts involving larger and more diverse datasets, both nationally and 

internationally, would help validate the results and provide a more generalized understanding of 
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asthma treatment outcomes. Finally, targeted interventions and policy recommendations should be 

developed to address the identified disparities in asthma mortality, particularly among vulnerable 

populations such as the Māori in New Zealand. 
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Appendix 

SQL 1  Generating cohort table 

USE moh_2000_2021 

 

go 

 

--identified whichever drug we need 

WITH dim 

     AS (SELECT DISTINCT moh.ref_pharms_codes.dim_form_pack_subsid

y_key AS 

                         DIM_FORM_PACK_SUBSIDY_KEY, 

                         moh.ref_pharms_codes.chemical_id         

      AS 

                         chemID, 

                         chemical_name 

         FROM   moh.ref_pharms_codes 

         WHERE  moh.ref_pharms_codes.chemical_id IN 

                ( '1083', '4112', '4042', '1066', 

                  '1108', '1168', '3758', '1065', 

                  '4056', '3858', '2096', '2404', 

                  '2038', '2034', '1811', '1383' )) 

--

picked all the people dispensed with our drugs and all their perso

nal information from the pharms table 

SELECT moh.pharmaceuticals.moh_encmasternhi      AS NHI, 

       moh.pharmaceuticals.ageatdispensing       AS age, 

       moh.pharmaceuticals.gender                AS gender, 

       dim.chemid                                AS chemID, 

       dim.chemical_name                         AS chemName, 

       moh.pharmaceuticals.datedispensed         AS DateDispensed, 

       pharmaceuticals.quantitydispensed, 

       pharmaceuticals.dim_form_pack_subsidy_key AS subsidyKey 

INTO   jason_jli404.dbo.pharm 
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FROM   moh.pharmaceuticals 

       INNER JOIN dim 

               ON moh.pharmaceuticals.dim_form_pack_subsidy_key = 

                  dim.dim_form_pack_subsidy_key 

WHERE  moh.pharmaceuticals.date_dispensed >= '2008-01-01' 

 

go 

 

SELECT nhi, 

       chemid, 

       chemname, 

       Min(age)           AS age, 

       gender, 

       Min(datedispensed) AS indexDate, 

       Max(datedispensed) AS endDate, 

       Cast(NULL AS BIT)  AS Flag, 

       Cast(NULL AS DATE) AS exitDate, 

       Cast(NULL AS INT)  AS dayDiff, 

       Cast(NULL AS INT)  AS studyDiff, 

       Cast(NULL AS INT)  AS dose 

INTO   jason_jli404.dbo.cohort 

FROM   jason_jli404.dbo.pharm 

GROUP  BY nhi, 

          chemid, 

          chemname, 

          age, 

          gender; 

 

SELECT DISTINCT nhi 

INTO   ##cohort 

FROM   jason_jli404.dbo.cohort 

 

SELECT moh_encmasternhi AS NHI, 

       dateofdeath 

INTO   jason_jli404.dbo.death 

FROM   moh_2000_2021.moh.mortality_unified 

WHERE  moh_encmasternhi IN (SELECT nhi 
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                            FROM   ##cohort); 

 

SELECT DISTINCT nhi 

INTO   ##events 

FROM   jason_jli404.dbo.death 

 

UPDATE jason_jli404.dbo.cohort 

SET    flag = CASE 

                WHEN nhi IN (SELECT nhi 

                             FROM   ##events) THEN 1 

                ELSE 0 

              END; 

 

UPDATE jason_jli404.dbo.cohort 

SET    exitdate = jason_jli404.dbo.death.dateofdeath 

FROM   jason_jli404.dbo.death 

WHERE  jason_jli404.dbo.cohort.nhi = jason_jli404.dbo.death.nhi; 

 

UPDATE jason_jli404.dbo.cohort 

SET    exitdate = '2021-12-31' 

WHERE  flag = 0; 

 

UPDATE jason_jli404.dbo.cohort 

SET    daydiff = Datediff(dd, indexdate, enddate); 

 

UPDATE jason_jli404.dbo.cohort 

SET    studydiff = Datediff(dd, indexdate, exitdate); 

 

SELECT p.nhi, 

       Sum(quantitydispensed) AS totalDose 

INTO   ##totaldose 

FROM   jason_jli404.dbo.pharm AS p 

       INNER JOIN jason_jli404.dbo.cohort AS c 

               ON p.nhi = c.nhi 

WHERE  datedispensed BETWEEN c.indexdate AND c.exitdate 

GROUP  BY p.nhi 
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UPDATE jason_jli404.dbo.cohort 

SET    dose = totaldose 

FROM   ##totaldose 

WHERE  jason_jli404.dbo.cohort.nhi = ##totaldose.nhi;  

 

SQL 2 Incorporating group type into Cohort table 

USE jason_jli404 

 

go 

 

-- Drop the GroupType column if it exists 

IF EXISTS(SELECT * 

          FROM   information_schema.columns 

          WHERE  table_name = 'Cohort' 

                 AND column_name = 'GroupType') 

  ALTER TABLE dbo.cohort 

    DROP COLUMN grouptype; 

 

go 

 

-- Add the GroupType column again 

ALTER TABLE dbo.cohort 

  ADD grouptype VARCHAR(50); 

 

go 

 

-

- Query to determine medication transitions, and label the group t

ypes 

WITH prescriptionhistory 

     AS (SELECT nhi, 

                chemid, 

                Min(datedispensed) AS FirstDate, 

                Max(datedispensed) AS LastDate 

         FROM   dbo.pharm 
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         GROUP  BY nhi, 

                   chemid), 

     transitions 

     AS (SELECT p1.nhi, 

                CASE 

                  WHEN p1.chemid = '3858' 

                       AND p2.chemid = '3758' THEN 'F_to_B' 

                  WHEN p1.chemid = '3758' 

                       AND p2.chemid = '3858' THEN 'B_to_F' 

                END AS GroupType 

         FROM   prescriptionhistory p1 

                JOIN prescriptionhistory p2 

                  ON p1.nhi = p2.nhi 

                     AND p1.lastdate < p2.firstdate 

         WHERE  p1.chemid <> p2.chemid), 

     grouptypes 

     AS (SELECT nhi, 

                Max(grouptype) AS GroupType 

         FROM   transitions 

         GROUP  BY nhi), 

     singlemed 

     AS (SELECT nhi, 

                CASE 

                  WHEN Count(DISTINCT chemid) = 1 THEN Max(CASE 

                  WHEN chemid = '3858' THEN 'F' 

                  WHEN chemid = '3758' THEN 'B' 

                                                           END) 

                END AS GroupType 

         FROM   prescriptionhistory 

         GROUP  BY nhi 

         HAVING Count(DISTINCT chemid) = 1 

        -

- Checks that all records for the NHI are for the same medication 

        ) 

-- Update the Cohort table with the determined group types 

UPDATE dbo.cohort 

SET    grouptype = COALESCE(g.grouptype, s.grouptype, 'Other') 
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-- Fallback to 'Other' if somehow no valid group is found 

FROM   dbo.cohort c 

       LEFT JOIN grouptypes g 

              ON c.nhi = g.nhi 

       LEFT JOIN singlemed s 

              ON c.nhi = s.nhi;  

 

SQL query 3 Severity steps table 

USE jason_jli404; 

 

-

- Drop the existing tables if they exist to prevent duplicate data 

IF Object_id('dbo.PatientMedicationFlags', 'U') IS NOT NULL 

  DROP TABLE dbo.patientmedicationflags; 

 

IF Object_id('dbo.AsthmaSeveritySummary', 'U') IS NOT NULL 

  DROP TABLE dbo.asthmaseveritysummary; 

 

go 

 

-- Create a new table for patient medication flags 

CREATE TABLE dbo.patientmedicationflags 

  ( 

     nhi                VARCHAR(20) NOT NULL, 

     saba               BIT, 

     ics                BIT, 

     laba               BIT, 

     ltra               BIT, 

     biologics          BIT, 

     asthmaseveritystep INT 

  ); 

 

go 

 

-- Insert the medication flags for each patient 
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INSERT INTO dbo.patientmedicationflags 

            (nhi, 

             saba, 

             ics, 

             laba, 

             ltra, 

             biologics, 

             asthmaseveritystep) 

SELECT nhi, 

       Max(saba)      AS SABA, 

       Max(ics)       AS ICS, 

       Max(laba)      AS LABA, 

       Max(ltra)      AS LTRA, 

       Max(biologics) AS Biologics, 

       Max(severity)  AS AsthmaSeverityStep 

FROM   (SELECT nhi, 

               CASE 

                 WHEN chemname IN ( 'Salbutamol', 'Terbutaline sul

phate' ) THEN 

                 1 

                 ELSE 0 

               END AS SABA, 

               CASE 

                 WHEN chemname IN ( 'Fluticasone furoate with vila

nterol', 

                                    'Budesonide' 

                                    , 

                                    'Fluticasone' 

                                    , 

                                    'Budesonide with eformoterol', 

                                    'Beclomethasone dipropionate', 

                                    'Fluticasone with salmeterol' 

) THEN 1 

                 ELSE 0 

               END AS ICS, 

               CASE 

                 WHEN chemname IN ( 'Eformoterol fumarate', 'Indac
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aterol', 

                                    'Eformoterol fumarate dihydrat

e', 

                                                       'Salmeterol

', 

                                    'Fluticasone with salmeterol', 

                                           'Fluticasone furoate wi

th vilanterol' 

                                  ) THEN 

                 1 

                 ELSE 0 

               END AS LABA, 

               CASE 

                 WHEN chemname IN ( 'LTRA1', 'LTRA2' ) THEN 1 

                 ELSE 0 

               END AS LTRA, 

               CASE 

                 WHEN chemname IN ( 'Biologics', 'Biologics2' ) TH

EN 1 

                 ELSE 0 

               END AS Biologics, 

               CASE 

                 WHEN chemname IN ( 'Biologics1', 'Biologics2' ) T

HEN 4 

                 WHEN chemname IN ( 'Eformoterol fumarate', 'Indac

aterol', 

                                    'Eformoterol fumarate dihydrat

e', 

                                                       'Salmeterol

', 

                                    'Fluticasone with salmeterol', 

                                           'Fluticasone furoate wi

th vilanterol' 

                                  ) THEN 

                 3 

                 WHEN chemname IN ( 'Fluticasone furoate with vila

nterol', 
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                                    'Budesonide' 

                                    , 

                                    'Fluticasone' 

                                    , 

                                    'Budesonide with eformoterol', 

                                    'Beclomethasone dipropionate', 

                                    'Fluticasone with salmeterol' 

) THEN 2 

                 WHEN chemname IN ( 'Salbutamol', 'Terbutaline sul

phate' ) THEN 

                 1 

                 ELSE 0 

               END AS Severity 

        FROM   dbo.pharm 

        WHERE  nhi IS NOT NULL) AS MedicationData 

GROUP  BY nhi; 

 

go 

 

-- Create a new AsthmaSeveritySummary table 

CREATE TABLE dbo.asthmaseveritysummary 

  ( 

     asthmaseveritystep INT, 

     saba               INT, 

     ics                INT, 

     laba               INT, 

     ltra               INT, 

     biologics          INT, 

     numberofpatients   INT 

  ); 

 

-

- Populate the AsthmaSeveritySummary table with the summarized fla

g data 

INSERT INTO dbo.asthmaseveritysummary 

            (asthmaseveritystep, 

             saba, 
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             ics, 

             laba, 

             ltra, 

             biologics, 

             numberofpatients) 

SELECT asthmaseveritystep, 

       -

- Ensure that the flags are being treated as integers for the SUM 

function 

       Sum(Cast(saba AS INT))      AS SABA, 

       Sum(Cast(ics AS INT))       AS ICS, 

       Sum(Cast(laba AS INT))      AS LABA, 

       Sum(Cast(ltra AS INT))      AS LTRA, 

       Sum(Cast(biologics AS INT)) AS Biologics, 

       Count(*)                    AS NumberOfPatients 

FROM   (SELECT asthmaseveritystep, 

               -

- indicating whether the patient is on each medication type 

               saba, 

               ics, 

               laba, 

               ltra, 

               biologics 

        FROM   dbo.patientmedicationflags) AS PatientFlags 

GROUP  BY asthmaseveritystep, 

          saba, 

          ics, 

          laba, 

          ltra, 

          biologics 

ORDER  BY asthmaseveritystep, 

          saba DESC, 

          ics DESC, 

          laba DESC, 

          ltra DESC, 

          biologics DESC; 
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-- view the results 

SELECT * 

FROM   dbo.asthmaseveritysummary 

ORDER  BY asthmaseveritystep ASC;  

 

SQL Query 4 Dosage formation 

USE jason_jli404 

 

go 

 

IF Object_id('tempdb..#Dim') IS NOT NULL 

  DROP TABLE #dim; 

 

IF Object_id('tempdb..#Years') IS NOT NULL 

  DROP TABLE #years; 

 

IF Object_id('tempdb..#PatientMedicationYears') IS NOT NULL 

  DROP TABLE #patientmedicationyears; 

 

IF Object_id('tempdb..#PatientYearlyDosage') IS NOT NULL 

  DROP TABLE #patientyearlydosage; 

 

IF Object_id('tempdb..#PatientDosage') IS NOT NULL 

  DROP TABLE #patientdosage; 

 

IF Object_id('dbo.PatientDosage') IS NOT NULL 

  DROP TABLE dbo.patientdosage; 

 

go 

 

-- Create a list of all years for the dataset 

SELECT DISTINCT Year(datedispensed) AS YearDispensed 

INTO   #years 

FROM   jason_jli404.dbo.pharm; 
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go 

 

SELECT c.nhi, 

       c.chemname, 

       y.yeardispensed 

INTO   #patientmedicationyears 

FROM   (SELECT DISTINCT nhi, 

                        chemname, 

                        indexdate, 

                        exitdate 

        FROM   jason_jli404.dbo.cohort) c 

       JOIN #years y 

         ON y.yeardispensed BETWEEN Year(c.indexdate) AND Year(Dat

eadd(year, -1, 

                                                          c.exitda

te)); 

 

go 

 

---- Generate all combinations of NHI, chemName, and Year 

SELECT pm.nhi, 

       pm.chemname, 

       pm.yeardispensed, 

       Avg(CONVERT(FLOAT, p.age))          AS Age, 

       p.gender                            AS Gender, 

       Isnull(Sum(p.quantitydispensed), 0) AS TotalDosage 

INTO   #patientyearlydosage 

FROM   #patientmedicationyears pm 

       LEFT JOIN jason_jli404.dbo.pharm p 

              ON pm.nhi = p.nhi 

                 AND Replace(pm.chemname, ' ', '') = 

                     Replace(p.chemname, ' ', '') 

                 AND pm.yeardispensed = Year(p.datedispensed) 

GROUP  BY pm.nhi, 

          pm.chemname, 

          pm.yeardispensed, 

          p.gender; 
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go 

 

-

- Generate the dynamic pivot query to create the final PatientDosa

ge table 

DECLARE @DynamicPivotQuery AS NVARCHAR(max); 

DECLARE @ColumnName AS NVARCHAR(max) = ''; 

DECLARE @SelectList AS NVARCHAR(max) = ''; 

 

-- Prepare column names for the pivot table 

SELECT @ColumnName += CASE WHEN @ColumnName = '' THEN '' ELSE ',' 

END + 

                      Quotename( 

                             Replace(chemname, 

                             ' ', '_')) 

FROM   (SELECT DISTINCT chemname 

        FROM   #patientyearlydosage) AS ChemNames; 

 

-

- Create select list for the pivot to replace NULL with 0 in dosag

e columns 

SELECT @SelectList += CASE WHEN @SelectList = '' THEN '' ELSE ',' 

END + 

                      'ISNULL(' 

                      + Quotename(Replace(chemname, ' ', '_')) 

                      + ', 0) AS ' 

                      + Quotename(Replace(chemname, ' ', '_')) 

FROM   (SELECT DISTINCT chemname 

        FROM   #patientyearlydosage) AS ChemNames; 

 

-- Construct the dynamic PIVOT query 

SET @DynamicPivotQuery = 'SELECT NHI, YearDispensed, Age, Gender, 

' 

                         + @SelectList 

                         + 

' INTO dbo.PatientDosage    FROM (SELECT NHI, REPLACE(chemName, ''
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 '', ''_'') AS chemName, Age, Gender, TotalDosage, YearDispensed F

ROM #PatientYearlyDosage) x ' 

                         + ' PIVOT (SUM(TotalDosage) FOR chemName 

IN (' 

                         + @ColumnName + ')) AS PivotTable '; 

 

-- Execute the dynamic PIVOT query 

EXEC Sp_executesql 

  @DynamicPivotQuery; 

 

go 

 

-- Check if the table was created and contains data 

IF Object_id('dbo.PatientDosage') IS NOT NULL 

  PRINT 'PatientDosage successful!'; 

ELSE 

  PRINT 'Failed to create PatientDosage'; 

--SELECT * FROM dbo.PatientDosage; 

 

 

USE jason_jli404 

 

go 

 

IF Object_id('dbo.PatientDeath') IS NOT NULL 

  DROP TABLE dbo.patientdeath; 

 

go 

 

SELECT cohort.nhi, 

       Year(pharm.datedispensed) AS YearDispensed, 

       CASE 

         WHEN Year(pharm.datedispensed) = Year(cohort.exitdate) - 

1 THEN 1 

         ELSE 0 

       END                       AS DeathFlag 

INTO   patientdeath 
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FROM   jason_jli404.dbo.pharm pharm 

       JOIN jason_jli404.dbo.cohort cohort 

         ON pharm.nhi = cohort.nhi 

WHERE  pharm.datedispensed BETWEEN cohort.indexdate AND cohort.exi

tdate 

GROUP  BY cohort.nhi, 

          Year(pharm.datedispensed), 

          Year(cohort.exitdate) 

ORDER  BY cohort.nhi, 

          yeardispensed;  

 

 

USE jason_jli404; 

 

go 

 

-- Ensure no conflicts with existing objects 

IF Object_id('dbo.PatientSummary') IS NOT NULL 

  DROP TABLE dbo.patientsummary; 

 

go 

 

-

- Combine PatientDosage and PatientDeath into one table with condi

tions based on death flag 

SELECT dosage.nhi                                 AS NHI, 

       dosage.yeardispensed                       AS Year, 

       dosage.age                                 AS Age, 

       dosage.gender                              AS Gender, 

       Isnull(death.deathflag, 0)                 AS DeathFlag, 

       dosage.eformoterol_fumarate                AS Eformoterol_f

umarate, 

       dosage.fluticasone_furoate_with_vilanterol AS 

       Fluticasone_furoate_with_vilanterol, 

       dosage.salbutamol                          AS Salbutamol, 

       dosage.indacaterol                         AS Indacaterol, 

       dosage.fluticasone                         AS Fluticasone, 
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       dosage.budesonide                          AS Budesonide, 

       dosage.eformoterol_fumarate_dihydrate      AS 

       Eformoterol_fumarate_dihydrate, 

       dosage.dexamethasone                       AS Dexamethasone

, 

       dosage.salmeterol                          AS Salmeterol, 

       dosage.prednisone                          AS Prednisone, 

       dosage.prednisolone                        AS Prednisolone, 

       dosage.budesonide_with_eformoterol         AS Budesonide_wi

th_eformoterol 

       , 

       dosage.terbutaline_sulphate                AS 

       Terbutaline_sulphate, 

       dosage.beclomethasone_dipropionate         AS Beclomethason

e_dipropionate 

       , 

       dosage.fluticasone_with_salmeterol         AS 

       Fluticasone_with_salmeterol, 

       dosage.methylprednisolone                  AS Methylprednis

olone 

INTO   dbo.patientsummary 

FROM   patientdosage dosage 

       LEFT JOIN dbo.patientdeath death 

              ON dosage.nhi = death.nhi 

                 AND dosage.yeardispensed = death.yeardispensed 

WHERE  NOT EXISTS ( 

                  -- Exclude records where a death flag exists 

                  SELECT 1 

                   FROM   dbo.patientdeath deathCheck 

                   WHERE  deathCheck.nhi = dosage.nhi 

                          AND deathCheck.yeardispensed < dosage.ye

ardispensed 

                          AND deathCheck.deathflag = 1) 

ORDER  BY dosage.nhi, 

          dosage.yeardispensed; 

 

go 
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SELECT TOP 500 * 

FROM   dbo.patientsummary 

ORDER  BY nhi, 

          year ASC; 

 

go  

 

 

Code 1 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.stats import norm, invgauss, weibull_min 

from sqlalchemy import create_engine 

 

# Define connection string for Windows Authentication 

connection_str = 

"mssql+pyodbc://FMHSPHARMDBPRD1/Jason_jli404?driver=ODBC+Driver+17+for+SQL+Server&tr

usted_connection=yes" 

 

# Create an engine 

engine = create_engine(connection_str) 

 

query = "select * from dbo.Cohort where (gender NOT like 'U' AND gender not like 'O' AND 

studyDiff >= 0 AND age > 0)" 

df = pd.read_sql(query, engine) 

 

meds_of_interest = ['Fluticasone with salmeterol', 'Budesonide with eformoterol'] 

df_filtered = df[df['chemName'].isin(meds_of_interest)] 

 

# Separate the data for each medication 

fluticasone_salmeterol_data = df_filtered[ 
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    df_filtered["chemName"] == "Fluticasone with salmeterol" 

]["age"] 

budesonide_eformoterol_data = df_filtered[ 

    df_filtered["chemName"] == "Budesonide with eformoterol" 

]["age"] 

 

# Function to estimate parameters and plot for a given dataset and medication name 

def estimate_and_plot(data, medication_name): 

    # Estimate parameters for Normal, Wald (Inverse Gaussian), and Weibull distributions 

    norm_params = norm.fit(data) 

    wald_params = invgauss.fit(data) 

    weibull_params = weibull_min.fit(data) 

 

    # Plotting 

    plt.figure(figsize=(10, 6)) 

    plt.hist(data, bins=30, alpha=0.6, color="g", density=True, label="Observed Data") 

 

    # Range for plotting distributions 

    xmin, xmax = plt.xlim() 

    x = np.linspace(xmin, xmax, 100) 

 

    # Normal Distribution 

    p_norm = norm.pdf(x, *norm_params) 

    plt.plot(x, p_norm, "k", linewidth=2, label="Normal Distribution") 

 

    # Wald Distribution 

    p_wald = invgauss.pdf(x, *wald_params) 

    plt.plot(x, p_wald, "r", linewidth=2, label="Wald (Inverse Gaussian) Distribution") 

 

    # Weibull Distribution 

    p_weibull = weibull_min.pdf(x, *weibull_params) 

    plt.plot(x, p_weibull, "b", linewidth=2, label="Weibull Distribution") 

 

    plt.title(f"Age Distribution with Estimated Parameters for {medication_name}") 
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    plt.legend() 

    plt.show() 

 

    # Print estimated parameters 

    print(f"Estimated parameters for {medication_name}:") 

    print(f"Normal: {norm_params}") 

    print(f"Wald (Inverse Gaussian): {wald_params}") 

    print(f"Weibull: {weibull_params}") 

 

 

# Estimate parameters and plot for Fluticasone with salmeterol 

estimate_and_plot(fluticasone_salmeterol_data, "Fluticasone with Salmeterol") 

 

# Estimate parameters and plot for Budesonide with eformoterol 

estimate_and_plot(budesonide_eformoterol_data, "Budesonide with Eformoterol") 

 

Code 2 

from sqlalchemy import create_engine 

from scipy.stats import norm, wald, weibull_min 

import pymc as pm 

import arviz as az 

import pandas as pd 

import numpy as np 

 

# Define connection string for Windows Authentication 

connection_str = 

"mssql+pyodbc://FMHSPHARMDBPRD1/Jason_jli404?driver=ODBC+Driver+17+for+SQL+Server&tr

usted_connection=yes" 

 

# Create an engine 

engine = create_engine(connection_str) 
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query = "select * from dbo.Cohort where (gender NOT like 'U' AND gender not like 'O' AND 

studyDiff >= 0 AND age > 0)" 

df = pd.read_sql(query, engine) 

 

meds_of_interest = ['Fluticasone with salmeterol', 'Budesonide with eformoterol'] 

 

# Filter to include only deceased patients 

deceased_patients = df[(df['Flag'] == 1) & df['chemName'].isin(meds_of_interest)] 

 

group_types = deceased_patients['GroupType'].unique() 

 

import pymc as pm 

import arviz as az 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

 

# Data preparation 

group_types = deceased_patients['GroupType'].unique()   

results = {} 

trace_data = {} 

 

# Modeling for each group type 

for group in group_types: 

    data = deceased_patients[deceased_patients['GroupType'] == group]['age'].values 

    if len(data) > 0: 

        with pm.Model() as model: 

            # Define priors for Weibull parameters 

            alpha = pm.HalfNormal(f'alpha_{group}', sigma=5) 

            beta = pm.HalfNormal(f'beta_{group}', sigma=10) 

 

            # Weibull likelihood 

            Y_obs = pm.Weibull(f'Y_obs_{group}', alpha=alpha, beta=beta, observed=data) 
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            # Posterior sampling 

            trace = pm.sample(1000, tune=500, return_inferencedata=True) 

 

        results[group] = {'model': model, 'trace': trace} 

        trace_data[group] = {'alpha': trace.posterior[f'alpha_{group}'].values.flatten(), 

                             'beta': trace.posterior[f'beta_{group}'].values.flatten()} 

 

        # Plot trace and save with title as filename 

        trace_plot = az.plot_trace(trace) 

        plot_title = f'Trace Plot for {group} Group' 

        plt.suptitle(plot_title) 

        plt.savefig(f'C:\\Users\\jli404\\Desktop\\{plot_title}.png') 

        plt.show() 

 

        summary = az.summary(trace, var_names=[f'alpha_{group}', f'beta_{group}']) 

        print(f"{group} Group - Weibull Parameters") 

        print(summary) 

    else: 

        print(f"No data available for group {group}") 

 

# Compare alpha and beta parameters across groups and save summaries 

for group1 in group_types: 

    for group2 in group_types: 

        if group1 != group2: 

            alpha_diff = trace_data[group1]['alpha'] - trace_data[group2]['alpha'] 

            beta_diff = trace_data[group1]['beta'] - trace_data[group2]['beta'] 

 

            # Summarize differences 

            alpha_diff_summary = { 

                'mean': np.mean(alpha_diff), 

                'sd': np.std(alpha_diff), 

                'hdi_3%': np.quantile(alpha_diff, 0.03), 

                'hdi_97%': np.quantile(alpha_diff, 0.97), 

            } 
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            beta_diff_summary = { 

                'mean': np.mean(beta_diff), 

                'sd': np.std(beta_diff), 

                'hdi_3%': np.quantile(beta_diff, 0.03), 

                'hdi_97%': np.quantile(beta_diff, 0.97), 

            } 

 

            summary_df = pd.DataFrame({ 

                'Parameter Difference': [f'alpha ({group1} - {group2})', f'beta ({group1} - {group2})'], 

                'Mean': [alpha_diff_summary['mean'], beta_diff_summary['mean']], 

                'SD': [alpha_diff_summary['sd'], beta_diff_summary['sd']], 

                'HDI 3%': [alpha_diff_summary['hdi_3%'], beta_diff_summary['hdi_3%']], 

                'HDI 97%': [alpha_diff_summary['hdi_97%'], beta_diff_summary['hdi_97%']], 

            }) 

 

            # Save summary DataFrame to CSV 

            summary_filename = f'summary_{group1}_vs_{group2}.csv' 

            summary_df.to_csv(f'C:\\Users\\jli404\\Desktop\\{summary_filename}', index=False) 

 

            print(summary_df) 

 

Code 3 Function to calculate mean and standard deviation for Weibull 

distribution 

# Function to calculate mean and std for Weibull distribution 

def weibull_stats(shape, scale): 

    mean = scale * gamma(1 + 1/shape) 

    variance = (scale**2) * (gamma(1 + 2/shape) - (gamma(1 + 1/shape))**2) 

    std = np.sqrt(variance) 

    return mean, std 
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Package Code 

anyio @ file:///C:/ci/anyio_1644481921011/work/dist 

argon2-cffi @ file:///opt/conda/conda-bld/argon2-cffi_1645000214183/work 

argon2-cffi-bindings @ file:///C:/ci/argon2-cffi-bindings_1644551690056/work 

arviz @ file:///home/conda/feedstock_root/build_artifacts/arviz_1666645025910/work 

asttokens @ file:///opt/conda/conda-bld/asttokens_1646925590279/work 

async-lru @ file:///C:/b/abs_e0hjkvwwb5/croot/async-lru_1699554572212/work 

attrs @ file:///C:/b/abs_35n0jusce8/croot/attrs_1695717880170/work 

Babel @ file:///C:/b/abs_a2shv_3tqi/croot/babel_1671782804377/work 

backcall @ file:///home/ktietz/src/ci/backcall_1611930011877/work 

beautifulsoup4 @ file:///C:/b/abs_0agyz1wsr4/croot/beautifulsoup4-split_1681493048687/work 

bleach @ file:///opt/conda/conda-bld/bleach_1641577558959/work 

Brotli @ file:///C:/Windows/Temp/abs_63l7912z0e/croots/recipe/brotli-

split_1659616056886/work 

cachetools==5.3.3 

certifi @ file:///C:/b/abs_91u83siphd/croot/certifi_1700501720658/work/certifi 

cffi @ file:///C:/b/abs_924gv1kxzj/croot/cffi_1700254355075/work 

cftime @ file:///D:/bld/cftime_1666833911368/work 

charset-normalizer @ file:///tmp/build/80754af9/charset-normalizer_1630003229654/work 

cloudpickle==3.0.0 

colorama @ file:///C:/b/abs_a9ozq0l032/croot/colorama_1672387194846/work 

comm @ file:///C:/b/abs_1419earm7u/croot/comm_1671231131638/work 

cons==0.4.6 

contourpy==1.2.0 

cryptography @ file:///C:/b/abs_f4do8t8jfs/croot/cryptography_1694444424531/work 

cycler==0.12.1 

debugpy @ file:///C:/b/abs_c0y1fjipt2/croot/debugpy_1690906864587/work 

decorator @ file:///opt/conda/conda-bld/decorator_1643638310831/work 

defusedxml @ file:///tmp/build/80754af9/defusedxml_1615228127516/work 

deprecat @ file:///home/conda/feedstock_root/build_artifacts/deprecat_1653044502293/work 

dill @ file:///home/conda/feedstock_root/build_artifacts/dill_1690101045195/work 

docopt==0.6.2 

etuples==0.3.9 
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exceptiongroup @ file:///C:/b/abs_25wqfvkf25/croot/exceptiongroup_1668714345637/work 

executing @ file:///opt/conda/conda-bld/executing_1646925071911/work 

fastjsonschema @ 

file:///C:/Users/BUILDE~1/AppData/Local/Temp/abs_ebruxzvd08/croots/recipe/python-

fastjsonschema_1661376484940/work 

fastprogress==1.0.3 

filelock==3.13.1 

fonttools==4.50.0 

greenlet==3.0.1 

h5py==3.10.0 

idna @ file:///C:/b/abs_bdhbebrioa/croot/idna_1666125572046/work 

importlib-metadata @ file:///home/conda/feedstock_root/build_artifacts/importlib-

metadata_1701632192416/work 

importlib_resources==6.3.1 

ipykernel @ file:///C:/b/abs_07rkft_vaz/croot/ipykernel_1691121700587/work 

ipython==8.12.3 

ipywidgets @ file:///C:/b/abs_5awapknmz_/croot/ipywidgets_1679394824767/work 

jedi @ file:///C:/ci/jedi_1644315428289/work 

Jinja2 @ file:///C:/b/abs_7cdis66kl9/croot/jinja2_1666908141852/work 

joblib==1.3.2 

json5 @ file:///tmp/build/80754af9/json5_1624432770122/work 

jsonschema @ file:///C:/b/abs_d1c4sm8drk/croot/jsonschema_1699041668863/work 

jsonschema-specifications @ file:///C:/b/abs_0brvm6vryw/croot/jsonschema-

specifications_1699032417323/work 

jupyter @ file:///C:/Windows/TEMP/abs_56xfdi__li/croots/recipe/jupyter_1659349053177/work 

jupyter-console @ file:///C:/b/abs_82xaa6i2y4/croot/jupyter_console_1680000189372/work 

jupyter-events @ file:///C:/b/abs_17ajfqnlz0/croot/jupyter_events_1699282519713/work 

jupyter-lsp @ file:///C:/b/abs_ecle3em9d4/croot/jupyter-lsp-meta_1699978291372/work 

jupyter_client @ file:///C:/b/abs_a6h3c8hfdq/croot/jupyter_client_1699455939372/work 

jupyter_core @ file:///C:/b/abs_c769pbqg9b/croot/jupyter_core_1698937367513/work 

jupyter_server @ file:///C:/b/abs_7esjvdakg9/croot/jupyter_server_1699466495151/work 

jupyter_server_terminals @ 

file:///C:/b/abs_ec0dq4b50j/croot/jupyter_server_terminals_1686870763512/work 

jupyterlab @ file:///C:/b/abs_aergn8zopq/croot/jupyterlab_1700518316761/work 



Appendix 

57 
 

jupyterlab-pygments @ file:///tmp/build/80754af9/jupyterlab_pygments_1601490720602/work 

jupyterlab-widgets @ 

file:///C:/b/abs_adrrqr26no/croot/jupyterlab_widgets_1700169018974/work 

jupyterlab_server @ file:///C:/b/abs_e08i7qn9m8/croot/jupyterlab_server_1699555481806/work 

kiwisolver==1.4.5 

logical-unification==0.4.6 

Mako @ file:///home/conda/feedstock_root/build_artifacts/mako_1699482234420/work 

MarkupSafe @ file:///D:/bld/markupsafe_1695367558436/work 

matplotlib==3.8.3 

matplotlib-inline @ file:///C:/ci/matplotlib-inline_1661915841596/work 

miniKanren==1.0.3 

mistune @ 

file:///C:/Users/BUILDE~1/AppData/Local/Temp/abs_081kimkskf/croots/recipe/mistune_166149

6225923/work 

multipledispatch==1.0.0 

munkres==1.1.4 

nbclient @ file:///C:/b/abs_cal0q5fyju/croot/nbclient_1698934263135/work 

nbconvert==7.16.4 

nbformat @ file:///C:/b/abs_5a2nea1iu2/croot/nbformat_1694616866197/work 

nest-asyncio @ file:///C:/b/abs_3a_4jsjlqu/croot/nest-asyncio_1672387322800/work 

netCDF4 @ file:///D:/bld/netcdf4_1687961316745/work 

notebook @ file:///C:/b/abs_26737osg4x/croot/notebook_1700582146311/work 

notebook_shim @ file:///C:/b/abs_a5xysln3lb/croot/notebook-shim_1699455926920/work 

numpy==1.26.4 

overrides @ file:///C:/b/abs_cfh89c8yf4/croot/overrides_1699371165349/work 

packaging==24.0 

pandas==2.2.1 

pandocfilters @ file:///opt/conda/conda-bld/pandocfilters_1643405455980/work 

parso @ file:///opt/conda/conda-bld/parso_1641458642106/work 

patsy @ file:///home/conda/feedstock_root/build_artifacts/patsy_1701443970942/work 

pickleshare @ file:///tmp/build/80754af9/pickleshare_1606932040724/work 

pillow==10.2.0 

pipreqs==0.5.0 

platformdirs @ file:///C:/b/abs_b6z_yqw_ii/croot/platformdirs_1692205479426/work 
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ply==3.11 

prometheus-client @ 

file:///C:/Windows/TEMP/abs_ab9nx8qb08/croots/recipe/prometheus_client_1659455104602/w

ork 

prompt-toolkit @ file:///C:/b/abs_6coz5_9f2s/croot/prompt-toolkit_1672387908312/work 

psutil @ file:///C:/Windows/Temp/abs_b2c2fd7f-9fd5-4756-95ea-

8aed74d0039flsd9qufz/croots/recipe/psutil_1656431277748/work 

pure-eval @ file:///opt/conda/conda-bld/pure_eval_1646925070566/work 

pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work 

Pygments @ file:///C:/b/abs_fay9dpq4n_/croot/pygments_1684279990574/work 

pygpu==0.7.6 

pymc==5.11.0 

pyodbc==5.0.1 

pyOpenSSL @ file:///C:/b/abs_08f38zyck4/croot/pyopenssl_1690225407403/work 

pyparsing==3.1.2 

PyQt5==5.15.10 

PyQt5-sip @ file:///C:/b/abs_c0pi2mimq3/croot/pyqt-split_1698769125270/work/pyqt_sip 

PySocks @ file:///C:/ci/pysocks_1605307512533/work 

pytensor==2.18.6 

python-dateutil==2.9.0.post0 

python-json-logger @ file:///C:/b/abs_cblnsm6puj/croot/python-json-

logger_1683824130469/work 

pytz==2024.1 

pywin32==305.1 

pywinpty @ 

file:///C:/b/abs_73vshmevwq/croot/pywinpty_1677609966356/work/target/wheels/pywinpty-

2.0.10-cp39-none-win_amd64.whl 

PyYAML @ file:///C:/b/abs_782o3mbw7z/croot/pyyaml_1698096085010/work 

pyzmq @ file:///C:/b/abs_655zk4a3s8/croot/pyzmq_1686601465034/work 

qtconsole @ file:///C:/b/abs_4awqjtg1ug/croot/qtconsole_1700160696631/work 

QtPy @ file:///C:/b/abs_derqu__3p8/croot/qtpy_1700144907661/work 

referencing @ file:///C:/b/abs_09f4hj6adf/croot/referencing_1699012097448/work 

requests @ file:///C:/b/abs_316c2inijk/croot/requests_1690400295842/work 

rfc3339-validator @ file:///C:/b/abs_ddfmseb_vm/croot/rfc3339-validator_1683077054906/work 
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rfc3986-validator @ file:///C:/b/abs_6e9azihr8o/croot/rfc3986-validator_1683059049737/work 

rpds-py @ file:///C:/b/abs_76j4g4la23/croot/rpds-py_1698947348047/work 

scikit-learn==1.4.1.post1 

scipy==1.12.0 

seaborn==0.13.2 

semver @ file:///home/conda/feedstock_root/build_artifacts/semver_1696861993140/work 

Send2Trash @ file:///C:/b/abs_08dh49ew26/croot/send2trash_1699371173324/work 

sip @ file:///C:/b/abs_edevan3fce/croot/sip_1698675983372/work 

six==1.16.0 

sniffio @ file:///C:/ci/sniffio_1614030527509/work 

soupsieve @ file:///C:/b/abs_bbsvy9t4pl/croot/soupsieve_1696347611357/work 

SQLAlchemy==2.0.23 

stack-data @ file:///opt/conda/conda-bld/stack_data_1646927590127/work 

terminado @ file:///C:/b/abs_25nakickad/croot/terminado_1671751845491/work 

Theano-PyMC @ file:///D:/bld/theano-pymc_1611363584953/work 

threadpoolctl==3.3.0 

tinycss2 @ file:///C:/b/abs_52w5vfuaax/croot/tinycss2_1668168823131/work 

tomli @ file:///C:/Windows/TEMP/abs_ac109f85-a7b3-4b4d-bcfd-

52622eceddf0hy332ojo/croots/recipe/tomli_1657175513137/work 

toolz==0.12.1 

tornado @ file:///C:/b/abs_0cbrstidzg/croot/tornado_1696937003724/work 

traitlets @ file:///C:/b/abs_e5m_xjjl94/croot/traitlets_1671143896266/work 

typing_extensions==4.10.0 

tzdata==2024.1 

unicodedata2 @ file:///D:/bld/unicodedata2_1695847967701/work 

urllib3 @ file:///C:/b/abs_9cmlsrm3ys/croot/urllib3_1698257595508/work 

wcwidth @ file:///Users/ktietz/demo/mc3/conda-bld/wcwidth_1629357192024/work 

webencodings==0.5.1 

websocket-client @ file:///C:/ci/websocket-client_1614804375980/work 

widgetsnbextension @ 

file:///C:/b/abs_882k4_4kdf/croot/widgetsnbextension_1679313880295/work 

win-inet-pton @ file:///C:/ci/win_inet_pton_1605306162074/work 

wrapt @ file:///D:/bld/wrapt_1699532935905/work 

xarray @ file:///home/conda/feedstock_root/build_artifacts/xarray_1689599939832/work 
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xarray-einstats @ file:///home/conda/feedstock_root/build_artifacts/xarray-

einstats_1689089835984/work 

yarg==0.1.9 

zipp==3.18.1 

 


