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We present a linear stability analysis of parallel electroosmotic flow in a slot geometry. A spatially
uniform time harmonic electric field is applied to a dilute electrolyte solution contained between two
infinite parallel plates. The base state ion concentrations and electric potential are determined using
the Poisson–Boltzmann equation in the Debye–Hu¨ckel approximation. The base velocity field is
found to be time harmonic and parallel. It is shown that the original system can be replaced by an
equivalent one consisting of an electrically neutral fluid enclosed between oscillating parallel plates,
whose speed and frequency of oscillation depend on the modulated electric field. Further, the system
of linearized disturbance equations can be decoupled into two stability problems: The first, called
the electrokinetic problem, describes the evolution of disturbance ion concentrations and electric
potential and is independent of the disturbance velocity components. The second, called theStokes
layer problemdescribes an oscillatory Stokes layer forced by an electrical body force. The stability
of each system is determined by Floquet analysis of a dynamical system obtained from a truncated
Galerkin expansion of the perturbation quantities. Our calculations show the system to be linearly
stable over a wide range of parameters, with damping rates that become quite small for certain
combinations of Stokes and Reynolds numbers. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1736677#

I. INTRODUCTION AND PROBLEM DEFINITION

Electroosmosis refers to the bulk motion of a fluid con-
taining charged species under the influence of an applied
electric field. While this phenomenon has been known for
almost 300 years~see, for e.g., the historical review in Ref.
1!, recent advances in the fabrication and use of microde-
vices for the manipulation, separation, and reaction of small
quantities of fluids has renewed interest in electroosmosis as
a means of transporting fluids in microgeometries. It is there-
fore important to characterize the stability of such flows. For
instance, it may be possible to use instabilities of time-
modulated electroosmotic flows to induce micromixing. On
the other hand, instabilities may be deleterious to the opera-
tion of analytically based ‘‘lab-on-a-chip’’ devices.

There have been few experiments involving ac electro-
osmotic flows. Instabilities in such systems have recently
been reported in a rectangular borosilicate capillary 40 mm
long, 100mm deep, and 1 mm wide using deionized water.2

A spatially homogeneous, sinusoidally alternating electric
field was applied by introducing electrodes into fluid reser-
voirs at either end of the capillary. The field strength was in
the range 25–200 kV/m at a frequency of 20 Hz. Submicron
fluorescent particles were used for flow visualization: Par-
ticle trajectories indicated time-periodic parallel flow for
field strengths below 100 kV/m, but at higher strengths two-

and three-dimensional motions were observed, suggesting
the onset of a flow instability.

Simple one-dimensional solutions to the problem of
time-modulated electro-osmosis have been discussed re-
cently. Dutta and Beskok found that ac electroosmotic flow
with sinusoidal fields in a two-dimensional~2D! channel is
analogous to oscillatory Stokes flow.3 Erickson and Li stud-
ied flows with more complex wave forms in a rectangular
channel of finite aspect ratio.4 Reppert and Morgan examined
flows in closedcapillaries,5 where a time-dependent applied
potential differenceDV induces a time-dependent pressure
differenceDP that creates a back flow. They performed ex-
periments for the opposite situation where an applied pres-
sure gradient induces a streaming potential6 and compared
the DV/DP responses for the two cases.

There is, to our knowledge, no analysis of instabilities in
such flows or a discussion of the transport mechanisms that
might underlie the physical mechanisms of instability. Our
main motivation is to provide such a discussion and analyze
the stability of the most basic AC electroosmotic flow, the
2D time modulated channel flow.

Consider the slot geometry sketched in Fig. 1 that con-
sists of a dilute electrolyte solution enclosed between two
infinite conducting parallel plates which are separated by a
distance 2d. A Cartesian coordinate system is defined with
its origin at the centerline between the two plates. Adouble
layer7 of charge exists in the fluid consisting of an immobi-
lized layer of ions at each solid-liquid interface and a diffusea!Electronic mail: bud@engineering.ucsb.edu
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layer that extends into the bulk, as shown schematically in
Fig. 1. Within the double layer the free charge density is not
zero and is locally equal torE* 5e( i 51

M nici* , wheree is the
charge of an electron,ni is the valence number,ci* the local
concentration of speciesi , and M is the total number of
charged species in the solution. Associated with this charge
distribution is thedouble layer potential, both of which de-
cay exponentially away from the fluid-solid interface. At
large distances from the wall, the solution is therefore elec-
trically neutral, i.e.,( i 51

M nici*̀ 50, whereci*̀ is the free-
stream concentration of speciesi . The spatial extent of the
double layer is characterized by theDebye length, k21,
given by7

k5F NAe2

ee0kBT (
i 51

M

ni
2ci*̀ G1/2

, ~1!

whereNA is Avogadro’s number,kB is the Boltzmann’s con-
stant,e0 is the permittivity of free space,e is the constant
dielectric constant of the bulk fluid, andT is the absolute
temperature.k21 is typically small, on the order of a few
nanometers.

When a steady axial electric field of amplitudeE0 is
applied to such a system a classical electroosmotic flow is set
up. The velocity field is steady and one-dimensional and,
outside the Debye layer, nearly an ideal plug flow. Assuming
no axial pressure gradient, the velocity scaleU0 can be esti-
mated by balancing the viscous stress with the electrical
body force: The result isU05ee0kBTE0 /me, wherem is the
constant fluid viscosity of the bulk fluid. Although significant
for microfluidic applications, this speed is typically small, of
the order of 1 mm/s, for a dilute aqueous electrolytic solution
with a field strength of 100 kV/m.

If instead an AC electric field is applied, the fluid will
move back and forth through the slot as the field changes
polarity, giving rise to a sloshing motion. The equations ad-
mit an exact time-dependent parallel flow which is not nec-
essarily in phase with the applied electric field. In the analy-
sis to follow we determine this base state and study its
stability.

The parallel electroosmotic flow is similar to the base
state of oscillatory Stokes layers.3 Early studies indicated
that spatially finite8,9 and semi-infinite9 Stokes layers are lin-
early stable, but recent work has shown the latter to be lin-
early unstable.10 However it is unlikely that these instability
modes are relevant to microdevices since the largest Rey-
nolds numbers in these devices are at least an order of mag-
nitude smaller than the critical value determined in Ref. 10.
In later sections we examine the relation between the electro-
osmotic flow and the oscillatory Stokes layers, and show that
a richer variety of behavior is possible in the current system.

II. GOVERNING EQUATIONS

A. Dimensional equations and scaling

The governing equations arise from conservation equa-
tions for the concentration of each charged species, Gauss’
law of electrostatics, and the Navier–Stokes equation for the
motion of the incompressible bulk fluid. We neglect the ef-
fect of gravity and Joule heating and take all transport coef-
ficients to be constant. We start with the dimensional form of
the equations in order to make more transparent our choice
of scales. Denoting the concentration of speciesj by cj* , its
flux by Jj* , the electric potential byF* , the velocity by
u* 5(u* ,v* ,w* ), and the pressure byp* , the governing
equations are

]cj*

]t
1u* •“cj* 5“•Jj* 5“~Ã jnjcj* e“F* 1D j“cj* !,

~2!

ee0¹2F* 1rE* 50, ~3!

rS ]u*

]t*
1u* •“u* D52“p* 1m¹2u* 2rE*“F* , ~4!

“•u* 50. ~5!

Ã j and D j are the mobility and diffusivity respectively of
speciesj , related by the Nernst–Einstein equation

D j5kBTÃ j . ~6!

We see that the total flux of ions,Jj* , is given by a combi-
nation of electrophoresis and gradient diffusion.

Lengths are scaled by the channel half thicknessd, time
by 1/v, velocities byU0 , and concentrations by( j 51

M nj
2cj*̀ .

The choice for the concentration scale arises naturally from
the definition of the Debye length in~1!. The effective wall
potential experienced by the fluid in the diffuse part of the
double layer depends on the zeta potential at the solid-fluid
interface, which is typically about 0.1 V, i.e., on the order of
kBT/e at room temperature.7 Thus the electric potential is
scaled bykBT/e, which normalizes the electrophoretic and
diffusive fluxes that appear in~2!. Pressure is made dimen-
sionless with the viscous scalemU0 /d appropriate to slow
flows. Dropping the stars denoting the dimensional quanti-
ties, the nondimensional governing equations are

ScjSt
]cj

]t
1Scj Reu•“cj5“•~njcj“F!1¹2cj , ~7!

FIG. 1. Flow geometry showing the structure of the double layer and an
instantaneous snapshot of the velocity profile.
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¹2F1b2rE50, ~8!

St
]u

]t
1Reu•“u52“p1¹2u2

b2

g0
rE“F, ~9!

“3u50, ~10!

whererE5( j
Mnjcj . The various dimensionless parameters

are defined as

b5dk, dimensionless inverse double layer thickness,
~11!

St5
vd2

n
, Stokes number, ~12!

Re5
U0d

n
, electrophoretic Reynolds number, ~13!

Scj5
n

D j
, Schmidt number, ~14!

g05
E0de

kBT
, dimensionless axial field strength. ~15!

Possible sources of instability can be identified as the non-
linear concentration flux terms,u•“cj and“•(njcj“F) in
~7!, as well as the inertial term,u•“u, and the electrical
forcing term, rE“F, in ~9!. We examine these terms in
greater detail in Sec. III.

The dimensionless potentialF(x,y,z,t) can be decom-
posed into two parts, one corresponding to the time harmonic
axial field and the other to the double layer potential. Thus

F~x,y,z,t !52g0x cos~ t !1f~y,z!. ~16!

No slip, no penetration, and no flux conditions are ap-
plied at the wall and the zeta potential is fixed there. The
flow variables are symmetric about the center of the slot.
Therefore we restrict attention to the upper half of the slot
(0<y<1) and specify symmetry conditions on the double
layer potential and the velocity components aty50. Antici-
pating thatk21!d(b@1), the free-stream concentration of
each ionic species is specified aty50. Thus the complete set
of boundary conditions is

]u

]y
5v5

]w

]y
5

]f

]y
50 at y50, ~17!

cj5cj ` at y50, ~18!

u5v5w50 at y51, ~19!

n̂•Jj5
]cj

]y
1njcj

]f

]y
50 at y51, ~20!

f51 at y51. ~21!

At this point it is appropriate to discuss the magnitudes of the
various dimensionless parameters, which allows some sim-
plifications in the analysis. Table I lists typical values of the
dimensionless parameters for channels that are 50–200mm
thick, binary 1-1 electrolytes at millimolar concentrations at
room temperature, electric field strengths of a few kilovolts/
centimeters, and modulation frequencies of 10–50 Hz. Note

thatb is very large even for these thin channels. This enables
us to make certain approximations in later sections that sig-
nificantly reduce the complexity of the stability analysis.g0

is large indicating that the applied potential is typically large
compared to the zeta potential. Also note that St and Re are
small indicating that inertial effects are small in the momen-
tum equation ~9!. However the products ScjSt and Pej
5Scj Re, where Pej is the Peclet number for speciesj , are
not small, indicating that convective effects can be important
in the species conservation equation~7!.

B. Base state

The governing equations~7!–~10! and the boundary con-
ditions ~17!–~21! admit exact solutions of the formcj

5CB j(y), f5fB(y), u5@UB(y,t),0,0#, i.e., a classical
double layer and a parallel flow. In the rest of this work we
restrict attention to symmetrical 1-1 electrolytes that consist
of two singly charged species, i.e.,M52, n151, n2521,
although other cases may be easily studied. The base state is

CB j5
1

2
exp@2njfB~y!#, ~22!

fB~y!5
cosh~by!

cosh~b!
, ~23!

UB~y,t !5realF b2

a22b2 S cosh~ay!

cosh~a!

2
cosh~by!

cosh~b! Dexp~ i t !G , ~24!

wherea5AiSt with i 5A21. Equation~22! is the Poisson–
Boltzmann concentration distribution of the classical double
layer. Note that the concentrations are independent of thex
component of the electric field and hence steady.fB andUB

are determined using the Debye–Hu¨ckel approximation.7

The velocity profile~24! exhibits shearing both inside and
outside the double layer with a phase lag for finite Stokes
numbers, i.e., finitea. For steady fields or slow modulation
such thata is small,~24! yields the usual expression for an
electroosmotically driven uniform plug flow, plus boundary
layer corrections near the walls on the scale ofO(1/b).

C. Approximate base states

It is clear from ~23!–~24! that the base state quantities
exhibit boundary layer behavior with terms that decay expo-
nentially fast away from the wall. Sinceb@1 we focus at-

TABLE I. Typical values of dimensionless groups for parameter values
given in the text.

b 103– 104

g0 100
Re 1021– 1
St 1021– 1
Sci 102– 103
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tention on the core region by using approximate forms of the
base state valid away from the walls. In the limitb→`,a
fixed and fory!1 ~22–24! reduce to

CB j~y!5
1

2
, ~25!

fB~y!50, ~26!

UB~y,t !5realF2
cosh~ay!

cosh~a!
eit G . ~27!

Clearly ~25!–~26! reflect the bulk electroneutrality of the
fluid outside the double layer. Equation~27! is the time de-
pendent counterpart of the Helmholtz–Smoluchowski slip
relation7 used to model steady electroosmotic flow~which, as
noted above, can be recovered in the limit St→0, i.e., a
→0). The flow field defined by~27! is identical to that cre-
ated by an oscillating wall located aty51. Fluid inertia,
represented bya, causes the velocity to be out of phase with
the wall oscillation. Although the flow field given by~27! is
similar to the oscillatory Stokes layer discussed in Ref. 8,
there are certain important differences between that work and
the problem considered here. Only inertial instabilities are
possible in the oscillatory Stokes layer. As we will see in the
following section, the coupling of the base velocity and axial
electric field to disturbances in the ion concentrations pro-
vide other potential instability mechanisms.

III. LINEAR DISTURBANCE EQUATIONS

The governing equations~7!–~10! are linearized about
the base states given by~26! and~27!. We introduce normal
mode disturbances of the form

cj8~x,y,z,t !5cj~y,t ! eikxx1 ikzz, ~28!

f8~x,y,z,t !5f~y,t ! eikxx1 ikzz, ~29!

u8~x,y,z,t !5u~y,t ! eikxx1 ikzz, ~30!

p8~x,y,z,t !5p~y,t ! eikxx1 ikzz, ~31!

where we take the wave-vectork to be real. Thus we focus
on absolute instabilities. While the issues of convective and
absolute instabilities are well understood for steady flows,
they are less so for time-dependent flows: see Brevdo and
Bridges11 for discussion and results on a model problem. The
disturbance equations take the form

ScjSt
]cj

]t
1 ikx@Scj ReUB~y,t !1njg0 cos~ t !#cj2

Lf

2

5Lcj , ~32!

Lf1b2 (
j 51

2

njcj50, ~33!

St
]u

]t
1ReS ikxUBu1

]UB

]y
v D

52 ikxp1Lu1b2(
j 51

2

njcj cos~ t !, ~34!

St
]v
]t

1 ikx ReUBv52
]p

]y
1Lv, ~35!

St
]w

]t
1 ikx ReUBw52 ikzp1Lw, ~36!

ikxu1
]v
]y

1 ikzw50, ~37!

where (u,v,w)5u and L[2kx
22kz

21]2/]y2. The associ-
ated homogeneous boundary conditions are

]f

]y
5

]cj

]y
5

]u

]y
5v5

]w

]y
50 at y50, ~38!

f5
]cj

]y
1

nj

2

]f

]y
5u5v5w50 at y51. ~39!

A. Decoupling: Electrokinetic and Stokes layer
problems

Use of the approximate base states allows us to decouple
the linear stability equations into two stability problems,
which we call theelectrokinetic problemand theStokes layer
problem. First note that the termu•“cj in ~7! contributes the
linear termUB•“cj8 . Therefore there is only one-way cou-
pling between the base flow and the ion fluctuations. As a
result the disturbance concentrations and electric potential
can be determined solely from the system~32! and~33! and
the associated boundary conditions. Growing modes of this
system would indicate the presence of instabilities resulting
from nonlinearities associated with the convective and elec-
trophoretic fluxes, i.e., the second and third terms in~7!. We
call this system the electrokinetic problem. Note the coupling
of the disturbance concentrations and potential through the
termLf in ~32! and~33!. The phase relationship between the
disturbance quantities is complicated: Each species has its
own charge relaxation time determined by ScjSt. For non-
zero wave numbers there is a contribution to the phase from
the convective transport by the time-periodic base flow
UB(y,t) and the applied electric fieldg0 cos(t) embodied in
the second term of~32!. While it is not possible to make
precise statements regarding the phase relationship, the pres-
ence of coupling and forcing terms from the base flow give
rise to the possibility of instabilities.

Equations~34!–~37! with the associated boundary con-
ditions define a hydrodynamic stability problem similar to
the one obtained for oscillatory Stokes layers.8 The last term
in ~34! is a forcing term from the disturbance electrical body
force that can potentially excite modes of the flow problem.
We call this system the Stokes layer problem.

B. Galerkin expansion and solution procedure

We use a Galerkin approximation to treat both the elec-
trokinetic and Stokes layer problems in a manner similar to
our previous work.12 A general disturbance quantity,f is rep-
resented by a truncated Galerkin expansion asf (y,t)
5(m50

N Am(t)gm(y). The trial functionsgm(y) are chosen to
satisfy the boundary conditions~38! and~39!. Following the
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usual Galerkin procedure, the linear disturbance equations
are reduced to a dynamical system of ordinary differential
equations

dx

dt
52p@P1Q1 cos~2pt!1Q2 sin~2pt!#•x, ~40!

wherex is a vector of the time-dependent Galerkin coeffi-
cients andP, Q1 , andQ2 are complex valued matrices. De-
tails of the trial functions, inner products and matrices are
given in Ref. 13.

The dynamical systems for both the concentration and
Stokes layer problems are integrated numerically using the
Bulirsch–Stoer method with adaptive time-stepping.14 The
Floquet exponents were determined by integrating the each
system over one time period of modulation starting with the
identity matrix as the initial condition. In what follows, we
focus on the largest Floquet exponentm1 , with m1,0 indi-
cating stability. Computations were deemed to have con-
verged when doubling the number of Galerkin modes re-
sulted in the absolute valuem1 changing by less thane which
is defined as

e5H 1023 if um1u>1022

0.1um1u if um1u,1022. ~41!

Typically, 16 to 128 modes were required for the electroki-
netic problem and 8 to 64 modes for the Stokes layer prob-
lem. Below, we present results for each problem separately.

IV. RESULTS

We fix Sc15750, Sc25492 corresponding to the values
for sodium and chloride ions atT5298 K. We then fixb
55269, which corresponds tod550 mm, cj ,`* 51023 M.
The dynamical system is solved for values of the other pa-
rameters in the range 50<g0<500, 0<Re<20, 0.25<St
<20. With reference to Table I, this wide range covers most
microfluidic applications.

A. The electrokinetic problem

As a validation, the static double layer was found to be
stable, as expected. In the case of modulated electric field
(g0Þ0) the leading Floquet exponent was found to be real
in the parameter range studied. A Squire’s transformation
does not exist for this problem. However sincekz only ap-
pears in the diffusive terms, modes withkzÞ0 are likely to
be more stable~less unstable! than 2D modes: Accordingly,
we consider two-dimensional disturbances by settingkz50.

In the long wave limitkx50 the linear stability equa-
tions can be cast in the form of an eigenvalue problem which
only admits solutions of the formc15c25constant, f
50 with a zero growth rate. Note thatc1 andc2 can only be
determined within a constant because of the derivative
boundary conditions and thuskx50 is a trivial case of neu-
tral stability.

Figures 2~a!–2~d! show the leading Floquet exponentm1

as a function ofkx for g05100 and different values of Re
and St. St is held fixed in Figs. 2~a! and 2~b! while Re is held
fixed in Figs. 2~c! and 2~d!. m1 is found to be negative,

indicating stability, and is typically small,O(102321022).
As kx increasesm1 , in general, becomes increasingly nega-
tive, indicating increasing degrees of stability. However local
maxima are observed for certain combinations of St and Re.
For a given St these maxima occur when Re exceeds a mini-
mum value, which increases with St@Figs. 2~a! and 2~b!#.
Curves for different Re cross at small St@Fig. 2~a!# while m1

decreases monotonically with Re at larger St@Fig. 2~b!#.
Figs. 2~c! and 2~d! indicate thatm1 increases with St for all
wave numbers and becomes quite close to zero for St>5.
Figure 3 examines in greater detail the Stokes number de-
pendence ofm1 at different wave numbers for fixedg0Re.
m1 increases rapidly with St and asymptotically approaches
zero without becoming positive. Similar results were ob-
tained for other parameter values. While these figures do not
indicate any instability, interesting crossovers are seen in the
wave number range 0.5–1.5. We therefore examine the sys-
tem behavior by varying eitherg0 or Re while holding the
other fixed for kx50.5,1.0,1.5. Graphs are plotted for St
50.25,5 to compare results at small and large St.

Figures 4~a!–4~d! show the effect of varying Re at fixed
g0 , St onm1 . At St50.25 @Figs. 4~a!–4~b!# the system ini-
tially becomes more stable as Re is increased forkx50.5.
When Re is further increasedm1 passes through a maximum
in the range 10<Re<15. Forkx51,1.5 the system becomes
less stable as Re is increased from 0 andm1 passes through a
maximum in the range 5<Re<10. At small Re the relative
stability of the three wave numbers depends ong0 : kx

50.5 is less stable thankx51.5 atg05100, but more stable
at g05400. For Re.12.5 kx50.5 is the least stable of the
three for bothg05100,400. For St55 @Figs. 4~c! and 4~d!#

FIG. 2. Leading Floquet exponentm1 vs kx ~a! g05100, St50.25, ~b! g0

5100, St55, ~c! g05100, Re51, and~d! g05100, Re510.
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curves for different wave numbers do not cross.m1 decreases
monotonically with Re atg05100, but local minima and
maxima are seen atg05400. Also, the curves for smaller
wave numbers are less stable, irrespective of Re andg0 .

Figures 5~a!–5~d! show a similar parametric study ofm1

as a function ofg0 at fixed Re, St. When St50.25, m1 ini-
tially decreases asg0 is increased@Figs. 5~a! and 5~b!#, ex-
cept for kx51, Re510. At higher values ofg0 the curves
pass through local minima and/or maxima. The behavior of
the kx50.5, Re510 curve@Fig. 5~b!#is particularly interest-
ing as it seems to suggest instability with increasingg0 .
Computations in the range 500<g0<2000 ~not plotted!
showed thatm1 attains a maximum value of about20.015 at
g051000 and then decreases. It seems likely that the curves
for kx51,1.5 at Re51, which increase wheng0.400, be-
have similarly. For St55 ~Figs. 5~c! and 5~d!! m1 decreases
monotonically withg0 .

These results show that the dependence ofm1 on the
various parameters is complex. However, there are a few
generalizations that may be made as follows:

~1! Linear theory does not predict any purely electrokinetic
instabilities over the range of parameters studied. In ad-
dition there is a likelihood, based on extrapolation of the
available results, that this system is linearly stable for all
values of the parameters.

~2! Small perturbations are damped, but only slightly so,
with the damping rate becoming arbitrarily small at large
St for particular choices of the other parameters@refer to
Fig. ~3!#.

~3! The reason for the approach ofm1 to zero at large St is
not simple to discern. Stability or instability is deter-
mined by the linearization of the nonlinear terms in the
transport equation~7!. These result in the final three
terms on the left-hand side of~32!. The parametric stud-
ies show that increasingg0 at small Re results in damp-
ing. On the other hand, increasing St has two effects:
Increasing the degree of shearing of the base state via

FIG. 3. Leading Floquet exponentm1 versus St forkx50.5,1.0,1.5; Re
51; andg05100.

FIG. 4. Leading Floquet exponentm1 vs Re~a! g05100, St50.25, ~b! g0

5400, St50.25, ~c! g05100, St55, and~d! g05400, St55.

FIG. 5. Leading Floquet exponentm1 vs g0 ~a! Re51, St50.25, ~b! Re
510, St50.25, ~c! Re51, St55, and~d! Re510, St55.
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~27! and increasing the charge relaxation time via~32!.
The approach to neutral stability is probably due to a
complicated relationship between the convection of
charge by the base state velocity at finite (kx , Re! and
charge relaxation.

B. Stokes layer problem

A comprehensive study of the stability of spatially finite
oscillatory Stokes layers was first performed by Kerczek and
Davis,8 who showed that such layers are linearly stable over
a wide parameter range. Hall9 used a different approach to
study semi-infinite layers, but also confirmed the stability of
finite layers. Recently, the semi-infinite Stokes layer has been
shown to be linearly unstable11 with a critical Reynolds num-
ber Red'1400 based on the Stokes layer thickness,d
5A2n/v. We do not expect these instability modes to be
active at the smaller Reynolds numbers (Red5A2/St Re
,60) of our system. We compare our results with Kerczek
and Davis since our approach closely parallels theirs. The
current problem differs from that work in certain respects.

In contrast to the unforced system of Ref. 8, the Stokes
layer here is forced by the electrical body force term in~34!.
However, since the electrokinetic problem is damped, no per-
sistent forcing exists for the flow equations. Therefore it is
sufficient to consider the stability of the unforced Stokes
layer.

The boundary conditions and the parameter range con-
sidered here are also different. We apply a symmetry condi-
tion at the center of the slot (y50) in contrast to the no-slip
condition at the stationary upper solid boundary used by Ker-
czek and Davis. Their work used a quantityb, which we will
refer to asx to avoid confusion with the parameterb used
here. In terms of the scales used in this workx5A2St. Ker-
czek and Davis usedx58, corresponding to St532 and
Reynolds numbers 100&Red<800. Thus both the Reynolds
and Stokes numbers used here are up to one order of mag-
nitude smaller.

Kerczek and Davis found the oscillatory Stokes layer to
be linearly stable throughout the parameter range studied. We
did not expect this conclusion to be altered by the slightly
different boundary conditions used here. This was borne out
by our calculations~not shown! which demonstrated that the
disturbances were highly damped.13 It is clear that the Stokes
and Reynolds numbers are too small to excite shear instabili-
ties of the system.

V. SUMMARY

We have performed a linear stability analysis of electro-
osmotic flow in a slot geometry. The thinness of the electri-
cal double layer allowed the use of particularly simple forms
of the base states valid in the central portion of the slot away
from the solid boundaries, which in turn led to the decou-
pling of the linear stability equations into an electrokinetic
problem and a Stokes layer problem.

While the parallel flow base states are very closely re-
lated to the base states of oscillatory Stokes layers, different
instability mechanisms are possible in modulated electro-
osmotic flow. These mechanisms are seen in the electroki-

netic problem through the coupling of disturbance concentra-
tion and electric potential fields to the base state quantities,
including convective coupling since Peclet numbers are
O(1). Neutral stability is trivially achieved in the long wave
limit. No instabilities of the electrokinetic problem were
found at nonzero wave numbers in the parameter range stud-
ied, although the damping rates are typically small and can,
for some ranges of parameters, become arbitrarily close to
zero.

The Stokes layer problem was found to be highly
damped, which is consistent with previous linear stability
results for spatially finite Stokes layers,8,9 even though such
flows have been observed to be unstable in experiments. Re-
cent linear stability results have shown the semi-infinite
Stokes layer to be unstable,11 but the critical Reynolds num-
ber for instability is at least an order of magnitude higher
than those relevant in microfluidic applications.

We can draw some important conclusions from these
results. Our analysis shows that, away from solid boundaries,
it is possible to decouple electrokinetic effects due to the
convective and electrophoretic flux of charge from purely
hydrodynamic effects in the linear stability equations. The
results also indicate that the electrokinetic problem is less
stable than the Stokes layer problem in the parameter regime
relevant to microdevices.

It remains to comment on the relationship between our
theory and the experiments in Ref. 2. The Floquet theory
used here adopts a particular definition of asymptotic stabil-
ity, i.e., an absolute instability with no net growth over one
cycle. We do not consider the possibility of convective insta-
bilities. Our analysis uses the Debye–Hu¨ckel and thin double
layer approximations to obtain the base state. It is unlikely
that these approximations affect the stability results since the
neglected terms decay exponentially fast away from the
boundary. It is conceivable that the observed instabilities are
due to transient growth over part of the cycle leading to
nonlinear transition, or convective instabilities associated
with spatial growth. It is also possible that the instabilities
seen in experiments result from fundamentally finite ampli-
tude disturbances and cannot be predicted by linear analysis.
Such subcritical instabilities would probably result from the
weakly damped electrokinetic modes rather than the shear
associated with the Stokes layer. Finally, instabilities may be
due to mechanisms such as Joule heating that are not consid-
ered here. In any event, the results presented here constitute
a case against which to evaluate these other effects.
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