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ABSTRACT
Estuaries are important recruitment sites for many fish species, with 
structurally-complex habitats such as subtidal seagrass beds on soft 
sediments particularly valuable due to their provision of food and 
shelter. Soft sediments dominate most estuaries, but where hard- 
bottom reefs are present they have the potential to act as 
nursery habitats for juvenile fish. We document recruitment of 
juvenile Australasian snapper (Chrysophrys auratus) to a shallow 
linear sandstone reef in Whangateau Harbour, a small estuary in 
north-eastern New Zealand. Up to several hundred 0 + juveniles 
(∼20–70 mm fork length) were present on the reef during early 
summer to mid-late autumn each year from 2018 to 2021. 
Numbers were consistently highest at the seaward end of the 
reef, facing into incoming tidal currents, and lowest in the deeper 
central part of the reef, where larger, potentially cannibalistic, 
snapper were common. Juveniles disappeared from the reef fairly 
abruptly at the end of each season, with departure in at least two 
of the years appearing to follow a sudden decrease in water 
temperature rather than being associated with body size or 
absolute temperature. Although relatively small in area, estuarine 
reefs may be increasingly important nursery habitats in the future 
given the widespread loss of subtidal seagrass beds.
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Introduction

Estuaries are important nurseries for many New Zealand fish species (Francis et al. 2005; 
Morrison et al. 2014a, 2014b, 2016; Jones et al. 2015). Due to extensive catchment modifi-
cation by humans in the last one to two hundred years, with native forest cleared, and 
extensive development of rural and urban land uses, most estuaries are now dominated 
by soft sediments such as mud and sand (Hume et al. 2007). As a consequence, they lack 
shelter for small demersal fish except where it is provided by structurally-complex bio-
genic habitats such as subtidal seagrass meadows and horse mussel beds (Morrison 
et al. 2009, 2014b, 2014c, 2014d; Parsons et al. 2016). Since the arrival of Europeans, 
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land-use changes have significantly reduced these biogenic habitats, primarily through 
increased sedimentation and, to a lesser extent, eutrophication (Morrison et al. 2009, 
2023; Zabarte-Maeztu et al. 2021). In northern-most New Zealand, several large estuaries 
still act as strongholds for extensive subtidal seagrass beds, which support very high den-
sities of juvenile Australasian snapper (Chrysophrys auratus) and other species (Morrison 
et al. 2014c, 2019). Unfortunately, aside from these few estuaries, most New Zealand 
estuaries now hold only intertidal beds, which are unsuitable for juveniles of snapper 
and other fish species due to their exposure at low tide (Morrison et al. 2014c, 2014d). 
It has been suggested that insufficient nursery habitat may be hindering the recovery 
of overfished adult snapper stocks (Parsons et al. 2014a), which, despite 
recent fisheries management, have remained well below management targets in the 
Hauraki Gulf and elsewhere (Francis and McKenzie 2015).

Rocky reefs provide shelter and food to numerous juvenile fishes on open coasts (e.g. Jones 
1988) but are a rare habitat in most estuaries, typically being restricted to estuary mouths, 
headlands and occasional outcrops surrounded by soft sediments (e.g. Morrison 1990; 
Hartill et al. 2000; Shankar et al. 2000; Morrison et al. 2000a, 2000b; Parsons et al. 2016). 
Rocky reefs have been overlooked as potential fish nursery sites in estuaries, perhaps due 
to their low coverage and their unsuitability to sampling by trawls or seine nets. However, 
the structural complexity of rocky reefs and associated epibiota such as seaweeds and 
sponges could make them valuable refuges for small fish, particularly given the decline in sub-
tidal seagrass. Additionally, the tendency of estuarine rocky reefs to occur in areas where 
strong tidal currents prevent deposition of soft sediments means that they may receive a 
steady supply of larval fish, and of plankton for those fish to eat following settlement.

The potential of such estuarine rocky reefs to be relevant to juvenile snapper is clear 
given the life history of Chrysophrys auratus. Snapper larvae are pelagic for around 28 
days, settling into demersal habitats in early-mid summer when 9–14 mm long (Miskie-
wicz 1986; Trnski 2002; Parsons et al. 2014b). Juveniles remain in inshore, shallow 
nursery grounds until autumn, when they are usually about 50–70 mm long, (Francis 
1994; Usmar 2009; Parsons et al. 2013; Parsons et al. 2014b). During this time, they 
consume a variety of small invertebrates, with planktonic copepods being particularly 
important (Usmar 2012; Lowe 2013; Lohrer et al. 2018). While the seasonality of juvenile 
fish movements is well-documented (Francis 1994; Miller and Sadro 2003; Usmar 2009), 
the triggers governing their arrival at and departure from nursery grounds remain more 
obscure. Previous studies have suggested that snapper may depart their nursery grounds 
upon reaching a certain size (Parsons et al. 2013), however, given the limited seasonal 
scope of monitoring, it is unclear whether other environmental factors are involved.

Here we describe the use by juvenile (0+) snapper of a natural reef fringing a tidal channel 
in the Whangateau Harbour, a small estuary in north-eastern New Zealand. We quantify the 
distribution, abundance, and habitat use of juvenile snapper on the reef at fine temporal and 
spatial scales over four years and relate the patterns to environmental factors such as position 
in the tidal stream, water temperature and the presence of potential predators.

Materials and methods

The study site was a sandstone reef running along the southern side of Horseshoe Island 
within Whangateau Harbour, which lies ∼60 km north of Auckland on the north-eastern 
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coast of the North Island of New Zealand (36° 19.168’S, 174° 45.862’E) (Figure 1). The 
reef at Horseshoe Island is ∼2 km upstream of the harbour entrance, and is ∼270 m 
long by ∼5–15 m wide, being composed of dissected soft sandstone topped by the 
brown seaweed Hormosira banksii in the intertidal (Figure 2). It transitions from a flat 
upper intertidal area to a maximum depth of ∼5–m (at high tide) before merging into 
a sandy channel. There is another much smaller sandstone reef in the upper harbour 
south of the causeway to Omaha Beach, but no other natural rocky reefs are present 
once past the harbour entrance, and there are no significant beds of subtidal seagrass 
or other natural nursery habitats (Hartill et al. 2000).

The reef was marked out into ten sections using metal stakes with small numbered 
fishing floats attached to aid orientation. This facilitated recording of fish locations 

Figure 1. Map of the study site showing the location of Horseshoe Island within the Whangateau 
estuary on the North Island of New Zealand. Aerial image shows the sandstone reef running along 
the southern side of Horseshoe Island marked by the red box. Numbers 1 and 10 show the position 
of the reef sections with section 1 at the south-eastern most end. Aerial image taken from https:// 
geomapspublic.aucklandcouncil.govt.nz.
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during SCUBA observations. The stakes were spaced ∼27 m apart on average, although 
their exact placement was based on landscape features, such as breaks in the reef, rather 
than fixed distances. Section one was at the reef’s seaward-most (south-eastern) end, 
while section ten was furthest upstream at the north-westernmost end.

Snapper were surveyed every year from January to mid-April/late May in 2018–2021, 
except that observations started late in 2018 due to logistical constraints, making it 
difficult to document the arrival of juveniles that year. Observations finished early in 
2020 due to the COVID 19 pandemic. Juvenile snapper ∼15–20 mm long began to 
appear on the reef in January (early austral summer) and were present until mid- 
April/early May (austral autumn). They were surveyed ∼weekly, as weather and logistics 
allowed, between 0630 and 1900h New Zealand Daylight Time and around high tide 
(when water was clearest). On each occasion a SCUBA diver zigzagged slowly along 
the entire length and width of the reef, starting at the south-eastern end (section one). 
When juvenile or adult snapper were encountered on the reef or in the immediately adja-
cent channel, the diver recorded their size, position on the reef (section number and 

Figure 2. Reef at Horseshoe Island within the Whangateau estuary, north-eastern New Zealand 
[Photo: Richard Taylor].

Table 1. Recorded size classes of juvenile snapper with the corresponding age that each size class 
represents. Age data are taken from a survey of snapper in the Hauraki Gulf in 2018 (J. Campbell 
unpublished data).
Size class (mm) Corresponding age (days)

≤20 <17
21–35 17–37
36–50 38–51
51–65 52–78
≥66 >78
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whether they were on the reef crest, reef edge or adjacent sand), and group composition 
(if in a school). Individuals were assigned to five size classes (Table 1), following training 
in size estimation using 30–115 mm long plastic pipes (Bell et al. 1985). Monitoring 
ceased each year when juvenile snapper were no longer present on the reef.

Horizontal water visibility was estimated on each dive by reference to familiar reef 
structures. Sea surface temperatures were taken from the nearby, long-term monitoring 
station at Cape Rodney-Okakari Point Marine Reserve (see Cook et al. 2022).

Results

Notwithstanding survey gaps in early 2018 and late 2020, 0 + juveniles consistently 
arrived in Whangateau Harbour in January of each year, remained on the reef for 
several weeks to months and were gone by May (Figure 3A–D). Recruitment varied sig-
nificantly between years, with 2018 having the highest peak population of juvenile 
snapper at 436 individuals, and 2021 having the lowest at 84 (Kruskal–Wallis, H =  
19.22, df = 3, p < 0.01). In addition to this, there was considerable variation in when 0  
+ snapper disappeared each year, the earliest being in 2021, when snapper had left the 
reef by the end of March, and the latest being in 2019 when the final few fish left in 
early May. In 2018 and 2019 the disappearance of juveniles occurred shortly after a sus-
tained drop in sea temperature over several days (Figure S1). No such pattern was 
observed with respect to time of year or any absolute temperature value across all 
three years for which we were able to establish a disappearance date.

Although juvenile snapper began arriving in January of each year, they continued to 
settle onto the reef throughout the season and usually reached peak numbers in February 
to March (Figure 3A–D). The newly-settled recruits (≤20 mm long), represented a 
smaller proportion of total 0 + juveniles as the season progressed, comprising almost 
55% of individuals in January but only 2.4% in April (Figure 3E). Correspondingly, 
the mean size of juvenile snapper increased significantly (Two-way Analysis of Variance 
(ANOVA) on log-transformed data, F = 37.26, df = 4, p = 0.02), from January (23.5 mm) 
to April (55.5 mm). This pattern was similar across all years, with no significant differ-
ence in the mean size of snapper between years (Two-Way ANOVA, F = 0.74, df = 3, 
p = 0.58). Larger size classes of fish made up a greater proportion of snapper in March, 
April and May in particular. This shift in percentage, however, masks the fact that 
new recruits ≤20 mm long were still arriving on the reef as late as April.

In all years (Figure S2), 0 + snapper were non-randomly distributed among the 10 reef 
sections, with significant differences between sections (Kruskal–Wallis, H = 49.41, df = 9, 
p < 0.01). The most seaward locations (sections one and two), were the most densely 
populated overall, with a mean number of 24.9 (SE ± 3.67) and 17.1 (SE ± 2.36) 
snapper recorded per dive, across all years. Sections four and five had means of 6.7 
(SE ± 1.49 and 1.59) snapper per dive in both sections. The middle sections of the reef 
were, in general, under-utilised by all but the ≥66 mm fish, and very few snapper <35 
mm were present there (Figure 4). In contrast, ≥ 66 mm fish tended to inhabit sections 
five and six, along with ∼50 larger, > 1year old snapper. In January, almost all of the 
juvenile snapper were observed in sections one, two and to a lesser extent, three (the 
most seaward sections of the reef), with almost no recruits further down the reef; 
there was a steep decline in mean snapper abundance going from section one to ten. 
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Figure 3. A–D, Monthly average number of juvenile (0+) snapper (Chrysophrys auratus) recorded per 
size class, per dive on the reef at Horseshoe Island within the Whangateau estuary, north-eastern New 
Zealand. E, Mean percentage of snapper per size class, per month across all years. n.d. = no data.
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Figure 4. Along-reef distribution of juvenile (0+) and older snapper (Chrysophrys auratus) on the reef 
at Horseshoe Island within the Whangateau estuary, north-eastern New Zealand displayed per month, 
pooled across all years. Section 1 is at the seaward-most (south-eastern) end of the reef, while section 
10 is furthest upstream at the north-westernmost end.
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This pattern was remarkably consistent in each year of the study (Figure S3). As more 
and more juvenile snapper recruited onto the reef in February, this pattern was replaced 
by a U-shape with high numbers of snapper at either end, but few in the middle sections 
(Figure 4). This general pattern was maintained but became less pronounced in March 
and April as individuals grew, with fish in the larger size classes becoming more abun-
dant in the mid sections of the reef.

Juvenile snapper spent significantly more time on the sand and at the edge of the reef than 
on the reef crest (Figure 5; permutational MANOVA, 999 permutations, F = 26.687, df = 2, p  
< 0.01). Indeed, on many dives, individuals were observed several metres out from the reef (J. 
Campbell, pers. obs.). Some size classes were more numerically dominant (permutational 
MANOVA, 999 permutations, F = 9.042, df = 4, p < 0.01). There was however, no difference 
in habitat use between different size classes (permutational MANOVA, 999 permutations, 
habitat*size class, F = 1.403, df = 8, p = 0.195); all size classes spent roughly equivalent 
amounts of time on the reef, around the edge of the reef and out on the sand. Although 
there was some variation from year to year, overall, the similarity in habitat across size 
classes was maintained (two-way ANOVA, habitat*size, p > 0.1 in all cases).

Discussion

We found that a small estuarine rocky reef consistently held in the order of one hundred 
to several hundred 0 + snapper each summer and autumn. The reef also supported large 
numbers of juvenile fishes of other species, including spotty (Notolabrus celidotus), 
parore (Girella tricuspidata) (Morrison 1990) and trevally (Pseudocaranx georgianus) 
(authors, pers. obs.). While the numbers of juvenile snapper on the reef were relatively 
small, and the densities much lower than found in subtidal seagrass beds (∼0.1 indivi-
duals.m−2 cf. ∼1.6 individuals.m−2 in subtidal seagrass at Rangaunu Harbour (Morrison 
et al. 2014c)), numbers are nevertheless higher than in unstructured habitats (Francis 

Figure 5. Distribution of juvenile (0+) snapper (Chrysophrys auratus) across reef microhabitats at 
Horseshoe Island within the Whangateau estuary, north-eastern New Zealand. n shows the total 
number of snapper used in calculations.
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et al. 2005, 2011; Morrison et al. 2014c) and the reef is a potentially important nursery 
habitat in an estuary lacking other natural structurally-complex habitats.

Newly-settled fish (≤20 mm long) were first observed in January and continued to 
arrive until April in most years, with the total number of individuals peaking in 
March, and disappearing by May. Recruitment varied five-fold across years, with this 
level of variability being typical of many fish species (Aburto-Oropeza et al. 2007) includ-
ing snapper (McGlennon et al. 2000; Fowler and Jennings 2003; Zeldis et al. 2005). The 
2018 peak reflected an exceptionally strong recruitment year around the north-east of 
New Zealand’s North Island (Campbell 2023). There was no obvious relationship with 
variation in seawater temperatures over the period of the study (Cook et al. 2022) that 
may have correlated with recruitment strength (Francis 1993).

Regardless of year-class strength, new recruits were consistently most abundant at the 
seaward end of the reef, particularly in sections one and two, with the highest early- 
season densities observed in these areas. The seaward end may be prime habitat due 
to a greater supply of plankton, before it is depleted by the resident population of plank-
tivorous fish (Bray 1981; Hamner et al. 1988; Kingsford and MacDiarmid 1988; Parsons 
et al. 2018). An alternative explanation is that the seaward end is the first suitable habitat 
encountered by larvae entering the estuary, resulting in a recruitment shadow down-
stream (Jones 1997), similar to the failure of damselfishes to settle into apparently suit-
able habitat down-current from other reefs (Jones 1997). Previous snapper studies have 
observed higher abundances of juveniles near harbour mouths (Parsons et al. 2013) but 
were unable to distinguish between the two theories. In all years, the distribution of 
juvenile snapper shifted from the seaward end of the reef in January, to a U-shape 
with more snapper at either end of the reef, and fewer in the mid-sections a few weeks 
later. This occurred even in years with very low recruitment, such as 2021, suggesting 
that the recruitment shadow hypothesis is the more likely reason for the initial gradient.

The middle sections of the reef predominantly hosted larger juveniles, likely because 
smaller individuals either avoid this area or fall prey to cannibalism by larger snapper, a 
phenomenon previously documented by Compton et al. (2012).

Juvenile snapper occurred most commonly near the reef edge and adjacent sand, and 
less commonly on the reef crest, with this distribution pattern very similar across all size 
classes. It was surprising to observe snapper at times several metres away from the reef 
on the sand, or high in the water column feeding on plankton, but they were nevertheless 
only a few seconds away from the shelter of the reef. As part of a larger project run at the 
same site and time, action cameras deployed on the reef during daytime for a total of 53.6 
recording hours, detected predators on 25 occasions, the most common of which was 
kingfish (Seriola lalandi) (11 occasions), followed by adult trevally (Pseudocaranx georgia-
nus) and adult snapper (7 and 6 occasions, respectively). Whenever a predator was 
observed in the video footage, 0 + snapper swiftly sought refuge in the reef’s vicinity, 
often sheltering in small dips close to reef structures (J. Campbell, pers. obs.), a behaviour 
also observed elsewhere (Parsons et al. 2018). Kahawai (Arripis trutta) have also been 
recorded on unbaited fixed cameras unsuccessfully hunting 0 + snapper over subtidal sea-
grass in Rangaunu Harbour (Morrison et al. in press.). This underscores the importance of 
structure in providing a refuge, aligning with the findings of Ross et al. (2008).

The disappearance of juvenile snapper from the reef did not occur at a certain body size 
(Parsons et al. 2013), water temperature, or time of year, but instead tended to follow a 
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rapid decrease in temperature. We have no direct evidence to ascertain the fate of the 
juvenile snapper that disappear from the reef, in terms of whether they emigrate or are sub-
jected to mortality. Seasonal (quarterly) surveys in a much larger harbour (Mahurangi 
Harbour, 21 kilometres to the south) which holds extensive subtidal flats (< 10 m) and 
deeper channel areas (>10–26 m) (see Hauraki Auckland Benthic Habitat Map bookmarks 
arcgis.com), recorded the apparent shift of 0 + snapper from widespread shallower harbour 
areas in summer/autumn, down into the main channel’s deeper area near the estuary 
mouth during winter/spring. This suggests that 0 + snapper move to deeper waters in 
the colder months (Morrison et al, in press). For Whangateau Harbour, which has only 
limited shallow subtidal areas (maximum depth 7 m), it is probable that most of the reef 
individuals migrated out of the estuary to populate the adjacent open coast, which includes 
the Cape Rodney-Okakari Point and Tawharanui marine reserves. Others may have been 
taken by predators (Parsons et al. 2014b). Although the aforementioned daytime video 
recordings never recorded predator strikes on juvenile snapper, predators did initiate a 
flight response (Campbell,), suggesting they are a threat. Nocturnal predators such as 
conger eels (Conger spp.) or broad squid (Sepioteuthis australis) may also be important 
(Parsons et al. 2022), as well as soft-sediment camouflage predators such as estuarine (Lep-
toscopus macropygus) and spotted (Genyagnus monopterygius) stargazers.

In conclusion, the natural rocky reef we monitored appears to be a locally important 
nursery habitat for snapper, which inhabit it for the first few months of their post-settle-
ment lives. Similar reefs holding 0 + snapper occur in many other northern estuaries, e.g. 
Mahurangi Harbour (Morrison et al. 2000a) on the east coast, and Aotea and Kaipara 
harbours on the west coast (Morrison et al., in press.). The widespread loss of subtidal 
seagrass beds from northern estuaries increases the value of remaining nursery habitats 
like reefs, but the latter may also be under threat from anthropogenic sediment depo-
sition (Thrush et al. 2004). Artificial analogues of natural reefs such as mooring 
blocks, jetties, marinas, training walls and causeways are present in many estuaries 
(Wetzel et al. 2014) and merit further investigation as potential nursery habitats.
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