Modelling Breast Tissue Mechanics Under Gravity Loading Author: Rajagopal, Vijayaraghavan http://hdl.handle.net/2292/704

3 | LIBRARY
Te Tumu Herenga RESEARCHSPACE@AUC KLAND

THE UMIVERSITY OF AUCKLANMD

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New
Zealand). This thesis may be consulted by you, provided you comply with the
provisions of the Act and the following conditions of use:

e Any use you make of these documents or images must be for
research or private study purposes only, and you may not make
them available to any other person.

e Authors control the copyright of their thesis. You will recognise the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

e You will obtain the author's permission before publishing any
material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital
copy of their work to be used subject to the conditions specified on the Library

Thesis Consent Form



http://researchspace.auckland.ac.nz/feedback
http://www.library.auckland.ac.nz/instruct/thesisconsent.pdf

Modelling Breast Tissue Mechanics
Under Gravity Loading

by Vijayaraghavan Rajagopal.

Supervised by Assoc. Prof. Poul.M.F. Nielsen and Dr.
Martyn.P. Nash.

A thesis submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy in Bioengineering,
The University of Auckland, 2007.

BIOENGINEERING INSTITUTE

THE UNIVERSITY OF AUCKLAND

Bioengineering Institute
The University of Auckland

New Zealand
January 2007






Abstract

This thesis presents research that was conducted to develop anatomically realis-
tic finite element models of breast deformation under a variety of gravity loading
conditions to assist clinicians in tracking suspicious tissues across multiple imaging
modalities.

Firstly, the accuracy of the modelling framework in predicting deformations of a
homogeneous body was measured using custom designed silicon gel phantoms. The
model predicted surface deformations with an average RMS error of 1.5 mm =+ 0.2
mm and tracked internal marker locations with an average RMS error of 1.4 mm =+
0.7 mm.

A novel method was then developed to determine the reference configuration of
a body, when given its mechanical properties, boundary conditions and a deformed
configuration. The theoretical validity of the technique was confirmed with an an-
alytic solution. The accuracy of the method was also measured using silicon gel
experiments, predicting the reference configuration surface with an average RMS
error of 1.3 mm + 0.1 mm, and tracking internal marker locations with an average
error of 1.5 mm + 0.8 mm.

Silicon gel composites were then created to measure the accuracy of standard
techniques to model heterogeneity. The models did not match the experimentally
recorded deformations. This highlighted the need for further validation exercises on
modelling heterogeneity before modelling them in the breast.

A semi-automated algorithm was developed to fit finite element models to the
skin and muscle surfaces of each individual, which were segmented from breast MR
images. The code represented the skin with an average RMS error of 1.46 mm =+
0.32 mm and the muscle with an average RMS error of 1.52 mm =+ 0.3 mm.

The framework was then tested using images of the breast obtained under dif-
ferent gravity loading conditions and neutral buoyancy. A homogeneous model was
first developed using the neutral buoyancy images as a representation of the refer-
ence configuration. The model did not accurately capture the regional deformations

of the breast under gravity loading. However, the gross shape of the breast was



reproduced, indicating that a biomechanical model of the breast could be useful to

reliably track tissues across multiple images for cancer diagnosis.
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