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Abstract

Nyikos has defined a tree, denoted T, associated with any given Type I space.
This thesis examines the properties of an T-tree if the space is a T'ype I nonmetrisable
manifold. It is shown that a tree, T, is an T-tree of a Type I manifold iff 7" is a
well-pruned wi-tree. Furthermore, if T is any well-pruned w;-tree, there are 2%
different Type I manifolds for which T is the Y-tree. The relationships between the
properties of a Type I manifold and the properties of its Y-tree are examined. It
is shown that whenever a Type I manifold contains a copy of w;, its T-tree must
contain an uncountable branch. The thesis then addresses the problem of whether
or not an arbitrary tree T" admits a Type I manifold which is wi-compact. If 7" does
not contain an uncountable antichain, or a Suslin subtree, then there exists a Type I
manifold with Y-tree T'. If T' contains an uncountable antichain, then whether there
exists an wj-compact Type I manifold with Y-tree 7" is undecidable. () implies
there does not exist such a tree while ¢ implies that there does. If we assume &,
then at least one such manifold exists. {» also implies that if 7' contains a Suslin
subtree, then there exists an w;-compact manifold with T-tree T'.

Nyikos has recently defined a Type II space. We may associate an Y-tree with
such a space. This thesis shows that a Tree, T, admits a Type II manifold iff 7" has
height not greater than w;, and each level has cardinality no greater than c.

The final chapter examines the relationship between microbundles and fibre bun-
dles over nonmetrisable manifolds. In 1964 Milnor defined the notion of a microbun-
ble. He ceased developing the theory of microbundles when later in the same year
Kister showed that a microbundle over a metrisable manifold is equivalent to a fibre

bundle. This thesis proves that the tangent microbundle over a manifold is a fibre
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bundle iff the manifold is metrisable. As a consequence of this we obtain further

properties equivalent to metrisability in a manifold.
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