

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library

Thesis Consent Form

PARTIAL OXIDATION OF METHANOL TO FORMALDEHYDE OVER AN ELECTROLYTIC SILVER CATALYST

Geoffrey Ivan Neil Waterhouse

A thesis submitted to the University of Auckland in fulfilment of the requirement for the Degree of Doctor of Philosophy in Chemistry

August 2003

The University of Auckland

Thesis Consent Form

This thesis may be consulted for the purpose of research or private study provided that due acknowledgement is made where appropriate and that the author's permission is obtained before any material from the thesis is published.

I agree that the University of Auckland Library may make a copy of this thesis for supply to the collection of another prescribed library on request from that Library; and

1. I agree that this thesis may be photocopied for supply to any person in accordance with the provisions of Section 56 of the Copyright Act 1994

Or

2. This thesis may not be photocopied other than to supply a copy for the collection of another prescribed library

(Strike out 1 or 2)

Signed: G. Waterhouse -----Date: 29-/11/2003

Created: 5 July 2001 Last updated: 9 August 2001

TABLE OF CONTENTS

Abstract		V
Acknowledgn	nents	VII
Terms and de	efinitions	VIII
CHAPTER 1:	Introduction	1
	1.1 Historical perspective	1
	1.2 Physical properties of formaldehyde	1
	1.3 Uses of formaldehyde	2
	1.4 Industrial formaldehyde manufacture	5
	1.5 Silver catalyst manufacture	13
	1.6 Silver catalyst deactivation and lifetime	16
	1.7 Project objectives and strategy	18
	1.8 References	20
CHAPTER 2:	Materials and Methods	22
	2.1 Electrolytic silver catalysts	22
	2.2 Microreactor for catalytic measurements	22
	2.3 High temperature cell for in situ Raman studies	28
	2.4 Reactor for ozonation studies	30
	2.5 References	31
CHAPTER 3:	Oxygen Chemisorption on an	32
	Electrolytic Silver Catalyst	
	3.1 Introduction	32

3.2	Experimental	i,	34
3.3	Results and Discussion	1	35
3.4	Conclusions	1	55
3.5	References	4	56

CHAPTER 4:	Mechanism and Active Sites for the	59
	Partial Oxidation of CH ₃ OH to CH ₂ O on	
	an Electrolytic Silver Catalyst	
	4.1 Introduction	59
	4.2 Experimental	63
	4.3 Results	67
	4.4 Discussion	85
	4.5 Conclusions	90
	4.6 References	91
CHAPTER 5:	Influence of Catalyst Morphology on	94
	the Performance of Electrolytic Silver	
	Catalysts for the Partial Oxidation	
	of CH ₃ OH to CH ₂ O	
	5.1 Introduction	94
	5.2 Experimental	97
	5.3 Results	98
	5.4 Discussion	117
	5.5 Conclusions	124
	5.6 References	125
CHAPTER 6:	The Thermal Decomposition of	128
	Silver (I, III) Oxide	
	6.1 Introduction	128
	6.2 Experimental	129
	6.3 Results and Discussion	132
	6.4 Conclusions	149
	6.5 References	149

CHAPTER 7:	Oxidation of a Polycrystalline Silver Foil	152
	By Reaction with Ozone	
	7.1 Introduction	152
	7.2 Experimental	154
	7.3 Results and Discussion	156
	7.4 Conclusions	172
	7.5 References	173
CHAPTER 8:	Interaction of a Polycrystalline Silver	176
CHAPTER 8:	Interaction of a Polycrystalline Silver Powder with Ozone	176
CHAPTER 8:		176 176
CHAPTER 8:	Powder with Ozone	
CHAPTER 8:	Powder with Ozone 8.1 Introduction	176
CHAPTER 8:	Powder with Ozone 8.1 Introduction 8.2 Experimental	176 177

CHAPTER 9: Conclusions

198

ABSTRACT

The partial oxidation of methanol to formaldehyde over an electrolytic silver catalyst is a large-scale industrial process that provides the feedstock for the manufacture of synthetic resins, plastics and important chemical intermediates such as 1,4-butanediol and methylene diphenyl diisocyanate (MDI). The process is carried out at atmospheric pressure by passing CH₃OH vapour, in the presence of air and steam, through a thin bed of electrolytic silver catalyst operating adiabatically at temperatures between 873-973 K. Process yields of CH₂O may be as high as 88-90 %. Competing reactions lead to the formation of CO₂, HCOOH and CO. The objective of this thesis was to gain a better understanding of the reaction mechanism and those factors which influence silver catalyst activity and selectivity to CH₂O during CH₃OH oxidation.

Through the application of a variety of experimental techniques it is shown that the dissociative chemisorption of O2 activates electrolytic silver catalysts for CH3OH oxidation. Over the temperature range 448-1073 K, the oxygen inventory of silver catalysts comprises three distinct atomic oxygen species: two surface species (denote O_{α} and O_{γ}) and a bulk-dissolved species (O_{β}). The surface species are distinguishable by their Ag-O bonding, thermal stability and reactivity differences. O_{α} is formed by the dissociative chemisorption of O_2 on Ag(110) or Ag(111) planes. The species is weakly bound, possesses bridging Ag-O-Ag bonding and strong nucleophilic character, and opens reaction pathways towards CH2O, CO2 and HCOOH. Recombinative desorption of O_{α} as O_2 commences at temperatures above 580 K. O_{γ} formation occurs exclusively on reconstructed Ag(111) planes. The species possesses a highly covalent Ag=O bonding interaction and exists to temperatures in excess of 923 K in the presence of gas phase O_2 . O_γ activates silver catalysts for the oxidative-dehydrogenation of CH₃OH to CH₂O + H₂O, but shows no selectivity towards CO₂ or HCOOH production. Bulkdissolved oxygen (O_{β}) exchanges reversibly with the O_{α} and O_{γ} species. The product distribution of CH₃OH oxidation over electrolytic silver catalysts is controlled by the relative surface populations of the O_{α} and O_{γ} states. Formaldehyde selectivity and yield increase with temperature up to 923 K, CH₃OH/O₂ feed ratio from 1.5-2.25 and catalyst grain boundary density, all of which reflect a corresponding increase in the surface O_γ / O_{α} ratio on the catalysts. An optimum formaldehyde yield of 84.3 % was obtained

during testing of the silver catalysts, under conditions close to those employed industrially (temperature = 923 K, molar feed composition CH₃OH/O₂/H₂O/He = 2.25/1/1.7/20, GHSV = 1.25×10^5 h⁻¹). Above 923 K, yields decreased due to the homogeneous decomposition of CH₂O to CO + H₂. Pronounced thermal and catalytic etching of the silver catalyst occurred during activation under conditions of industrial CH₂O synthesis. Critically, structures created by these processes promote O_β and O_γ formation, and improve catalyst performance. Results were used to develop comprehensive reaction schemes for CH₃OH oxidation over electrolytic silver catalysts.

The thermal decomposition of $Ag^{I}Ag^{III}O_{2}$ in air was examined in relation to the industrial practice of adding silver oxides to silver catalyst beds to facilitate 'light off' during start up operations. $Ag^{I}Ag^{III}O_{2}$ was thermally reduced to metallic silver via two non-reversible steps, with the intermediate formation of $Ag_{2}O$. The transformation of $Ag^{I}Ag^{III}O_{2}$ to $Ag_{2}O$ occurred with heating in the 373-473 K region, while the product of this reaction remained stable to temperatures in excess of 623 K. Complete thermal decomposition of the $Ag_{2}O$ intermediate to Ag and O_{2} occurred at 673 K.

The oxidation of several silver substrates by reaction with ozone (5 mol % O_3 in O_2) was examined as potential route to the production of silver catalysts of high initial activity towards CH₃OH oxidation. At 300 K, the Ag substrates were oxidised by O_3 to yield Ag₂O and monoclinic Ag¹Ag¹¹¹O₂. The Ag¹Ag¹¹¹O₂ formed at the gas/oxide interface, via the oxidation of Ag₂O.

ACKNOWLEDGMENTS

The following people and organizations deserve recognition for their contribution to this work.

- Associate Professor Jim Metson (PhD supervisor) for providing a project outline.
- Professor Graham Bowmaker (PhD co-supervisor), whose assistance and enthusiasm in the final stages of this project were instrumental in the completion of this thesis and the publication of material contained herein. Graham, I will always be indebted to you for this aid.
- Orica Adhesives and Resins (NZ) for equipment funding and supply of the silver catalysts used in this work. Special thanks to Alex Bruce for sharing his technical expertise in industrial formaldehyde manufacture.
- Dr. Graeme Millar, of the University of Queensland, St. Lucia, Australia, for his valuable advice and support during my visit.
- My friends and colleagues for their companionship, humour and understanding; in particular, Paul Harris (Wokass), Brent Lindsay (Hard lines), Peter Swedlund (Bolshie #1), Damien Mihec, Baek, Laurie Melton, James Coventry (Cob), Mei Kieng Chau and Dongxiao Sun (Xiao-la / Ms. Red Shoes).
- My dog Pepe (Dementia), for being a good listener during the difficult stages of this project (throughout basically) and for reminding me daily of the important things in life: love, regular exercise, good food and clean drinking water.
- Most importantly, my parents, Joan and Geoff Snr., for their unconditional love, wisdom and support. This thesis embodies their efforts as much as my own.

TERMS AND DEFINITIONS

The following terms and definitions are used throughout this thesis:

• **Conversion** is the molar fraction of methanol (or O₂) transformed per reactor pass, expressed as a percentage.

 $Conversion (\%) = \frac{[CH_3OH]_{in} - [CH_3OH]_{out}}{[CH_3OH]_{in}} \times 100$

• Selectivity is the number of moles formed of a specific product per mole of methanol reacted, expressed as a percentage.

Selectivity (%) = $\frac{[\text{product}]_{\text{out}}}{[\text{CH}_3\text{OH}]_{\text{in}} - [\text{CH}_3\text{OH}]_{\text{out}}} \times 100$

In the previous equations, $[CH_3OH]_{in}$ and $[CH_3OH]_{out}$ denote the molar concentrations of methanol at the reactor inlet and outlet, respectively.

• Yield of a specific product is obtained by multiplying conversion and selectivity.

Yield (%) = $(conversion \times selectivity)/100$

- Activity or reaction rate (mol $CH_3OH s^{-1}$) is the conversion rate of methanol.
- **Specific activity** (mol CH₃OH s⁻¹ m⁻²) is the molar conversion rate of methanol per m² of catalyst surface area.
- Methanol loading (tonne CH₃OH h⁻¹ m⁻²) is the mass flow rate of CH₃OH to the reactor per square metre of catalyst bed.
- Gas hourly space velocity (h⁻¹) is the total volume feed rate to the reactor per cubic metre of catalyst bed.

• Contact time or residence time (s) is the time taken by a molecule to traverse the catalyst bed.

Contact time (s) = $\frac{3600 \text{ (s h}^{-1}) \times \alpha \times 273 \text{ K}}{\text{GHSV (h}^{-1}) \times \text{T(K)}}$

Where α is the bulk volume of the catalyst = catalyst volume/geometric bed volume = (1-voidage). The overall voidage in carefully packed beds of granular particles is ~ 0.4.

- Linear velocity (m/s) is the speed at which gases traverse the catalyst bed and is the volume feed rate to the reactor per square metre of catalyst bed.
- **Time-on-stream** is the duration between the beginning of catalyst testing and the time of catalytic activity measurements.
- Sticking probability is the ratio of adsorbing to impinging gas molecules.
- **'Light off' temperature** is the temperature at which the conversion of methanol exceeds a specified value (specified in this thesis as 30 %).