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Abstract

Nyikos has defined a tree, denoted T, associated with any given Type I space.

This thesis examines the properties of an T-tree if the space is a Type I nonmetrisable

manifold. It is shown that a tree, T, is an T-tree of a Type I manifold iff ? is a

well-pruned i..r1-tree. F\rrthermore, if ? is any well-pruned a.r1-tree, there are 2Nt

different Type I manifolds for which ? is the T-tree. The relationships between the

properties of a Type I manifold and the properties of its T-tree are examined. It

is shown that whenever a Type I manifold contains a copy of c,.t1, its T-tree must

contain an uncountable branch. The thesis then addresses the problem of whether

or not an arbitrary tree ? admits a Type I manifold which is u,r1-compact. If Z does

not contain an uncountable antichain, or a Suslin subtree, then there exists a Type I

manifold with T-tree T. If ? contains an uncountable antichain, then whether there

exists &n a/1-corlpact Type I manifold with T-tree ? is undecidable. (*,) implies

there does not exist such a tree while Q implies that there does. If we assume fi+,

then at least one such manifold exists. $ also implies that if 7 contains a Suslin

subtree, then there exists otr rerl-cortrpact manifold with T-tree T.

Nyikos has recently defined a Type II space. We may associate an T-tree with

such a space. This thesis shows that a Ttee, T, admits a Type II manifold iff 7 has

height not greater than &r1, B,D.d each level has cardinality no greater than c.

The final chapter exarnines the relationship between microbundles and fibre bun-

dles over nonmetrisable manifolds. In 1964 Milnor defined the notion of a microbun-

ble. He ceased developing the theory of microbundles when later in the same yea^r

Kister showed that a microbundle over a metrisabie manifold is equivalent to a fibre

bundle. This thesis proves that the tangent microbundle over a manifold is a fibre
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blndle iff the manifold is metrisable. As a consequence of this we obtain further

properties equivalent to metrisability in a manifold.
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