Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author’s permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form and Deposit Licence.

Note: Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.
THE NATURE OF SENSITIVITY IN RHYOLITIC PYROCLASTIC SOILS FROM NEW ZEALAND

James Melvin Arthurs

A thesis submitted in fulfilment of the degree of Doctor of Philosophy in Geology, The University of Auckland, 2010
ABSTRACT

Sensitive soils with a high ratio of peak to remoulded strength are frequently involved in large, damaging landslides around the world. In New Zealand, sensitive soils are derived from in situ weathering of fine-grain pyroclastic deposits; elsewhere they are typically deposits of glacial derived "rock flour". This research describes the nature of sensitive pyroclastic deposits and proposes a possible process to their formation. Investigations focused on the ~1 Ma Kidnappers tephra due to its widespread nature and typical exposure at the base of cliffs where it is typically saturated and contributes to landslides.

Field observations found that these soils are generally syn-eruptively reworked pyroclastic deposits of variable grain-size and plasticity, with typical deposits being high to extremely high plasticity silts. These soils are often the basal shear plane of landslides in the Auckland and Tauranga regions. X-ray diffraction studies found a typical mineralogy of quartz and plagioclase together with the clay minerals halloysite and kaolinite. Scanning electron microscopy observations showed these soils have a quasi-matrix microstructure inherited from the original vesicular texture that has been modified by weathering into clay minerals without a significant change in porosity. Geotechnical testing determined the physical and material properties of the soils to be: dry density, 0.9 – 1.1 g/cm³; moisture content, 49% - 104% by mass; peak friction angle, 15° - 32°; peak cohesion, 10 – 80 kPa; residual friction angle, 14° - 30°; residual cohesion, 0 – 13 kPa; sensitivity, 6 to 24.

Key factors in the genesis of sensitive pyroclastic deposits are: i.) an original low density deposit composed of vesicular glass and pumice fragments, ii.) weathering of primary material to form halloysite and kaolinite, iii.) a delicate microstructure dominated by clay mineral microaggregates in a high-porosity fabric, and iv.) high natural water content that promotes fluid behaviour during shearing. Of these four conditions original vesicular texture and weathering that promotes the formation of kaolin group minerals are the most important factors in the generation of sensitivity. The results of this research will help practitioners to recognize and respond to sensitive pyroclastic soils and contributes to the understanding of these soils in a global context.
DEDICATION

To Crystal:

Your love and support gave me the perseverance needed to complete this thesis.
ACKNOWLEDGEMENTS

To my supervisors, Dr. Warwick Prebble, Dr. John St. George, Assoc. Prof. Corinne Locke, and Prof. Colin Wilson, your guidance and advice have been instrumental to the research and preparation of this thesis. Your instructions to “show my hand” when presenting my work will be remembered long into the future.

The Earthquake Commission and the Institute of Earth Science and Engineering are thanked for their generous financial support during the course of this research. The R.N. Brothers Memorial award provided additional fieldwork funding, while travel and conference funding was provided by Education New Zealand and the School of Environment, University of Auckland.

Thank you to the National Research Council of Canada, Joanna van den Bergen, GNS Science, and C. Leah Moore for giving me permission to use their photos and maps.

Technical help in various laboratories is greatly appreciated. Jeff Melster and Mark Liew provided much expert advice on geotechnical sampling and testing, especially in the use of the triaxial testing apparatus. Thank you to John Wilmshurst for advice on using x-ray diffraction, and to Prof. Emeritus Philippa Black for help interpreting XRD patterns to identify the mineralogy of numerous soil samples. Catherine Hobbis helped with preparation and examination of samples in the scanning electron microscope.

Thanks are also due to a number of people who helped arrange access to various field areas. Anthony Olson, thank you for helping me to get in touch with a number of local residents near Matata and for frequently providing a place to stay during fieldwork. Roy Wilson, Grant Hattaway, and Colin French are all thanked for permission to access their properties. Thank you to Jacqui Colman and Lloyde de Beer for arranging access to the Mangatawhiri SH2 Bypass site while it was under construction.

Dr. Julie Rowland, Dr. Barry O’Connor, Crystal McDowell, Annette O’Leary, Daniel Costello, Mathew Keam, and Marcel Langton provided field assistance.

Finally, my family whose support got me through this programme, and especially my wife Crystal, who always encouraged me to keep working, reviewed and made editorial suggestions for the text, and produced several drawings used herein.
TABLE OF CONTENTS

ABSTRACT ... i
DEDICATION .. iii
ACKNOWLEDGEMENTS ... v
Table of Contents ... vii
List of Figures .. xiii
List of Tables ... xxviii
List of Equations ... xxx

1 Introduction .. 1
 1.1 Research Objectives ... 2
 1.2 Research Methods ... 3

2 Background .. 5
 2.1 Sensitive Soils ... 5
 2.1.1 Sensitive soils in Canada and Scandinavia ... 6
 2.1.2 Sensitive soils in New Zealand .. 10
 2.2 Pyroclastic Deposits .. 12
 2.2.1 Ignimbrite ... 12
 2.2.2 Air-fall tephra ... 14
 2.2.3 Depositional environments ... 16
 2.2.4 Weathering and clay mineral genesis .. 16
 2.2.4.1 Properties of allophane ... 18
 2.2.4.2 Properties of halloysite ... 18
 2.3 Landslides in Pyroclastic Deposits ... 19
 2.3.1 Landslides in pyroclastic deposits in Italy ... 20
 2.3.2 Landslides in pyroclastic deposits in Japan ... 22
 2.3.3 Landslides in pyroclastic deposits in El Salvador .. 23
 2.4 Research Methodology ... 24
 2.4.1 Background research ... 25
2.4.2 Field work .. 25
 2.4.2.1 Sketches and logs ... 27
 2.4.2.2 Field mechanical tests ... 28
2.4.3 Laboratory Work .. 29
 2.4.3.1 Geotechnical experiments .. 29
 2.4.3.2 Petrographical experiments and observations .. 30
3 Tauranga Basin ... 33
 3.1 Introduction ... 33
 3.2 Purpose ... 35
 3.3 Geologic Setting ... 35
 3.3.1 Regional geomorphology ... 38
 3.3.2 Stratigraphy ... 39
 3.4 Geotechnical Properties .. 47
 3.4.1 Shear vane strength ... 47
 3.4.2 Density and moisture content .. 49
 3.4.3 Grain-size distribution ... 50
 3.4.4 Triaxial strength ... 51
 3.4.4.1 Consolidated drained test results ... 52
 3.4.4.2 Consolidated undrained test results ... 52
 3.4.5 Ring shear results ... 53
 3.4.6 Atterberg limits ... 54
 3.5 Petrographic Descriptions ... 55
 3.5.1 X-ray diffraction results .. 55
 3.5.2 Microstructure .. 60
 3.5.3 Summary of petrographic observations ... 86
 3.6 Styles of slope failure and erosion .. 89
 3.6.1 Soil and debris slides ... 89
 3.6.2 Soil falls .. 93
 3.6.3 Slope stability modelling .. 95
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>Summary</td>
<td>101</td>
</tr>
<tr>
<td>4</td>
<td>Auckland Region</td>
<td>106</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>106</td>
</tr>
<tr>
<td>4.2</td>
<td>Purpose</td>
<td>108</td>
</tr>
<tr>
<td>4.3</td>
<td>Geologic Setting</td>
<td>108</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Regional geomorphology</td>
<td>109</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Stratigraphy</td>
<td>111</td>
</tr>
<tr>
<td>4.4</td>
<td>Geotechnical Properties</td>
<td>120</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Hand shear vane</td>
<td>120</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Pocket penetrometer</td>
<td>121</td>
</tr>
<tr>
<td>4.4.3</td>
<td>In situ density and moisture content</td>
<td>121</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Triaxial strength</td>
<td>123</td>
</tr>
<tr>
<td>4.4.4.1</td>
<td>Consolidated drained test results</td>
<td>123</td>
</tr>
<tr>
<td>4.4.4.2</td>
<td>Consolidated undrained test results</td>
<td>123</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Ring shear</td>
<td>125</td>
</tr>
<tr>
<td>4.4.6</td>
<td>Atterberg limits</td>
<td>126</td>
</tr>
<tr>
<td>4.5</td>
<td>Petrographic Descriptions</td>
<td>127</td>
</tr>
<tr>
<td>4.5.1</td>
<td>X-ray diffraction results</td>
<td>127</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Microstructure</td>
<td>129</td>
</tr>
<tr>
<td>4.6</td>
<td>Styles of Slope Failure</td>
<td>140</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Ohuka Hill</td>
<td>141</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Papakura Service Station</td>
<td>146</td>
</tr>
<tr>
<td>4.7</td>
<td>Summary</td>
<td>153</td>
</tr>
<tr>
<td>5</td>
<td>Matata</td>
<td>156</td>
</tr>
<tr>
<td>5.1</td>
<td>Purpose</td>
<td>156</td>
</tr>
<tr>
<td>5.2</td>
<td>Introduction</td>
<td>156</td>
</tr>
<tr>
<td>5.3</td>
<td>Geological Setting</td>
<td>157</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Regional geomorphology</td>
<td>159</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Stratigraphy</td>
<td>160</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>6.4</td>
<td>Pathways to sensitivity in pyroclastic soils</td>
<td>220</td>
</tr>
<tr>
<td>6.5</td>
<td>Summary</td>
<td>222</td>
</tr>
<tr>
<td>7</td>
<td>Comparisons with other Sensitive Soils</td>
<td>223</td>
</tr>
<tr>
<td>7.1</td>
<td>Comparison of soil properties</td>
<td>223</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Sensitive soils in New Zealand</td>
<td>223</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Weathered volcanic soils in Indonesia</td>
<td>227</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Sensitive soils in Japan</td>
<td>228</td>
</tr>
<tr>
<td>7.1.4</td>
<td>“Quick-clay” sensitive soils</td>
<td>231</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Comparison of formation of sensitive soils</td>
<td>238</td>
</tr>
<tr>
<td>7.2</td>
<td>Landslide morphology and behaviour</td>
<td>240</td>
</tr>
<tr>
<td>7.3</td>
<td>Summary</td>
<td>245</td>
</tr>
<tr>
<td>8</td>
<td>Summary and Conclusions</td>
<td>247</td>
</tr>
<tr>
<td>8.1</td>
<td>Summary</td>
<td>247</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Research goals and methods</td>
<td>247</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Geological findings</td>
<td>248</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Geotechnical properties</td>
<td>249</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Petrographical properties</td>
<td>250</td>
</tr>
<tr>
<td>8.1.5</td>
<td>Relationships between various soil properties</td>
<td>252</td>
</tr>
<tr>
<td>8.1.6</td>
<td>Implications for slope stability</td>
<td>253</td>
</tr>
<tr>
<td>8.1.7</td>
<td>Development of sensitive pyroclastic soils</td>
<td>253</td>
</tr>
<tr>
<td>8.2</td>
<td>Lessons learned and suggestions for future work</td>
<td>254</td>
</tr>
<tr>
<td>8.3</td>
<td>Conclusions</td>
<td>256</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Geological, sedimentological, and stratigraphic findings</td>
<td>256</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Petrographic findings</td>
<td>256</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Geotechnical findings</td>
<td>257</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Slope stability</td>
<td>258</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Soil sensitivity</td>
<td>259</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>261</td>
</tr>
<tr>
<td>A</td>
<td>Outcrop Logs</td>
<td>276</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2.1 - Dispersed versus flocculated sediments. Dispersed sediments will tend to settle out from the water column according to particle size and weight. The formation of microaggregates in flocculated sediments promotes settling of silt and clay material. .. 7

Figure 2.2 - Soil microstructure types after Selby (1993). Canadian and Scandinavian sensitive soils usually have a honeycomb microstructure. ... 7

Figure 2.3 - Casagrande classification chart for sensitive soils from Canada and Norway. Most of these soils plot near the A-line as silty clays. Plasticity is variable from moderate to very high. Values for Canadian soils are from Dascal et al. (1973), Eden and Law (1980), Raymond and Soh (1980), and Geertsema and Torrance (2005). Values from Norwegian soils are from Bjerrum and Simons (1960), Kenney and Drury (1973), and Berry and Torrance (1998). ... 9

Figure 2.4 - Casagrande classification for sensitive soils in New Zealand. Data from Gulliver and Houghton (1980), Jacquet (1990), Tejakusuma (1998), Van Den Bergen (2002a), Van Den Bergen (2002b), Wesley (2007), Keam (2008), and Wyatt (2009). ... 11

Figure 2.5 - Accretionary lapilli from the Kidnappers tephra at the BP Service Station, Papakura, Auckland, New Zealand. Photo by W.M. Prebble, used with permission. .. 15

Figure 2.6 - Weathering zones of pyroclastic materials after Chigara et al. (2002) and Chigara and Yokoyama (2004)... 23

Figure 2.7 - Distribution of the Kidnappers ignimbrite after Wilson et al. (1995). The source of the Kidnappers ignimbrite and tephra is Mangakino Caldera in the Taupo Volcanic Zone. The Kidnappers tephra is likely more widespread due to its airborne dispersal. ... 26

Figure 2.8 - Study locations in relation to major eruptive centres of the Taupo Volcanic Zone 27

Figure 3.1 - Map of Tauranga Harbour showing study area and sampling locations. 34

Figure 3.2 - Geology of the Tauranga area after Briggs et al. (1996), which refers to the products of the Kidnappers eruption as Te Puna ignimbrite. The name here is corrected based on mineralogy, texture and stratigraphic relationships observed in the field in this study, which indicate that it correlates to the Kidnappers eruption from Mangakino caldera. ... 37

Figure 3.3 - Simplified stratigraphy from Tauranga Harbour. Upper strata at Pahoia and Te Puna are not exposed and therefore uncertain... 37

Figure 3.4 - Geomorphic domains of the Tauranga area after Briggs et al. (1996). Areal extent of domains is shown by various patterns within the map while their names are indicated in regular font. Towns, cities, and other location names are noted in italic font. ... 39

Figure 3.5 - Examples of sedimentary forms indicative of syn-eruptive resedimentation. a.) rip up clasts. b.) cross bedding. c.) scour and fill channels and complex interbedding. d.) discontinuous laminae. e.) irregular depositional surfaces. f.) continuous laminae. Drawing is not to a specific scale, but is representative of a 10 metre wide outcrop. ... 41
Figure 3.6 - Generalized stratigraphy of a.) Otumoetai, b.) Te Puna, c.) Omokoroa, and d.) Pahoia. Colours in this figure match those in Figure 4.2. At Omokoroa, sediments of the Matua subgroup are interbedded with Kidnappers ignimbrite and tephra, and Pahoia tephras. There is probably a Subgroup boundary between the Matua Subgroup and the Hamilton Ash.

Figure 3.7 - Outcrop log of location 38 on Pahoia peninsula. The soil exposed at this location is primarily Kidnappers tephra. Resedimentation is evidenced by bedding and lamination with individual units and interbedding of various units.

Figure 3.8 - Composite photo of outcrop at location 38 on Pahoia peninsula. Spade is approximately 1 m tall for scale.

Figure 3.9 – Natural moisture content of samples from the Tauranga region plotted against in situ bulk density. Samples with lower bulk density tend to have higher natural moisture content.

Figure 3.10 – Natural moisture content plotted against dry density of samples from the Tauranga region. Overall, lower density allows higher moisture content. The Te Puna samples have the lowest dry density of samples that fall along the general trend.

Figure 3.11 - Grain size distribution of two runs of reworked ignimbrite material from Omokoroa. The lack of fine material is indicative of fluvial reworking, because fine grains are readily removed by fluvial action while coarser grains are left behind.

Figure 3.12 - Casagrande classification chart of samples from the Tauranga area. Most samples plot near the A-line and classify as clayey silts ranging from intermediate to extreme plasticity. Samples from Pahoia tend to be lower plasticity than those from other parts of the Tauranga region.

Figure 3.13 - XRD pattern for “whole rock” sample 24 from Omokoroa. The relatively large size of the peak at 12° indicates a high proportion of kaolin group clay minerals in the soil. Samples 31 from Otumoetai and 41 from Pahoia exhibit a similar large, strong peak at 12°. K = kaolin group clays, P = plagioclase feldspar, and Q = quartz.

Figure 3.14 - XRD pattern for “whole rock” sample 55 from Omokoroa. The relatively weak reflections between 8° and 12° indicate little crystalline clay content. H = halloysite, K = kaolin group clay (either kaolinite or halloysite), P = plagioclase, Q = quartz.

Figure 3.15 - Air-dried clay separate diffraction pattern for sample 56A. The peak near 9° (10Å) is typical of halloysite-10 (H-10). The weaker peak near 12° (7Å) is halloysite-7 and kaolinite (H-7/K). P = plagioclase.

Figure 3.16 – Air-dried clay separate diffraction pattern for sample 37D. The strong peak at 12° (7Å) is indicative of dehydrated halloysite and kaolinite.

Figure 3.17 - Air-dried clay mount of sample 55 from Omokoroa. This sample has very little crystalline clay content as indicated by the low-intensity halloysite peaks (H).

Figure 3.18 - A bundle of aligned tubular clay particles on a bent stacked columnar microaggregate (enlarged from Figure 3.20.)

Figure 3.19 - Lattice-like network of tubular clay particles (T) coating a grain. These particles generally have no preferential orientation. Micropores and ultrapores are highly irregular and
polygonal; some are slit-like, while others are box-like. .. 63

Figure 3.20 - Bent stacked columnar clay microaggregates. The microaggregates in this photo are slightly aligned, which may be related to growth from a common parent material. The box in the centre of the photo is enlarged in Figure 3.18, and contains aligned bundles of tubular clay particles. .. 64

Figure 3.21 - Spheroidal clay particles (S) forming a partial coating on a quartz grain. Some tubular clay particles (T) are also present... 64

Figure 3.22 - Quartz grain (Q) with numerous stacked columnar clay microaggregates (S) partially coating the grain. Stacked columnar microaggregates exhibit varying degrees of curvature. The microaggregates form bridges (B) or coatings (C) that mediate contact between grains. 65

Figure 3.23 - A plagioclase grain (P) with clay microaggregates (C) adhering to the grain and partially delaminated mica grains (M). Stacked columnar microaggregates (S) form the matrix.... 65

Figure 3.24 - SEM photo of Sample 37D from Omokoroa. The central part of this photo was likely a pumice grain (P) that has been subject to a high degree of solution weathering. Several mica grains (M) are visible to the right of the pumice fragments. The matrix material is probably primarily kaolinite books ... 66

Figure 3.25 - Typical components of weathered pyroclastic soils observed by SEM. a.) Quartz grain with conchoidal fracturing. b.) Feldspar grain with cleavage planes and blocky morphology. c.) Fractured mica grain with cleavage planes. d1.) Bubble wall shard. d2.) Vesicular pumice grain. e.) Pipe-like microaggregates. f.) Bent and helical stack microaggregates. g1.) tubular clay particles. g2.) Lattice-microaggregate. g3.) Bundle-like microaggregate. h.) Globular microaggregate of spheroidal clay particles... 67

Figure 3.26 - Typical morphology of rhyolitic pyroclasts after Moore (1989). a.) Vesicular pumice (VP) and bubble wall shards (BWS). b.) Vesicular pumice, bubble wall shards, and moss-like grains (M). c.) Blocky grains (BG) with evidence of abrasion and transport. d.) Close-up of moss-like coating on a grain. Moore (1989) describes this as a curious product of pyroclastic formation. 68

Figure 3.27 – Columnar stack microaggregates (M) of varying sizes arranged in a high porosity matrix. These microaggregates occur as coatings on grains (G) as well as fragile bridges between grains. Micropores are visible as irregular dark areas between microaggregates and grains. e/e – edge to edge contact ... 69

Figure 3.28 - SEM photo from sample 37A from Omokoroa. The foreground shows a solution pitted glass shard, while the background shows a matrix composed primarily of book-like and bent stack microaggregates of platy kaolinite. The microaggregates are arranged in a low-density configuration with many pores and edge-to-edge contacts (e/e). P – solution pitted pumice fragment, K – kaolinite microaggregates... 70

Figure 3.29 - Stacked columnar microaggregates (M) in an open, porous network, with some individual tubular particles (T), and microaggregates of spheroidal clay particles (S). Pores in this photo are a variety of shapes and sizes, typically polygonal due to being bounded by stacked plate microaggregates. ... 70

Figure 3.30 - Detail of stacked columnar microaggregates (S) with some tubular clay particles (T).
There are several 1-3 μm pore spaces in this picture, surrounded by microaggregates with delicate contacts.

Figure 3.31 - SEM photo of sample 56 from Omokoroa. The matrix of this sample has an open structure with high porosity. There are numerous book-like clay microaggregates (B) as well as globular microaggregates of tubular clay particles (G).

Figure 3.32 - SEM photo of sample 55 from Omokoroa. The sample is dominated by pumice fragments (P) with a matrix (M) composed of tubular and spheroidal clay. Pores in this sample are semi-circular rather than polygonal.

Figure 3.33 - Bundles of hollow tubes (T). These are likely relict fibrous or vesicular glass from pumice fragments. Replacement of the glass by secondary minerals has occurred. The tubes are a variety of sizes, representing the original texture of the glass.

Figure 3.34 - Hollow tubular structures (T) in a matrix of clay microaggregates. Enlargement is shown in Figure 3.35. The hollow structure of the tubes is readily apparent (H).

Figure 3.35 - Enlargement of Figure 3.34, showing the clay particles composing the hollow tube. This seems to represent a pseudomorphous replacement of fibrous or vesicular volcanic glass.

Figure 3.36 - SEM photo of sample 41. Silt and sand grains (G) in this photo have some direct contact with each other, while in other places a matrix (M) of clay microaggregates is the dominant structural feature. The matrix in this sample has an overall “moss-like” appearance and might be termed “honeycomb” in the classification of Selby (1993).

Figure 3.37 - SEM photo of sample 42 showing a silt grain (G) in clay matrix. Matrix material is primarily book-like microaggregates of probably kaolinite (K). This is one relatively larger, circular pore (C). Most of the pores in this sample are polygonal and bounded by stacked platy microaggregates.

Figure 3.38 - SEM photo of sample 43 showing silt and sand grains (G) with clay coatings (M). Porosity in this photo is primarily in the form of micropores between clay microaggregates in the matrix and grain coatings.

Figure 3.39 - Web-like or lattice network of tubular clay particles forming coatings on several grains (G). Highlighted area is enlarged in Figure 3.40. There are semi-circular and polygonal pores between tubular clay microaggregates, detail of these shapes is more visible in Figure 3.40.

Figure 3.40 - Enlargement of Figure 3.39. Lattice-like network of tubular clay particles coating (T) several grains (G) and clay microaggregates (M). Pores generally occur between microaggregates.

Figure 3.41 - A semi-aligned microaggregate of tubular clay particles (T). This microaggregate is somewhere between the semi-parallel bundles of Figure 3.18 and the randomly oriented grain coatings of Figure 3.19.

Figure 3.42 - SEM photo of sample 48 showing a porous, open structure in a matrix composed of kaolinite and halloysite microaggregates.

Figure 3.43 - Helical stacked microaggregate (HS), growing around a grain (G) with some other clay
microaggregate coatings. S – stacked columnar microaggregates ... 78

Figure 3.44 - SEM photo of sample 49. This soil is dominated by a matrix of clay microaggregates arranged in a loose structure .. 78

Figure 3.45 - Hair-like microaggregates (H) composed of tubular and spheroidal clay particles, in a matrix of lumpy microaggregates (L) composed of the same types of clay particles 79

Figure 3.46 - SEM photo of sample 50 showing a sand grain (G) in a matrix of book-like clay microaggregates (K). M – mica grain. .. 79

Figure 3.47 - SEM photo of sample 51. There are a few sand grains (G) present in a loose matrix (M) composed of clay microaggregates. .. 80

Figure 3.48 - Bridges of tubular clay particles between columnar stack microaggregates 80

Figure 3.49 - SEM photo from sample 31 showing numerous silt grains (G) forming a largely skeletal microstructure. ... 81

Figure 3.50 - SEM photo from sample 31 showing a close-up of silt grains (G) with coatings of clay microaggregates (M). .. 82

Figure 3.51 - Halloysite tubes (H) adhering to, and possibly growing on, a mica grain (M) in sample 50 from Pahoia. The mica grain is partially delaminated. ... 83

Figure 3.52 - Convoluted/worm-like microaggregate of halloysite tubes (H) from sample 43 from Pahoia. The curious morphology of the large microaggregate at the centre of the photo is reminiscent of a burrow structure and may be related to biological activity. ... 83

Figure 3.53 - SEM image of remoulded Sample 37. Arrangement of particles is tighter in this material compared to the intact sample (Figures 3.22, 3.23, and 3.24). In this photo, pores are less numerous and smaller. There is also an increase in the degree of grain coating by clay microaggregates. G – sand and silt grains, M – matrix ... 84

Figure 3.54 - SEM photo of remoulded material from Sample 55. Tight packing of glass shards and pumice fragments (G) is the dominant feature of this photo. Compared to Figure 3.32, this photo has lower porosity and a higher degree of contact between rigid grains. ... 84

Figure 3.55 - SEM photo of remoulded material from Sample 41. Silt and sand sized grains are coated with clay material (G). A somewhat distorted and sheared kaolinite microaggregate is visible in the centre of the photo (K). Compared to Figures 3.33, 3.43, and 3.46, this sample has less pore space and a greater degree of grain coating by microaggregates. .. 85

Figure 3.56 - SEM photo of remoulded material from Sample 42. In this photo, various matrix clay particles are dispersed, rather than forming monominerallic aggregates. In addition, there is less porosity in the remoulded sample than the intact sample. H – tubular particles, K – book-like microaggregates. .. 85

Figure 3.57 - SEM photograph of remoulded material from Sample 43. Numerous halloysite tubes are dispersed in a grain coating in this photo. This photo is similar to Figure 3.19; however, in this case the tubular clay particles are mixed together with book-like microaggregates, and the amount of pore space is somewhat reduced. ... 86
Figure 3.58 - Field shear vane ratio plotted by soil colour. Orange and pink soils have a slightly higher sensitivity on average, but there is a large degree of variance in the measured shear strength ratio of orange soils.

Figure 3.59 - Plasticity index plotted by soil colour. Orange and pink soils have slightly lower plasticity indices on average compared to other soils.

Figure 3.60 - Liquid limit plotted by soil colour. Orange and pink soils have slightly lower liquid limits on average.

Figure 3.61 - Distance from the Casagrande A-line plotted by colour. Soils plotting as less than zero would plot below the A-line and therefore be classified as silt, while those with a value greater than zero would plot above the A-line and be classified as clay.

Figure 3.62 - Landslide at Omokoroa from November 2007. The landslide occurred a few weeks before this photo was taken. The stratigraphy exposed in the head scarp includes Matua Subgroup and Pahoia Tephras, Hamilton Ash, and Rotoehu Tephra. Sensitive Kidnappers tephra outcrops 1 metre north (left) of the landslide margin.

Figure 3.63 - Map showing location of slide on Omokoroa Peninsula. The slide occurred during the course of fieldwork for this research. Other scarps and cliffs are related to former landslides.

Figure 3.64 - Log of the landslide face from Figure 3.62.

Figure 3.65 - Cross section of strata involved in the landslide on Omokoroa. All units are presumed to dip gently out of slope.

Figure 3.66 - Example of an incipient fall failure in reworked Kidnappers ignimbrite. Notice especially the crack indicated by the red arrows on the photo.

Figure 3.67 - The same location as Figure 3.66 following failure. Most of the slope is composed of pyrolastic sands and gravels of the Kidnapper Ignimbrite and Pahoia Tephra. Cross-bedding is visible as indicated by the arrow, indicating resedimentation of the deposit by fluvial action. Measuring tape on top of debris is approximately 1 metre.

Figure 3.68 - Schematic drawing of fall failures that occur on Omokoroa Peninsula. Waves erode the pumice sand and gravel exposed at beach level, leaving the upper portion of the slope undercut. This material eventually fails in tension.

Figure 3.69 - Slope stability model for Omokoroa peninsula. The slope model is based on the stratigraphy exposed in Figure 3.62. As illustrated, the groundwater table runs along the upper contact of the Kidnappers tephra. Failure occurs as a relatively shallow slide, with a shear surface at the contact between the Kidnappers tephra and the underlying Matua Subgroup sand. Distance and elevation are in metres. The factor of safety is reported at the top of the figure next to the green diamond.

Figure 3.70 - Overall view of the area used for a slope stability model at Pahoia peninsula. The slope is heavily vegetated and stable, despite being underlain by sensitive Kidnappers tephra.

Figure 3.71 - Close up of soils exposed at the base of the Pahoia slope. The pink unit is a highly plastic tephra, while the greyish brown soil is less plastic. Both are Kidnappers tephra and exhibit
high sensitivity. Measuring tape is approximately 1 metre long. The complex bedding in this photo is indicative of syn-eruptive resedimentation. 98

Figure 3.72 - Slope stability model of Pahoia peninsula near sampling location. In this model, the groundwater table is kept at the contact between the sensitive Kidnappers tephra and stiffer pyroclastic silts. A factor of safety of 1.1 indicates a possible risk of failure if conditions change. Distance and elevation are in metres. Sliding occurs within the Kidnappers tephra, presumably above Matua Subgroup sediments. Factor of safety is reported as the number above the green diamond. 99

Figure 3.73 - Slope stability model for the same slope on Pahoia peninsula. In this case, the groundwater table has been raised considerably, and a safety factor of 0.9 indicates incipient failure. Distance and elevation are in metres. Sliding occurs within the Kidnappers tephra, presumably above Matua Subgroup sediments. Factor of safety is reported above the green diamond. 100

Figure 3.74 - Distance from A-line plotted against the field shear vane strength ratio (soil sensitivity). There is no clear trend to this data, although there is a cluster where most of the data plots apart from three outliers. One of these is an exceptionally sensitive soil from Pahoia (sample 43). 102

Figure 4.1 - Auckland field areas. Study areas were located at Awhitu, Mangatawhiri, and Ohuka. Other locations refered to in this chapter are also labelled. 107

Figure 4.2 - Geology of field locations in the Auckland region modified from Edbrooke (2001). Locations of the field areas are highlighted by red circles. 110

Figure 4.3 - Stratigraphy at each field location with geotechnical descriptions of soils. At Ohuka, the Kaawa Formation (Waitemata Group) underlies the stratigraphic column presented. At Awhitu, Waitemata Group is present at a depth greater than 1 km (Edbrooke 2001). The depth to older units at Mangatawhiri is unknown. Colouration in this figure is based on colour of the soils in the field. 113

Figure 4.4 - Geological log of outcrop on the Awhitu Peninsula. At this location, the Kidnappers tephra is too firm to insert a shear vane or sampling tube. The Kidnappers tephra and ignimbrite are exposed within the Awhitu Group sands. 114

Figure 4.5 - Photograph of outcrop at Awhitu. A recent slide created an outcrop of Kidnappers tephra and Ignimbrite at this location. The thick white bed in the centre of the photo is the Kidnappers Ignimbrite. The Kidnappers tephra outcrops just below the ignimbrite. 115

Figure 4.6 - Geotechnical log of outcrop on Ohuka Hill showing the Kidnappers tephra interbedded with Awhitu Group sands. Shear vane and pocket penetrometer test locations and results are shown. Sampling locations are noted with reference to sample numbers used in Section 4.4. 116

Figure 4.7 - Kidnappers tephra exposed between two beds of the Awhitu Group sand at Ohuka Hill. The tephra is approximately 1 m thick in this photo. 117

Figure 4.8 - Rip up clasts or inclusions in the upper Kidnappers tephra layer. The coarser grained inclusion material forms a discrete bed below the pink tephra material (observed by colluvium in this photo). 118
Figure 4.9 - Outcrop at Mangatawhiri. Kidnappers tephra is the pinkish orange material exposed in the lowest level of the road cut. The upper level of the road cut is composed of a sequence of brown clayey sands (Hamilton Ash) with a white pumiceous sand at the top (Rotoehu ash). Fissuring in the Kidnappers tephra occurred after excavation due to drying of the soil.

Figure 4.10 - *In situ* density of samples from the Auckland region plotted against natural moisture content. Sample 47 was collected at Mangatawhiri and Samples 53 and 54 were collected from Ohuka.

Figure 4.11 - Dry density plotted against natural moisture content of samples from the Auckland region. The strong trend in Samples 47 and 53 are similar to those in samples from the Tauranga area.

Figure 4.12 - Consolidated drained and undrained tests from Mangatawhiri, sample 47. Although tested by different methods, these give similar results for the shear strength parameters, which is to be expected. This provides evidence that the effective friction angle as measured by either drained or undrained methods is the same for these soils.

Figure 4.13 - Atterberg limits results from the Auckland region. All samples classify as high to very high plasticity silts.

Figure 4.14 – Whole-rock XRD pattern for sample 47 from Mangatawhiri. The majority of the peaks present correspond to kandite group clays (K). Peaks labelled 'Q' correspond to quartz.

Figure 4.15 - Whole rock XRD pattern for sample 53 from Ohuka. This sample contains kandite group clay (K) and plagioclase feldspar (P).

Figure 4.16 - Whole-rock XRD pattern for sample 54 from Ohuka. This sample contains kandite group clay (K), plagioclase feldspar (P), and mica (M).

Figure 4.17 - SEM photos of sample 47 from Mangatawhiri. a.) Overall fabric with silt grains and matrix material. b.) Clay microaggregates on a quartz grain. The microaggregate is primarily composed of spheroidal clay particles, probably halloysite. c.) Typical matrix dominated microfabric with numerous book-like clay microaggregates and some tubular clay particles. The contacts between these microaggregates are primarily face-to-edge and edge-to-edge, with few face-to-face. d.) A broken and weathered pumice grain with clay replacement of original glass, similar to Figure 3.34. Much of the original glass has been replaced by clay material, including a stacked columnar microaggregate. g – grain, p – pore, ma – microaggregate, b – book-like or stacked columnar microaggregate, h – hair-like microaggregate of spheroidal clay particles, p – large pipes formed by replacement of glass by clay minerals.

Figure 4.18 (previous page)- SEM photos from sample 53 from Ohuka. a.) Overall view of soil microstructure with many glass shards and clay matrix. b.) Elongate, bubble-wall glass shards with solution pitting and spheroidal clay particles adhering. c.) Globular microaggregates of spheroidal particles, probably halloysite, on glass shards that have been largely replaced by clay minerals to form pipes. Some microaggregates of allophane are beginning to form hair like strands. d.) Tubular clay adhering to a mica grain with matrix composed of globular clay microaggregates. e.) Matrix clay material dominated by spheroidal particles forming globular and hair like microaggregates. f.) Mica grain with tubular clay particles (halloysite) and globular microaggregates adhering. g – grain, p – pore, ma – microaggregate, m – mica grain, sh – glass shards, gma – globular microaggregates, s
– stacked microaggregate, t – tubular clay particle, h – hair like microaggregate 133

Figure 4.19 (previous page) a.) Glass shard largely replaced by clay minerals. b.) Enlargement of a. c.) hair-like microaggregate composed of spheroidal particles. d.) Numerous tubular halloysite particles in sub-parallel alignments forming a bundle microaggregate. .. 135

Figure 4.20 (previous page) SEM photos of sample 54 from Ohuka. a.) Overall soil fabric consisting of a few large grains is a clay matrix. b.) Mica grain with some tubular clay (halloysite) and amorphous material of unknown composition adhering to it. c.) Silt grain (possibly quartz) with curved book-like clay microaggregates. d.) Matrix composed of many book-like microaggregates. Pores are frequently surround by bent book-like microaggregates and are semi-circular to semi-polygonal and range in size from 1 to 20μm. e.) Book-like microaggregates with predominantly face-to-edge contacts coating a grain. f.) Fine detail of bent book-like microaggregates coated with some tubular particles, and a grain coated in spheroidal clay particles. g – grain, p – pore, m – mica grain, b – book-like microaggregate, am – amorphous blob like material of unknown origin 137

Figure 4.21 - Broken edge of a mica grain (M) with tubular (T) and spheroidal (S) clay particles. The mica grain is partially delaminated, while the clay particles are fixed to the grain, possibly in growth positions. C – columnar stack microaggregate with some delamination near the upper surface .. 138

Figure 4.22 - SEM photographs of remoulded and sheared material from sample 53-Ohuka. a.) Overall view of soil texture. b.) Slightly aligned slit grains in matrix. c.) Glass or quartz grain coated with spheroidal clay particles and microaggregates. d.) A partially delaminated mica grain with clay coating and filling. g – grain, ma – microaggregate. .. 139

Figure 4.23 - Remoulded and sheared sample 54-Ohuka. a.) Overall texture with greatly reduced porosity. b.) Round grain coated in clay of tubular and spheroidal morphology. c.) Matrix material with indistinct shapes contrasting with the clear morphology of microaggregates in the intact sample. This seems to indicate that there is some destruction of structural elements during remoulding and shearing of these soils. .. 140

Figure 4.24 – Simplified stratigraphy and slope stability of Ohuka Hill modified from van den Bergen (2002b). The fluid nature of the Kidnappers tephra is apparent in the zone of troughs and ridges in the central portion of the landslide body. These features are similar to the highly fluidized landslides that occur in the sensitive glacial soils of the Northern Hemisphere. .. 143

Figure 4.25 - SLOPE/W model for sliding on the Kidnappers tephra in Ohuka Hill in the standard case. In this case, a factor of safety of 1.4 indicates that failure is not likely to occur. 144

Figure 4.26 - Slope stability model of Ohuka Hill with the addition of a seismic load equivalent to the 1000 year design earthquake. A factor of safety of 0.9 indicates virtually certain failure in this case. .. 144

Figure 4.27 - Slope stability model of Ohuka Hill with the addition of a seismic load equivalent to the 500 year design earthquake and an increase in the elevation of the groundwater table. A factor of safety of 0.9 indicates virtually certain failure in this case. .. 145

Figure 4.28 - Composite photo of the BP Service Station at Papakura while under construction. The shape of the embayment is apparent. Mounds and hills in the background were formed by the same
landslide event that formed the embayment in the foreground. Photo by W.M. Prebble, used with permission.

Figure 4.29 - Geotechnical log of soil outcrop above the Southern Motorway at Papakura Service centre from van den Bergen (2002a).

Figure 4.30 - Geomorphology in the area of the Papakura service centre from van den Bergen (2002a). Map explanation is presented on the following page.

Figure 4.31 - Stratigraphy used for slope stability modelling at Papakura taken primarily from the report of van den Bergen (2002a). Shear strength parameters for the Kidnappers tephra at this location are taken to be typical to those measured throughout this research.

Figure 4.32 - Slope stability model for Papakura using assumed typical groundwater conditions. The factor of safety in this case is 1.1, indicating that changes in the driving or resisting forces would be likely to initiate failure.

Figure 4.33 - Slope stability model for Papakura with a higher groundwater table. The factor of safety in this case is 1.07, indicating a marginal decrease in stability compared to the base case (Figure 5.17).

Figure 4.34 - Slope stability model of Papakura with the addition of a seismic load equivalent to the 500 year design earthquake. The factor of safety in this case is 0.9 indicating probable failure.

Figure 5.1 - Generalized stratigraphy and structure near Matata. Colours are used to correlate units to Figure 5.3 a-d.

Figure 5.2 - Geological map of the Matata region after Healy et al. (1964).

Figure 5.3 a-d – Summarised stratigraphy near Matata, coloured to match the generalized stratigraphy presented in Figure 5.1. The stratigraphy proceeds from a (oldest) to d (youngest). Silt samples were collected from the base of Silt 2, just above Tephra A.

Figure 5.4 - Study and sampling locations in the Matata region.

Figure 5.5 - Bulk density plotted against natural moisture contents of soils from Matata. The bulk density of sand and silt units is generally similar.

Figure 5.6 - Dry density plotted against natural moisture contents for soils from Matata. Soils of similar type tend to plot as clusters as would be expected.

Figure 5.7 - Grain-size distribution obtained by dry sieving. Sand soils are uniformly graded while the silty-sand transition material is well-graded.

Figure 5.8 - Point load results from tests on Silt 1 and Silt 2. The standard point load index is taken for samples of 50 mm thickness. In this case, sample spread decreases as thickness approaches 50 mm.

Figure 5.9 - Unconfined compressive strength tests from Silt 2 versus specimen density.

Figure 5.10 - Drained triaxial test results from Matata silty soils. Results from the two sample sets are in good agreement indicating relatively uniform material properties.
Figure 5.11 - Ring shear test results from Matata silty soils. There was some error in the test procedure at low normal stress; this was corrected at higher stress levels. Friction angle was determined by forcing a cohesion of 0 kPa. .. 172

Figure 5.12 - Classification chart of Matata silty soils, which plot as intermediate to high plasticity silts. ... 173

Figure 5.13 - Whole rock XRD analysis of Sample 2 (Silt 2). Peaks are labelled as follows: S - smectite, P - plagioclase, Q - quartz, Py – pyrite, B – biotite, and K – kaolinite .. 174

Figure 5.14 – Clay separates XRD analysis from Sample 14 (Silt 2). Peaks characteristic of particular clays are labelled.. 174

Figure 5.15 - SEM photograph of silty material from Matata. Labels are: s - silt grain, c - clay material coating a grain, p - pore ... 176

Figure 5.16 - SEM photograph of silty soil with a book-like kaolinite (B) and cardhouse microaggregation, possibly composed of illite (I). G – silt grains. Boxed area is enlarged in Figure 5.17 ... 176

Figure 5.17 - Enlarged view from Figure 5.16 of cardhouse clay microaggregate, likely composed of illite. The clay particles are largely chipped and tattered indicating transport before deposition and hence, alloigenic origin ... 177

Figure 5.18 - SEM photograph of silty grains (s) with kaolin (k) and smectite-chlorite (s-c) micro-aggregates. Silt grains are of several compositions, primarily feldspar and quartz ... 177

Figure 5.19 - Pyrite or jainite crystals with some mixed-layer smectite-illite honeycomb-like microaggregates. Both are likely to have formed by authigenic processes as indicated by their well-preserved morphology .. 178

Figure 5.20 - Landslide near Herepuru Road related to erosion of Sand 1 by the Ohinekoao Stream. A cable formerly buried next to the road is visible in the headscarp .. 180

Figure 5.21- Two slide locations on Herepuru Road. Sand 1 is exposed at multiple locations due to faulting. The two drainage culverts that have been placed are poorly located to prevent overland flow from eroding Sand 1 ... 181

Figure 5.22 - Rock fall and debris due to undercutting of Silt 1 in Awatarariki Stream. Block size is controlled by fractures in the silt. The debris deposits formed from fall failures shield the slope from additional erosion and prevent further falls .. 182

Figure 5.23 - Block diagram representing ground conditions that promote groundwater flow concentration and piping erosion in pyroclastic soils near Matata ... 184

Figure 5.24 - Schematic of tomo near Matata. A pipe propagates back through the cliff and eventual destabilizes the welded ignimbrite and causes a sinkhole to form ... 185

Figure 5.25 - Map of geomorphic domains in the Matata region .. 187

Figure 6.1 - Sand and silt grains (G) in sample 14 from Matata. Most are subrounded to subangular making distinction between quartz and feldspar difficult. Most of the grains are coated in smaller clay-sized material, but there is no continuous matrix as exists in the soils from Auckland and Tauranga.

Figure 6.2 - Additional sand and silt sized grains in sample 14 from Matata. Some grains exhibit concoidal fracturing and are likely quartz. There is some clay (both in terms of size and composition) material in this sample coating grains, but no continuous matrix. Q – quartz, G – glass, S – other sand and silt grains.

Figure 6.3 – Burial depth and consolidation plotted versus sensitivity (shear vane strength ratio) for all study locations. High sensitivity soils tend to have been subject to less consolidation, but there is not a linear relationship. Field sites are labelled as follows: Ma – Matata, Mg – Mangatawhiri, Ot – Otumoetai, TP – Te Puna, Om – Omokoroa, Oh – Ohuka, Pa - Pahoia.

Figure 6.4 - Typical remoulded microstructure of sensitive pyroclastic soils. Grains are typically coated in clay material. Various clay minerals/morphologies are dispersed throughout the microstructure rather than forming monomineralic microaggregates, except kaolinite. Book-like microaggregates are still present, but are typically smaller and more equant rather than elongate.

Figure 6.5 - SEM photo of matrix clay material from sample 37 (Omokoroa). There is a large amount of pore space that mainly occurs between curved book and stack microaggregates. These microaggregates are generally monomineralic with a well pronounced morphology.

Figure 6.6 - Image from a soil from Omokoroa following ring shearing. Various matrix clays are mixed together rather than forming single mineral microaggregates as they do in the intact soils.

Figure 6.7 - Comparison of soil dry density and peak friction angle. There is a general trend of increasing friction angle with increasing density, which is to be expected because density increases with closer packing of grains and a higher proportion of hard minerals such as quartz.

Figure 6.8 - Comparison of residual friction angle and dry density. There is a generally trend of decreasing friction angle with increasing density, which is expected; however, there are several outliers. The low density/high residual friction angle outliers may have a higher proportion of glass shards, which tend to have a lower density than mineral grains but often have a high friction angle.

Figure 6.9 - Comparison between field shear strength ratio and dry density. There is essentially no correlation between the two values.

Figure 6.10 - Comparison between friction angle ratio and dry density. There is a vague trend of decreasing friction angle ratio with increasing density, but with many outliers.

Figure 6.11 - Dry density plotted by soil microstructure type. Skeletal soils tend to be the most dense. Skeletal-matrix and matrix-skeletal soils have nearly the same average density. The lower density of the more matrix-like soils is probably related to the increased proportion of clay minerals.

Figure 6.12 - Comparison between soil microstructure and peak friction angle. The skeletal sample has the highest friction angle, while the various matrix-like soils have lower friction angles.
Figure 6.13 - Comparison between soil microstructure and residual friction angle. The skeletal soil has the highest residual friction angle. Skeletal-matrix and matrix-skeletal soils have essentially the same average residual friction angle. .. 210

Figure 6.14 - Results of all Atterberg limits tests performed on soils for this research. Nearly all plot very close to the A-line that defines the boundary between silts and clays. 211

Figure 6.15 – Comparison between distance from the Casagrande chart A-line and soil microstructure. This value represents a degree of silt-like or clay like behaviour. Samples are separated out between high (LL>50%) and low plasticity (LL<50%)... 212

Figure 6.16 - Distance from the Casagrande chart A-line plotted against clay mineralogy. Soils with halloysite tend to plot the further below the A-line. This is probably related to the typical tubular morphology of halloysite behaving more like silt grains than clay particles.............................. 213

Figure 6.17 - Distance from the Casagrande chart A-line and peak strength. Soils further from the A-line (more negative values of Δπ) have a higher friction angle. This is expected because soils further below the A-line should have a higher proportion of silt which would tend to increase the friction angle. .. 213

Figure 6.18 - Distance from the Casagrande chart A-line versus residual friction angle. There is virtually no correlation between these parameters... 214

Figure 6.19 – Comparison between soil microstructure and plastic limit. Soils with skeletal-matrix, matrix-skeletal, and matrix microstructures have a slightly higher plastic limit on average compared to skeletal soils. This is reflective of the greater proportion of clay minerals in the former. 215

Figure 6.20 - Plastic limit and clay minerals present. Soils with halloysite have a higher plastic limit on average compared to other soils, and is probably related to the tendency for tubular halloysite to behave more like silt grains .. 215

Figure 6.21 – Comparison between soil microstructure and liquid limit. Matrix-like soils have a higher liquid limit on average for reasons similar to those discussed in Figure 6.19, i.e. a higher proportion of clay minerals in matrix-dominated soils. .. 216

Figure 6.22 - Liquid limit plotted against clay minerals present. Soils with halloysite tend to have a slightly higher liquid limit on average. The interlayer water present in halloysite as well as its typical tubular morphology may provide space for further water to be absorbed into the soil without affecting its consistency. .. 216

Figure 6.23 – Comparison between plasticity index and soil microstructure. Matrix-like soils have a higher average plasticity index due to a larger proportion of clay minerals. ... 217

Figure 6.24 - Plasticity index plotted against clay minerals present. Soils with halloysite have a higher average plasticity index for similar reasons as discussed in Figure 6.22, i.e. the high retention capacity of halloysite versus kaolinite. .. 217

Figure 6.25 - Field shear vane ratio (sensitivity) plotted by microstructure type. Matrix-skeletal soils have the highest sensitivity. Microstructure does not greatly affect the field shear vane ratio...... 218

Figure 6.26 - Field shear vane ratio (sensitivity) plotted against clay mineralogy. The soils
containing smectite-illite etc. were too stiff to measure using the field shear vane. Soils with both halloysite and kaolinite detected have the largest range of measured sensitivity.

Figure 6.27 - Friction angle ratio versus microstructure type. Soils with matrix-skeletal microstructures have the highest average friction angle ratio.

Figure 6.28 - Friction angle ratio plotted against clay mineralogy. Soils with kaolinite and halloysite have the highest average friction angle ratio.

Figure 6.29 - General process to create sensitive rhyolitic tephra. a.) Eruption of the pyroclasts into the air. b.) (plan view) Deposition in a variety of environments including terrestrial, alluvial, and marine. c.) Burial by other sediments and pyroclasts is usually quick to prevent the development of a paleosol. d.) Weathering of the tephra by dissolution in an environment that leaches away most cations leaving primarily alumina and silica (Giese Jr., 1988; Joussein et al., 2005). e.) Uplift (or sea-level fall) and erosion to present day landforms. f.) In the modern condition, sensitive pyroclastic soils are normally at or below the watertable at the base of steep slopes.

Figure 7.2 - Atterberg limits classification for weathered volcanic soils from Indonesia from Wesley (1977). The Indonesian soils have considerably higher liquid limits than those measured in this research. See Figure 7.1 caption for explanation of classification fields.

Figure 7.3 – Atterberg limits classification chart for Ariake Bay sensitive soils. See Figure 7.1 for classification explanation. All of these soils plot very close to the A-line. Some of the soils have exceptionally high liquid limits compared to the values measured in this study.

Figure 7.4 - Soil sensitivity plotted against liquidity index for sensitive soils from Ariake Bay, Japan. There is a clear trend between liquidity index and sensitivity in these soils.

Figure 7.5 - Atterberg limits results for "quick-clays" of the Northern Hemisphere. Results are from St. Thuribe, Quebec, Canada (Peck et al., 1951), South Nation River, Ontario, Canada (Eden et al., 1971), Ullensaker, Norway (Kenney and Drury, 1973), and Montreal, Quebec, Canada (Berry and Torrance, 1998). Most of these soils plot on or just above the A-line and have a lower average liquid limit compared to New Zealand sensitive soils (see Figure 6.14).

Figure 7.6 - Sensitivity plotted against liquidity index for Canadian and Scandinavian “quick-clays”. There is a strong correlation between the liquidity index and sensitivity as reported by these researchers.

Figure 7.7 – Sensitivity (ratio of peak to remoulded shear strength) plotted against liquidity index for sensitive pyroclastic soils from this research, organized by soil microstructure. There is essentially no correlation between sensitivity and liquidity index for these soils.

Figure 7.8 - Ratio of peak and residual friction angle plotted against liquidity index for sensitive pyroclastic soils in this research sorted by microstructure type. There is a tentative trend of increasing ratio with increasing liquidity index.

Figure 7.9 - Sensitivity versus liquidity index for sensitive soils from Japan and New Zealand. The
data from this study does not demonstrate the same trend as the data from elsewhere, but does largely plot in the same field. ... 237

Figure 7.10 – Processes that lead to the formation of “quick-clay” soils. a.) Glacial erosion of existing rocks and soils produces very fine-grained sediment (rock flour). b.) The sediment flows into a body of water, typically flocculates, and then settles out and is deposited. c.) Glacial retreat leads to crustal rebound and elevation of the glacial sediments above sea-level. d.) Introduction of fresh water dilutes and leaches the salt dissolved in the soil pore water. ... 239

Figure 7.11 - Geologic setting of landslides in sensitive soils in Canada after Fransham and Gadd (1977) and Lefebvre (1996). Deposits of "quick-clay" are typically thicker and more uniform than deposits of sensitive tephra in New Zealand. .. 241

Figure 7.12 - Aerial photo of the South Nation River landslide of 1971. The degree of retrogression and development of troughs and ridges is characteristic of landslides in Canadian and Scandinavian "quick-clays". From Eden et al. (1971). South Nation River Landslide, 16 May 1971. Canadian Geotechnical Journal, 8, 446-451 © 2008 NRC Canada or its licensors. Reproduced with permission. .. 242

Figure 7.13 - Photograph of the headscarp of the South Nation River landslide of 1971, showing intermediate retrogressive scarps. From Eden et al. (1971) South Nation River Landslide, 16 May 1971. Canadian Geotechnical Journal, 8, 446-451 © 2008 NRC Canada or its licensors. Reproduced with permission. .. 243

Figure 7.14 - Schematic cross section of a landslide in "quick-clay" interpreted from photos from Eden et al. (1971) and incorporating observations by Kenney and Drury (1973), Carson (1977), and Mitchell and Klugman (1979). The basal shear surface is typically defined by a zone of fluidized soil, on which intact blocks of soil float. Transverse ridges and troughs form as these intact soil blocks pull apart from each other. .. 244

Figure 7.15 - Typical profile of a landslide involving sensitive soil in the Tauranga region. The basal shear plane is located in the Kidnappers tephra, while a secondary shear plane is located in other pyroclastic or sedimentary units. .. 245

Figure A.1 - Log of ignimbrite outcrop near N6364531 E2833856 (NZMG). Logging is primarily estimated as the outcrop was too steep to access above 2 metres. Base of log is approximately 5 metres a.s.l. .. 276

Figure A.2 - Stratigraphic log of outcrop near N6364196 E2834476 (NZMG). .. 277

Figure A.3 - Stratigraphic log for outcrop near N6364091 E2834841 (NZMG). .. 277

Figure A.4 - Stratigraphic log at east edge of Wilson farm near Matata (N6361990 E2839014 NZMG) .. 278

Figure A.5 - Stratigraphic log of Herepuru Road, near Matata.. 279

Figure A.6 - Stratigraphic log of outcrops in Mimiha Stream valley (N6363868 E2835140 NZMG). .. 280

Figure A.7 - Stratigraphic log of the Wilson farm track near Matata.. 281
Figure A.8 - Stratigraphic log for exposure south of Hamilton's Gap on Awhitu Peninsula288
Figure A.9 - Stratigraphic log of exposure north of Hamilton's Gap on Awhitu Peninsula289
Figure B.1 - Schematic of a typical hand shear vane ...291
Figure B.2 - Photo of the author using the hand shear vane in the field292
Figure B.3 - Schematic of a typical pocket penetrometer ..292
Figure B.4 - Example of a carved triaxial specimen showing radius (r) and height (h)294
Figure B.5 - Schematic of triaxial cell showing pressure, loading, and measurement systems297

LIST OF TABLES

Table 2.1 - Sensitivity classification from NZGS (2005) ..5
Table 2.2 - Summary of the geotechnical properties of Canadian and Norwegian sensitive soils from Bjerrum and Simons (1960), Dascal et al. (1973), Kenney and Drury (1973), Gillot (1979), Eden and Law (1980), and Raymond and Soh (1980). Geotechnical properties of sensitive New Zealand soils are from Gulliver and Houghton (1980), Hatrick et al. (1982), Jacquet (1990), van den Bergen (2004b), and Wesley (2007) ...8
Table 2.3 - Summary of the geotechnical properties of ignimbrites from Moon (1993a), Rahn (1996), and Bozzano et al. (2000) ...13
Table 2.4 - Summary of physical and geotechnical properties of air-fall tephras as reported by Wesley (1977), Guadagno (1991), Tejakusuma (1998), Bozzano et al. (2000), van den Bergen (2002b), Wesley (2003), Calcaterra (2004), and Terribile et al. (2007)15
Table 3.1 - Field areas, localities, and samples from the Tauranga region34
Table 3.2 - Geotechnical descriptions of soils from Tauranga Harbour. These descriptions include the full range observed at all locations. Descriptions of soils for each outcrop are presented as Appendix A. Soils are presented in stratigraphic order ...43
Table 3.3 - Results of hand shear vane tests. All tests were performed on Kidnappers tephra in the Tauranga area. Field locations are shown in Figure 3.1. A value of >260 kPa indicates that the soil strength exceeded the range of measurement of the shear vane. A remoulded value of "-" indicates that the vane could not be inserted into the soil due to soil stiffness ..48
Table 3.4 - Sorting parameters for reworked ignimbrite material from Omokoroa51
Table 3.5 - Consolidated drained test results from Tauranga. The sample from Te Puna has the lowest cohesion, which may be related to its low density. Sample 43 contained a larger proportion of sand than other samples ...52
Table 3.6 - Consolidated undrained test results from Tauranga in terms of effective stress. Some samples have friction angles near 30° indicative of silt- or sand-like behaviour, while other samples have lower friction angles indicative of clay-like behaviour ..53
Table 3.7 - Ring shear test results from Tauranga. Most samples have a residual friction angle between 15° and 17°. Samples 22, 37, and 55 have higher friction angles, likely due to a higher proportion of silt and sand grains in those soils.

Table 3.8 - Summary of sample mineralogy based on XRD observations. All samples contain quartz, plagioclase feldspar, and either kaolinite or halloysite. Halloysite may occur with either a 7Å or 10Å d-spacing, as indicated by a numerical suffix. Some samples contain halite or other salts.

Table 3.9 - Microstructural components observed in weathered Kidnappers tephra.

Table 3.10 – Summary of properties of soil samples collected from the Tauranga Region.

Table 4.1 - Field areas, localities, and sample numbers from the Auckland region.

Table 4.2 - Results of shear vane tests in Kidnappers tephra in the Auckland region. Tests from location 45 have the lowest peak and remoulded strength. The samples from Mangatawhiri have the highest remoulded strength values. The tests on the light brownish yellow silty clay at location 46 and the tests at location 45 have the highest degree of soil sensitivity.

Table 4.3 - Results of pocket penetrometer tests from Ohuka site.

Table 4.4 - Consolidated undrained triaxial test results for the Auckland region.

Table 4.5 - Ring shear test results from the Auckland region.

Table 4.6 - Summary of properties of sensitive Kidnappers tephra in the Auckland region.

Table 5.1 - Geotechnical descriptions of soil strata near Matata presented in stratigraphic order. Tephra A is exposed within the silt unit; samples of the silt were taken ~10 cm above Tephra A.

Table 5.2 - Grain-size distribution parameters for samples from Matata.

Table 5.3 - Summary of properties of soils from Matata.

Table 6.1 - Soil depositional environment, consolidation pressure, and sensitivity by region.

Table 6.2 - Selected shear strength properties and microstructure type. Om – Omokoroa, Pa – Pahoia, Oh – Ohuka.

Table 6.3 - Summary of geotechnical properties, clay mineralogy, and microfabric for all samples. Ma – Matata, Om – Omokoroa, Ot – Otumoetai, Pa – Pahoia, TP – Te Puna, Mg – Mangatawhiri, Oh – Ohuka. "--" indicates no data available. "dnp" indicates that the soil was too stiff for the shear vane to be inserted.

Table 7.1 - Summary of geotechnical properties for sensitive soils in New Zealand as reported by other researchers. * indicates undrained strength measured by UCS, all other undrained strengths measured by hand shear vane. “--“ indicates no data available.

Table 7.2 – Geotechnical properties of volcanic soils from Java, Indonesia from Wesley (1977). Although some highly sensitive soils exist in Indonesia, those reported in the table are typically insensitive. “--“ indicates no data available.
Table 7.3 - Summary of shear strength and sensitivity values for Canadian and Scandinavian quick-clays. The remoulded strengths of some of these soils are below 1 kPa indicating fluid behaviour following remoulding. This extremely low strength contributes to flow-like behaviour in landslides involving “quick-clay”.

Table 7.5 - Comparison between the geological properties and processes related to the development of sensitive soils in glacial sediments and pyroclastic ash.

Table 8.1 - Summary of shear strength parameters measured during this research.

LIST OF EQUATIONS

Equation 1.1 ..2
Equation 6.1 ..212
Equation B.1 ..292
Equation B.2 ..293
Equation B.3 ..295
Equation B.4 ..295
Equation B.5 ..296
Equation B.6 ..298
Equation B.7 ..298
Equation B.8 ..298