

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library

Thesis Consent Form

Molecular genetics of type 2 diabetes in New Zealand Polynesians

Nicola Renee Poa

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

November 2001

School of Biological Sciences The University of Auckland In memory of my grandfather Leopold Pritchard

Abstract

The risk of developing type 2 diabetes is four fold higher in New Zealand (NZ) Polynesians compared to Caucasians. Hence diabetes is more prevalent in Maori (16.5% of the general population) and Pacific Island people (10.1%) compared to NZ Caucasians (9.3%). It is generally accepted that type 2 diabetes has major genetic determinants and heterozygous mutations in a number of genes have previously been identified in some subsets of type 2 diabetes and certain ethnic groups. The high prevalence of diabetes in NZ Polynesians, when compared with NZ Caucasians, after controlling for age, income and body mass index (BMI), suggest that genes may be important in this population. Therefore, the prevalence of allelic variations in the genes encoding amylin and insulin promoter factor-1 (IPF-1), and exon 2 of the hepatocyte nuclear factor-1a (HNF-1a) gene in NZ Polynesians with type 2 diabetes was determined. These genes are known to produce type 2 diabetes in other populations. The genes investigated were screened for mutations by PCR. amplification and direct sequencing of promoter regions, exons and adjacent intronic sequences from genomic DNA. DNA was obtained from 146 NZ Polynesians (131 Maori and 15 Pacific Island) with type 2 diabetes and 387 NZ Polynesian non-diabetic control subjects (258 Maori and 129 Pacific Island). Sequences were compared to previously published sequences in the National Centre for Biotechnology Information database. Allelic variations in IPF-1 and exon 2 of the HNF-1a gene were not associated with type 2 diabetes in NZ Polynesians. However, in the amylin gene, two new and one previously described allele was identified in the Maori population including: two alleles in the promoter region (-132G>A and -215T>G), and a missense mutation in exon 3 (Q10R). The -215T>G allele was observed in 5.4% and 1% of type 2 diabetic and non-diabetic Maori respectively, and predisposed the carrier to diabetes with a relative risk of 7.23. The -215T>G allele was inherited with a previously described amylin promoter polymorphism (-230A>C) in 3% of Maori with type 2 diabetes, which suggests linkage equilibrium exists between these two alleles. Both Q10R and -132G>A were observed in 0.76% of type 2 diabetic patients and were absent in non-diabetic subjects. Together these allelic variations may account for approximately 7% of type 2 diabetes in Maori. These results suggest that the amylin gene maybe an important candidate marker gene for type 2 diabetes in Maori.

Preface

This work was carried out between January 1998 and January 2001 in the School of Biological Sciences, University of Auckland. This thesis is submitted for examination purposes only.

I would like to thank Dr. Shaoping Zhang for her advice and guidance during these three years of study, for her technical support and constructive criticism of this thesis. I would like to thank Dr. Gilgen for consultation with Tainui Iwi, for assisting with recruiting participants and collecting bloods; Dr. David Simmons for providing Pacific Island bloods; Tracy Ellison and the Hepatitis foundation for providing Maori non-diabetic bloods and measuring HbA_{1e} levels; Dr. Tony Birch and Nan Neho for consultation with Ngapuhi Iwi, for assisting with recruiting participants and collecting bloods. I would also like to acknowledge Liam Williams and Kristine Boxen for their contribution to DNA Sequencing and technical support; Dr. Junxi Liu for her contribution to Dr. Paul Edgar for his constructive criticism and contribution to the preparation of this thesis, and for the tutelage and support he has provided throughout this study. This work was supported by grants from the Health Research Council of New Zealand.

I declare that this thesis is the result of my own work, includes nothing which is the outcome of this work done in collaboration and has not been submitted in whole or part to any other university.

Table of Contents

ABSTRACT	III
PREFACE	IV
TABLE OF CONTENTS	V
TABLE OF TABLES	VIII
TABLE OF FIGURES	IX
ABBREVIATIONS	Х

CHAP	TER 1	INTRODUCTION 1	
1.1	The he	alth of Maori and Pacific Island Polynesians1	
	1.1.1	Diabetes mellitus in Polynesians	
	1.1.2	Diabetes associated complications in NZ Polynesians	
	1.1.3	Diabetes associated risk factors in NZ Polynesians5	
1.2	Geneti	ic & environmental factors in type 2 diabetes	
1.3	Cellula	ar basis for type 2 diabetes	
	1.3.1	General10	
	1.3.2	Insulin resistance	
	1.3.3	Insulin secretion	
1.4 Candidate genes for type 2 diabetes		late genes for type 2 diabetes 14	
	1.4.1	Candidate genes for insulin resistance15	
	1.4.2	Candidate genes for defects in insulin secretion	
	a)	Non-MODY genes	
	b)	MODY genes	
1.5	Candic	late genes for type 2 diabetes in Polynesians	
	1.5.1	Previous studies	
	1.5.2	The present study	
	1.5.3	Significance of the present study	

V

CHAP	TER 2	MATERIALS AND METHODS	
2.1	Materi	als	
2.2	Metho	ds	
	2.2.1	Blood collection	
	2.2.2	Genomic DNA extraction	
	a)	Micro hand genomic DNA extraction 40	
	b)	"Mini kit" genomic DNA extraction40	
	2.2.3	Agarose gel electrophoresis of DNA	
	2.2.4	Quantification of DNA 41	
	2.2.5	Polymerase chain reaction (PCR)42	
	a)	Oligonucleotides	
	b)	Standard PCR parameters 42	
	2.2.6	DNA purification	
	a)	Ammonium acetate DNA purification 43	
	b)	Column purification	
	c)	ExoI and SAP purification	
	2.2.7	DNA sequencing	
	a)	DNA sequencing reaction	
	b)	DNA sequencing reaction purification	
	c)	DNA sequencing gel	
	2.2.8	Statistical analysis	
СНАР	TER 3	RESULTS	
3.1	Patient	sample characteristics	
3.2	Identif	tification of gene sequence variants in Maori and	
	Pacific	Island people with late onset type 2 diabetes	
	3.2.1	Amylin gene allelic variations 49	
	a)	The Q10R mutation 49	
	b)	The -132G>A allele 52	
	c)	The -230A>C polymorphism 54	
	d)	The -215T>G allele	

VI

3.3	The G55G mutation in the IPF-1 gene 59			
3.4	The $-42G>A$ polymorphism in the HNF-1 α gene			
CHAF	PTER 4	DISCUSSION		
4.1	Polym	olymorphisms in the amylin gene6		
	4.1.1	Background		
	4.1.2	The –230A>C amylin polymorphism		
	4.1.3	The -215T>G amylin allele		
	4.1.4	The –132G>A amylin allele		
	4.1.5	The Q10R amylin mutation		
	4.1.6	The S20G amylin mutation78		
	4.1.7	Summary of the amylin gene alleles79		
4.2	IPF-1 allelic variations			
4.3	Polymorphisms in the HNF-1α gene			
4.4	Challenges in the investigation of genetics in type 2 diabetes			
	in Mac	ori and Pacific Island populations		
4.5	Other possible candidate type 2 diabetes genes			
4.6	Conclusions			
APPE	NDIX .			
Appen	idix 1	Etiological classification of diabetes mellitus		
Appen	idix 2	PCR parameters		
Appen	dix 2.1	Primers used for sequencing		
Appen	dix 2.2	Optimal PCR sequencing		
Appen	idix 3	Publications arising from this research96		

<i>BIBLIOGRAPHY</i>

VII

Table of Tables

Table 1.1	Prevalence of type 2 diabetes between 3 major ethnic groups 4	
	in NZ	
Table 1.2	Main risk factors for type 2 diabetes	
Table 1.3	Tissue specific Insulin action in response to nutrient	
Table 1.4	Candidate genes which have been investigated and15	
	found predispose to type 2 diabetes	
Table 3.1	Clinical characteristics for Maori and Pacific Island subjects48	
Table 3.2	Amylin gene sequence variants identified in Maori and 52	
	Pacific Island populations with late-onset type 2 diabetes	
Table 3.3	Frequency of adenine and cytosine alleles at -230 bp of the 54	
	amylin gene	
Table 3.4	Clinical profiles of carriers for -215T>G mutation 55	
Table 3.5	Location and characteristics of the amylin gene	
	promoter variants	
Table 3.6	Frequency of the G and A alleles in the HNF-1 α gene	

Table of Figures

Figure 1.1	Map of the Pacific region 2
	pathogenesis of type 2 diabetes
Figure 1.2	Genetic defects affecting insulin signalling 17
Figure 1.3	Potential inhibitors affecting insulin signalling 18
Figure 1.4	Network of MODY gene transcription factors
Figure 1.5	Location of human HNF-1 α mutations within exons 1
	through to 10, 5'UTR, promoter and splice sites
Figure 1.6	Location of human IPF-1 mutations within the 2 exons
	and promoter region
Figure 3.1 Amino acid sequence of human wild type amylin, the	
	mutation Q10R, and amylin sequences from nine other animals
Figure 3.2	The Q10R mutation
Figure 3.3	The -132G>A allele
Figure 3.4	The -230A>C and 215T>G alleles
Figure 3.5	Location of the human amylin gene mutations
Figure 3.6	The C185T allele
Figure 4.1	AP-1 activation in islet β cells
Figure 4.2	Prevalence of amylin gene alleles in Maori type 2 diabetes

IX

Abbreviations

Abbreviations used in the text are described below. Unit abbreviations are described in S.I. [System Internationale (d'Unites)] form, and standard notations are used for chemical formulae.

A	adenine
Αβ	beta amyloid
ABI	Applied Biosystems Incorporated
AD	alzheimer's disease
AP-1	activated protein -1
АроЕ	apolipoprotein E
ATP	adenine triphosphate
BMI	body mass index
β3AR	β-3-adrenergic receptor
bp	base pairs
С	cytosine
cAMP	cyclic adenosine monophosphate
CAT	chloroamphenicol acetyltransferase
C/EBP	CAAT/enhancer binding protein
CPE	carboxypeptidase E
CRE	cAMP-response element
CREB	CRE-binding protein
dATP	deoxyadenosine triphosphate
dCTP	deoxycytosine triphosphate
dDTP	deoxythymidine triphosphate
del	deletion
dGTP	deoxyguanosine triphosphate
DNA	deoxyribonucleic acid

dNTP	deoxynucleotide triphosphate
EDTA	ethylenediaminetetra-acetic acid
EMSA	electrophoretic mobility shift assay
ESRF	end stage renal failure
FABP	fatty acid binding protein
fsdel	frame shift deletion
fsins	frame shift insertion
Grb2	growth factor receptor binding protein-2
GLUT	glucose transporter
GTP	guanosine triphosphate
HbA _{1c}	glycosylated haemoglobin
HDL	high density lipoprotein
HLA	histocompatibility leucocyte antigen
HLH	helix loop helix
HNF	hepatocyte nuclear factor
HOMA	homeostasis model assessment
HPLC	high pressure liquid chromatography
IAPP	islet amyloid polypeptide
IB-1	islet brain-1
IDDM	insulin dependent diabetes mellitus
IGF	insulin growth factor
IGT	impaired glucose tolerance
IFG	impaired fasting glucose
IL-6	interleukin-6
ins	insertion
IPF-1	insulin promoter factor-1
IRS	insulin receptor substrate
Isl-1	Lim/homeodomain gene islet-1
JNK	c-Jun N-terminal kinase
Kb	kilobase
kDa	kilo daltons
LDL	low density lipoprotein

LPK	L-type pyruvate kinase
М	molar
МАРК	mitogen activated protein kinase
MELAS	mitochondrial myopathy
MIDD	maternally inherited diabetes and deafness
MMP	matrix metalloelastase
ug	microgram
ul	microlitre
mg	milligram
ml	millilitre
mmol	millimole
min	minute
MODY	maturity-onset diabetes of youth
mtDNA	mitochondrial DNA
MW	molecular weight
NADH	reduced form of nicotinamide adenine dinucleotide
NFAT	nuclear factor of activated T cells
NFκB	nuclear factor κ B
NIDDM	non-insulin dependent diabetes mellitus
ntd	nucleotide
NZ	New Zealand
NCBI	National Centre for Biotechnology Information
NDDG	National Diabetes Data Group
NZHI	New Zealand Health Information Service
OB	obesity
OB-R	obesity receptor
OGTT	oral glucose tolerance test
OHA	oral hypoglycaemic agents
PBS	phosphate buffered saline
PC	prohormone convertase
PCR	polymerase chain reaction
PEPCK	phosphoenolpyruvate carboxykinase

PI3-K	phosphotidylinositol 3-kinase
WHO	World Health Organisation
Rab	ras related protein
Rad	Ras associated with diabetes
RFLP	restriction fragment length polymorphism
RIN	rat insulinoma
RNA	ribonucleic acid
rpm	revolutions per minute
RT	room temperature
SAPK	stress activated protein kinase pathway
SDS	sodium dodecyl sulphate
SH2	src homology domain 2
SNP	single nucleotide polymorphism
Т	thymidine
TCA	tricarboxylic acid
TE	tris-EDTA buffer
TGFβ	transforming growth factor-β
thT	thioflavin T
TNF	tumour necrosis factor
tRNA	transfer ribonucleic acid
U	units
UTR	untranslated region
UV	ultra violet
V	volts
VLDL	very low density lipoprotein
VNTR	variable number of tandem repeats
vol	volume
w/v	weight per volume

XIII