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ABSTRACT 

Sensitive soils with a high ratio of peak to remoulded strength are frequently involved in large, 

damaging landslides around the world.  In New Zealand, sensitive soils are derived from in situ 

weathering of fine-grain pyroclastic deposits; elsewhere they are typically deposits of glacial 

derived "rock flour".  This research describes the nature of sensitive pyroclastic deposits and 

proposes a possible process to their formation.  Investigations focused on the ~1 Ma Kidnappers 

tephra due to its widespread nature and typical exposure at the base of cliffs where it is typically 

saturated and contributes to landslides.   

Field observations found that these soils are generally syn-eruptively reworked pyroclastic 

deposits of variable grain-size and plasticity, with typical deposits being high to extremely high 

plasticity silts.  These soils are often the basal shear plane of landslides in the Auckland and 

Tauranga regions.  X-ray diffraction studies found a typical mineralogy of quartz and plagioclase 

together with the clay minerals halloysite and kaolinite.  Scanning electron microscopy observations 

showed these soils have a quasi-matrix microstructure inherited from the original vesicular texture 

that has been modified by weathering into clay minerals without a significant change in porosity.  

Geotechnical testing determined the physical and material properties of the soils to be: dry density, 

0.9 – 1.1 g/cm
3
; moisture content, 49% - 104% by mass; peak friction angle, 15° - 32°; peak 

cohesion, 10 – 80 kPa; residual friction angle, 14° - 30°; residual cohesion, 0 – 13 kPa; sensitivity, 6 

to 24. 

Key factors in the genesis of sensitive pyroclastic deposits are: i.) an original low density 

deposit composed of vesicular glass and pumice fragments, ii.) weathering of primary material to 

form halloysite and kaolinite, iii.) a delicate microstructure dominated by clay mineral 

microaggregates in a high-porosity fabric, and iv.) high natural water content that promotes fluid 

behaviour during shearing.  Of these four conditions original vesicular texture and weathering that 

promotes the formation of kaolin group minerals are the most important factors in the generation of 

sensitivity.  The results of this research will help practitioners to recognize and respond to sensitive 

pyroclastic soils and contributes to the understanding of these soils in a global context. 
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