Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the [Library Thesis Consent Form](http://researchspace.auckland.ac.nz/feedback) and [Deposit Licence](http://researchspace.auckland.ac.nz/feedback).

Note: Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.
Ambient Underwater Sound:

Measuring the importance of spatial variability and its effect on late-stage larval crabs

Jenni Anne Stanley

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Marine Sciences

The University of Auckland, 2011
“The sea, once it casts its spell, holds one in its net of wonder forever”

Jacques-Yves Cousteau
Unidentified tropical megalopa
Abstract

Recent studies have shown that underwater sound emanating from coastal reefs may be used for guiding the movements of a wide range of reef organisms to suitable settlement habitats. However, it is not known whether this underwater sound is also capable of mediating the settlement and metamorphosis processes in these organisms. The present study used laboratory- and field-based methods to determine whether ambient underwater sound is used as a settlement and metamorphosis cue in 10 species of larval crabs.

The settlement stage larvae of five common crab species showed marked changes in swimming behaviour consistent with settlement and showed a significant decrease in time to metamorphosis (TTM) when exposed to replayed ambient reef sound compared with a silent control.

Ambient underwater sound has the potential to convey valuable information about the type and suitability of the habitat at its source to settlement stage pelagic larvae provided different habitats produce distinctive underwater sound. Analyses of recordings from several different habitat types along the coast of north-eastern New Zealand showed that the sound emanating from different habitat types had marked differences in terms of gross character, i.e., spectral composition and sound level. When habitat specific sounds were used in laboratory- and field-based experiments a significant decrease in TTM was observed for settlement stage crab larvae exposed to favourable settlement habitat sound when compared to unfavourable habitats.

Behavioural thresholds for habitat sound were determined experimentally by exposing settlement stage larvae to a range of sound levels from both favourable and unfavourable habitat types for settlement. Larvae did not respond to sound from unfavourable habitat types. However, for sound from favourable habitat types for settlement most crab species showed increasing reductions in TTM as sound levels were increased, suggesting that proximity to the sound source or settlement habitat is important in inducing faster settlement.

The results presented in this thesis demonstrate that ambient underwater sound originating from coastal habitats mediates the settlement processes of the megalopae of many
common coastal crab species in both temperate and tropical waters. It provides evidence that differences in the spatial and biological characteristics of underwater sound play a significant role in this process. Overall, the results of this research greatly extend our knowledge of the importance of underwater sound to recruitment processes of coastal larvae.
This thesis would have not been possible without the help and support of numerous people. Firstly, I would like to thank my supervisors Associate Professor Andrew Jeffs and Dr Craig Radford; this thesis would not be what it is without these two people and their patience. Andrew, this has been an amazing experience for me and I want to sincerely thank-you for all the hard work, support, encouragement, constructive criticism, and the occasional whip cracking you have put in over the last three years, the amount you have taught me is beyond description. You are a great inspiration. Craig, you have been brilliant in helping me with all the logistical nightmares that is Matlab, SASS and general experimentation. You have been a remarkable supervisor and a really great friend. I am very fortunate to have someone with such great qualities in both the serious and social side of my life; this experience would not have been the same without you!

A big thank-you to all the general and teaching staff at The Leigh Marine Laboratory. Arthur Cozens, you are a god send, thank-you so much for all your help in numerous areas over the past three years. Murray Burch, for the many contraptions you have made with me over the years, some of which haven’t been used, sorry about that. Brady Doak, for the great diving adventures we have had on the Hawere. Peter Browne, for the constant use of me as his scape goat for numerous breakages in the workshop. John Atkins, thank-you for your engineering genius. Viv and Alan Stamp, for making the lab really feel like a second family.

Thank-you to the Lizard Island staff, you run a well oiled machine. Thank-you for introducing me to the glamour that is tropical marine research. To the groups I met in 08 and 09 (most of which were the same), you guys are awesome, it was an er............experience.

I would also like to thank the acoustic group, it is great to see our numbers growing steadily. Fellow PhD student Shah, to get stuck next to me in not one but two offices has really proven your strength of character and internal band-pass filter; you are a patient and tolerant man.

During my time up in Leigh there have been several cohorts of student been and gone. Firstly, I would like to thank the original Cohort of 08’ whom are memorable to say the least. Thank-you for the introduction to Leigh and Thursday nights at the Mill. It was very hard to see you guys moving on without me, however, it is great to see you all now making your mark on the world with your valuable skills, thanks for an amazing year. I cannot forget the small middle Cohort of 09’ and the mid winter roast dinner nights; I really never thought I could eat than much! Cohort 10’, most of our time together was spent in the field measuring pippis and cockles, good times. Finally, Cohort 11, thank-you for making me feel over the hill!
I would also like to thank a swagger of colourful people that I managed to flat with over the years. Suz, Sera, Candice, Kathy, Luke and Leo and Natalie. The terrible two, Kate and Pippa; who although were not technically my flatmates, they still count. Thank-you for making my last year as enjoyable as my first. Javed, you are great guy with a superb future ahead of you. Bhakti, my very own kiwi Indian, thank-you for teaching me the art of Indian cuisine, I just can’t get enough of it. Thank-you for sharing numerous times with me where we were laughing so hard we would be doubled over in agony, ha ha, still funny. Paul, thank-you for the adventures, proof reading some of my thesis (blame him), needed affection during the hard times, and helping me stay sane during the last leg of my journey here.

Finally, I would like to thank my family. Dayna, you always manage to make me feel great about what I am doing in life, mainly because I think you are a little disappointed you didn’t do it, you are a great big sister. Denise and Roly, without you two I would never be where I am today. I cannot express how much I appreciate your support and love over the years. Dad, your never ending enthusiasm regarding my work kept me going when mine was waning. Mum, thank-you for all your help with the menagerie I left behind.

I dedicate this thesis to Alice (Yue Gui) who’s time was tragically cut short. We will all miss you greatly.
Table of Contents

Abstract ... i
Acknowledgements .. iii
Table of Contents .. v
List of Tables ... viii
List of Figures ... x

Chapter One: General Introduction ... 14

1.1 *Introduction* ... 14
 1.1.1 Dispersal and sensory abilities of larval fish and decapod crustaceans 14
 1.1.2 Life history, settlement and metamorphosis in decapod crustaceans...................... 17
 1.1.3 Underwater sound – coastal shallow water .. 22
 1.1.4 Coastal underwater sound as an ecological signal/settlement cue 26
 1.1.5 Sound reception in decapod crustaceans and fishes .. 28

1.2 *Objectives and structure of thesis* ... 32

Chapter Two: Induction of settlement in crab megalopae by ambient underwater reef sound ... 34

2.1 *Introduction* ... 34

2.2 *Methods* ... 36
 2.2.1 Source of megalopae .. 36
 2.2.2 Behavioural assay ... 36
 2.2.3 Sound source and recording ... 40
 2.2.4 Data analyses .. 42

2.3 *Results* ... 42
 2.3.1 Sound analysis .. 42
 2.3.2 Pooling ... 42
 2.3.3 Behavioural observations ... 43
 2.3.4 Sound effect on TTM .. 49
 2.3.5 Rates of metamorphosis .. 49

2.4 *Discussion* .. 54

Chapter Three: Unique habitat acoustic signatures .. 56

3.1 *Introduction* ... 56
Chapter Four: Settlement response to ambient underwater sounds associated with different habitat types

4.1 Introduction ... 75

4.2 Methods .. 77
 4.2.1 Source of megalopae .. 78
 4.2.2 Laboratory-based behavioural assays... 79
 4.2.2.1 Habitat sound recordings for laboratory-based experiments 81
 4.2.3 Field-based behavioural assays .. 82
 4.2.3.1 Habitat site sound recording ... 83
 4.2.4 Data analyses ... 84

4.3 Results .. 84
 4.3.1 Laboratory-based experiments .. 84
 4.3.1.1 Sound analyses .. 84
 4.3.1.2 Laboratory-based behavioural assays... 87
 4.3.1.3 Laboratory-based rates of metamorphosis 92
 4.3.2 Field-based experiments .. 94
 4.3.2.1 Habitat site sound recording ... 94
 4.3.2.2 Field-based behavioural assays ... 96
 4.3.2.3 Field-based rates of metamorphosis .. 100

4.4 Discussion .. 102

Chapter Five: Behavioural response thresholds in New Zealand crab megalopae

5.1 Introduction ... 106

5.2 Methods .. 109
 5.2.1 Source of megalopae ... 109
 5.2.2 Sound recordings for threshold experiments ... 110
Table of Contents

5.2.3 Laboratory-based threshold experiments .. 111
 5.2.3.1 Tank set-up for North Reef and Pakiri Beach experiments 112
5.2.4 Data analyses .. 113
5.2.5 Estimates of transmission range of acoustic settlement cue 114

5.3 Results .. 115
 5.3.1 Sound analysis for North Reef experiments .. 115
 5.3.2 Laboratory-based threshold experiments in North Reef experiments 115
 5.3.3 Rates of metamorphosis in North Reef experiments 117
 5.3.4 Estimates of transmission range of acoustic settlement cue 121
 5.3.5 Sound analysis for Pakiri Beach experiments .. 121
 5.3.6 Laboratory-based threshold experiments in Pakiri Beach experiments 122
 5.3.7 Rates of metamorphosis in Pakiri Beach experiments 124

5.4 Discussion .. 128
 5.4.1 Behavioural response threshold levels to North Reef habitat recordings 128
 5.4.2 Behavioural response threshold levels to Pakiri Beach habitat recordings 130
 5.4.3 Conclusions ... 131

Chapter Six: General Discussion ... 133

6.1 Overview ... 133
6.2 Ambient underwater sound as a novel settlement and metamorphosis cue 133
6.3 Unique acoustic signatures .. 136
6.4 Distinguishing among settlement habitats ... 139
6.5 Rates of metamorphosis ... 142
6.6 Behavioural thresholds .. 143
6.7 Anthropogenic noise impacts .. 146
6.8 Conclusions and future directions ... 147

List of References ... 151
List of Tables

Table 2.1: Summary of comparisons among median TTM among the group replicates and between the group and individually housed megalopae for the treatment and control (i.e., Sound versus Silent) for five crab species..........................45

Table 2.2: Summary of comparisons among median TTMs and settlement rates for each treatment (i.e., Sound versus Silent) for five crab species..........................52

Table 2.3: Summary of comparisons among first metamorphosis, completed metamorphosis and the difference between the treatment and control (i.e., Sound versus Silent) for five crab species..........................53

Table 3.1: Results of the Two-Way ANOVA for wind speeds...63

Table 3.2: Mean hourly wind speeds (m s\(^{-1}\)) ± std error for Site and Period during each recording period...63

Table 4.1: Comparisons of median TTMs among the replicates within each treatment in laboratory-based experiments for five crab species..........................89

Table 4.2: Comparisons among median TTMs and metamorphosis rates for each treatment in laboratory-based experiments for five crab species..........................90

Table 4.3: Summary of comparisons among first metamorphosis, completed metamorphosis and the difference between each the fastest and the slowest treatment in laboratory-based experiments for five crab species..........................91

Table 4.4: Comparisons of median TTMs among the replicates within each habitat site in field-based experiments for five crab species..........................97

Table 4.5: Comparisons among median TTMs and metamorphosis rates for each habitat site in field-based experiments for five crab species..........................98

Table 4.6: Summary of comparisons among first metamorphosis, completed metamorphosis and the difference between each the fastest and the slowest treatment in field-based experiments for five crab species..........................99

Table 5.1: Statistical comparisons of median TTMs among the replicates within each treatment in North Reef experiments for four crab species..........................117

Table 5.2: Comparisons among median TTMs and metamorphosis rates for the North Reef experiments in four crab species..........................118
Table 5.3: Estimated distance from North Reef over which megalopae of three crab species could be expected to demonstrate a settlement behavioural response based on the ambient level of underwater sound produced at North Reef during the summer, at dusk, during a new moon. 121

Table 5.4: Statistical comparisons of median TTM among the replicates within each treatment in Pakiri Beach experiments for two crab species. ... 124

Table 5.5: Statistical comparisons among median TTM and metamorphosis rates in Pakiri Beach experiments for four crab species... 125
List of Figures

Figure 1.1: Relationship between swimming speed and sensory abilities for potential settlers of 11 marine taxa. The sensory capacities that were assessed and contributed to the scores were; hearing, vision (non-image forming), vision (image forming), olfaction, magnetic and electrical sense. It is important to note that, especially for invertebrates, some senses may not have been examined. (adapted from Kingsford et al., 2002 – with permission from the Bulletin of Marine Science). .. 16

Figure 1.2: Brachyuran life cycle, illustrating the different morphology during each phase of development (Not to scale). Source: with permission from the Smithsonian Environmental Research Centre. .. 18

Figure 1.3: Schematic illustrations to show the diversity of gravity receptor systems in Crustacea. Illustrative transverse sections (a – c) and lateral view (d) of the statocysts (not to scale). Small insets show dorsal views of the statoliths (S), with the arrangement of the cuticular hairs and their direction of polarisation (small arrows). a) Statocyst from the telson of the iospod, Cyathura polita. b) Right uropod statocyst from the mysid shrimp, Praunus flexuosus. c) Crayfish and lobster statocyst from the basal segment of the right antennules. D Statolith organ (large arrow) in the vertical canal of the crab statocyst. Note that in c) and d) the sensory hairs of the angular acceleration receptor systems of the statocyst are not shown (adapted from Budelmann, 1992 – with kind permission from Springer + Business Media). ... 30

Figure 2.1: Schematic diagram of a side view of one experimental replicates showing the layout of the water bath, speaker, container holding an individual megalopa, container holding a group of megalopae and water levels. Not to scale. ... 39

Figure 2.2: Remote hydrophone system used for recording natural reef sounds. 41

Figure 2.3: Hydrophone system used to adjust sound levels in the experimental tank........ 41

Figure 2.4: Spectral composition of underwater sound when recorded at coastal habitats and when replayed in experimental tanks. a) Coconut Beach Reef, Lizard Island – tropical waters, b) North Reef, north-eastern New Zealand – temperate waters. Black lines represent natural sound in situ, grey lines represent replayed sound in experimental Sound treatment. c) Silent control... 44
Figure 2.5: Median TTM in group and individual replicates. a) *Hemigrapsus sexdentatus*, b) *Cyclograpsus lavauxi*, c) *Macrophthalmus hirtipes*, d) Grapsidae sp. one and e) Grapsidae sp. two. Grey bars represent Sound treatment, white bars represent Silent control. ...46

Figure 2.6: Proportions of categorized behaviours during the course of the experiment for the temperate and tropical species *Hemigrapsus sexdentatus*, *Cyclograpsus lavauxi*, *Macrophthalmus hirtipes*, Grapsidae sp. one and Grapsidae sp. two. a) Sound treatment and b) Silent control.48

Figure 2.7: Percentage of total number of megalopae metamorphosed against time (h). a) *Hemigrapsus sexdentatus*, b) *Cyclograpsus lavauxi*, c) *Macrophthalmus hirtipes*, d) Grapsidae sp. one and e) Grapsidae sp. two. Solid blue line represents the Sound treatment and the green solid line represents the Silent control. ...51

Figure 3.1: Map of study sites; (M1) Waterfall Reef, (M2) One Spot Reef, (U1) Rusty Ladder, (U2) Nordic Reef, (SB1) Pakiri Beach North, (SB2) Pakiri Beach South. ...59

Figure 3.2: Floating hydrophone set-up which is deployed and recovered from a boat.60

Figure 3.3: Noon and dusk spectra of ambient underwater sound recordings at sites in north-eastern New Zealand. a) Rusty Ladder (U1), b) Nordic Reef (U2), c) One Spot Reef (M2), d) Waterfall Reef (M1), e) Pakiri Beach North (SB1), f) Pakiri Beach South (SB2). Blue lines represent dusk and red lines represent noon. ..67

Figure 3.4: Proportion of total sound intensity (P_{RMS}^2) occurring in four frequency bands at dusk and noon for the three different types of habitats. a) Dusk at urchin dominated rocky reef sites (U1 & U2), b) Noon at urchin dominated rocky reef sites (U1 & U2), c) Dusk at macroalgae dominated rocky reef sites (M1 & M2), d) Noon at macroalgae dominated rocky reef sites (M1 & M2), e) Dusk at sandy beach sites (SB1 & SB2), and f) Noon at sandy beach sites (SB1 & SB2). ..69

Figure 3.5: Mean number ± S.E. of snapping shrimp snaps per 10 s for six sites recorded at noon and dusk. ...70

Figure 4.1: Maps showing in-field experimental habitat sites in New Zealand: a) Pakiri Beach, b) Waterfall Reef, c) Whangateau Estuary and recording sites for laboratory treatments: 1) North Reef, 2) Mahurangi Harbour and 3) Pakiri Beach. ...77
Figure 4.2: Maps showing in-field experimental habitat sites in Australia: a) Loomis Beach lagoon and b) Horseshoe Reef and recording sites for laboratory treatments: 1) Coconut Beach, 2) Horseshoe Reef and 3) Lagoon. 78

Figure 4.3: Schematic diagram of a side view of one of the experimental replicates showing the layout of the water bath, speaker and settlement vials.......................... 79

Figure 4.4: Remote hydrophone system used to record sounds for laboratory-based experiments.. 82

Figure 4.5: Spectral composition of underwater sound when recorded at coastal habitats in north-eastern New Zealand and when replayed in experimental tanks. a) North Reef, b) Mahurangi Harbour and c) Pakiri Beach. Black lines represent natural sound in situ and grey lines represent replayed sounds in experimental sound treatments. d) Spectral composition in experimental Silent control.......................... 85

Figure 4.6: Spectral composition of underwater sound when recorded at coastal habitats at Lizard Island, north-eastern Australia and when replayed in experimental tanks. a) Coconut Reef, b) Horseshoe Reef, c) Lagoon. Black lines represent natural sound in situ and grey lines represent replayed sounds in experimental sound treatments. d) Spectral composition in experimental Silent control.......................... 86

Figure 4.7: Percentage of total number of megalopae metamorphosed over time (h) in laboratory-based experiments. a) Hemigrapsus sexdentatus, b) Cyclograpsus lavauxi, c) Cymo andreossyi, d) Schizophrys aspera, and e) Grapsus tenuicrustatus.......................... 93

Figure 4.8: Spectral composition of underwater sound recorded at the experimental habitat sites at Leigh, north-eastern New Zealand and Lizard Island, north-eastern Australia showing differences in overall level, spectral composition and temporal variation. a) Waterfall Reef, b) Whangateau Estuary c) Pakiri Beach, d) Horseshoe Reef and e) Loomis Beach lagoon. Blue lines represent dusk and black lines represent noon. .. 95

Figure 4.9: Percentage of total number of megalopae metamorphosed over time (h) in field-based experiments. a) Hemigrapsus sexdentatus, b) Cyclograpsus lavauxi, c) Cymo andreossyi, d) Schizophrys aspera, and e) Grapsus tenuicrustatus.. 101

Figure 5.1: Maps showing recording sites for ambient underwater sounds that were used in laboratory behavioural assays: 1) North Reef – macroalgae dominated rocky reef habitat, 2) Pakiri Beach – open sandy beach habitat........ 109
Figure 5.2: Schematic diagram of a side view of one of the experimental replicates showing the layout of the water bath, speaker and settlement vials. 111

Figure 5.3: Spectral composition and sound level of underwater sound when recorded at North Reef in north-eastern New Zealand and when replayed in the North Reef experimental treatment tanks. a) High – 135 dB re 1µPa, b) Ambient – 126 dB re 1µPa, c) Low – 100 dB re 1µPa, d) Lowest – 90 dB re 1µPa RMS level in the 100 – 24000 Hz range. Blue lines represent natural sound recorded and either amplified or faded and Black lines represent replayed sounds in experimental sound treatments. e) Silent treatment. .. 116

Figure 5.4: Percentage of total number of megalopae metamorphosed over time (h) in experiments replaying North Reef sound at various sound levels. a) *Hemigrapsus sexdentatus*, b) *Cyclograpsus lavauxi*, c) *Leptograpsus variegatus*, and d) *Austrohelice crassa*. ... 119

Figure 5.5: Treatment groupings according to similarity of median TTM in North Reef experiments. Treatments linked by a horizontal line do not differ in median TTM from other treatments along the same line. Separate lines indicate significant differences \((P < 0.05, \text{ Dunn’s test})\). *Austrohelice crassa* was not included as the test returned an insignificant result. 120

Figure 5.6: Spectral composition and sound level of underwater sound when recorded at Pakiri Beach in north-eastern New Zealand and when replayed in Pakiri Beach experimental treatment tanks. a) High – 125 dB re 1µPa, b) Ambient – 103 dB re 1µPa, c) Low – 90 dB re 1µPa, d) Ambient Reef sound – 126 dB re 1µPa RMS level in the 100 – 24000 Hz range. Black lines represent natural sound recorded and either amplified or faded and blue lines represent replayed sounds in experimental sound treatments. e) Silent treatment. ... 123

Figure 5.7: Percentage of total number of megalopae metamorphosed over time (h) in Pakiri Beach experiments. a) *Hemigrapsus sexdentatus*, b) *Leptograpsus variegatus*. ... 126

Figure 5.8: Treatment groupings according to similarity of median TTM in Pakiri Beach experiments. Treatments linked by a horizontal line do not differ in median TTM from other treatments along the same line. Separate lines indicate significant differences \((P < 0.05, \text{ Dunn’s test})\). ... 127