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ABSTRACT 

 

 

High-resolution, continuous environmental records spanning the late Quaternary are scarce from the mid-

latitudes of the SW Pacific sector of the Southern Hemisphere. However, detailed sedimentary records of the 

late Quaternary exist in Auckland‟s volcanic crater (maar) basins. The purpose of this study is to reconstruct a 

continuous, high-resolution record of paleoclimate from an Auckland maar, Lake Pupuke, through: (1) the 

construction of a detailed tephra and radiocarbon-based chronology; (2) application of a suite of proxies for 

environment including novel diatom stable isotopic proxies (δ
18

ODiatom and δ
30

SiDiatom); and (3) a multi-proxy 

reconstruction of paleolimnology from ~48 cal. kyr BP until today. 

A mixed-effect regression age-depth model was constructed from tephra and radiocarbon age-markers (n = 11, 

13 respectively), permitting reconstruction of paleoclimate at Lake Pupuke during the last ~48 kyrs (~14 m) from 

biological (diatom), geochemical (TOC, TN, TS, δ
13

C, δ
15

N, ITRAX) and physical (magnetic-susceptibility, 

particle-size distribution) proxies for environmental and limnological change. Paleoclimatic inferences are made 

from δ
18

ODiatom and δ
30

SiDiatom proxies following a novel approach to tephra-contaminant removal involving 

physical separation and geochemical mixture modeling. Estimates of the Oxygen and Silicon contributed by 

basalt and rhyolite contaminants were combined with representative δ
18

O and δ
30

Si signatures to yield a basaltic 

and rhyolitic isotope effect. Once removed, this yielded tephra-free estimates of δ
18

ODiatom and δ
30

SiDiatom for the 

Pupuke paleo-record from ~48 cal. kyr BP until today. 

A synthesis of multi-proxy inferences on erosion, biological productivity, mixing and lake level generates robust 

dates for the onset of reduced effective precipitation and cooling in the Last Glacial Coldest Phase (LGCP; 

~28.5-18.5 cal. kyr BP), a return to warmer, wetter climate in the Last Glacial-Interglacial Transition (LGIT; 18.5-

10.2 cal. kyr BP), and warmest conditions in the Holocene (post-10.2 cal. kyr BP). The LGCP, LGIT and 

Holocene exhibited marked paleoclimatic variation at Lake Pupuke, including harshest paleoclimate near the 

onset and termination of the LGCP (~27.6-26.0 and ~21.0-19.0 cal. kyr BP), a Late Glacial Reversal in climate 

amelioration (LGR; ~14.5-13.6 cal. kyr BP) and a Holocene rise in seasonality (from ~5.7 cal. kyr BP, intensifying 

from ~3.2 cal. kyr BP). 
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