Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form
The enhancement of intra-operative diagnostics and decision-making using computational methods

Michael J. Harrison
MB, BS (Newcastle upon Tyne), FRCA, FANZCA

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Medicine.
The University of Auckland, 2005
ABSTRACT

The data presented and views expressed in this document are the result of multiple published and unpublished studies over the last 25 years. My over-arching goal in this research was to use modern computing power to create functionally useful diagnoses, in real time, from the monitoring systems used during routine anaesthesia and to present these diagnoses in an ergonomic manner. In addition it was intended to incorporate into the anaesthetic monitor, expert systems that help with the management of uncommon situations.

The Australian and New Zealand College guidelines on monitoring during anaesthesia dictate those measurements that should be made during every anaesthetic; from these data evidence can be gathered, integrated, and presented to the clinician. Constraints in this field of research include the inability of the monitors to see, hear or understand the context of operating theatre activities, and computer processing time.

Because many studies are involved the methods are detailed in the main text, and are not summarized here.

Physiological ‘envelopes’ have been developed, in which the ‘normal’ variation in physiological variables, during anaesthesia, are enclosed. They have enabled the creation of intelligent alarm systems that can suggest diagnoses. A retrospective off-line study showed that it was possible to diagnose the onset of malignant hyperpyrexia, using fuzzy logic templates, about 10 minutes earlier than the clinician. Some variables may be more important than others in making a diagnosis, and the strength of a diagnosis depends on the amount of supporting evidence, the amount of evidence not against the diagnosis and the amount of missing data.

Decision-making (for example to transfuse or not transfuse blood) can also be mathematically modelled so that decision making is more consistent.

Finally, investigation of the ways of displaying data indicates that the output can be very explicit.

My overall conclusion is that real time decision support systems for the management of clinical dilemmas are possible. They can be instantly and easily accessible and can sit discretely in the background of anaesthetic monitors to be activated at will by the anaesthetist.
The work for this thesis has been carried out over twenty-five years. It began whilst I was working as a Consultant Anaesthetist and Senior Lecturer in Anaesthesia in the city of Nottingham, in the UK. The work was continued in Auckland, at Auckland Hospital, and as an honorary Senior Lecturer and Associate Professor in the Department of Anaesthesiology, Faculty of Medical and Health Science, University of Auckland, New Zealand.

The majority of the work has been at my instigation but much of the work has been co-authored with past and present colleagues.
ACKNOWLEDGEMENTS

I would like to give thanks to the following friends who have contributed to my fumbling attempts at seeing through the fog of uncertainty.

Frank Johnson, Andrew Lowe, Phil Guise, Nigel Robertson, Michal Kluger, Brian Mace, Guy Warman, Brian Pollard, Ron Jones, Tom Healy, Alan Merry, Doug Campbell, Richard Jones, David Kabel, Jim Hunter and many more.

Much praise and thanks must be given to my wife, Penny, who has valiantly put up with my computing over the years.

“I heartily beg that what I have done here may be read with candour; and that the defects I have been guilty of upon this difficult subject may be not so much reprehended as kindly supplied, and investigated by new endeavours of my readers.”

Isaac Newton
The Mathematical Principles of Natural Philosophy
Cambridge, Trinity College,
May 8, 1686.

It is likely that this work will expose my ignorance more than my knowledge. Being pragmatic I hope the end result may be of use to someone with greater skills.

Michael Harrison
September 22nd, 2005
PUBLICATIONS AND PRESENTATIONS

The following publications arose from this work:

My contribution to these publications is tabulated in detail in APPENDIX H

Harrison MJ, Johnson F. Computer assisted decision making in anaesthesia. Br J Anaes 1980; 629P

Harrison MJ. Preoperative computer generated advice – is it helpful? Computers and Medicine 1983;2:3-8

Harrison MJ. The computer in the Intensive Care Unit. Care of the Critically Ill 1984;1,15-18 (reproduced in Medicine Digest 1985;11:12-20

Harrison MJ, Slater EJ. Remote monitoring using an induction loop. Anaesthesia 1986;41:71-72

Lowe A, Harrison MJ, Jones RW. Diagnostic monitoring in anaesthesia using fuzzy trend templates for matching temporal patterns. Artificial Intelligence in Medicine, Special Issue on Fuzzy Diagnosis (page refs)

Harrison MJ, Kluger M, Robertson NN. Physiological changes during induction of anaesthesia. Aust. and NZ College of Anaesthesia and Intensive Care 1998 Annual Scientific Meeting, Newcastle (Abstract)

BOOKS

TABLE OF CONTENTS

ABSTRACT .. ii

PREFACE .. iii

ACKNOWLEDGEMENTS ... iv

PUBLICATIONS .. v

TABLE OF CONTENTS ... viii

LIST OF TABLES .. xi

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS ... xix

PART 1 INTRODUCTION... GOALS AND LIMITATIONS 1

PART 2 DIAGNOSIS AND DECISION MAKING ... 6

 2.1 An overview ... 7
 2.1.1 Induction and deduction ... 7
 2.1.2 Sets (crisp and fuzzy) ... 10
 2.1.3 Probability .. 12
 2.1.4 Neural nets ... 13
 2.1.5 Fuzzy logic ... 14
 2.1.6 Logistic regression .. 15
 2.1.7 Clinical judgment analysis .. 16

 2.2 Summary ... 18

PART 3 DECISION SUPPORT SYSTEMS (DSS) .. 19

 3.1 Decision trees ... 20
 3.1.1 Fortran, Basic, Prolog, Text .. 22
 3.1.2 DSS in the new millennium .. 29
 3.1.2.1 Anaesthetic advice ... 29
 3.1.2.2 Rare diseases ... 31
 3.1.2.3 Drug interactions ... 32

 3.2 Transfusion decisions .. 34
 3.2.1 Quantification of the physiological state 35
 3.2.2 Modelling the decision-making (paper exercise) 44
3.2.3 Modelling the decision-making (clinical audit).................54
3.3 Summary...68

PART 4 DATA COLLECTION AND TIME SERIES ANALYSIS.........69
4.1 Data Collection and Time series analysis............................69
 4.1.1 The Basic Data set..71
 4.1.2 Digital Data Collection...74
 4.1.2.1 Normal systolic blood pressure variation.............76
 4.1.2.2 BP vs BP...78
 4.1.2.3 BP vs BP vs Time...83
 4.1.2.4 BP vs Events...84
 4.1.3 Time series analysis..93
 4.1.3.1 Moving averages / SDs/ percentiles....................93
 4.1.3.2 Exponential smoothing, Trigg and Hope.............94
 4.1.3.3 A cardiovascular example..................................98
4.2 Summary...104

PART 5 DATA AS EVIDENCE..105
5.1 Data as evidence..106
 5.1.1 Simple models..106
 5.1.1.1 Details of diagnoses...107
 5.1.2 Combination of evidence..110
 5.1.2.1 A Respiratory example......................................111
 5.1.2.2 Clusters and Vectors...119
 5.1.2.3 Belief and Plausibility - Mu values and Courses...121
 5.1.3 Examples..126
 5.1.3.1 Malignant Hyperpyrexia....................................126
 5.1.3.2 Change in Cardiac Output................................127
 5.1.3.2.1 Crisp sets...128
 5.1.3.2.2 Fuzzy sets...139
 5.1.3.3 Hypovolaemia...143
5.1.3.4 Sympathetic Response .. 145

5.2 Summary ... 146

PART 6 ANALOGUE DATA COLLECTION AND ANALYSIS 147

6.1 Analogue waveforms ... 148
6.2 The problem and the goals .. 149
6.3 Progress reports .. 154
 6.3.1 Respiratory variability (arterial pressure) 154
 6.3.2 Correlation of arterial and photo-plethysmogram variability ... 166
 6.3.3 Sympathetic activity in the photo-plethysmogram 176
6.4 Summary ... 180

PART 7 DATA DISPLAY .. 181

7.1 An overview ... 182
 7.1.1 3D display ... 182
 7.1.2 Remote monitoring (Audio / MRI) 183
 7.1.3 Vectors and the diagnostic fan 184
 7.1.4 Flaming tracks ... 187
 7.1.5 Hierarchy of displays .. 188
7.2 Summary ... 190

PART 8 SUMMARY AND CONCLUSIONS 191

8.1 Summary ... 192
8.2 Conclusions .. 194

BIBLIOGRAPHY .. 195

APPENDIX A Harrison, Kluger, and Robertson, 2000 204
APPENDIX B Lowe and Harrison, 1999 208
APPENDIX C JAVA program for respiratory related variability of SBP . 213
APPENDIX D Case Scenarios for transfusion decision-making study 218
APPENDIX E OSRE analysis of transfusion audit data 223
APPENDIX F Probabilistic alarms for changes in blood pressure 225
APPENDIX G Free text details for operating theatre procedures 224
APPENDIX H Details of my contribution to published work 230
APPENDIX I Ethics Committee’s approval documents 232
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard Boolean truth table</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Functional derangements for some common clinical disorders with drug interactions</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>Numbers of senior anaesthetic staff at the hospitals studied together with the number of forms returned.</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>Lower quartile, median of mid-range values and upper quartile values (mm) from Auckland and Middlemore anaesthetists with comparison statistics</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>Comparisons between the assessments of likelihood of transfusion (Auckland and Middlemore Hospitals) for co-morbidities at two levels of Hb</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>Examples of clinical scenarios with embedded data</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>Numbers of senior anaesthetic staff at the hospitals studied together with the number of forms returned</td>
<td>47</td>
</tr>
<tr>
<td>8</td>
<td>Distribution of values for COR, ON and Hb embedded in the thirty clinical scenarios</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>Logistic regression parameters for decision to transfuse</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>Probabilities of transfusion for the 30 clinical scenarios, for the four hospitals</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>A comparison, using some of the demographic and contextual variables, between the two sets of transfusion audit data</td>
<td>56</td>
</tr>
<tr>
<td>12</td>
<td>Co-morbidities in the transfusion audit data sets; initial set n= 80 and testing set n=50</td>
<td>60</td>
</tr>
<tr>
<td>13</td>
<td>Binary logistic regression analysis of seven variables considered of some importance in the decision to transfuse</td>
<td>61</td>
</tr>
<tr>
<td>14</td>
<td>Patient numbers for those false positives and false negatives for four different model, BLR = Binomial Linear Regression, PM = Probabilistic Model, NN = Neural Net</td>
<td>64</td>
</tr>
</tbody>
</table>
TABLE 15 Patient details: FP = False positive, FN = False Negative, COR = Cardiac output reserve, OGH = Ongoing haemorrhage, ROTH = Risk of tissue hypoxia, PPT = Peer pressure to transfuse

TABLE 16 5th and 95th percentile limits for change in systolic blood pressure

TABLE 17 Values for systolic blood pressures recorded five minutes after a previous systolic blood pressure measurement, in 10 mm Hg groupings.

TABLE 18 The analysis of matches and mismatches between clinicians’ decisions and the computer algorithm’s indications to intervene, when blood pressure changed

TABLE 19 A crude diagnostic matrix

TABLE 20 The number of events detected by the algorithm is displayed against the percentage cumulative change in the physiological variable.

TABLE 21 The number of events identified by the clinicians classified as False/True, Negative/Positive when related to different threshold values for the computer algorithm

TABLE 22 Numbers of events with indication of agreement between clinicians

TABLE 23 Events that were identified by at least two clinicians but not detected by the computer algorithm

TABLE 24 Factors affecting E\textsubscript{T}CO\textsubscript{2} concentration

TABLE 25 The linguistic rules for diagnosis of decreased cardiac output and increased ventilation

TABLE 26 Patients and times where the respiratory related variability in blood pressure exceeded 10%

TABLE 27 Events where SPV\% was raised for two minutes or more

TABLE 28 Events where the SPV\% was raised for very short periods
LIST OF FIGURES

FIGURE 1 An overview of techniques used in the making of decisions and diagnoses 7
FIGURE 2 Overlapping sets 10
FIGURE 3 Crisp boundaries 11
FIGURE 4 Fuzzy sets and boundaries 11
FIGURE 5 Schematic diagram of a neural net 14
FIGURE 6 The overlapping shells of techniques for making decisions and diagnoses. 18
FIGURE 7 Patient information with linkage codes 22
FIGURE 8 Anaesthetic advice from Fortran sorting program 23
FIGURE 9 Decision trees branches for inputting medical problems 26
FIGURE 10 Decision trees branches for inputting surgical procedures 27
FIGURE 11 Decision trees branches for inputting procedures and drug therapy 28
FIGURE 12 Partial Decision Support System advice for malignant hyperpyrexia 30
FIGURE 13 Extract from ‘Anaesthesia for Uncommon Diseases’ 32
FIGURE 14 (a) Example of one cardiac output related statement, the upper and lower range of one individual’s perception of the ability of the patient to increase their cardiac output (b) how the group results are amalgamated to produce a ‘population’ based lower and upper limit for the range of ability to increase cardiac output. 37
FIGURE 15 VAS results from senior specialists at Auckland Hospital when asked how a particular pathology would affect the patient’s ability to increase their cardiac output. 38
FIGURE 16 Likelihood of transfusion on a 100mmVAS for a range of co-morbidities at a Hb of 95 gL⁻¹ or 80 gL⁻¹ 40
FIGURE 17 Age distribution in initial data set (Hb 70-100 gL$^{-1}$) with indication of transfusion rate 58

FIGURE 18 Distribution of VAS scores (mm) for ability to increase CO (in the initial data set, Hb 70-100 gL$^{-1}$) with indication of transfusion rate. 58

FIGURE 19 Distribution of VAS scores (mm) for risk of tissue hypoxia ROTH (in initial data set, Hb 70-100 gL$^{-1}$) with indication of transfusion rate. 59

FIGURE 20 The likelihood of transfusion vs. the Hb gL$^{-1}$ 62

FIGURE 21 The likelihood of transfusion vs. the risk of tissue hypoxia as assessed on a VAS 62

FIGURE 22 Heart rate, mean arterial pressure, end-tidal CO$_2$ and pulse volume over a period of half an hour during which a fall in cardiac output has fallen 70

FIGURE 23 Effect of a median filter 76

FIGURE 24 Distribution of systolic blood pressures during anaesthesia and surgery 77

FIGURE 25 Present blood pressure (SBP$_n$) vs. the next SBP (SBP$_{n+1}$) 78

FIGURE 26 Confidence limits for change in systolic blood pressure 79

FIGURE 27 Frequency distribution of changes in systolic blood pressure, the bigger the change the less likely it is to be encountered 79

FIGURE 28 An example of event related changes in MAP, with annotations, designed to clarify the following figures 87

FIGURE 29 Event related changes in MAP 88

FIGURE 30 Event related changes in heart rate 89

FIGURE 31 Event related changes in pulse volume 90

FIGURE 32 The not so subtle effects of smoothing on height and timing of the data points. 93

FIGURE 33 An example of the use of a moving window of standard deviation 94
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>Trigg’s Tracking signal (TTS) responding to changes in a variable</td>
<td>96</td>
</tr>
<tr>
<td>35</td>
<td>Part of the restructuring of the TTS so that positive changes are positive and negative changes negative</td>
<td>96</td>
</tr>
<tr>
<td>36</td>
<td>Demonstration of the restructuring showing that a downward trend above the average and an upward trend below the average both have positive values, which indicates improvement</td>
<td>97</td>
</tr>
<tr>
<td>37</td>
<td>One variable analysis with predictions for future range of values</td>
<td>103</td>
</tr>
<tr>
<td>38</td>
<td>Integration of intermittent, multiple variable data for diagnostic analysis</td>
<td>103</td>
</tr>
<tr>
<td>39</td>
<td>Integration of continuous (analogue data) for diagnostic purposes</td>
<td>103</td>
</tr>
<tr>
<td>40</td>
<td>A comparison of respiratory variables between those patients breathing spontaneously and those being ventilated (IPPV)</td>
<td>113</td>
</tr>
<tr>
<td>41</td>
<td>A comparison of summed, normalised variables ($E_{1}CO_{2}$, $FICO2$, RR and RRV) between spontaneously breathing patients and those being ventilated (IPPV)</td>
<td>114</td>
</tr>
<tr>
<td>42</td>
<td>The initial neural network used to test the ability to discriminate between those patients breathing spontaneously and those being ventilated</td>
<td>115</td>
</tr>
<tr>
<td>43</td>
<td>The final, simple, neural network used to discriminate between the ventilated and non-ventilated patients</td>
<td>115</td>
</tr>
<tr>
<td>44</td>
<td>Frequency distribution for calculated values for MOV using the ‘Goal-seek’ method</td>
<td>116</td>
</tr>
<tr>
<td>45</td>
<td>Probability vs ‘Goal-seek’ calculated values for the area of overlap. For a value > 0.3 the probability is >98% spontaneous ventilation, <-0.3 IPPV</td>
<td>117</td>
</tr>
<tr>
<td>46</td>
<td>Example of the use of cluster analysis in an attempt to separate modes of ventilation</td>
<td>119</td>
</tr>
<tr>
<td>47</td>
<td>Vector graph; in this example four variables are plotted on four non-orthogonal axes (y,a,b,x), the resulting sum of these four vectors produces a point +</td>
<td>120</td>
</tr>
<tr>
<td>48</td>
<td>Cluster analysis using four vectors; normalised values for $E_{1}CO_{2}$, $FICO2$, RR and RRV</td>
<td>121</td>
</tr>
</tbody>
</table>
FIGURE 49 Mu values; how a change in MAP can be allocated a μ value 122
FIGURE 50 The way a time series fits a course can be represented by a μ value 122
FIGURE 51 Allocation of μ values to individual data points in a time series. Courtesy of Dr Andrew Lowe 123
FIGURE 52 Belief and plausibility for two sets of evidence for a sympathetic response 123
FIGURE 53 Using the opinions of experts to determine mu values 126
FIGURE 54 Changes in ET\textsubscript{CO}_2, MAP, PV and ET\textsubscript{AA} (mean ± 2 SEM) during acute cardiovascular events identified by the clinicians. The onset of the event is at time zero, n=18 132
FIGURE 55 Data showing an acute event at about 9:05 am. [MAP mmHg, ET\textsubscript{CO}_2 kPa, ET\textsubscript{AA} kPa, Heart rate bpm]. This event was detected by all three clinicians 131
FIGURE 56 Example of a trend template used to determine a significant decrease in ET\textsubscript{CO}_2 (Courtesy of Dr Andrew Lowe) 141
FIGURE 57 Normalised output showing diagnosis of a fall in cardiac output, courtesy of Dr Andrew Lowe. The lines of points are normalised values for the measured variables; the shaded area indicates the degree of belief in a significant change in the variable. At point 120 in the time series the belief in significant changes in MAP, ET\textsubscript{CO}_2, pulse volume (Mod ≡ pulse modulation) and ET\textsubscript{AA} are all rising. The combination of all these mu values indicates a high belief that cardiac output has changed (msdCOprod) 142
FIGURE 58 Belief and plausibility values for relative hypovolaemia (modified). Courtesy of Dr Andrew Lowe 144
FIGURE 59 A typical arterial pressure waveform 148
FIGURE 60 A typical plethysmographic trace from a pulse-oximeter 149
FIGURE 61 SPV% and trend data from Pt 5 159
FIGURE 62 SPV% and trend data from Pt 9 160
FIGURE 63 SPV% and trend data from Pt 13 162
Preface

FIGURE 64 Systolic pressure variation with respiration 166

FIGURE 65 Pulse pressure variation with respiration 167

FIGURE 66 Transformation of data to compensate for general trends 167

FIGURE 67 Processing of the raw pulse-oximeter plethysmogram involves the creation of upper and lower envelopes, plotting the difference between the two and then plotting the absolute value for this value. The variation in this value is then presented as a percentage of the average absolute value 168

FIGURE 68 Correlation between respiratory related variation in the upper envelope of the plethysmograph wave and the variation in the arterial systolic pressure (Pt 17) 170

FIGURE 69 A Bland-Altman plot for percentage variation in the upper envelope of the plethysmograph wave and the variation in the arterial systolic pressure (Pt 17) 170

FIGURE 70 Correlation and Bland-Altman plots for respiratory related systolic variation from pulse-oximeter plethysmograph and arterial pressure waves, Pt 10 171

FIGURE 71 Correlation and Bland-Altman plots for respiratory related systolic variation from pulse-oximeter plethysmograph and arterial pressure waves, Pt 15 172

FIGURE 72 Correlation and Bland-Altman plot for percentage variation in plethysmograph wave and the arterial pulse pressure (Pt 17) 173

FIGURE 73 Correlation and Bland-Altman plots for pulse variation from pulse-oximeter plethysmograph and arterial pressure waves Pt 15 174

FIGURE 74 Correlation and Bland-Altman plots for pulse variation from pulse-oximeter plethysmograph and arterial pressure waves Pt 10 174

FIGURE 75 Correlation and Bland-Altman plots for respiratory related variability of pulse-oximeter plethysmograph and arterial pressure waves using a peak and trough detection algorithm, Pt17 175

FIGURE 76 A FFT of Pt.9’s plethysmogram during a stable period of anaesthesia, it shows the major features. The area of interest for SNA is 0.05 - 0.10 Hz. 177
FIGURE 77 FFT power (0.05 – 0.1Hz) and changes in MAP (mmHg min\(^{-1}\)). The records are displayed in descending magnitude of change in MAP.

FIGURE 78 Three dimensional plot of current and historical data with fixed normal ranges

FIGURE 79 Skeleton of diagnostic fan showing individual variables on spokes,

FIGURE 80 Combinations of variables can be made to produce individual point (x,y) for the strength of a diagnosis

FIGURE 81 These diagrams show how diagnoses might be presented with some indication of the strength of the diagnosis.

FIGURE 82 Hierarchy of display data; face icon always visible, strength of diagnosis determines switch to more detailed information using the user's choice of display.

FIGURE 83 Development of data display
LIST OF ABBREVIATIONS

AI Artificial intelligence
ASA American Society Anaesthesiologists' assessment score (1 – V E)
BIS Bi-spectral index
BLR Binary logistic regression
BP Blood pressure
BPV Blood pressure variability
CHF Congestive heart failure
CJA Clinical judgment analysis
CO Cardiac output
COPD Chronic obstructive pulmonary disease
COR Cardiac output reserve
CORE Clinical operating range (for physiological variables)
CVP Central venous pressure
Des Desflurane
DSS Decision Support System
ECG Electrocardiogram
$E_{T}\text{AA}$ End-tidal concentration of anaesthetic agent
$E_{T}\text{CO}_2$ End-tidal concentration of carbon dioxide
$F_{E}\text{O}_2$ Fractional expired concentration of oxygen
FFT Fast Fourier Transform
$F_{I}\text{AA}$ Fractional inspired concentration of anaesthetic agent
$F_{I}\text{CO}_2$ Fractional inspired concentration of carbon dioxide
$F_{I}\text{O}_2$ Fractional inspired concentration of oxygen
FN False negative
FP False positive
gdL$^{-1}$ Grams per decilitre
Halothane
H_b Haemoglobin or haemoglobin concentration
HF High frequency
HRV Heart rate variability
IABP Intra-arterial blood pressure
IPPV Intermittent positive pressure ventilation
Isocyanurane
kPa kilo Pascal
LF Low frequency
LRE Logistic regression equation
MAC Minimum alveolar concentration
MAP Mean arterial blood pressure
MOV Mode of ventilation
$N_2\text{O}$ Nitrous oxide
NIBP Non invasive blood pressure
NMT Neuromuscular transmission monitor
NN Neural networks
NPV Negative predictive value
NZ New Zealand
OGH Ongoing haemorrhage
ON Oxygen need
P1 Invasive arterial pressure channel on Datex-Ohmeda monitor
Preface

P(E) Probability of the individual being in a subset
P(H) Unconditional probability of event H
PA Pulmonary artery
PCF Patient condition factor
PCWP Pulmonary capillary wedge pressure
PE(H) Probability of the event occurring if patient was in subset
PH(E) Fraction of events in a set of patients
Pleth Plethysmographic trace from pulse-oximeter
PPNT Peer pressure not to transfuse
PPT Peer pressure to transfuse
PPV Positive predictive value
PR Pulse rate
Pt Patient
PVD Peripheral vascular disease
RAPV Respiratory-related arterial pressure variability
ROTH Risk of tissue hypoxia
RR Respiratory rate
RRV Respiratory rate variability
SBP / SABP Systolic blood pressure / Systolic arterial blood pressure
SNA Sympathetic nervous activity
SpO2 Oxygen saturation of Hb measured using pulse-oximetry
SPV Systolic pressure variability
SQL Structured Query Language
TIA Transient ischaemic attack (transient cerebral ischaemia)
TN True negative
TP True positive
TSW Time series workbench
TTS Trigg’s tracking signal
TURP Transurethral resection of prostate
Tx Transfusion
V (max, min, ave) Variable (maximum, minimum, average)
VAS Visual analogue scale
Xt Value of variable X at time t
y ‘year old’ as in ‘80y’
The work for this thesis has been carried out over twenty-five years. It began whilst I was working as a Consultant Anaesthetist and Senior Lecturer in Anaesthesia in the city of Nottingham, in the UK. The work was continued in Auckland, at Auckland Hospital, and as an honorary Senior Lecturer and Associate Professor in the Department of Anaesthesiology, Faculty of Medical and Health Science, University of Auckland, New Zealand.

The majority of the work has been at my instigation but much of the work has been co-authored with past and present colleagues.
ACKNOWLEDGEMENTS

I would like to give thanks to the following friends who have contributed to my fumbling attempts at seeing through the fog of uncertainty.

Frank Johnson, Andrew Lowe, Phil Guise, Nigel Robertson, Michal Kluger, Brian Mace, Guy Warman, Brian Pollard, Ron Jones, Tom Healy, Alan Merry, Doug Campbell, Richard Jones, David Kabel, Jim Hunter and many more.

Much praise and thanks must be given to my wife, Penny, who has been an inspiration in the search of truth.

“...I heartily beg that what I have done here may be read with candour; and that the defects I have been guilty of upon this difficult subject may be not so much reprehended as kindly supplied, and investigated by new endeavours of my readers.”

Isaac Newton
The Mathematical Principles of Natural Philosophy
Cambridge, Trinity College,
May 8, 1686.

It is likely that this work will expose my ignorance more than my knowledge. Being pragmatic I hope the end result may be of use to someone with greater skills.

Michael Harrison
September 22nd, 2005