Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library [Thesis Consent Form](http://researchspace.auckland.ac.nz/feedback)
ORGANOSILANES:

Synthesis and reactivity directed towards annulations

A thesis presented to the University of Auckland for the degree of

Doctor of Philosophy

by

Paul William Richard Harris

Department of Chemistry
University of Auckland

September 1999
Table of Contents

Abstract vi
Acknowledgments viii

CHAPTER 1: Introduction 1

1.1 Synthesis of ring C aromatic steroids via organotransition metal intermediates 4
 1.1.1 Synthesis mediated by chromium complexes 5
 1.1.2 Synthesis mediated by manganese complexes 6
1.2 Catalytic carbon-carbon bond formation 7
1.3 References 9

CHAPTER 2: Coupling of C-H bonds with olefins 11

2.1 Aromatic Ketone/olefin coupling 13
2.2 Scope of the reaction 19
2.3 Ester, enone, imine/olefin coupling 20
 2.3.1 Aromatic ester/olefin coupling 20
 2.3.2 Enone/olefin coupling 22
 2.3.3 Imine/olefin coupling 25
2.4 Intramolecular C-H/olefin coupling 29
2.5 Pyridine-directed C-H/olefin coupling 30
2.6 Acylation of imidazoles and aza-heterocycles 34
2.7 Ruthenium-catalysed polymerisation 35
2.8 The mechanism of Ru-catalysed C-H/olefin coupling 36
2.9 The present research: coupling of diterpenoids with olefins 43
2.10 Summary and future work 51
2.11 Experimental 51
2.12 References 58

CHAPTER 3: Functionalisation of the C-Si bond in C-SiR₃ adducts 63

3.1 Benzylic functionalisation 65
 3.1.1 Benzylic oxidation 65
 3.1.2 Benzylic bromination with NBS 70
 3.1.3 Attempts to reduce and protect the C(7) carbonyl 74
3.1.4 Reduction of the C(7) carbonyl to the methylene
3.1.5 Bromination with NBS and an added base
3.1.6 Bromination with NBS under irradiation
3.1.7 Bromination with NaBrO₃/NaHSO₃
3.1.8 Bromination with CAN/KBr
3.2 Functionalisation of the tribromide (3.14)
3.3 Brominations of adducts containing an acetyl group
3.4 Attempted aldol reactions of the diketone (3.32)
3.5 Oxidation of the silicon-carbon bond
 3.5.1 Cleavage of the silicon-carbon bond with AlCl₃
 3.5.2 Attempted oxidation of the silanol (3.53)
3.6 Summary and future work
3.7 Experimental
3.8 References

CHAPTER 4: Functionalisation of the C-Si bond in C-Si(OR)₃ adducts

4.1 Oxidation of trialkoxyorganosilanes
4.2 Ketone Modifications
 4.2.1 Protection as an acetal
 4.2.2 Reduction of the ketone
4.3 Oxidation of the oxasilepins to diols
4.4 Oxidation of the diols
4.5 Attempts to remove the C(7) functionality
4.6 Oxidation of the alkane to a carbonyl
4.7 Formation of quinones
4.8 Oxidation of the enone/alcohol to the enone/aldehyde
4.9 Attempted preparation of the ketone/aldehyde
 4.9.1 Attempted reduction of the enone double bond
 4.9.2 Oxidation of C(7) methylene to C(7) ketone
4.10 Formation and oxidation of a silyl enol ether
4.11 Functionalisation of the 13-acetyl derivative
4.12 Pinacol coupling
 4.12.1 Attempted pinacol coupling reactions
4.13 Approaches to the quassinoid ring system
4.14 Summary and future work
CHAPTER 5: Coupling of C-H bonds with acetylenes

5.1 Coupling of various aromatic ketones with PhC=CSiMe₃
5.2 Attempted synthesis of a functionalised alkynylsilane
5.3 Ruthenium-catalysed coupling of a dialkyne with 1-tetralone
5.4 Attempted oxidation of an alkenylalkynylsilane
5.5 Attempted C-H/alkyne coupling with other alkynes
5.6 Summary and future work
5.7 Experimental
5.8 References

CHAPTER 6: Reactions of vinylsilanes

6.1 Intramolecular cyclisations of vinylsilanes
6.2 Intramolecular cyclisation of vinylsilane ketones
 6.2.1 Cyclisations when the ketone is part of ring structure
 6.2.2 Cyclisations when the ketone is exocyclic
 6.2.3 Cyclisations of naphthalene vinylsilanes
 6.2.4 Attempted cyclisations of a bis vinylsilane
6.3 Attempted reactions of benzofulvenes
6.4 Oxymercuration leading to a dihydrofuranyl
6.5 Summary and future work
6.6 Experimental
 6.6.1 Cyclisations when ketone is part of ring structure
 6.6.2 Cyclisations when the ketone is exocyclic
 6.2.3 Cyclisations of naphthalene vinylsilanes
 6.6.4 Formation of dihydrofuranyl ethers
6.7 References

APPENDIX: Crystallographic data
Ruthenium-catalysed coupling of alkenes (principally vinylsilanes) with the ortho C-H bond of a wide range of monocyclic, bicyclic and tricyclic aromatic ketones led to a high yield of ortho-alkylated adducts. A methoxy substituent located para to the directing carbonyl moiety had an activating effect while an ortho methoxy resulted in severe inhibition of the coupling reaction and methoxy cleavage was observed. However, an ortho TBDMS ether allowed the C-H/olefin coupling to proceed quantitatively, which was attributed to inhibition of catalyst quenching by preventing chelate formation.

With a view to cyclopentaannulation, the adducts from the C-H/olefin coupling containing a ArCH₂CH₂SiMe₃ side chain were functionalised by radical bromination leading to a 1,2-dibromo compound which was converted into a COCH₃ by elimination and hydrolysis. An analogous sequence, when applied to a more complex substrate, gave products resulting from bromination and/or elimination at a different benzylic site. Attempted intramolecular aldol reactions of a 1,4-dicarbonyl compound failed and resulted instead in skeletal rearrangement. The carbon-silicon bond in ArCH₂CH₂SiMe₃ could be converted into a silanol (RSiMe₂OH) when treated with aluminium chloride, but attempts to oxidise the C-Si bond (to give an alcohol) in this compound were unsuccessful.

Silicon-carbon bond oxidation in adducts containing a ArCH₂CH₂Si(OR)₃Me side chain gave an ArCH₂CH₂OH fragment provided that a proximal ketone was converted to an alcohol prior to the oxidation to avoid unwanted Baeyer-Villiger reaction. The resultant 1,5-diols could not be oxidised directly to a 1,5-dicarbonyl compound, but were converted into a mono alcohol by ionic hydrogenation and subsequent deprotection in excellent overall yield. Successive benzylic and primary alcohol oxidation provided the required 1,5-dicarbonyl functionality, but this enone aldehyde was not suitable for cyclopentaannulation. Attempts to synthesise an alternative substrate (a keto aldehyde) via protection of the primary alcohol followed by benzylic oxidation were unsuccessful, but could be achieved by conjugate reduction of the enone. The ensuing pinacol coupling failed.

The quassinoid ring system was accessed by functional group interconversion to yield a 8-keto ester, which underwent latonisation using SmI₂.
Coupling of alkynylsilanes with the ortho C-H bond of various aromatic ketones proceeded in high yield under ruthenium catalysis and resulted in the introduction of a vinyl group predominantly of E configuration. In contrast, the aromatic ketone 1-acetylnaphthalene, underwent cyclopentaannulation in a one-pot sequence under analogous conditions, which was confirmed by X-ray crystallographic analysis. This was proposed to occur via β-silyl migration as a key step. Attempts to synthesise an alkynylsilane bearing alkoxy substituents failed and gave only a dialkyne, which underwent ruthenium-mediated C-H bond insertion cleanly. The resultant alkenylalkynylsilanes could not be oxidised to an aldehyde.

Trimethyl orthoformate-promoted intramolecular cyclisation of the ortho vinylated aromatic ketones resulted in cyclopentaannulation in high yield. The newly formed 5-membered ring was confirmed by an X-ray structure of a diterpenoid analogue. Mono or tricyclic substrates produced benzofulvenes in high yield when the ketone was exocyclic, while a naphthalene derivative resulted in the isolation of methanol adducts. A diterpenoid containing a dihydrofuranyl ring could be synthesised via intramolecular Hg(II) cyclisation of an alcohol and a proximal alkene.
ACKNOWLEDGMENTS

I am indebted to my supervisor Associate Professor Paul Woodgate for his supervision of this research, particularly his enthusiasm and advice during the course of this work. I would also like to thank other staff members of the Chemistry Department including Associate Professor Cliff Rickard and Allen Oliver for the X-ray crystallography, Associate Professor James Wright for helpful discussions regarding transition metal-silicon chemistry, Dr Michael Taylor for analysis of the variable temperature NMR studies, Professor Margaret Brimble, and especially Michael Walker for running countless 2-D NMR experiments, variable temperature NMR, and mass spectra.

I am grateful to the Graduate Research Fund and the Royal Society of New Zealand for their financial assistance during the course of the PhD and to the University of Auckland for the award of a Doctoral Scholarship.

Thanks to the people with whom I have shared a lab with; AJ, Hunh, Gill, Jarod and Ali for making the place enjoyable to work in and to the other students in the Department including Keri "Gripsalide" Wellington, Claude, Ralph Stevenson (for proofreading), Hamish "Surly" Sutherland, Russ "the Muss" Clark, Steven "Pixie" Horner, Matty O'Neill and Scottie (for all the squash games).

I would like to thank my good friends Geoff Waterhouse, Brent Lindsay, Mark Glenny for their humour, goodwill and advice, and Donald and Sarah for their ongoing friendship. Thanks also to Asteroid Andy (Keri, Matt and Otto) for all the good fun we had playing in a band, and to John "Dinosaur" Lavas for his regular support.

I am indebted to my family in particular Lip and Rick (for feeding me without question), my cousins Dan and Jess, my grandmother Jean, and Dave and Kirsten for their encouragement. I am particularly grateful to my parents Sally and Larry, and would like to thank them for all their support (be it financial or otherwise) throughout all my years of study.

Finally, thanks to Megan for all her love, unwavering support and generous help with ideas, formatting, and presentation of this thesis.