HTML AESTRACT * LINKEES

PHYSICS OF FLUIDS VOLUME 16, NUMBER 7 JULY 2004
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We present a linear stability analysis of parallel electroosmotic flow in a slot geometry. A spatially
uniform time harmonic electric field is applied to a dilute electrolyte solution contained between two
infinite parallel plates. The base state ion concentrations and electric potential are determined using
the Poisson—Boltzmann equation in the Debyeekdli approximation. The base velocity field is
found to be time harmonic and parallel. It is shown that the original system can be replaced by an
equivalent one consisting of an electrically neutral fluid enclosed between oscillating parallel plates,
whose speed and frequency of oscillation depend on the modulated electric field. Further, the system
of linearized disturbance equations can be decoupled into two stability problems: The first, called
the electrokinetic problemdescribes the evolution of disturbance ion concentrations and electric
potential and is independent of the disturbance velocity components. The second, caeakdse

layer problemdescribes an oscillatory Stokes layer forced by an electrical body force. The stability
of each system is determined by Floquet analysis of a dynamical system obtained from a truncated
Galerkin expansion of the perturbation quantities. Our calculations show the system to be linearly
stable over a wide range of parameters, with damping rates that become quite small for certain
combinations of Stokes and Reynolds numbers2@4 American Institute of Physics.
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I. INTRODUCTION AND PROBLEM DEFINITION and three-dimensional motions were observed, suggesting
the onset of a flow instability.

Electroosmosis refers to the bulk motion of a fluid con- Simple one-dimensional solutions to the problem of
taining charged species under the influence of an applieime-modulated electro-osmosis have been discussed re-
electric field. While this phenomenon has been known forcently. Dutta and Beskok found that ac electroosmotic flow
almost 300 yearssee, for e.g., the historical review in Ref. with sinusoidal fields in a two-dimension&D) channel is
1), recent advances in the fabrication and use of microdeanalogous to oscillatory Stokes flovErickson and Li stud-
vices for the manipulation, separation, and reaction of smalled flows with more complex wave forms in a rectangular
quantities of fluids has renewed interest in electroosmosis aghannel of finite aspect ratfoReppert and Morgan examined
a means of transporting fluids in microgeometries. It is thereflows in closedcapillaries® where a time-dependent applied
fore important to characterize the Stabl'lty of such flows. FOI’potentia| differenceAV induces a time_dependent pressure
instance, it may be possible to use instabilities of time-gifferenceAP that creates a back flow. They performed ex-
modulated electroosmotic flows to induce micromiXing. Onperiments for the opposite situation where an app“ed pres-
the other hand, instabilities may be deleterious to the operasyre gradient induces a Streaming poteﬁtmjd Compared
tion of analytically based “lab-on-a-chip” devices. the AV/AP responses for the two cases.

There have been few experiments involving ac electro-  There is, to our knowledge, no analysis of instabilities in
osmotic flows. Instabilities in such systems have recentlysych flows or a discussion of the transport mechanisms that
been reported in a rectangular borosilicate capillary 40 mninight underlie the physical mechanisms of instability. Our
long, 100um deep, and 1 mm wide using deionized wéter. majn motivation is to provide such a discussion and analyze
A spatially homogeneoussinusoidally alternating electric the stability of the most basic AC electroosmotic flow, the
field was applied by introducing electrodes into fluid reser-,>p time modulated channel flow.
voirs at either end of the capillary. The field strength was in consider the slot geometry sketched in Fig. 1 that con-
the range 25-200 kV/m at a frequency of 20 Hz. Submicronyists of a dilute electrolyte solution enclosed between two
fluorescent particles were used for flow visualization: Parinfinite conducting parallel plates which are separated by a
ticle trajectories indicated time-periodic parallel flow for gistance 2. A Cartesian coordinate system is defined with
field strengths below 100 kV/m, but at higher strengths two-;g origin at the centerline between the two platesicuble
layer’ of charge exists in the fluid consisting of an immobi-
dElectronic mail: bud@engineering.ucsb.edu lized layer of ions at each solid-liquid interface and a diffuse
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Vel?ﬁity The parallel electroosmotic flow is similar to the base
e state of oscillatory Stokes layetsEarly studies indicated

that spatially finit&° and semi-infinité Stokes layers are lin-

L LN g T early stable, but recent work has shown the latter to be lin-
y early unstablé® However it is unlikely that these instability
od . E, cos (0t) modes are relevant to microdevices since the largest Rey-
J ‘ ’ nolds numbers in these devices are at least an order of mag-
nitude smaller than the critical value determined in Ref. 10.
In later sections we examine the relation between the electro-

- P —
lMlllii™wwiwwnnnninwnininninnnnnnnnngg 7 osmotic flow and the oscillatory Stokes layers, and show that

o part of a richer variety of behavior is possible in the current system.
oo i
- + -+ *+ ¥
Immobile charge - l

layer atinterface < bty Il. GOVERNING EQUATIONS

FIG. 1. Flow geometry showing the structure of the double layer and al
instantaneous snapshot of the velocity profile. The governing equations arise from conservation equa-
tions for the concentration of each charged species, Gauss’
law of electrostatics, and the Navier—Stokes equation for the

layer that extends into the bulk, as shown schematically ignotion of the incompressible bulk fluid. We neglect the ef-
Fig. 1. Within the double layer the free charge density is nof€ct Of gravity and Joule heating and take all transport coef-
M ficients to be constant. We start with the dimensional form of

zero and is locally equal tpf =eX;Z,n;c/" , wheree is the ) _ ;
charge of an electrom, is the valence numbec? the local the equations in order to make more transparent our choice
' ! of scales. Denoting the concentration of spegiey cJ* , its

concentration of speciels and M is the total number of Y - ; . ]
charged species in the solution. Associated with this chargfuX by Ji', the electric potential byb™, the velocity by
distribution is thedouble layer potentialboth of which de- U*=(u*.,v*,w*), and the pressure bg*, the governing
cay exponentially away from the fluid-solid interface. At €quations are

large distances from the wall, the solution is therefore elec-  jc*

nA. Dimensional equations and scaling

trically neutral, i.e.,=M ;n;c¥, =0, wherec?, is the free- (9—,[' +Uu*-Vcf =V.-JF =V (wncfeVd* +D;Vcf),
stream concentration of speciesThe spatial extent of the %)
double layer is characterized by tliebye length « 1,
given by eegV2d* + pE =0, (3)
N (au* )
= 203 +U* - VUu* |=—Vp*+uV2u*—piVd*, (4
EfokBT i;l r]| C|oo ’ (1) P ﬁt* p M pE ( )
whereN, is Avogadro’s numbelikg is the Boltzmann’s con- V.-u*=0. 5)

stant, ¢y is the permittivity of free spaces is the constant
dielectric constant of the bulk fluid, anfl is the absolute
temperaturex ! is typically small, on the order of a few
nanometers. Dj=kgTw;. (6)
When a steady axial electric field of amplitu® is e see that the total flux of iond? , is given by a combi-

applied to such a system a classical electroosmotic flow is s¢lation of electrophoresis and gra]di’ent diffusion.

up. The velocity field is steady and one-dimensional and, Lengths are scaled by the channel half thickriésgme
outside the Debye layer, nearly an ideal plug flow. Assumingoy 1/w, velocities byU,, and concentrations byM. ,n?c*
1 1 J:

. . . . J JOO .
no axial pressure gradient, the velocity scdlgcan be esti- - the choice for the concentration scale arises naturally from

mated by balancing the viscous stress with the electricghe definition of the Debye length ifi). The effective wall

body force: The result iblo=e€okg TEy /1€, wherenisthe  stential experienced by the fluid in the diffuse part of the
constant fluid viscosity of the bulk fluid. Although significant y5,ple layer depends on the zeta potential at the solid-fluid

for microfluidic applications, this speed is typically small, of interface, which is typically about 0.1V, i.e., on the order of

th.e ordgr of 1 mm/s, for a dilute aqueous electrolytic squtionkB-l—/e at room temperatureThus the electric potential is

with a field strength of 100 kV/m. _ ~_ scaled bykgT/e, which normalizes the electrophoretic and
If instead an AC electric field is applied, thg fluid will iffusive fluxes that appear if2). Pressure is made dimen-

move back and forth through the slot as the field changegjoniess with the viscous scajeU,/d appropriate to slow

polarity, giving rise to a sloshing motion. The equations ad+j4\s. Dropping the stars denoting the dimensional quanti-
mit an exact time-dependent parallel flow which is not nec+ias the nondimensional governing equations are
essarily in phase with the applied electric field. In the analy-

sis to follow we determine this base state and study its ¢ _ 2
stability. SgSt P +Sg Reu-V¢j=V.-(njc;Vd)+ V-, (7)

w; and D; are the mobility and diffusivity respectively of
species, related by the Nernst—Einstein equation
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V2<D+,82pE=0, (8) TABLE |. Typical values of dimensionless groups for parameter values
given in the text.
au B?
St—+Reu-Vu=—Vp+VZu— —pVo, 9 B 10°-10*
ot Y0 Yo 100
Re 101-1
Vxu=0, (10) st 1011

Sg 10°-16°

where pE=2}"'njcj. The various dimensionless parameters
are defined as

B=dk, dimensionless inverse double layer thickness,

(1D that B is very large even for these thin channels. This enables
d? us to make certain approximations in later sections that sig-
St=——, Stokes number, (120 nificantly reduce the complexity of the stability analysjs.
is large indicating that the applied potential is typically large
Uqd . compared to the zeta potential. Also note that St and Re are
Re= Ty electrophoretic Reynolds number, 13 small indicating that inertial effects are small in the momen-
tum equation(9). However the products §8t and Pg
SCJ:DL, Schmidt number, (14) =S¢ Re, where Peis the Peclet number for specigsare
i not small, indicating that convective effects can be important
E de in the species conservation equatiai.
0 . . N
Yo Ko’ dimensionless axial field strength. (15 5. Base state

Possible sources of instability can be identified as the non-  The governing equationd)—(10) and the boundary con-
linear concentration flux terms,- Vc; andV-(n;c;V®) in  ditions (17)—(21) admit exact solutions of the fornt;
(7), as well as the inertial termy-Vu, and the electrical =Cgj(y), ¢=¢s(y), u=[Ug(y,1),0,0], i.e., a classical
forcing term, peV®, in (9). We examine these terms in double layer and a parallel flow. In the rest of this work we
greater detail in Sec. IIl. _ restrict attention to symmetrical 1-1 electrolytes that consist
Thg dimensionless potenudi(x,y,_z,t) can b.e decom- of two singly charged species, i.M=2, n;=1, n,=—1,
posed into two parts, one corresponding to the time harmoniglthough other cases may be easily studied. The base state is
axial field and the other to the double layer potential. Thus

B(X,y,2,) = = 70X COLO) + b(y,2). 18 co=gexd - nde(y)] 22

No slip, no penetration, and no flux conditions are ap-
plied at the wall and the zeta potential is fixed there. The cosh By)
flow variables are symmetric about the center of the slot.  ¢p(y)=———,
Therefore we restrict attention to the upper half of the slot cosh8)
(0=y=1) and specify symmetry conditions on the double 2
layer potential and the velocity componentsyat0. Antici- Ug(y,t)=rea 2/8 , ( coshiay)
pating that«~'<d(B8>1), the free-stream concentration of a®—p~| costia)
each ionic species is specifiedyat 0. Thus the complete set cosh By)
of boundary conditions is - m

au oW do

EVAE VY =0 aty=0, (17 wherea=\iStwithi=\—1. Equation(22) is the Poisson—
Boltzmann concentration distribution of the classical double
Cj=Cj. at y=0, (18) layer. Note that the concentrations are independent okthe
o _ component of the electric field and hence steaflyandUg
u=v=w=0 aty=1, (19 are determined using the Debye dkel approximatior.
R ac; dd The velocity profile(24) exhibits shearing both inside and
”'Ji:W“LnjCiW:O aty=1, (200 outside the double layer with a phase lag for finite Stokes
numbers, i.e., finitex. For steady fields or slow modulation
¢=1 aty=1. (21)  such thata is small,(24) yields the usual expression for an
lectroosmotically driven uniform plug flow, plus boundary
ayer corrections near the walls on the scaleDgfl/g3).

(23

: (24)

)exp(it)

At this point it is appropriate to discuss the magnitudes of th
various dimensionless parameters, which allows some si
plifications in the analysis. Table | lists typical values of the
dimensionless parameters for channels that are 50200
thick, binary 1-1 electrolytes at millimolar concentrations at It is clear from(23)—(24) that the base state quantities
room temperature, electric field strengths of a few kilovolts/exhibit boundary layer behavior with terms that decay expo-
centimeters, and modulation frequencies of 10—-50 Hz. Notaentially fast away from the wall. Singg>1 we focus at-

C. Approximate base states
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tention on the core region by using approximate forms of the v ap
base state valid away from the walls. In the lingitso, o St +ikcReUgv=— WJFKU' (35
fixed and fory<1 (22—24 reduce to

1 w .
Cej(y) =3, (25) St +ik, ReUgw= —ik,p+ Lw, (36)
= (9
#ely) =0 (29 K+ 5+ ik w=0, (37)
Ug(y,t)=rea _ costay) (27 ’
BlY.1)= cosia) = |’ where @,v,w)=u and £=—k2—k2+ 3%/dy?. The associ-

Clearly (25—(26) reflect the bulk electroneutrality of the ated homogeneous boundary conditions are

fluid outside the double layer. Equatid®?) is the time de- dp dc; ou OW

pendent counterpart of the Helmholtz—Smoluchowski slip oy 0 at y=0, (39
relation’ used to model steady electroosmotic fltwhich, as

noted above, can be recovered in the limit-8, i.e., @ gc; nj i¢

—0). The flow field defined by27) is identical to that cre- p= W 5 Gy usv=ws 0 aty=1. (39

ated by an oscillating wall located gt=1. Fluid inertia,

represented by, causes the velocity to be out of phase with

the wall oscillation. Although the flow field given ki27) is A Decoupling: Electrokinetic and Stokes layer

similar to the oscillatory Stokes layer discussed in Ref. gProblems

there are certain important differences between that work and  Use of the approximate base states allows us to decouple

the problem considered here. Only inertial instabilities arehe linear stability equations into two stability problems,

possible in the oscillatory Stokes layer. As we will see in thewhich we call theslectrokinetic problenand theStokes layer

following section, the coupling of the base velocity and axialproblem First note that the term- Vc; in (7) contributes the

electric field to disturbances in the ion concentrations proiinear termUB-ch’ . Therefore there is only one-way cou-

vide other potential instability mechanisms. pling between the base flow and the ion fluctuations. As a
result the disturbance concentrations and electric potential
can be determined solely from the systé32) and(33) and

ll. LINEAR DISTURBANCE EQUATIONS the associated boundary conditions. Growing modes of this

system would indicate the presence of instabilities resulting

from nonlinearities associated with the convective and elec-

trophoretic fluxes, i.e., the second and third termé&7in We

call this system the electrokinetic problem. Note the coupling

The governing equation&’)—(10) are linearized about
the base states given 86) and(27). We introduce normal
mode disturbances of the form

cj(x,y,z,t) =cj(y,t) el tikzz, (28)  of the disturbance concentrations and potential through the
Lo termL¢ in (32) and(33). The phase relationship between the
’ — ikyx+ik,z ! o . N i |
P'(xy.z)=d(y.t) € ' (29 disturbance quantities is complicated: Each species has its
u'(x,y,z,t)=u(y,t) ekxtikz (300 own charge relaxation time determined by;Sic For non-
ik zero wave numbers there is a contribution to the phase from
p'(X,y,z,t)=p(y,t) e" i, (3D the convective transport by the time-periodic base flow

where we take the wave-vectirto be real. Thus we focus Us(Y.t) and the applied electric fielgly cos€) embodied in

on absolute instabilities. While the issues of convective andhe second term of32). While it is not possible to make
absolute instabilities are well understood for steady flowsPrecise statements regarding the phase relationship, the pres-
they are less so for time-dependent flows: see Brevdo an@ince of coupling and forcing terms from the base flow give

Bridges! for discussion and results on a model problem. Theise to the possibility of instabilities.

disturbance equations take the form Equations(34)—(37) with the associated boundary con-
5 Lo ditions define a hydrodynamic stability problem similar to
G . he one obtained for oscillatory Stokes lay&i&he last term
ScSt—L +ik,[ Sc ReUg(y,t)+n: v, cogt)]c; — —— t ; ; y Sk .
=5 4SS 8(¥/ 1)+ Ny Yo OS], 2 in (34) is a forcing term from the disturbance electrical body
—rc. 32) force that can potentially excite modes of the flow problem.
I We call this system the Stokes layer problem.

2
L+ p? 21 n;c;=0, (33)  B. Galerkin expansion and solution procedure
=

We use a Galerkin approximation to treat both the elec-
St&—u+Re( ik U ol %0) trokinetic and Stokes layer problems in a manner similar to
ot XUBE T oy our previous work? A general disturbance quantityjs rep-
2 resented by a truncated Galerkin expansion fdg,t)
— —ikxp+/3u+,822 njc; cost), (34) =E_,’}‘,:0Am(t)gm(y). The tri_a_l functiongg,(y) are chosen to
i=1 satisfy the boundary conditior{88) and(39). Following the
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usual Galerkin procedure, the linear disturbance equations ...

. . . . OOy
are reduced to a dynamical system of ordinary differential N
equations

B
sox10” | ‘}\ S Eiey

dx_
Fe

wherex is a vector of the time-dependent Galerkin coeffi-
cients andP, Q;, andQ, are complex valued matrices. De- )
tails of the trial functions, inner products and matrices are —— , L
given in Ref. 13. K
The dynamical systems for both the concentration and (@) (b)

Stokes layer problems are integrated numerically using the

Bulirsch—Stoer method with adaptive time-stepptfhd-he S e Sk et P
Floguet exponents were determined by integrating the each  wul % Tl
system over one time period of modulation starting with the ) Vo el

002 |-

identity matrix as the initial condition. In what follows, we \ . VY

003 \ 0.08 -

focus on the largest Floquet exponent, with ;<0 indi- "‘ ! #
cating stability. Computations were deemed to have con-  *®fRre-1
verged when doubling the number of Galerkin modes re- oosl] S8 \;
sulted in the absolute valye, changing by less thaawhich Ee

0081 —x—stm10 o2

is defined as e ™ 2 oo o
k,
1078 if |uql=10"2

Olpa| if [g| <1072
, . . FIG. 2. Leading Floguet Ky =100, St=0.25, (b
Typically, 16 to 128 modes were required for the electroki-_ g S:g '(r;)g YOqu“(fO,eFfﬂ'ef’;d{j) 70(2)13%’ Re=10. ® 7

netic problem and 8 to 64 modes for the Stokes layer prob-
lem. Below, we present results for each problem separately.

27[P+Q; coq277)+Q,sin(277)] X, (40

€ (41) © (@

indicating stability, and is typically smalp(10 *—10?).
IV. RESULTS As k, increasesuq, in general, becomes increasingly nega-
tive, indicating increasing degrees of stability. However local
maxima are observed for certain combinations of St and Re.
For a given St these maxima occur when Re exceeds a mini-
mum value, which increases with §tigs. 2a) and 2b)].
Curves for different Re cross at small[&ig. 2(a)] while u;
decreases monotonically with Re at larger [Big. 2(b)].
kigs. Zc) and Zd) indicate thatu, increases with St for all
wave numbers and becomes quite close to zero fer5St
Figure 3 examines in greater detail the Stokes number de-
pendence ofu, at different wave numbers for fixegyRe.

As a validation, the static double layer was found to bew, increases rapidly with St and asymptotically approaches
stable, as expected. In the case of modulated electric fieldero without becoming positive. Similar results were ob-
(vo#0) the leading Floguet exponent was found to be reatained for other parameter values. While these figures do not
in the parameter range studied. A Squire’s transformatiorndicate any instability, interesting crossovers are seen in the
does not exist for this problem. However sincgonly ap-  wave number range 0.5-1.5. We therefore examine the sys-
pears in the diffusive terms, modes wkh+ 0 are likely to  tem behavior by varying eithey, or Re while holding the
be more stabléless unstablethan 2D modes: Accordingly, other fixed fork,=0.5,1.0,1.5. Graphs are plotted for St
we consider two-dimensional disturbances by setkiyrg 0. =0.25,5 to compare results at small and large St.

In the long wave limitk,=0 the linear stability equa- Figures 4a)—4(d) show the effect of varying Re at fixed
tions can be cast in the form of an eigenvalue problem whichy,, St onu,. At St=0.25[Figs. 4a)—4(b)] the system ini-
only admits solutions of the fornt,=c,=constant ¢ tially becomes more stable as Re is increasedkier0.5.
=0 with a zero growth rate. Note thet andc, can only be  When Re is further increasgg, passes through a maximum
determined within a constant because of the derivativén the range 1&Re<15. Fork,=1,1.5 the system becomes
boundary conditions and thlig=0 is a trivial case of neu- less stable as Re is increased from 0 angasses through a
tral stability. maximum in the range S Re<10. At small Re the relative

Figures Za)—2(d) show the leading Floquet exponenf  stability of the three wave numbers depends gyt k,
as a function ok, for yo=100 and different values of Re =0.5 is less stable thaky=1.5 aty,=100, but more stable
and St. Stis held fixed in Figs(& and 2b) while Re is held at y,=400. For Re-12.5k,=0.5 is the least stable of the
fixed in Figs. Zc) and 2d). w4 is found to be negative, three for bothy,=100,400. For St5 [Figs. 4c) and 4d)]

We fix Sg =750, Sg=492 corresponding to the values
for sodium and chloride ions &t=298 K. We then fix3
=5269, which corresponds td=50 um, c;ﬁwzlo* M.
The dynamical system is solved for values of the other pa
rameters in the range 50y,<500, 0O<Re<20, 0.25St
=<20. With reference to Table I, this wide range covers mos
microfluidic applications.

A. The electrokinetic problem
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FIG. 3. Leading Floquet exponent, versus St fork,=0.5,1.0,1.5; Re
=1; andy,=100.

curves for different wave numbers do not crggs.decreases
monotonically with Re aty,=100, but local minima and
maxima are seen ag,=400. Also, the curves for smaller
wave numbers are less stable, irrespective of Reygnd
Figures %a)—5(d) show a similar parametric study of;

My

-1x107

2x109

-3x107 4

ax10?
0

FIG. 4. Leading Floquet exponept; vs Re(a) y,=100, St=0.25, (b) v,
=400, St=0.25, () y,=100, S5, and(d) y,=400, St5.
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0.00- —=—k, =05

"y

-20x10%
Sox10% 4
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\\ 4 zom00]
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e
py 120

14x10%4

] ses \ —
- ——k, =05
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FIG. 5. Leading Floquet exponept; vs yy (8 Re=1, St=0.25, (b) Re
=10, St=0.25, (c) Re=1, St=5, and(d) Re=10, St=5.

as a function ofy, at fixed Re, St. When $t0.25, w4 ini-
tially decreases agy is increasedFigs. 5a) and §b)], ex-
cept fork,=1, Re=10. At higher values ofy, the curves
pass through local minima and/or maxima. The behavior of
the k,=0.5, Re=10 curve[Fig. 5b)Jis particularly interest-
ing as it seems to suggest instability with increasing
Computations in the range 580y,<2000 (not plotted
showed thaj; attains a maximum value of abott0.015 at

vo=1000 and then decreases. It seems likely that the curves

for ky=1,1.5 at Re=1, which increase wher,>400, be-
have similarly. For S5 (Figs. 5c) and 8d)) u; decreases
monotonically withvyy.

These results show that the dependencewpfon the

various parameters is complex. However, there are a few
generalizations that may be made as follows:

)

)

©)

Linear theory does not predict any purely electrokinetic
instabilities over the range of parameters studied. In ad-
dition there is a likelihood, based on extrapolation of the
available results, that this system is linearly stable for all
values of the parameters.

Small perturbations are damped, but only slightly so,
with the damping rate becoming arbitrarily small at large
St for particular choices of the other paramefeeter to

Fig. (3)].

The reason for the approach @f, to zero at large St is
not simple to discern. Stability or instability is deter-
mined by the linearization of the nonlinear terms in the
transport equation(7). These result in the final three
terms on the left-hand side ¢82). The parametric stud-
ies show that increasing, at small Re results in damp-
ing. On the other hand, increasing St has two effects:
Increasing the degree of shearing of the base state via
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(27) and increasing the charge relaxation time (3a). netic problem through the coupling of disturbance concentra-
The approach to neutral stability is probably due to ation and electric potential fields to the base state quantities,
complicated relationship between the convection ofincluding convective coupling since Peclet numbers are
charge by the base state velocity at finikg (Re) and  O(1). Neutral stability is trivially achieved in the long wave

charge relaxation. limit. No instabilities of the electrokinetic problem were
found at nonzero wave numbers in the parameter range stud-
B. Stokes layer problem ied, although the damping rates are typically small and can,

A comprehensive study of the stability of spatially finite for some ranges of parameters, become arbitrarily close to

oscillatory Stokes layers was first performed by Kerczek and® .
Davis® who showed that such layers are linearly stable over The Stokes 'Iayer problem' was fqund .to be hlg.h.ly

a wide parameter range. Halised a different approach to damped, Whlch is c_op5|stent with previous linear stability
study semi-infinite layers, but also confirmed the stability ofreSUItSh for prat'a"if'n'te (?ttokss Iaye:rgb,lev_en though su:: h R
finite layers. Recently, the semi-infinite Stokes layer has beeﬂOWS have been observed 1o be unstable In experments. Re-
shown to be linearly unstabfewith a critical Reynolds num- cent linear stability results have shown the semi-infinite
ber Re~1400 based on the Stokes layer thickness Stokes layer to be unstablebut the critical Reynolds num-

— 2vl®. We do not expect these instability modes to ’beber for instability is at least an order of magnitude higher
active at the smaller Reynolds numbers (Re2/StRe than those relevant in microfluidic applications.

<60) of our system. We compare our results with Kerczekresu\ﬁlse g:‘;; adrfglwsizosrplivxllrsnfhoarttag\sv;orf-]ri:lrﬁlsoor:ij ggrﬂ;gﬁ:
and Davis since our approach closely parallels theirs. Th ' Y ’ y ’

current problem differs from that work in certain respects. ﬁ IS pOS.S'ble to decouple ele_zctroklnetlc effects due to the
convective and electrophoretic flux of charge from purely

In contrast to the unforced system of Ref. 8, the Stoke% drod ic effects in the li tabilit i Th
layer here is forced by the electrical body force terni3). ydrodynamic efiects In Ine fin€ar stabiity equations. -the

However, since the electrokinetic problem is damped, no pe%?Zg:;stﬁéiotggd;ifeg}zt é?e rglt)elgtéorrllntigc g:gkr)]:irtrc]arlfelei;se
sistent forcing exists for the flow equations. Therefore it is yerp P 9

sufficient to consider the stability of the unforced Stokes"z"lev‘emt to lmlcrodewces. . .
layer. It remains to comment on the relationship between our

The boundary conditions and the parameter range cont—heory and the expenmgnts n Ref._ 2. The Floque_t theor_y
sidered here are also different. We apply a symmetry condi.l-Jsed here adopts a particular definition of asymptotic stabil-

tion at the center of the sloy&0) in contrast to the no-slip ity, i.e., an absolute m_stablllty W'th.n.o. net growth over one
- . . cycle. We do not consider the possibility of convective insta-
condition at the stationary upper solid boundary used by Ker;7 ~. . - )
. . . ; bilities. Our analysis uses the Debye-dkal and thin double
czek and Davis. Their work used a quangiywhich we will layer approximations to obtain the base state. It is unlikel
refer to asy to avoid confusion with the parametgrused Y PP S - ' . Y
S [ that these approximations affect the stability results since the
here. In terms of the scales used in this wrk y2St. Ker- neglected terms decay exponentially fast away from the
czek and Davis useg=8, corresponding to St32 and 9 y exp y Y

Reynolds numbers 180Re,<800. Thus both the Reynolds boundary. It is conceivable that the observed |nstab|I|t!es are
due to transient growth over part of the cycle leading to
and Stokes numbers used here are up to one order of m

: @Honlinear transition, or convective instabilities associated
nitude smaller. with spatial growth. It is also possible that the instabilities
Kerczek and Davis found the oscillatory Stokes layer to P gr ' P - )

een in experiments result from fundamentally finite ampli-

be linearly stable throughout the parameter range studied. W . . . .
did not expect this conclusion to be altered by the Slightlytude disturbances and cannot be predicted by linear analysis.

different boundary conditions used here. This was borne Ou%uch subcritical instabilities would probably result from the

by our calculationgnot shown which demonstrated that the weakly damped electrokinetic modes rather than the shear

disturbances were highly dampktit is clear that the Stokes associated with the Stokes layer. Finally, instabilities may be

. . .due to mechanisms such as Joule heating that are not consid-
and Reynolds numbers are too small to excite shear instabill- .
. ered here. In any event, the results presented here constitute
ties of the system.

a case against which to evaluate these other effects.
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