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1 Abstract

Stroke is a leading cause of death and long-term disability worldwide, which fosters
the need for effective methods of diagnosis with lesion segmentation and prediction of
recovery. Hence, this thesis presents a comprehensive approach that integrates deep
learning techniques for stroke lesion segmentation from functional magnetic resonance
imaging (fMRI) data, coupled with machine learning methods such as Random Forest
(RF) and Support Vector Machine (SVM) for predicting recovery outcomes post-stroke.

The first phase of the thesis focuses on developing a reliable stroke lesion segmenta-
tion model comparable to the state-of-the-art deep learning architectures using a large
public dataset. Specifically, families of Unets, derived from convolutional neural net-
works (CNNs) are employed to accurately and reliably delineate stroke lesions. These
range from transfer learning of existing theoretical concepts such as Linear kernel atten-
tion (LKA), building model using a state-of-the-art method like transformers and dense
blocks to attempting sophisticated methods such as diffusion. The adoption of enhanced
ensemble method also contributed to generating a high performing segmented label with
significantly high level of accuracy. Hence, our final segmentation model achieved an
accuracy of 0.6513 as well as sufficient reliability in delineating stroke lesions and was
comparable to the state-of-the-art method.

In the second phase, machine learning models, including random forest (RF) and Support
vector machines (SVM), are employed to predict recovery outcomes following stroke based
on extracted imaging features and clinical data from the Functional MRI data from two
different sites. The delineated lesion using the segmentation model developed in the first
phase as well as additional clinical variables to forecast functional recovery were used to
predict the recovery of the patients, and highlighted the importance of lesion volume and
its position relative to the somatosensory region of the brain for achieving high accuracy.

Overall, this thesis contributes to the advancement of stroke management by providing
reliable tools for lesion segmentation and recovery prediction. The integrated approach
combining deep learning with machine learning techniques offers a comprehensive frame-
work for understanding stroke pathology and guiding clinical decision-making, ultimately
improving patient care and outcomes in the post-stroke rehabilitation process.
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3 Introduction

3.1 What is stroke

A stroke occurs when the blood supply to the brain is disrupted, either by a blood clot,
known as ischemic stroke, or by continuous bleeding in the brain, known as hemorrhagic
stroke [3]. This disruption can cause brain cells to die which leads to a range of physical
and cognitive symptoms. Stroke is well known for a leading cause of long-term disabil-
ity in adults; and only a small number of patients achieve a full recovery sufficient for
daily activities whereas more than 25% of patients need some assistance and about 50%
experience long-term dependency [4].

Figure 1: Detailed picture of ischemic and hemorrhagic stroke

Due to its severity and fatality, diagnosis of stroke at the earlier stage is important for
faster and promoted recovery. Neuroimaging techniques such as CT or MRI are widely
used in the modern world to accurately capture stroke lesions. Especially for MRI, an
acronym for magnetic resonance imaging, it has been a state-of-the-art approach in de-
livering high-resolution images after its invention in 1974 by Paul Lauterbur and Peter
Mansfield [5]. MRIs are found to be a much more valuable imaging technique in stroke
lesion detection for their well-known sensitivity in detecting morphologically variant con-
ditions such as stroke by providing better contrast for soft tissues and anatomical details
than other modalities [6]. Next, it is up to the clinicians and neurosurgeons to decide
whether any abnormalities that appear on the neuroimage obtained from MRI are related
to the lesion of infarct after stroke. This process is time-consuming and expensive, as
well as the possibility of human errors.

To assist in the decision-making process of these healthcare workers, machine learning
techniques to automatically detect stroke lesions have recently become noticeable. Ma-
chine learning is a subset of artificial intelligence (AI) that focuses on creating models
that enable computers to learn and make predictions based on the data given [7]. In the
medical field, it is widely used for automatic detection and stroke is undoubtedly one
of them. This process of creating models from an image of input is known as computer
vision, with the use of deep learning, again a subset of machine learning that focuses on
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using artificial neural networks to learn from large amounts of data. It involves training
complex models, known as deep neural networks to perform tasks such as classification
and segmentation. Deep learning with neural networks is a major approach in computer
vision for stroke lesion segmentation and some commonly used yet powerful deep learning
techniques/architectures in stroke lesion segmentation will be introduced below.

3.2 Deep learning architectures

3.2.1 U-net structures

In recent years, CNN (convolutional neural network) based on U-net architecture have
been widely applied in biomedical image segmentation and have shown improved accu-
racy. U-net is a popular technique in semantic segmentation with U-shaped architecture
which incorporates symmetric contracting (encoder) path and expanding (decoder) path
with skip connections between the two paths to enhance detail retention. It has out-
performed many visual recognition tasks since its introduction to the community and
biomedical image segmentation was no exception [8] . Thus far, many extensions of U-
nets including U-net++ and 3D-U-net have been widely developed and applied to stroke
image segmentation, and undoubtedly many state-of-the-art architectures employed U-
net architecture as a backbone to their proposed architectures, settling in as a clear trend
in stroke lesion segmentation [9] [10].

Figure 2: Structure of a U net showing encoder (left side) and the decoder (right side)

3.2.2 Transformers

In addition to Unet, transformer based techiniques have been utilized in the field of medi-
cal segmentation and titled as state-of-the-art method. Transformers have recently gained
popularity in computer vision tasks with its success in natural language processing (NLP)
sector [11]. Unlike traditional convolutional neural networks (CNNs), vision transformers
(ViTs) rely on self-attention mechanisms to capture long-range dependencies between im-
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age patches allowing them to handle large-scale images with high accuracy and efficiency
[12]. The basic architecture of a ViT consists of an input patch embedding layer, a trans-
former encoder, and a fully connected output layer [13]. The transformer encoder consists
of multiple layers of self-attention and feedforward neural networks, which process the
patch embeddings to extract features and learn contextual relationships between patches.
One advantage of ViTs is that they can be pre-trained on large-scale image datasets using
self-supervised learning, which involves training the model to predict missing parts of an
image. This pre-training process allows the model to learn generic image features that
can be fine-tuned for specific downstream tasks. In terms of stroke lesion segmentation,
transformers have been added to the encoder side of the backbone U-net structure to
improve the dice coefficient score of the segmentation results. Some of the recent trans-
former infused U-net structures introduced to stroke lesion segmentation will be outlined
below.

3.2.3 GAN

To endeavor further into various deep learning methods such as unsupervised learning,
vast amount of studies have been done to developing models such as generative Adver-
sarial Networks (GANs). GANs have shown great potential in medical image analysis,
including stroke lesion segmentation. GAN-based techniques work by training a gener-
ator network to produce realistic images, while simultaneously training a discriminator
network to differentiate between real and generated images. In stroke lesion segmenta-
tion, the generator network can be trained to produce segmentations of stroke lesions
based on input medical images, while the discriminator network can assess the quality of
the generated segmentations. This process can be iteratively improved until the gener-
ated segmentations are indistinguishable from real segmentations. GAN-based techniques
have shown promising results in stroke lesion segmentation, achieving high accuracy and
reducing the need for manual annotation.

3.2.4 Clustering

If we get into more traditional method to segment the regions of interest, clustering
method can be highlighted. Clustering is a technique in machine learning and data anal-
ysis that involves grouping similar objects or data points into clusters based on their
attributes or characteristics [14]. Clustering methods aim to find patterns or structures
in the data that can be used for tasks such as segmentation, classification, or anomaly de-
tection. There are various types of clustering algorithms applied to stroke lesion segmen-
tation, including partition-based clustering (such as K-Means), Fuzzy C-means clustering
and hierarchical clustering [15] [16].
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3.3 Functional MRI

Due to the need of studies regarding the activation linking to the functionality of the
brain, functional MRI techinique have emerged in the medical field. Functional MRI is
a profound and widely used method in predicting severity and recovery of various brain
related symptoms such as Alzheimer’s disease, Parkinson’s disease, Schizoprenia and
stroke [17][18] . It is well known for brain activity modelling and functional connectivity
analysis to provide a milestone for a prolonged prediction of outlined brain symptoms
[19][20]. Functional MRI utilises a technique known as blood oxygen level dependent
(BOLD) contrast to construct a feature brain map that capture neural activity related to
blood flow, driven by the oxygen consumption of individual brain cells [21]. As MRI is a
radiation free technique, functional MRI is well-known for minimally invasive functional
image acquisition method. Its stability and capability in delivering high resolution images
both spatially and temporally, have leveraged rapid growth of Functional MRI utilization
in the field of cognitive neuroscience [22].

Figure 3: Detailed picture of ischemic and hemorrhagic stroke

Functional connectivity is an interaction between neural activities under time series and
unlike anatomical connectivity, it is possible to take place between pairs of anatomically
unconnected regions [23]. The functional connectivity data can be pulled out for further
analysis such as seed-to-voxel-based or region-to-region (ROI).

3.4 Main contributions

This paper is structured as follows:

• Provide a comprehensive literature review on the recent trend in deep learning
models in medical diagnosis field

• Engage on extensive data analayis and deep learning model building for stroke
lesion segmentation
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• Focus on functional MRI data analysis and feature extraction to create a machine
learning based prediction of stroke recovery

• Conclude by suggesting future improvements and succeeding research questions to
be attempted
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4 Literature Review

4.1 Stroke lesion segmentation

Understanding the fast paced progress in the field of deep learning and machine learning,
only papers published from 2021 to 2023 have gone through a literature review to capture
the most recent trends in stroke lesion segmentation. A total of 40 papers have been found
and analyzed under the keywords; stroke lesion segmentation, stroke prediction, medical
image segmentation, and biomedical machine learning

Figure 4: Number of segmentation architecture introduced in this literature review

4.1.1 U-net based architectures

4.1.1.1 Non-3D Unets

Reducing inter-site discrepancy within the dataset is important for a reliable segmen-
tation. Yu et al. created a self-adaptive normalizing network by adopting a 2D U-net
architecture with a site-classifier in the bottleneck [24]. The author additionally utililzed
the fact that stoke occurs unilaterally in most cases and inspired by pseudosymmetry
scheme of the human brain, flipped the lesions to one side of the hemisphere to produce a
smaller image for training. Ou et al. came up with a 2.5D network architecture specified
for segmenting highly discontinuous imaging data such as DWIs, extending U-Net by
replacing traditional convolutional layers with proposed Lambda+ layers to capture both
inter-slice and intra-slice contextual information [25].

4.1.1.2 3D U-nets

Soltanpour et al. made use of adopting MultiresUnet as a backbone that CNN layers that
consists of three different filter sizes with 3 × 3, 5 × 5, and 7 × 7 convolution operations
instead of adopting only 3 × 3 convolution throughout to enhance the capability of
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capturing lesions with different sizes and shpaes at varying resolutions [26] [27]. Tursynova
et al. initially demonstrated the use of a classical shaped 3D U-net with 4 symmetric
encoder and decoder blocks to test on the new set of computation tomography dataset,
ISLES 2018 [28]. Zhao et al. suggested a multifeatured map fusion network (MFMF-
Network) where numerous weakly labelled subjects are used to train the classification
branch, and several fully labelled subjects while freezing the parameters of backbone
VGG 16 truncated model were used to train a modified segmentation branch and generate
class activation mapping (CAM) for post processing [29]. Omarov et al. created a
modified U-Net architecture that some convolution layers were replaced with dilated filter
convolution layers which expands the field of the view of each filter, allowing the model
to include more contextual information of the background [30]. Leaky ReLu activations
for all feature maps has also been utilized for calculating convolutions across the network
[10]. Lin et al. created an R2U-RNet architecture adopting R2U-Net as a backbone
with a proposed residual refinement unit (RRU) where each input image containing two
image channels are generated for inference at multiple scale [31]. Random label flipping
technique was applied as part of a noisy-label training scheme to reduce uncertainties
from manual label annotations. Verma et al. suggested the first-time usage of ATLAS
v2.0 dataset by adopting a deep 3D U-net model with 5 encoder blocks and 5 decoder
blocks with average symmetric surface distance (ASSD) to measure contour distances
between the two input segmentations [32]. Wong et al. proposed a model that outputs
twice increased resolution from the decoder against the encoder input image by using
Subpixel embedding that captures local structure through feature and spatial expansion
[33]. Kumar et al. introduced an asymmetric residual network that aim to solve a
prevalent vanishing gradient problem that degrades the learning rate of the network
and a class imbalance problem that the stroke lesion part takes up only a small part
of the entire brain region [34]. Wong et al. suggested a rotation reflection equivariant
U-net inspired by a fact that the segmentation technique must be robust to rotation
or reflection regardless of the input image [35]. Moon et al. adopted both 2D and 3D
multi-modal U-nets employed to FLAIR and DWI pre-processed using ANTs (Advanced
normalization tools) software and found that 2D multi-modal technique performed the
better than other 3D or combined techniques [36]. Du et al. suggested a novel attention-
guided multimodal recovery framework that reduces intraclass inconsistency where there
exists a large variability between areas of the stroke lesion and interclass indistinction
where stroke lesion resembles healthy brain tissue in appearance [37]. Bousselham et
al. created a temperature profile for acute ischemic strokes to enhance segmentation
accuracy incorporated with classical 3D U-net [38]. Lee et al. used a classifier to classify
affected tissue against the normal tissue in a detailed fashion using patch-based attention
module as ground truth segmentation only shows an inclusive block of the two [39].
Alquhayz et al. proposed a network separated into three parts; an initial classifier model
trained to extract the slices of stroke lesions from a whole brain image, a secondary
classifier that finds difference between patches that consist of stroke lesions, and finally
a 2D modified U-net that that segments out the lesion patches extracted from the patch
classifier [40]. Li et al. suggested a multiscale U-net model with dilation convolution that
produces richer feature maps by combining low-level feature mapping with high-level
feature mapping [41]. This network performed better in segmented tasks under identical
network parameters. Li et al. proposed a novel target-aware supervision residual learning
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framework (TSRL-Net) considering imbalance between positive and negative sample in
which a creatively target-aware loss function is designed to dilate strong attention regions
while paying higher attention to the positive sample losses and compensate for negative
sample losses around the target region [42].

4.1.1.3 Attention blocks

To reduce class imbalance between the lesion and the healthy tissue, Abramova et al.
incorporated a novel restrictive balanced sampling technique to reduce common class
imbalance problem when using patch-based method as well as a squeeze-and-excitation
blocks in the encoder part of the network to learn channel-wise feature dependencies by
adaptively weighting the feature maps [43]. Similarly, Karthik et al. suggested a consec-
utive method using classifiers before the segmentor to classify lesion pixels against the
healthy pixels in advance to reduce class imbalance. Additionally, the author proposed a
multi residual attention block and a masked dropout layer to suppress unnecessary spa-
tial activations from transmitting to the encoder blocks and to selectively regulate the
receptive field awareness [44]. Shi et al. proposed a cross modal cross attention (C2MA)
module in the bottleneck of the 3D U-net and non-local operations to reduce long-range
dependencies analysed between different modalities by taking two of the encoded feature
maps as an input in a parallelized manner [45]. To improve the blurriness in small lesion
contours, Hui et al. proposed a dual-path attention compensation U-Net (DPAC-UNet)
that consists of a primary path network, a core network that segments and outputs final
segmentation annotations, and auxiliary path network which correct possible errors when
auxiliary attention compensation coefficients are delivered to the primary path [46]. Both
path networks are modified attention U-Net models and are structurally identical. Unlike
most studies with attention blocks attached to the encoding path, Huang et al. proposed
a network with attention blocks inserted to both sides. An Encoding Mutual gain adap-
tive similarity block (MGAS block) was designed to enhance the ability of the network
to capture long-range spatial by extracting global contexts through feature similarity
whereas a decoding global context awareness block (GCA block) was designed to supply
global context for low-semantic features to promote restoration of localized pixels to dis-
tinguish weak boundaries [47]. Shin et al. proposed an efficient U-net structure which
employ novel e-blocks inspired by depth-wise separable convolution and a global-feature
attention block (GA-block) that improves segmentation performance by capturing recep-
tive features of each pixel between the encoder and the decoder [48]. As medical image
segmentation does not fully take structural symmetry information into account, Bao et al
presents a novel mirror difference aware network (MDAN) that uses a differential feature
augmentation (DFA) module in the encoding path to specify semantic pathological asym-
metries and aim at reducing noise in these asymmetrical non-lesion areas [49]. Sheng et
al. came up with a cross-attention and deep supervision U-net (CADs-Unet) that in-
teractively shares local spatial information using cross-spatial attention module instead
of common self-attention module to reduce the uncertainty in positional information of
stroke lesion images [50].
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4.1.1.4 Transformers

Feng et al. connected ViTs after convolutional blocks to create a novel convolution
transformer block (CT block) which consists of two convolutional layers and a transformer
module where convolutional layers extract local information to the transformer to utilize
its global receptive field [51]. Gu et al. proposed using an existing Swin transformer
module, an inherent transformer module that accepts shifted windows approach and
hierarchical transformer characteristics, instead of ViTs to tackle a problem in which
the memory use and computational power increases with respect to the image size in
the ViTs module [52] [53]. Luo et al. connected ViTs to the encoder part of the U-
net to improve the global context feature recognition as well as adding Multi head cross
attention modules in the decoder part to attain highly precise spatial information recovery
[54]. Unlike conventional architectures that fuse transformers into the encoder part of
the network, Liu et al. proposed a long-range hybrid features network (LLRHNet) which
adopts transformers in the bottleneck part of the network to learn the long-range pixel
dependencies in an image from tokenized patches [55]. Wu et al. introduced a CNN-
based method as the auxiliary generator and transformer-based method as the primary
segmenter to build the backbone network where segmentor is divided into initial segment
generator and final segmentation predictor by applying a transUnet architecture [56], [57].
Wu et al. added a subsampling interactive transformer (SiTR) with dimension attention
mechanism to not only capture both global and local semantic features but also extract
channel features between multiple dimensions [58].

4.1.1.5 GAN

Platscher et al. trained their model using various image to image translation models
(ITM) such as pix2pix, SPADE and cycleGAN to synthesize magnetic resonance images
to with and without stroke lesions from semantic feature maps and furthermore generate
synthetic lesion masks [59]. By combining the feature maps and the generated lesion
masks, authors created a large synthetic dataset of stroke images that improved the
segmentation performance. Van Voorst et al. proposed a novel follow-up-to-baseline
GAN architecture to convert follow-up scan with stroke lesion to a generated baseline scan
without a lesion through creating a difference map subtracted from the follow-up scan,
where the map was later used to automatically obtain lesion segmentation [60]. Wang
et al. proposed a consistent perception GAN (CPGAN) that generates segmentation
based only on small number of labelled samples assisted by using similarity connection
module that capture multi-scale feature information of the images [61]. Ghnemat et
al. suggested a mutation technique integrated with Euclidian distance map to serve
as an input to GAN architecture using patches generated from these mutated images to
generate a synthetic dataset enhancing the dice coefficient of the proposed GAN model by
2.54% [62]. Wang et al. aimed to accomplish CT samples generation and cross-modality
translation differentiation by integrating a Siamesed auto-encoder architecture into GAN
where a Gaussian mixture translation module (GM-Trm) is further proposed to deliver
incorporated translation loss to learn an intrinsic mapping between the latent space and
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the multi-modal translation function [63]. Chen et al. proposed a novel semi-supervised
segmentation framework that combines improved mean teacher and adversarial network
where a student model and a teacher model was used to segment the target and generate
the signed distance maps of image surfaces, and a discriminator network was subsequently
employed for extracting hierarchical features and distinguishing the signed distance maps
[64].

4.1.1.6 Clustering

Isa et al proposed a pseudo-colour k means clustering algorithm which performs colouriza-
tion on greyscale images to intensify the visual perception and deliver more information
[65]. The algorithm then segments the region of interest (ROI) using K-means clustering.
To tackle the problem of clustering steps entangled in the local optima and does not
progress toward the global optima, Thiyagarajan et al. proposed an arithmetic optimisa-
tion based K-means (AOK-means) method where the number of clusters in MRI image
segmentation is determined by identifying the break in point of the aggregated arithmetic
mean of sub-images of the whole brain MRI slice, and the number of sub-images equals
the number of clusters [66].

4.2 Discussion

4.2.1 Computational efficiency

In this review, few studies have outlined the importance of computational efficiency in
stroke lesion segmentation. As we observe more and more studies to attempt cloud-based
method for storing outputs for overall automatic medical image segmentation, reducing
computational load is essential for decreasing the memory uptake of the segmentation
system. One popular method involved using patch-based method where small and over-
lapping patch samples were produced during image translation process in medical imaging
as processing convolutions on the entire image require large amount of memory. Multiple
studies have significantly improved their efficiency with patch sampling. Others include
reducing number of convolution layers within each block to create a lighter convolutional
block or generating asymmetrical decoder with fewer number of filters than the encoder
as varying the number of filters in the decoding path does not alter the network per-
formance because it only decodes information per requirement. A growing interest in
improving the computational efficiency only highlights its importance and due to recent
introduction of memory-heavy techniques such as transformers or unsupervised learning
with numerous synthetic datasets, reducing the memory usage while improving accuracy
will be a key to better performance.
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4.2.2 Supervised, unsupervised and semi-supervised method

Selection of learning method is of great importance in machine learning as it directly
affects the overall performance of the model. In the review, all three types of learn-
ing methods have been identified with the supervised learning being selected the most
as many papers involved the use of U-net architecture originated from CNN, the lead-
ing method in supervision learning in medical image segmentation. The introduction of
transformer techniques to supervised learning further boosted the accuracy drastically.
In recent years, unsupervised learning has emerged as a strong competitor to supervised
method that long dominated the field of stroke lesion segmentation for its unnecessity
to provide manual annotation. Obtaining manual annotation is time-consuming, costly
and susceptible to lesion inconsistency from subjective differences among radiologists,
and applying unsupervised learning vastly reduce these drawbacks. In the review, un-
supervised learning, typically GAN, achieved notable dice score coefficient comparable
to supervised learning on the public dataset [63]. Overall, we could not identify which
learning method is the best as multiple evaluation criteria such as accuracy and efficiency
must be considered. Specifically, in terms of the dice score coefficient metrics, supervised
learning outperformed the others. However, since unsupervised and semi-supervised have
only been introduced to this field recently and as these methods possess their own clear
advantages, further studies would guarantee their success in stroke lesion segmentation.

4.2.3 Loss function

Loss functions play a critical role in machine learning, as the choice of loss function can
significantly impact the model’s ability to learn and generalize and serve as a primary
measure of how well a model is performing on a given task. Majority of the studies in
the review adopted either dice loss or binary cross entropy loss or addition of both, espe-
cially for CNN based architectures. In addition, we identified growing number of papers
adopting multiple loss functions as their total loss function. For instance, binary cross
entropy loss function performs well on balanced classes where the number of lesion pixels
are roughly equal to the number of non-lesion pixels whereas dice loss function becomes
particularly useful in imbalanced classes with smaller number of lesion pixels. By combin-
ing these two loss functions, one can target wider range of lesions with different shapes
and sizes, particularly competent in stroke lesions well-known for its great variability
in morphology. Furthermore, appropriate selection and application of loss functions to
simultaneously achieve multiple objectives such as segmentation and classification signif-
icantly increased the performance, especially in architectures with multiple consecutive
paths or in GAN. For instance, using voxelwise absolute difference between the generated
and real images (L1-loss), and binary cross entropy loss in the discriminator for classify-
ing these images simultaneously have notably improved the dice coefficient score against
only using L1-loss [60]. Since applying multiple loss functions often lead to overfitting
and reduction of computational efficiency, the choice of loss functions and its number
must be based on the type of segmentation performed, and carefully evaluated through
various validation protocols to ensure optimal performance and generalization.
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4.3 Objective and purpose of this project

This research aims to assist neurosurgeons in improving their way of diagnosing stroke
by creating a helpful tool for delivering accurate yet reliable results by utilizing machine
learning and deep learning techniques. Our objective leads to a clear purpose:

• To create a high-performing stroke lesion segmentation model comparable to the
state-of-the-art method using a deep learning technique

• Use automatically segmented lesions obtained from our segmentation model along-
side the Functional MRI results to predict the recovery of the patients using machine
learning
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5 Stroke lesion segmentation

5.1 ATLAS 2.0 Datset

The selection of proper data is an important milestone in achieving desired performance
and output in deep learning. In the field of stroke segmentation, there is an innate
difficulty in obtaining a large number of datasets due to the high cost of running MRI
trials and hiring neuroradiologists to delineate stroke lesions from the brain, and the need
for a large and robust dataset is highlighted to improve the reliability in segmentation
performance.

ATLAS (Anatomical Tracings of Lesions After Stroke) v2.0, an updated version from
the previous v1.2, is a set of publicly available 655 T1w MRI images obtained from 44
different research cohorts worldwide and harmonized by the ENIGMA Stroke Recovery
working group. The anonymizing procedure of removing the facial images and intensity
standardization step has been performed as part of normalization scheme. For our study,
we selected ATLAS v2.0 following:

• The quality and size of the dataset, as currently, no dataset exceeds 250 stroke
images,

• The robustness and reliability endorsed by the accredited institution,

• And finally, the possibility of interaction with other users for feedback and compar-
ing the performance of the model as well as room for transfer learning

5.2 Methodology

For creating a deep learning model, we utilized Tensorflow and Pytorch interchangeably
and project MONAI, a website containing built-in deep learning layer for users, was used
for Pytorch models when building complex blocks such as transformers.

For training and testing of the models, we used high performing computer (HPC) pro-
vided by the University of Auckland and Tmux software for training the models in the
background without the need to keep the computer on.

5.3 Preprocessing

Preprocessing of images before running a model is a critical and necessary step in com-
puter vision tasks. Its primary purpose is to increase the quality of the images and reduce
any artifacts present. In segmentation tasks for medical imaging including stroke lesion
segmentation, common methods include co-registration, intensity normalization, skull

22



stripping, bias field correction and manual correction by specialists. For our dataset, few
of the preprocessing techniques have been applied to all our images including both train-
ing and testing images to enhance the segmentation results. The protocol to preprocessing
our dataset is as follows:

• Intensity Normalization: Intensity normalization is a common technique in the
context of medical image processing. It is used to standardize the pixel or voxel
intensities within an image to ensure the intensity values across different images or
modalities remain consistent [67]. For our dataset, z-score normalization technique
is applied, a widely used method in preprocessing medical images that subtracts
the mean from each intensity value and divide them by the standard deviation in
which the intensities are rescaled to have a mean of 0 and a standard deviation of
1 [68]. The equation is as follows:

Z =
X − µ

σ

Where Z is the normalized intensity, X is the original intensity value, µ and σ are
the mean intensity value of the image and its standard deviation respectively.

• Skull-stripping: It is also known as brain extraction or skull-stripped brain seg-
mentation which involves the removal of non-brain structures such as the skull,
scalp, and other extracranial tissues isolating only the brain and relevant intracra-
nial structures of interest. This process is crucial for reducing any artifacts and
overfitting during training. Our images have been processed using BET extraction
provided by FSL software, kept at 0.5 intensity scale to keep the extraction qual-
ity consistent across the entire dataset. Through skull stripping, we were able to
achieve dice score in the range of 0.021 to 0.044 higher than the non-skull-stripped
images depending on the deep learning model used.

(a) Original (b) Skull-stripped

Figure 5: Before and After Skull-stripping has been performed
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• Bias correction: Bias correction is a process to remove intensity inhomogeneities
or so-called bias present in medical imaging data, particularly magnetic resonance
imaging (MRI) scans. These intensity variations caused by imperfections can lead to
inaccuracies in segmentation particularly when delineating stroke lesions. Hence,
quality enhancement is essential, especially in stroke lesion segmentation where
intensity contrast is an important factor in identifying the lesion as most stroke
scans do not appear notably different between the lesion and healthy tissue as
much as other brain scans like brain tumour. N4 bias correction scheme was used
for our dataset based on the concept of iteratively estimating the bias field and
then dividing the image by this field to correct for inhomogeneities [69]. N4ITK
software for ANTs (Advanced Normalization Tools) preprocessing based on Python
was used.

(a) Original (b) N4 Bias corrected

Figure 6: Before and After N4 bias correction has been performed

As observed from the figure above, the contrast of the brain area is notably im-
proved. Given all the images in the training set, the intensity values of the brain
area increased from a mean of 40.75 to 74.10.

• Image Augmentation: Various augmentation techniques such as cropping and
flipping have been applied to the images. NnUnet data augmentation toolkit was
used for our images. Since nnUnet was prominently used in 2D medical image
segmentation, additional stacking was implemented to build a 3D image with a
mask located at the last z-dimension following the convention. As a result, images
were cropped to 128 x 128 x 189 which reduced the computational expense of our
model and since most of our brain size fit between 128 x 128 on the 2D plane, no
data was lost. During the training, the images were expected to rotate 90◦, 180◦

and 270◦ with a single flip.
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5.4 Cross Validation Method

In machine learning tasks including computer vision, cross-validation is an important
technique to ensure that the performance of the model is kept consistent and generalized
[70]. Although a wide range of cross validation schemes are acknowledged, five-fold cross-
validation is recognized as the most common cross-validation method. In general, five-fold
cross-validation splits the entire dataset into 20 percent test set and 80 percent training
set and ran five times, each containing different training sets and test sets. Each trained
versions are then ensembled to give a much more generalized predictive representation of
the entire dataset.

For our dataset, thorough cross-validation was needed as we were dealing with a largest
public dataset ever used in stroke lesion segmentation. However, in most papers that
involve stroke lesion segmentation, the authors simply suggested the usage of five-fold
cross-validation without specifics on how they managed the dataset and each correspond-
ing fold. For instance, our tests showed that training with images under certain lesion
size criteria gave a high variability in the dice score. There was a large difference in
training with only large lesions and tested on the small lesions, and vice versa. The total
number of images (534 for training and 131 for testing) was kept the same throughout.

Criteria Large lesion Small lesion
Dice Score 0.4112 0.7748

Table 1: Differences in test result under biased lesion training

Hence, an idealized cross-validation method suitable for stroke lesion segmentation was
required.

Figure 7: Histogram of ditribution of lesion volume in ATLAS 2.0 dataset
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As notable from the above histogram, lesion volumes are not evenly distributed but more
biased to each ends; lesion volume less than 2000 voxels and larger than 50000 voxels.
Among our 655 images, these take up more than half of our dataset and as small labels
are a well-known cause of overfitting and class-imbalance, an optimal method to evenly
allocate small labels is essential.

A Greedy algorithm is arguably the most popular algorithm in combinatorial optimization
which characterizes local optimum (selections) at each stage in search of a global optimum
[71]. This algorithm has been used to create 5 set of folds each containing 131 images
and almost equal total lesion volume. A brief process of the algorithm is given below

Algorithm 1 Greedy Algorithm for Lesion Volume Distribution

Sort files in descending order based on lesion volumes.
Initialize empty sets and total lesion volumes array.
for each file do

Identify the set with the minimum total lesion volume.
Add the file to the identified set.
Update the total lesion volume for the chosen set.

end for
Create a new DataFrame to represent the distribution.
Save the DataFrame.

Following the algorithm, five set of dataset with almost equal lesion volume has been
created.

Figure 8: A balanced distribution of lesion volumes to five folds

Among the folds, maximum and minimum average lesion volume was 33222.19 and
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33222.08, corresponding to less than 0.005% difference. Next, five fold cross-validation
has been performed internally within each fold. each results have than been ensembled
using a stacking method that stack multiple labels simultaneously to create the best label
[72]. The result of each fold after internal five fold cross-validation is given below.

Fold 1 2 3 4 5
Dice Score 0.5925 0.6089 0.5978 0.6366 0.6247

Table 2: Dice Score for each Fold used as test set

It is shown that fold 4 scored the highest. Hence, all the models created have used fold 4
for testing and the rest for training to ensure the best possible dice score while keeping the
entire dataset evenly distributed in terms of the lesion volume. This is because for ATLAS
2.0 dataset, no seperate testing set can be accessed or evaluated after the competition
ended which is why all the papers use only the training set (655 images) to evaluate the
model performance and validity. In real life cases where a set of stroke images have been
acquired for testing, each fold can be trained and ensembled meaning there will be 25
training in total. This method has been implemented for the dataset in chapter 2.

5.5 Loss function

Loss function, also known as a cost function, is a key component in machine learning
algorithms that quantifies how well a model’s predictions match the actual ground truth
during training. The goal of the training process is to minimize this function or differences
in order to enable more accurate predictions [73]. In computer vision tasks such as object
detection, image analysis, or segmentation, it is inherently better to use loss functions
that have significant classification power for its necessity to delineate and classify different
regions or objects within an image. For our stroke lesion segmentation models, the loss
functions used will be introduced below. Most loss functions have been referenced by the
built-in units from project MONAI or Tensorflow.

• Binary Cross Entropy Loss: Binary cross entropy (BCE) loss is a branch of
cross-entropy loss that quantifies the difference between two probability distribu-
tions; the predicted probabilities and the actual ground truth labels. Specifically,
binary cross entropy outputs the probability between two classes only which in our
case the brain and the lesion, denoted as 0 and 1 respectively. It is most commonly
used in simple Unets and CNN models for stroke lesion segmentation [27]. The
formula is given below:

H(p, q) = − (y · log(p) + (1 − y) · log(1 − p))

where y represents the binary label either 0 or 1, and p represents the predicted
probability.
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• Dice loss Dice loss, also known as dice similarity coefficient. measures the similarity
of overlap between the predicted labels and the ground truth labels. The dice loss
is then denoted as 1 - DSC (Dice score coefficient) to penalize the model harsher
when the similarity between them is low. The equation is given as:

Dice loss = 1 − 1

c

c∑
i=0

∑N
j 2gji ∗ p

j
i + ϵ∑N

j gji +
∑N

j pji + ϵ

where,
g = {0, 1}, p = {0, 1}

or Simply:

Dice Loss = 1 − 2 × (A ∩B)

A ∪B + ϵ

Since it uses spatial overlap to calculate the similarity, dice loss is well-known for
countering the similar imbalance problem called class imbalance where the back-
ground, the brain in this case, takes up much more weight against the lesion es-
pecially when the lesion size is very small. Class imbalance is prevalent in binary
cross-entropy loss models hence why dice loss is preferred in medical imaging models
[41] [58].

• Focal loss: Similar to Dice loss, Focal loss focuses on reducing the class imbalance
between the background and the label [42]. However, Unlike dice loss, focal loss
focuses on emphasizing misleading and hard-to-delineate labels and suppressing
well-identified labels by changing the model weights accordingly, thereby improving
its classification power. Its equation is as follows:

focal loss = − 1

Li

α(1 − g)γ ∗ log p

where,
g = {0, 1}, p = {0, 1}, α = [0, 1]

• Enhanced Weight loss: To address and improve the power of the loss function to
take account of the lesion volume while training, we propose an imbalanced weight
(IW) unit. This is done by dividing the mean lesion volume in the training images
by the maximum lesion volume, shown as:

IW =

∑N
i Li

n ∗ (maxN
i Li)

The enhanced weight loss is therefore shown as:

Enhanced Weight loss = IW ∗ BCE loss + (1 − IW )(focal loss + dice loss)
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As smaller IW represents the larger class imbalance within the training subject,
enhanced weight loss is designed to penalize BCE loss when the class imbalance is
high and simultaneously enhance both focal loss and dice loss. Since class imbalance
was a critical issue for ATLAS 2.0 dataset, improvement in dice score has been
observed.

Figure 9: A figure showing dice score of different loss functions performed using Dense-net

5.6 Metrics and Scales

Metrics are important in the field of machine learning as they provide quantitative mea-
sures to evaluate the performance, accuracy, and effectiveness of models. Metrics used to
represent the performance of my deep learning models are outlined below.

• Dice Score: As introduced in the loss function section, dice score is used to quan-
tify the similarity or overlap between two sets, often applied in the context of image
segmentation or binary classification tasks. It is commonly used to evaluate the
performance of segmentation algorithms where it measures the overlap between the
prediction and the given inputs; in our case, the lesion and the brain. Dice score
has been selected as my primary metric to directly compare with the published
literatures that use the same dataset, ATLAS 2.0.

• Hausdorff distance: It is a measure of the distance between two sets of points in
a metric space. Specifically, it is used in the context of comparing two geometric
shapes or point sets such as computational geometry or 3D images. For stroke lesion
segmentation, the lesion label and its prediction have been compared to evaluate
its matching. The unit used to measure the distance is in mm, converted from the
magnetic resonance image voxels.
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5.7 Deep learning models

5.7.1 LKA-net

Attention mechanism is seen as an adaptive selection process that selects specific features
and automatically reduces noise to the corresponding input features [1]. LKA (Large
Kernel Attention) mechanism follows this general attention mechanism criterion in which
it creates large kernel convolutions as shown in the figure below.

Figure 10: A figure showing Large Kernel Convolution block decomposed into different convo-
lution components; from the left: DW-Conv, DW-D-Conv and a pointwise convolution [1]

As notable from the figure, large kernel convolution can be decomposed into three main
components. A depthwise convolution (Dw-Conv) that captures local contextual infor-
mation, a depthwise dilation convolution (DW-D-Conv) that captures long-range de-
pendency, and finally a 1 x 1 convolution block that provides adaptability to channel
dimensions when used with attention mechanism. When creating a K x K size kernel, it
is made of a k

d
by k

d
DW-D-Conv with dilation rate d, (2d - 1) by (2d - 1) DW-Conv and

a 1 x 1 pointwise convolution. Hence, For a 21 x 21 size large kernel, DW-D-Conv is 7 x
7, Dw-Conv is 5 x 5. The pointwise convolution was always kept to 1 x 1 in size. These
large kernels are then fed through the attention mechanism to create an LKA block for
each channel. The attention mechanism is shown below.

(a) Large Kernel Attention module (b) General Attention mechanism

Figure 11: A diagram showing Large Kernel Attention Module and the referenced attention
mechanism
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Since our stroke MR images are 3 dimensional in shape, the kernels were all given an extra
dimension with equal size. Hence, the kernels used for our studies were, for example, 21
x 21 x 21 size large kernel, 7 x 7 x 7 Dw-D-Conv, 5 x 5 x 5 DW-Conv and 1 x 1 x 1
pointwise convolution. Kernel size for the decoder of the U-net was kept at 3 x 3 x 3
throughout, and both the encoder and the decoder had 5 blocks of channels following the
U-net convention.

(a) large Kernel convolution difference
against dice score at dilation rate of 3

(b) Dilation rate difference against dice
score

Figure 12: A figure showing comparison between each components in LKA

As notable from the figure above, a larger kernel size generally gave a higher dice score
suggesting that the segmentation power was directly proportional to the size of DW-D-
Conv (Dw-Conv was kept constant by keeping the dilation rate at 3). Moreover, figure
b) suggests that reducing the dilation rate, therefore increasing the DW-Conv size, has a
negative effect on the performance of the model.

31



5.7.2 Transformers

Use of transformers in computer vision, especially medical imaging has been brought
to the light recently and as of 2023 it is seen as a state-of-the-art method in achieving
a high-end performance in both object detection and segmentation. Numerous papers
have suggested the use of 4 to 5 blocks of channels both in the encoder and the decoder,
possibly due to a computationally expensive procedure. Here, the performance of the
transformer method has been tested on 6 blocks of channels to make use of our high
performing computers.

Figure 13: A figure of a 6 blocks of channel Vision transformer model

From the diagram, green blocks in the encoder represent a nominal convolutional block
that performs convolutional layer (Conv3D), RELU activaton and batch normalization in
a sequence, followed by maximum pooling (MaxPool3D) shown as a black arrow. In the
decoder side, orange blocks represent a residual convolutional block that operates in a se-
quence of upsampling (transposed convolution) shown as an orange arrow, concatenation
of skip connections shown as blue dotted arrows, convolutional layer, RELU activation
and batch normalization. The vision transformer block is located at the bottleneck posi-
tion to process the entire image as a sequence of patches to effectively capture the global
relationship between each patch.
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Figure 14: A figure of 6 blocks of channel Swin transformer model; red dotted square represents
the boundary of Swin transformer installation

In the case of swin transformer, the position of the transformer block is not located
at the bottleneck but between convolutional blocks in the encoder. This is due to the
hierarchical processing capability of swin transformers as opposed to traditional ViTs.
The performance of the swin transformer model with respect to the location has also
been tested for an ideal location.

Figure 15: A graph showing the performance of transformers in 5 blocks and 6 blocks of channels

The channel number represents the channel block location where the transformers are
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installed. For instance, for a 6-block channel model, swin transformers were installed
between blocks 3 and 4, 4 and 5, and finally 5 and 6. In general, an increment in dice
score was observed as the transformer block was located closer to the bottleneck. In
terms of the ViTs, only a slight change in the dice score was observed by creating a
deeper model.

(a) Vision Transformer (b) Swin Transformer

Figure 16: Changes in dice score and loss throughout training of the two transformers

It is also notable that the vision transformer experienced greater fluctuation in dice
score during training as opposed to swin transformer. Despite the fluctuation, vision
transformer managed to achieve a similar final dice score of above 0.8 to that of swin
transformer.
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5.7.3 Dense-net

This model has been inspired by the semantic segmentation model designed by the Uni-
versity of Auckland PhD candidate Parvez Ahmad and served as part of a collaborative
project in applying semantic segmentation and Dense blocks to the ATLAS dataset and
validate its segmentation performance [74]. Semantic segmentation partitions an image
into multiple segments to assign a class label to each pixel in the image effectively creating
a detailed pixel-level segmentation [75]. Hence, it is effective in segmenting a multi-class
subset of images such as flair, T2 and T1 all obtained from the same patient.

Figure 17: An overview of MH dense Unet suggested by Parvez Ahmad

This network is known for its delicate hierarchical structure where Dense connections
allow deep supervision that fosters smoothing of the gradients flow, and subsequently
decreasing training parameters. To cater to the necessities of the ATLAS dataset, few
changes to this network has been made. Since ATLAS only has one modality which is T1,
the multi-class ensembling block has been removed, improving computational efficiency
further.

After 5-fold cross-validation and ensembling, we achieved a dice score of 0.6201, utilizing
the Enhanced weight loss function

5.8 Diffusion model

As opposed to the common and popular methods such as CNN or Transformers, the
diffusion probabilistic model (DPM) recently gained attention among researchers for its
generative power in deep learning where ground truth is not present [76]. However, recent
studies suggest that diffusion models can also perform meaningful segmentation tasks in
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the computer vision field [77]. This led to research in the medical field, resulting in a
paper by Dr. Junde Ju, the first to perform diffusion-based segmentation on a large-
size medical image dataset such as brain tumour (BRATS) or An open access thyroid
ultrasound image database (DDTI) [2][78] with published papers. Hence, there were no
papers to present date that diffusion models have been used on segmenting stroke lesions
and it is worthwhile to give attention to this newly built state-of-the-art method for the
first time. Moreover, due to his pioneering work, my codes and methods are built upon
the basis of this paper.

Diffusion models are composed of two stages, a forward diffusion stage and a reverse
diffusion stage. In the forward process, the segmentation label x0 Gaussian noise is
gradually added through a series of steps T that creates a fully noised image. In the
reverse process, a neural network is trained to reverse the noising process (denoising) to
recover the original image data. The equation of the diffusion model is as follows:

pθ(x0:T ) = pθ(x0)
T−1∏
t=0

pθ(xt+1|xt) (1)

pθ(x0:T−1|xT ) =
T∏
t=1

pθ(xt−1|xt) (2)

where equation (1) and (2) represent forward and reverse processes respectively, pθ(x0)
is the initial probability of distribution, pθ(xT ) is the latent variable distribution and
Gaussian noise at that state is denoted as N (xT ; 0, In×n) with I as the raw image. To
keep the procedural symmetry between the forward process and the reverse process,
the noise image is recovered step by step along the time series to obtain the final clear
segmentation.

Following the diffusion probabilistic model, the segmentation model is embedded after-
ward to perform a segmentation task that creates a mask onto the tested image. The
step estimation function used for this is given below:

ϵθ(xt, I, t) = D
(
(EI

t + Ex
t , t
)
, t)

where EI
t is the conditional feature embedding that uses the raw image, and Ex

t is the
segmentation map feature embedding. This information is then delivered to a decoder
denoted as D for the reconstruction of both the segmented mask and the original raw
image. The author of the paper used Residual Unet with an arbitrary number of RESNET
layers beginning from 4 where a residual block consisted of two convolutional blocks each
with group-norm and SiLU activation layer for the segmentation encoder, and a simple
Unet for the segmentation decoder [79]. The summarized model is depicted in the figure
below:
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Figure 18: A figure of the diffusion segmentation model suggested by the paper [2]

In addition, we tried to enhance the segmentation power by adding a transformer into
the encoder since the original model consisted of ResNet34 only. The enhanced version
of the segmentation model is given in the figure below:

Figure 19: A figure of the enhanced diffusion segmentation model with transformer encoder and
residual unet decoder with varying number of layers

The transformer encoder is very similar to the model given above, with a sliding window
transformer in the middle layer denoted as T. The decoder has been replaced with the
Residual layers created with project MONAI. The model has been trained with an image
of 192x192x128 cropped to the suitable size and the batch size was kept at 4 to reduce the
computational memory as much as possible. Diffusion steps; a number of time increments
through which the diffusion process evolves, were kept at 1000 following the convention.

Figure 20: From left; Brain sample, Noised brain during sampling, segmented label, binary
label at 0.3 binary point, and binary label at 0.7 binary point

37



Performance of diffusion models
Model combi-
nation

Dice score Hausdorff dis-
tance

Computational
memory usage
(MB)

Original+4
residual layers

0.3735 108.30 44,003

Original+8
residual layers

0.3993 82.99 48,667

Original+12
residual layers

0.4014 89.38 52,221

Swin Trans-
former+4 resid-
ual layers

0.4038 85.55 68,965

Swin Trans-
former+8 resid-
ual layers

0.4171 84.40 77,498

Table 3: Metric and computational efficiency comparison of various diffusion model combina-
tions

In general, diffusion models suffered a lack of segmentation power against other methods
such as transformers or attention mechanisms. Although an increase in the number of
layers and adding transformers did improve the overall dice score, they were not high
enough to compete with the other methods. A stable inverse correlation between the
dice score and the Hausdorff distance was observed.

Figure 21: Performance of diffusion model (red) against swin transformer model (blue)

Although diffusion model performed poorly on most of the images in the dataset, a
comparable dice score was observed near the dice scores close to zero, meaning very small
or no overlap was found. These lesions turned out to be small lesions (lesion volume
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< 500) with high contrast (visible brain holes). From the figure below, we can observe
that the transformer model introduced a few false positives along the z-axis dropping
the overall dice score. Although some noise was spotted, the diffusion model is arguably
performing better in segmenting small lesions with reduced caveats in overfitting.

(a) Ground Truth (b) Diffusion (c) Transformer

Figure 22: Performance of diffusion model against transformer model in small lesion. Top;
Axial-Coronal-plane and bottom; Saggital-axis
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5.9 Enhanced Ensemble Method

Ensembling is a technique of combining multiple individual models to improve overall
predictive performance rather than relying on the output of a single model, providing
diversity in segmentation powers leading to higher accuracy [80].

To further improve the performance of our model, an enhanced ensemble method has
been proposed. The enhanced ensemble method brings the prediction of each model
into one place through ensembling; specifically, by leveraging a stacking generalization
method that overlays predictions to create a large and comprehensive metadata model.
Although ensembling results from the same model are frequently performed on the five-
fold cross-validation, ensembling between different models has been under-studied in the
medical imaging field. Hence, all our proposed models from above have been ensembled
to achieve notable enhancement in the overall performance.

Figure 23: A diagram of Enhanced Ensemble method

The algorithm below ensures that the ensemble model only keeps the dice score higher
than the previous one, and keeps the old value constantly updated every time a new
model is introduced. This is because when overlapping another segmentation on top of
another and by simply increasing the size it is not guaranteed to achieve higher dice score
and can be prone to increasing the Hausdorff distance. Hence, selection of segmentation
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Algorithm 2 Algorithm for Enhanced Ensemble Method

Prepare a list of predictions from an initial model.
for each model do

Stack the current model prediction onto the target model prediction
if Dice score of stacked prediction < previous prediction then

Keep the previous prediction
else

Update to the stacked prediction
end if

end for
Binarize the prediction to remove any artifacts.
Save the list of predictions.

to ensemble was chosen with care as it can introduce false negatives fatal in a medical
field. For instance, diffusion model only performance on high standard for small lesions,
therefore only segemented labels with lesser than 1000 voxels have been considered for
ensemble.

Figure 24: From left; Segmentation of LKA-net, ensembled between LKA-net, dense-net, and
Swin Transformer, and the final ensembled label. Each row represents x, y, and z axis respec-
tively
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Figure 25: Improvement in performance of Enhanced Ensemble method

As depicted in the figure above, the enhanced ensemble method achieved dice score of
0.6414, an increase from our best-performing method of 0.6366. When ensembling the
diffusion model, only small lesion (lesion volume < 500 voxels) labels were ensembled as
significant noise was introduced in larger lesions.
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5.10 Overall performance of models

The performance of all models presented in this thesis has been compiled as below.

Model Dice score Hausdorff distance
Diffusion 0.4171 84.40
LKA-net 0.6031 47.11
Dense-net 0.6213 45.49

Transformer (swin) 0.6366 44.38
Enhanced Ensemble 0.6513 41.64

Table 4: Dice score and Hausdorff distance of suggested models

Overall, Hausdorff distance dropping was proportional to the dice score going up which
is ideal for achieving a compatible high performance model. Enhanced ensemble method
achieved both highest dice score and lowest Hausdorff distance as expected, and presented
as the best performing method regarding this thesis.

5.11 Post-processing

Post-processing of images, a refinement technique that additionally enhances visualiza-
tion after running a model, offers significant advantages like noise reduction, feature
enhancement, and standardization [81]. In medical image processing, we are faced with a
greater challenge such as poor signal-to-noise ratio, low spatial resolution, and indistinct
contrast between the anatomical features [82]. Moreover, changes made must be reliable
and controlled so that it does not compromise the clinical decision-making process, and
provide credibility that artifacts are removed (e.g. motion bias in MRI).

Post-processing techniques used on our images are outlined in chronological order below.

• Thresholding: generally a first technique to perform in image processing that
converts a grayscale image into a binary image. The process sets a threshold value
and subsequently classifies each pixel value in the image based on whether its in-
tensity value is above or below the threshold [83]. Since our images are primarily
in a binary form (0 for the brain and 1 for the lesion), binary thresholding with a
thresholding value of 0.5 has been applied to the images.

• Morphological Operations: Morphology is a large extent of operations that
modify the images based on shapes. Morphological image processing aims to elimi-
nate defects such as inconsistent texture and uneven boundaries, and further main-
tain the structure of the image [84]. Morphological operations are known to be
reliable only on the correlated ordering of pixel values, rather than their numerical
values. Hence, they are focused more on binary images [85]. Erosion and dilation
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are two common methods for this technique. Erosion shrinks (erodes) the bound-
aries of label objects in a binary image where it scans the image with a small kernel
and sets the pixel value to 0 (background) whereas dilation acts in the opposite
way of expanding the boundaries and setting the values to 1. By simultaneously
applying the two techniques, boundary smoothing and broken structure connection
can be achieved.

• Gaussian Smoothing: Gaussian smoothing, also known as Gaussian blur, is a
well-known and traditional technique to suppress and reduce noise [86]. It is per-
formed by the convolution of the image with a Gaussian kernel of standard deviation
σ where the size of the standard deviation determines the level of smoothing. If σ
is high, it will lead to more aggressive smoothing.

• Connected Component Analysis (CCA): Connected component analysis aims
to identify and label connected regions in a binary image. Each region is designated
with a unique label according to its spatial connectedness against nearby pixels; 4
or 8 connectivity depending on the orientation of edges. These labels are then used
to create more distinct boundaries.

• Zero Filling: If the reference segmentation is empty in the prediction, any false
positive predictions are counted as zero, resulting in a Dice score of 1. This prevents
the Dice coefficient from being undefined due to division by zero. Consequently,
the algorithm is placed in the shared rank for this particular test case, region,
and metric. This characteristic can be used to enhance the average rank of the
proposed model and improve its overall accuracy [87]. Hence, all zero components
are converted to 1 removing any false positive predictions.
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(a) Ground Truth

(b) Before Post-processing

(c) After Post-processing

Figure 26: Effect of Post-processing on the prediction

Dice score Hausdorff distance
Before Post-processing 0.6414 41.64

Binary Thresholding ... (1) 0.6414 41.64
(1) + Morphological Operation ... (2) 0.6511 40.70

(2) + Gaussian smoothing ... (3) 0.6513 40.58
(3) + CCA ... (4) 0.6581 36.69
(4) + Zero Filling 0.7221 36.69

Table 5: Dice score and Hausdorff distance after post-processing

5.12 Results on our own dataset

We have then ran a segmentation on the fMRI T1 dataset that will be introduced in
chapter 2. Preprocessing, Enhanced ensemble method and post-processing as outlined in
this chapter have all been utilized. The segmentation results are as shown below.
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(a) preprocessed original image (b) predicted lesion overlayed

Figure 27: Resting state T1 image segmented with enhance ensemble method

(a) preprocessed original image (b) predicted lesion overlayed

Figure 28: Task based T1 image segmented with enhance ensemble method

Although we cannot specify the dice score of these segmentations as we do not have
ground truth labels provided for these images, it is visible that the segmentation model
have performed sufficiently well to create a reliable prediction of infarcted lesions. These
predictions have been used as input to the stroke recovery prediction performed in chapter
2.

5.13 Discussion

From our models, we found that increasing the number of layers both in the encoder
and decoder to create a deeper supervision model increased the dice score, which is an
expected result as deeper layers are able to capture more abstract and high-level features
from the input data that is interpreted as a clear advantage for tasks such stroke lesion
segmentation, as it is notorious for its complex patterns and morphologies. Especially
in terms of the transformer models, the deeper layer scheme holds true and is found to
be more effective when swin transformers rather than vision transformers are installed as
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dice score of swin transformer installed between encoder layers 5 and 6 scored the highest
as observable from figure 15. There is a clear correlation between installing the swin
transformer toward the bottleneck and an increase in dice score. Although learning from
hierarchical features at the earlier stage may help capture the diverse characteristics of
stroke lesions such as morphology and shape, having a transformer at the deeper layer will
increase its capacity to capture long-range dependencies and global context information
that becomes particularly useful when the lesion span across the multiple regions of the
brain [88]. Since stroke lesions are found anywhere in the brain with large variance in size
and morphology, it could explain why deeper layer transformers perform better in stroke
lesion segmentation. In terms of the vision transformers, there is no change between the 5
layer and the 6 layer models implying either the model has reached sufficient capability to
effectively capture abnormalities in the image or overfitting may have occurred as deeper
layers are prone to overfitting due to increased number of parameters to learn complexity
in the image [89].

In terms of the diffusion model, several factors that led to the lack of segmentation per-
formance were identified. Firstly, stroke lesions showed a much greater variability not
only in size and morphology but also in contrast intensity against the healthy brain.
The dataset used to achieve state-of-the-art performance such as BRATS clearly showed
higher contrast between the lesion and the healthy brain under the same modality which
was crucial for the segmentation model to detect abnormalities after removing Gaussian
noises. Since its performance was poor even after our contrast enhancement preprocessing
method such as bias correction was implemented, methods to enhance the contrast like
manually increasing the contrast of the lesions specifically rather than the entire image,
or advanced contrast techniques such as contrast-enhanced imaging that uses contrast
agents., or perfusion imaging that assesses blood flow dynamics could be considered [90].
Another factor was in capturing spatial information. Inherently, the diffusion segmen-
tation can only be applied to 2D images due to the noise generation which forced the
MR images to be sliced along sagittal axis and perform segmentation on each of the
axial brain images. Hence, the spatial information that assists in capturing complex
structures and patterns within the volume has been depreciated leading to a significant
decrease in its ability to effectively delineate structures that extend across multiple slices
or exhibit complex spatial configurations. Moreover, this explains why the transformer
on the segmentation model did not increase the segmentation power significantly unlike
observed in 3D images. Although transformers are well-known for decreasing long-range
dependency by capturing global contextual information utilizing its large receptive field,
it appears particularly effective when convoluted in a 3-dimensional image meaning that
the segmentation power is not as strong in 2-dimensional image segmentation, specific to
our case.

Our proposed loss function; Enhanced weight loss, shows improvement in segmentation for
ATLAS dataset. This is not only because of incorporating widely used loss functions such
as dice, BCE and Focal but also because of the strength in our imbalanced weight unit.
The need for this unit was raised initially as stroke lesions possess inherent variability in
morphology, shape and size unlike other medical images such as brain tumours. Hence, a
loss function suitable for training wider ranges of lesion size was required. The enhanced
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loss function clearly acted as a channel to reduce class imbalance as focal loss and dice
loss were given higher weight when the class imbalance was high in the training set,
calculated from the imbalance weight unit. Vice versa, when the class imbalance is small,
BCE loss was given higher weighting to promote faster convergence and avoid overfitting.
Since class imbalance is large for small lesions that are less than 1000 voxels, Enhanced
weight loss proposes a viable method for training small lesions with higher accuracy.

Our cross-validation method was a clear suggestion to train models with equal variance in
lesion sizes, which helps to increase the segmentation accuracy when encountered with a
new image to test, which will be a common case when introduced in real clinical situations.
It also has advantages in validating and comparing the results of published literature as
we do not know how the training set was created and the chance of bias is present, but
using a training set from our cross-validation method assures the result from the trained
model is bias-free.

Cost, more specifically computational expenditure was a major issue for our models. This
was because our main image modality, MRI, is a highly resolution-heavy method with
a 3-dimensional structure, consuming a large amount of computational memory. There
were several reasons behind the increased consumption of computational memory such
as the large image size (233 x 197 x 189) or the ambiguity of stroke lesion labels, the
deeper layer model was found to be the main contributor. This issue was prevalent when
constructing our deep-learning models that share the application of U-nets where the
images are convoluted and pooled multiple times going deeper towards the bottleneck, and
generally, a higher number of convolutional layers led to a higher number of parameters to
learn that increased the computational cost significantly. This could be observed in our
transformer models as creating a deeper layer caused the computational memory usage to
rise significantly, possibly due to the quadratic nature of attention mechanisms in which
each token interacts with all other tokens in the sequence, resulting in a substantial
memory and computation overhead [91].

Use of the transformer itself also had a great impact on heavy memory usage. In our
diffusion model, installation of Swin transformer in the segmentation encoder roughly in-
creased the computational usage by 55 percent whereas the deeper layer only contributed
to 10 percent increase. One of the reasons behind this would be that the diffusion models
were sampled at 2D slices individually unlike our transformer models that perform seg-
mentation from the 3D image directly, so the impact of adding a self-attention mechanism
innnate to the Swin transformer to the model will be more critical than having additional
convolutional layers, as convoluting with 2D images will introduce lesser parameters than
in 3D. Therefore, to reduce memory usage, we imported the residual layers on the decoder
side to both models to compensate for the heavy memory usage on the encoder side.

Time complexity which is a measure of time consumed for executing algorithms as a
function of inputs rather than measured against the memory consumption was another
outstanding limitation for our project. For instance, N4ITK bias correction took more
than a month to process all our images for training due to its availability in CPU only.
The diffusion model also suffered greatly as training up to 1000 epochs took 23 days and
more than a week to sample the test images to produce the segmentation as sampling
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had to be performed on each of the 2D slices. Although not as extreme as the diffusion
model, all our models took at least 3 days to train up to 1000 epochs. Due to this
time complexity, there was a huge time gap between modifying the code and viewing the
results which slowed down the improvement and iteration process. Utilizing parallelized
training can be a solution to this, where the training data can be split and slotted into
multiple memories. Unfortunately, the university policy limits the usage of only 2 GPUs
at a time but should we gain access to parallel training, the time taken to train our
model will be significantly decreased. Reducing the size of our input data could also
be a good approach. For instance, rather than using 128 x 128 x 128 image as of now,
we can reduce the size of the window to 64 x 64 x 64 for images with a lesion size
of less than that. This will definitely reduce both time consumption and computational
expense but its segmentation performance must be comparable to the segmentation result
of the 128 x 128 x 128 image. Although Only a few studies included time complexity
metrics in their results and were often overlooked when implemented on segmentation
tasks with complex domains with intricate regions, we believe that including these metrics
as part of the evaluation parameters would increase the quality of performance assessment.
Reducing time consumption for software system is crucial for its success, and medical
lesion segmentation techniques must also aim to decrease the time spent for execution
for its success in the commercial field.

Despite its necessity to remove false positive predictions, some concerns have been raised
about the credibility in zero filling post-processing technique. Firstly, only the results us-
ing NNunet have utilized this method and therefore it is not a universal technique adopted
by many methods [87]. There was no paper involving this post-processing method regard-
ing stroke lesion segmentation introduced in the literature review. Practically, converting
zero values to 1 will clearly reduce the reliability of the overall dice score as it is the
only factor that changed; no physical changes to the segmented lesion have been made
which corresponds to no change in Hausdorff distance after zero filling. Our zero filled
value of 0.7221 in fact shows higher dice score than the current state-of-the-art method
for ATLAS 2.0 of 0.7098 whereas the dice score with the actual post-processed lesion is
only 0.6581. It is hence very difficult to propose with credibility that this is the dice score
we get, and should consider using zero filling after further studies have been performed.
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6 Functional MRI

6.0.1 Methodology

Functional MRI analysis is performed using multiple softwares such as SPM12 (Statis-
tical parametric mapping) fMRI toolkit, FSL and CONN toolbox, all in most recent
versions. Specifically, FSL and SPM have been vastly used for preprocessing of fMRI im-
ages whereas CONN has been used for first (individual) and second (group) level analysis
of functional MRI. While using CONN toolbox, the approach to fMRI analysis varies be-
tween two conditions, resting state or task-based, suitable for unique conditions required
for each of them.

6.1 Resting state fMRI

Resting state fMRI is a method of functional imaging to investigate neural connectivity
between brain regions of interest. As the name ’resting state’ represent, a patient is put
under an undisturbed state without any explicit form of testing. The absence of task
makes resting state fMRI a powerful tool for evaluating brain connectivity in patients
who cannot complete motor-related or cognitive tasks [92].

We used a dataset of 25 patients from our collaborators from University of Leuven,
Belgium. These patients developed upper limb sensorimotor impairments afer stroke, re-
cruited from the University Hospital Leuven and the University Hospital St-Luc Brussels.
Both T1w images and fMRI were obtained between 5 to 9 days after the stroke onset.

Since in-house fMRI data from our collaborators is in a raw form, sufficient preprocessing
to both Anatomical and functional images had to be applied for a reliable analysis. Hence,
preprocessing step was required to reduce the effect of various artifacts that can poten-
tially compromise the interpretation during functional MRI fluctuations such as physi-
ological or motional instances, and to achieve a higher signal-to-noise ratio. Moreover,
preprocessing provides better correspondence between the brains of different subjects so
that the analysis reliability is increased for the entire dataset.

6.1.1 Preprocessing

The preprocessing protocol for resting-state functional MRI is given below:

• Slice timing correction: An initial and essential step of pre-processing of resting-
state images, as it is based on correlations between time series of different voxels, and
existing noise or artifacts can disrupt the correlation between each voxel resulting
in a faulty analysis [93]. A signal phase is adjusted to address temporal sampling
discrepancies within dynamic causal modeling. The prediction is then calculated by
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incorporating model parameters and the corresponding sampling time series [94].
Our images have been corrected with 4800 ms repetition time (TR) as suggested
by the acquisition protocol using SPM12 slice-timing correction (STC) procedure.

• Spatial alignment: The spatial alignment also known as motion correction aims
to remove movement artifacts by registering functional MRI images to a reference
image (first scan of the first session). This is done by estimating the derivatives
of the deformation field related to head motion and resampling the functional data
with respect to the deformation field of the reference image. Our images have been
processed using SPM12 realign&unwarp procedure under Susceptibility Distortion
Correction (SDC) scheme where the absolute deformation state of the reference
image is corrected along the phase-encoded direction [95]. The figure below depicts
a head motion in terms of translation and rotation of a resliced and aligned image.
By convention, it is recommended to remove any runs that moved more than a size
of 1 voxel which in our case is 1 mm or if there is a sudden spike of more than
half a voxel size which is 0.5 mm. Only subjects that fall under these criteria have
proceeded to the next stage.

Figure 29: Translation and rotation of the patient during spatial alignment

• Coregistration: Both functional and anatomical images for the subject are over-
laid to maximize the mutual information, since the heads may be moved in different
manner in the acquisition of anatomical and functional images. The mean functional
image is then coregistered to high resolution anatomical image, and corresponding
functional images are resegmented to align with the reference image from spatial
alignment. SPM12 Coregistration procedure is used for our dataset.
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Figure 30: Functional (left); and Anatomical (right) images after coregistration

• Normalization: Here, both functional and anatomical images are aligned and spa-
tially registered to a standard space to decrease variability between subjects. The
most commonly used reference templates are Talairach brain and Montreal Neuro-
logical Institute (MNI) [96]. For our dataset, we used MNI 152 1mm template for
anatomical images and MNI 152 2mm template for functional images. These have
been re-normalized to MNI 152 1mm overall afterward through estimate&reslice
procedure to [180, 216, 180] template size with 1mm voxel spacing; [-90 -126 -72;90
90 108] coordinate-wise. SPM12 Normalization procedure is used.

Figure 31: MNI template (yellow) overlayed onto the functional image

• Smoothing: Smoothing is a process of removing high-frequency information to
increase the BOLD signal-to-noise ratio. Spatial convolution is utilized with a
Gaussian kernel of 2mm full-width half maximum (FWHM) to the original image
that replaces the intensity of each voxel by a weighted average of the neighbor
voxels; reducing residual variability [97]. For our analysis, FWHM of 2mm has
been used following the convention that the kernel must be equal to or less than
twice the size of the voxel. SPM12 Smoothing procedure has been used.
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(a) Before smoothing (b) After Smoothing

Figure 32: Before (fig 4a) and After (fig 4b) smoothing has been performed

• Denoising: Denoising is a process used to remove or reduce various sources of noise
and artifacts allowing for a cleaner and more accurate representation of brain activ-
ity. CONN toolbox combines linear regression and temporal band pass filtering to
tackle this issue. For linear regression, factors are identified as potential confound-
ing effects to the estimated BOLD signal are estimated and removed separately
for each voxel and for each subject and functional run/session. Next, temporal
frequencies below 0.008 Hz and above 0.09 Hz are filtered out from the BOLD
signal, emphasizing slow-frequency fluctuations while simultaneously reducing the
impact of noise sources such as physiological signals or head motion. Discrete cosine
transform windowing operation is used to minimize edge-related artifacts [98].

Figure 33: Effect of denoising in functional connectivity variability

6.1.2 Seed-Based Connectivity maps

The selected subjects have then gone through BOLD signal analysis for functional connec-
tivity analysis. CONN toolkit for resting state fMRI analysis exploits SBC (Seed-based
connectivity) measures to construct a functional connectivity map to characterize the
connectivity patterns with a pre-defined seed or ROI (Region of Interest). Such type of
analysis is used when we are interested in a few or individual subjects.
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The SBC maps represent the intensity of functional connectivity between the seeded ROI
and every other voxel in the brain. It is computed as the Fisher-transformed bivariate
correlation coefficients between an ROI and each other voxel both measured in terms of
BOLD time series. The equation is as follows:

r(x) =

∫
S(x, t)R(t) dt(∫

R2(t) dt
∫
S2(x, t) dt

)1/2
Z(x) = tanh−1(r(x))

where S is the BOLD time series at each voxel processed to zero mean, R is the measure of
average BOLD time series of specific an ROI, r is the spatial map of Pearson correlation
coefficients (PCC), and Z is the SBC map of Fisher-transformed correlation coefficients for
the chosen ROI. The connectivity pattern with an individual seed falls under the same
area, indirectly signifying the level of homogeneity within this region. It also directly
measures inter-regional connectivity strength.

(a) PCC (b) LPC

Figure 34: BOLD distribution of SBC maps in posterior cingulate cortex (left), and lateral
parietal cortex (right)

Utilizing our knowledge of SBC, Seed-to-voxel based analysis was performed. We selected
regions related to the primary motor cortex and the sensorimotor cortex; precentral gyrus,
postcentral gyrus and lateral sensorimotor network as our seeded ROI under the assump-
tion that the level of activation of these motor cortex would affect the recovery outcome
of the stroke patients. The ROIs were defined from Harvard-Oxford atlas, a probabilistic
atlas divided into 96 cortical and 21 subcortical structural areas, and independent compo-
nent analysed brain networks derived from human connectome project (HCP). The voxel
of interest was represented as the greatest connectivity value inside the largest cluster of
voxels. This cluster uses inference based on Gaussian Random Field theory to obtain a
statistical parametric map of T-values estimated using a General Linear Model [99].
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Figure 35: The cluster generated from statistical analysis in the left precentral gyrus, red
showing positive and blue showing negative connectivity: beta = 0.65, T-value = 6.25, p-one-
sided = 0.00003 (left); The QA montage of subjects selected for SBC second level analysis in
the left precentral gyrus (right)

The single voxel of coordinate [-54, +02, +26] was selected for giving the highest T-value.
The connectivity values at the single voxel were collected for each ROI.

Figure 36: Box plot of effect size (T-value) from arbitrary subject (left); and connectivity value
of the corresponding subject (right)

6.1.3 ROI-to-ROI Connectivity matrices

ROI-to-ROI connectivity metrics measure the connectivity between two or more ROIs
from a set of brain regions. These metrics follow identical orientation and properties as
the SBC measures but prevent the SBC asymmetry between seeds (ROIs) and targets
(voxels). It is widely used when we are interested in the entire networks of connections.
The equation is:
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r(i, j) =

∫
Ri(t)Rj(t) dt(∫

R2
i (t) dt

∫
R2

j (t) dt
) 1

2

Z(i, j) = tanh−1(r(i, j))

where R is the BOLD time-series within each ROI, r is a matrix of correlation coefficients,
and Z is the matrix of Fisher-transformed correlation coefficients.

Functional connectivity measure of each region is obtained from CONN toolkit first level
analysis. Following the second-level analysis, ROI to ROI (region of interest to region
of interest) analysis can be drawn from the functional connectivity network matrix dis-
play where the functional connectivity between each cluster, a bundle of or individual
functional brain regions, is visualized in a circular ring. According to the T-value, the re-
gions of interest have been identified. We selected the four highest T-value connectivities;
between precuneus cortex and posterior cingulate cortex, between contralesional intra-
parietal sulcus (IPS), and finally between each ipsilesional IPS and supramargianl gyrus
(SMG). The regions identified from the seed-to-voxel analysis have also been selected for
comparison.

Figure 37: ROI to ROI Connectivity matrix showing relationship between 132 pre-defined ROIs
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Figure 38: Effect size (T-value) against all ROIs

In addition, to analyse the difference between the ipsilesional and contralesional con-
nectivity measures, all lesions have been transferred to the right side of the brain, and
corresponding functional MRI images have been processed to match the changes accord-
ingly.

57



6.2 Task based fMRI

Unlike resting-state fMRI which measures spontaneous fluctuations in brain activity dur-
ing rest, task-based functional MRI is used to investigate brain activity associated with
specific cognitive tasks or experimental stimuli which is performed by presenting partici-
pants with structured tasks while measuring changes in BOLD signals in the brain [100].
Specifically, a large series of images is acquired rapidly with changes in brain activity
between two or more pre-defined tasks, and by correlating the signal time course in each
voxel of the slices with the known time course of the task, it is possible to identify the
voxels that show significant changes associated with the brain function in which we are
interested [101].

As task-based fMRI requires specific tasks to be performed, its logical and sophisticated
task design is crucial in delivering the desired analysis. We obtained 12 images from
different patients taken from the Auckland hospital and distributed by the research group
at the University of Auckland. The set of processes entitled to hand-grip tasks is outlined
below:

1. Have the patient lie down on the MRI (Siemens 1.5T)

2. place a dynamometer on each hand and secure the affected hand with a bandage

3. Zero the system and set the maximum for the affected hand by asking the patient
to produce maximum grip force and hold while it is recorded.

4. Begin recording the MRI and the patient is asked to perform a four-phase task for
each trial

• Plus Only: The resting state before the trial begins with relaxed hands

• Target: The patient grips the dynamometer with the affected hand to turn
the arrow on the screen to green. The arrow turns red when gripped with the
unaffected hand which immediately skips to the relaxation phase

• Hold: The phase of applying the grip for a few seconds until the instructor
says to let go

• Relax: Relaxation phase of removing force from the hands to get ready for
the next trial

5. Consecutively repeat the trial 45 times

These data were then preprocessed following the same steps as discussed in the resting
state fMRI section. In the CONN toolbox, the test conditions were constructed regarding
the four tasks for each subject unlike the resting state fMRI in which no test conditions
were outlined.
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Figure 39: Test condition of tasks represented by each row. From the top; Hold, Plus only,
Relax and Target

6.2.1 Generalized Psycho-Physiological Interaction matrices

Generalized psycho-physiological interaction, also known as gPPI, measures the level of
task-regulated connectivity between two ROIs, such as changes in functional association
strength that vary with the external factors. gPPI is computed using a separate multi-
ple regression model for each target ROI timeseries. The predictors of each model are
represented by several classes:

• All of the task strengths convolved with a canonical hemodynamic response func-
tion. This is a major psychological factor in interaction terminology

• BOLD time series of each seeded ROI which is a major physiological factor

• The product of the two factors that provides generalized combination of the psycho-
physiological factors.

As a result, these models are represented by the regression coefficients that define the
interaction terms described above.

Rj(t) =

(
β(i, j) +

∑
k

γk(i, j)h∗
k(t)

)
Ri(t) +

∑
k

αk(i, j)h∗
k(t) + ϵij(t)

h∗
k(t) = hk(t) ∗ f(t)

αk(i, j), β(i, j), γk(i, j)|min

∫
ϵ2ij(t) dt

where R is the BOLD time series at each ROI, h is the task time series convolved with
a canonical hemodynamic response function f. Gamma represents the gPPI matrix of
regression coefficients for each condition, estimated simultaneously with alpha and beta
parameters using an Ordinary Least Squares (OLS) solution to the linear model described
above.
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Since gPPI is a more data-driven approach that does not rely on pre-defined ROIs much
like conventional ROI to ROI analysis in resting state fMRI, it is effective in examining
task-modulated connectivity across the whole brain to allow for a comprehensive explo-
ration of connectivity patterns. Following this aspect, graph theory analysis was utilized.

(a) Hold (b) Plus Only

(c) Relax (d) Target

Figure 40: Graph theory analysis displays on the entire dataset, nodes represented as red dots
and edges as grey lines: correlation coefficient < 0.05, one-side test positive direction

The ROI of the largest T-value was selected for each task and the centrality information
was recorded. Betweenness centrality identifies nodes that serve as bridges or intermedi-
aries, closeness centrality identifies nodes with short average distances to all other nodes,
and finally, eigenvector centrality that identify nodes that are connected to other im-
portant nodes in the network. All three centralities have been selected as a feature for
prediction modeling.
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6.3 Prediction model

In creating a prediction machine learning model, random forest (RF) and support vector
machines (SVM) have been used. Random forest is a widely used ensemble learning
method for classification and regression and uses decision tree based algorithms [102].
It is composed of multiple decision tree that repeatedly partition the feature space into
smaller regions and thus make predictions based on the average value for each region.
It has been widely adopted in detecting ischemic stroke lesions using neuroimaging data
and estimating the outcome [103]. Although SVM is also involved in classification and
regression tasks much like random forest, it is particularly effective in handling both linear
and non-linear classification tasks by mapping the input into high-dimensional spaces to
find the optimal hyperplane that separates data into two or more classes [104]. Both RF
and SVM have been chosen for our classification for their robustness and flexibility.

Figure 41: Diagram of random forest (left); and support vector machines (right)

For predicting the recovery of the patient, action research arm test (ARAT) score has been
used with the first recording taken a week after the stroke onset referred to as baseline and
the second recording taken 6 months later. ARAT is a test that measures the patient’s
capabilities to grasp, reach, release and manipulate objects faced during daily activities
[105]. The test comprises 19 items scored on a grading system from 0 to 3 where score of 3
suggests the patient can perform instructed action with normal movement. Hence, a total
of 57 points indicate a sufficient recovery of the affected limb regarding movement control
with less than 50 points indicating the presence of notable motor impairment [106]. The
ARAT score is well-known for quantifying the degree of upper-extremity control for its
strong psychometric properties such as change in sensitivity of people with stroke [107].
It is also widely recognized as a reliable measurement in upper-extremity rehabilitation
[108]. The ARAT score was divided into mild (class 2; score above 41), moderate (class
1; score between 41 and 21) and severe (class 0; score below 21) [109]

To boost and compare the prediction outcomes, we used the results we collected as much
data as possible and separated them into three parts.

• Structural MRI data: The prediction results collected from structural T1 MRI
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data using segmentation from chapter 1.

– lesion volume: lesion volume calculated in voxels

– Lesion overlap: an overlap between the predicted lesion and the brain regions
of interest;precentral gyrus and postcentral gyrus. Calculated as dice score
(percentage) of overlap.

• Functional MRI data: functional connectivity intensity data through various
connectivity measurements.

– Seed-to-voxel based values: brain regions related to primary motor cortex;
precentral gyrus, postcentral gyrus and sensorimotor cortex.

– ROI to ROI connectivity: Selected regions with high T-values; IPS, PCC,
aSMG and the primary motor cortex regions.

– Graph theory results: specific to task fMRI with centrality values; between-
ness, closeness and Eigen.

• Clinical data: Clinical data collected throughout the fMRI tests

– Generic demographics: Age of stroke onset, gender, hand dominance, lat-
eralization (location of stroke lesion left or right) and type of stroke (ischemic
or hemorrhagic)

– Adult assisting hand assessment (Ad-AHA): a Rasch based performance
scale that measures the effectivity of the affected hand while performing biman-
ual tasks with varying scores between 0 to 100 with a score of 100 indicating
high bimanual ability under normal patterns [110]. This has been acquired 6
months after the stroke onset

– ABILHAND questionnaire: scores are judged by the patient on the scale
of 0 point (impossible), 1 point (diffcult), and 2 point (easy), and these raw
scores are converted to logit-scores to capture any clinically distinguishable
differences [111]. This has been acquired 6 months after the stroke onset

6.3.1 Metrics

Metrics for measuring the performance of the prediction model are as follows:

• Accuracy: Measures the proportion of correctly classified instances out of the
total instances in the dataset and calculated as the ratio of the number of correct
predictions to the total number of predictions. It is worthwhile to note that the
accuracy parameter may not be suitable for imbalanced datasets where one class
dominates the others [112].

• Precision: Measures the proportion of true positive predictions out of all instances
predicted as positive by the model and is mainly used for quantifying the model’s
ability to avoid false positives. Precision is particularly important in cases where
the cost of false positives is high.
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• Recall: Also known as sensitivity or true positive rate and measures the proportion
of true positive predictions out of all actual positive instances in the dataset. It
quantifies the model’s ability to minimize false negatives and is usually assessed
alongside precision under scenarios where the balance between false positives and
false negatives is critical such as classification tasks [113].

• F1-Score: A harmonic mean of precision and recall that provides a single metric
that balances both precision and recall. It is particularly useful when we want
to compare the performance of different models or in cases where an uneven class
distribution is present.

6.3.2 Resting state fMRI results

6.3.2.1 Contralesional vs Ipsilesional

We used the ROI to ROI connectivity values on the primary motor cortex to study the
contralesional and ipsilesional contributions to ARAT score recovery prediction. Both
RF and SVM models were performed with 0.4 test to train split ratio with a linear kernel
used for SVM model.

Figure 42: Feature importance diagram of random forest (left); and support vector machines
(right) of the primary motor cortex and sensorimotor cortex

The red bar plots represent the ipsilesional contributions to prediction and the blue bar
plots represent the contralesional contributions. From both the RF and SVM analysis, it
shows that the connectivity between the precentral gyrus and postcentral gyrus on the
left side scored the highest.
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Model Class Accuracy Precision Recall F1-Score
Random Forest 0 0.67 0.33 0.50 0.40
Random Forest 1 0.67 0.00 0.00 0.00
Random Forest 2 0.67 0.83 0.83 0.83

Support Vector Machine 0 0.56 0.33 1.00 0.50
Support Vector Machine 1 0.56 0.00 0.00 0.00
Support Vector Machine 2 0.56 1.00 0.50 0.67

Table 6: RF and SVM results in predicting with primary motor cortex and sensorimotor cortex
connectivity values

It is to note that for both models class 1 (moderate) showed zero values throughout all
metrics meaning no prediction has been made.

6.3.2.2 Overall outcome

(a) Structural MRI data (b) Clinical data

(c) Functional MRI data (ROI) (d) Functional MRI data (SBC)

Figure 43: Feature importance analysis using Random forest on structural MRI data, functional
MRI (ROI and SBC) data and clinical data

From the figure above, we selected the highest contributors from each dataset. Lesion
volume, IPS (L-R), left postcentral gyrus and ABILHAND at 6 months have been chosen
from structural MRI, functional MRI (ROI), functional MRI (SBC) and clinical datasets
respectively as a primary feature in predicting the recovery after stroke, especially for the
SVM analysis.
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Accuracy Precision Recall F1-Score
Structural 0.67 0.53 0.67 0.59

Functional (ROI) 0.56 0.74 0.56 0.56
Functional (SBC) 0.56 0.42 0.56 0.48

Functional (combined) 0.67 0.50 0.67 0.57
Clinical 0.89 0.79 0.89 0.84

Structural + Clinical 1.00 1.00 1.00 1.00
Functional + Clinical 0.78 0.78 0.78 0.75

Structural + Functional + Clinical 0.78 0.72 0.78 0.72

Table 7: RF results of various combinations showing performance of each

Accuracy Precision Recall F1-Score
Structural 0.67 0.44 0.67 0.53

Functional (ROI) 0.67 0.44 0.67 0.53
Functional (SBC) 0.67 0.44 0.67 0.53

Functional (combined) 0.67 0.44 0.67 0.53
Clinical 0.78 0.83 0.78 0.79

Structural + Clinical 0.78 0.70 0.78 0.73
Functional + Clinical 0.56 0.72 0.56 0.61

Structural + Functional + Clinical 0.78 0.83 0.78 0.79

Table 8: SVM results of various combinations showing performance of each

To note that for both SVM and RF analysis, the combination of structural and clinical
scored the highest.

6.3.3 Task based fMRI results

Figure 44: Feature importance of the centrality values obtained from the graph theory analysis

65



Upon obtaining the accurate centrality values for each task, we chose the highest T-
value region to extract these values; Hold = right central opercular cortex, Plusonly
= right cerebellum, Relax and Target = left lateral sensorimotor cortex. The highest
feature importance for the closeness centrality at Hold position has been observed and
subsequently used for primary feature in SVM analysis. The RF and SVM analysis has
been performed keeping the same setup as resting state analysis.

Accuracy Precision Recall F1-Score
Structural 0.60 0.60 1.00 0.75
Functional 0.60 0.60 1.00 0.75

Clinical 0.60 0.60 1.00 0.75
Structural + Clinical 0.80 0.80 1.00 1.00
Functional + Clinical 0.60 0.60 1.00 0.75

Structural + Functional + Clinical 0.60 0.60 0.78 0.79

Table 9: RF and SVM results of various combinations showing performance of each for task
fMRI data

In addition to RF and SVM, we performed principal component analysis (PCA) to reduce
the dimensionality. we found that only the combination of structural and clinical results
increased the accuracy similar to the findings in resting state analysis.

6.4 Discussion

From the resting state analysis in table 5 and 6, a combination of data rather than singular
data showed higher accuracy for both RF and SVM. This could mean that combining
the two types of information provides complementary information that allows the model
to capture a broader range of factors that influence stroke recovery, or a possibility of
creating a more robust model compared to using singular data. Hence, this indicates
that considering multiple aspects of stroke pathology and patient characteristics leads to
better predictions of recovery. For both tables, Clinical data scored the highest even on
singular data, and this could be majorly influenced by the ABILHAND score as indicated
by the feature importance analysis. This strong relationship could be derived from both
taking measurements of physical motor function although ABILHAND focuses on the
overall capacity to use the hands in functional tasks required for daily living whereas
ARAT focuses on motor control and coordination of the upper extremities [105] [111].
Since ABILHAND provides a wider assessment of manual motor function, it is intuitive to
suggest that it creates a firm complement with the ARAT score boosting the prediction.

From both resting-state and task-based analysis, the highest accuracy was observed in a
combination of structural and clinical data. This is notable because the lesion volume was
previously found to be a less reliable predictor of stroke recovery as the lesion location
and the amount of damage of parts of hand movement as opposed to lesion volume itself
was considered to be a more dependent parameter assessed with structural imaging [114].
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However, from our feature importance analysis, lesion volume had a higher influence in
prediction compared to the lesion location evaluated by the overlap between the lesion
and the components of the primary motor cortex and sensorimotor cortex. This directly
challenges the idea that the lesion located near the motor cortex would influence the
motor impairment at the upper extremities more than the size of the lesion. Although
arguments such as the use of a small dataset can be raised, cautious proposal of the
strength of lesion volume in predicting ARAT score after 6 months can be made.

The analysis for comparing between contralesional and ipsilesional connectivity showed
an uncorrelated manner although ipsilesional precentral-postcentral gyrus connectivity
depicted the largest influence in ARAT prediction for both RF and SVM analysis. This
is intuitive as direct damage to a brain may disrupt the functional connectivity between
the affected lesion and the other networks and will be more severe if the area is associated
with motor function or other cognitive domains. Hence, the degree of damage at the
primary cortex on the same side of the lesion will be directly proportional to the severity
of the motor impairment shown by ARAT score. To note, our findings suggest the
correlation between the precentral and postcentral gyrus is higher than that of other
regions because we can also observe from figure 42 the precentral gyrus and postcentral
gyrus on the contralesional side ranked second which may suggest that the contralesional
side is compensating the work required by the ipsilesional side and no other connections
take over.

Some limitations were raised during the analysis mainly from the data we used. Firstly,
our data only had the initial measurement and did not contain fMRI recordings after
6 months which is the prediction target period. A study involving a direct comparison
between the stroke onset and 6 months after, known as a longitudinal study, was un-
available. Longitudinal studies involve data such as lesion volume, where the difference
between initial and final lesion volume or overlap between the seed and the prediction
obtained from segmentation is taken as a valuable input [115]. Relying heavily only on
the initial data hence decreased the prediction power significantly. Data bias was another
issue that hindered accurate prediction. The ARAT score had a bias toward mild (class
2) motor impairment for task-based fMRI with 10 out of 12 patients showing mild motor
impairment. This explains why both RF and SVM on this dataset gave the same values
for nearly every combination reducing the reliability significantly.

Another concern raised regarding task-based functional MRI was an unclear test proce-
dure. Following the complexity, the data recorded may contain faulty data that affects
the connectivity values. The test was recorded 45 times consecutively to reduce human
error as much as possible but there is always a possibility of subtle artifacts. This inherent
drawback may be a reason why task-based fMRI performs much poorer than resting-state
fMRI, at least in our case. A large dataset or simplified test will be key to closing this
gap.
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7 Future Improvements

Although this study provided valuable insights into stroke lesion segmentation and re-
covery prediction using deep learning and machine learning techniques, there are several
improvements and explorations to be made:

• Incorporation Multi-Modal Imaging: Integrating additional imaging modali-
ties such as diffusion-weighted imaging (DWI), CT, FLAIR, and T2 could enhance
the accuracy of lesion segmentation and provide richer information for recovery
prediction.

• Use of other learning methods: Creating segmentation models using unsuper-
vised or semi-supervised will provide a reliable solution when no lesion labels are
provided.

• Access to larger dataset: Gaining access to larger fMRI dataset with longitudinal
recordings will deliver much accurate and reliable recovery prediction

• Computer aided diagnosis software: Creating fully automatic segmentation
software using Kubernetes and Amazon S3 as a cloud service with a friendly user
interface will further assist clinicians with their diagnosis
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8 Conclusion

In conclusion, this thesis has contributed to advancing our understanding of stroke lesion
segmentation and recovery prediction through the integration of deep learning and ma-
chine learning techniques with functional magnetic resonance imaging (fMRI) data. After
developing and evaluating novel methodologies, several key findings and implications have
emerged:

• Accurate Stroke Lesion Segmentation: Our developed deep learning model,
Enhanced ensemble method, has demonstrated promising performance comparable
to the state-of-the-art method, Strengthening the reliability of the deep learning
models for diagnosis.

• Effective Recovery Prediction: Machine learning algorithms, including ran-
dom forest and support vector machine (SVM), have shown competence in predict-
ing stroke recovery outcomes based on functional MRI and clinical data to suggested
that lesion volume can be a powerful factor in prediction. It will assist in facilitating
early prognosis and treatment planning.

• Limitation: Some minor limitations were highlighted that affected analysis of our
predictions such as lack of dataset for longitudianl study or unclear test procedure.
These issue can however be resolved as more data is acquired by our institute with
clear guideline, and something that can be addressed and resolved in the near future
under supervision.

• Future Directions: While this thesis has made valuable contributions, several
improvements exist such as multi-modal imaging integration, creating a model with
other methods, access to abundant dataset and making a computer aided diagnosis
software

In the end, this thesis underpins the importance of interdisciplinary collaboration in the
fields of medical imaging where machine learning, deep learning and clinical neuroscience
are incorporated together in order to advance the research and improve patient care.
By harnessing the power of computational methods and imaging technologies, we hope
to strive towards delivering more precise, personalized, and effective diagnosis for stroke
patients and ultimately enhancing their quality of life.
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