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Abstract

Background: CellML is an XML based language for representing mathematical models, in a machine-independent
form which is suitable for their exchange between different authors, and for archival in a model repository.
Allowing for the exchange and archival of models in a computer readable form is a key strategic goal in
bioinformatics, because of the associated improvements in scientific record accuracy, the faster iterative process of
scientific development, and the ability to combine models into large integrative models.
However, for CellML models to be useful, tools which can process them correctly are needed. Due to some of the
more complex features present in CellML models, such as imports, developing code ab initio to correctly process
models can be an onerous task. For this reason, there is a clear and pressing need for an application programming
interface (API), and a good implementation of that API, upon which tools can base their support for CellML.

Results: We developed an API which allows the information in CellML models to be retrieved and/or modified. We
also developed a series of optional extension APIs, for tasks such as simplifying the handling of connections
between variables, dealing with physical units, validating models, and translating models into different procedural
languages.
We have also provided a Free/Open Source implementation of this application programming interface, optimised
to achieve good performance.

Conclusions: Tools have been developed using the API which are mature enough for widespread use. The API has
the potential to accelerate the development of additional tools capable of processing CellML, and ultimately lead
to an increased level of sharing of mathematical model descriptions.

Background
Systems of differential algebraic equations (DAEs) [1]
are one particularly common and useful form of mathe-
matical model. These systems are of the general form

F t( , , ) ,x x  0

where F is a function, t is the independent variable, x
is the vector of state variables, and x’ is the vector of
derivatives of the state variables.
DAE systems are often broken up into individual

equations, each of which hold true. Systems of DAEs
are used to model a wide variety of biological processes,
across a diversity of scales. For example, at one extreme
there are models describing the action of ion channels

[2], and at another extreme, models of predator-prey
dynamics [3].
Historically, models of DAEs have been exchanged

and archived by publishing equations, constant values,
initial conditions, specific protocols, and other asso-
ciated information in a scientific paper. Someone want-
ing to independently compute results from the
published model then needs to convert that model back
into a computer program. This process is both time-
consuming and error prone. Reviewers are unlikely to
check that the published model accurately corresponds
to numerical results presented in the paper.
Likewise, it becomes prohibitively expensive to do

integrative biology [4], as building a large model out of
several pieces then requires significant effort on each of
the pieces already in the literature.
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CellML [5] is an XML [6] based format for represent-
ing mathematical models, capable of representing DAE
systems (as well as other mathematical relationships). As
such, it provides an ideal mechanism for the exchange
and archival of models. There are public databases con-
taining large numbers of CellML models, such as the
CellML Model Repository [7]. The BioModels database
[8] also provides models which have been translated
from Systems Biology Markup Language (SBML) to
CellML.
However, for the scientific advantages of using formats

such as CellML and SBML for mathematical model
exchange to be fully realised, it is important that soft-
ware used by modellers is able to read and write models
in these formats. It is also important that the scientific
community has the ability to easily develop software
which relies on the existing databases of models in these
formats.
Using an Application Programming Interface (API)

simplifies the task of processing an XML language, thus
APIs are important to the exchange of information.
Supporting CellML correctly can be a difficult task,

due to some of the more complex features in the
CellML language. It is therefore important that software
developers do not need to re-invent the same function-
ality every time they develop a new tool. We thus pre-
sent both an API for working with CellML models, and
an efficient implementation of that API.
SBML [9] is another XML-based format, used for

encoding computational models of biochemical reaction
networks. It requires that implementations support ele-
ments specific to biochemical reaction networks
(although it also provides more general mechanisms for
representing models), and thus differs from CellML in
that CellML avoids domain-specific elements. There is
an API for processing SBML models, known as libSBML
[10]. The CellML API serves an analogous purpose to
libSBML, except for CellML rather than SBML models.

Implementation
The CellML API is a platform and programming lan-
guage independent description of interfaces, with attri-
butes and operations on the interfaces. These attributes
and operations are used to retrieve information about
the model, or alternatively to manipulate the model in
memory.
The overall architecture of the API consists of a core

API, along with a series of extension APIs (see Figure
1). The extension APIs are listed here, and discussed in
detail later:

• Annotation Tools Service
• CellML Variable Association Service
• CellML Units Simplification and Expansion Service

• Validation Against CellML Specification Service
• MathML Language Expression Service
• CellML Code Generation Service
• CellML Language Export Definition Service
• CellML Integration Service.

The extension API implementations are cleanly sepa-
rated from our implementation of the core API, so that
alternative implementations are possible.
The API is specified using OMG IDL [11], and is

made available under an Open Source/Free license, at
http://www.cellml.org/tools/api/. It is suitable for both
CellML 1.0 [12] and CellML 1.1 [13] documents. All
attributes and operations in the IDL files are documen-
ted in place using the Doxygen comment format [14].
The choice of this programming language independent
format to specify interfaces makes it possible to define
bindings to the API from many programming languages.
We have developed bindings for C++ [15], Java [16],
and JavaScript (via XPCOM) [17].
In addition, we have developed an implementation of

the API, optimised to reduce time taken to run a test-
suite of typical tasks. This implementation is written in
C++, and is based on the libxml2 XML parsing library
[18], and our own implementation of the W3C DOM
[19] and MathML DOM [20]. Language bindings and
bridges offer access to the API from C++, Java, Java-
Script, and from an even wider range of languages (for
example, Python [21]) over CORBA [11].

Results
We firstly discuss the basic functionality used through-
out the core API. We then discuss how the API can be
used to process CellML Metadata and imports. We dis-
cuss the object model and memory management scheme
used by the API, and proceed to discuss each of the
extension APIs in sequence. We then discuss our suite
for testing API implementations, and conclude the sec-
tion with a comparison to other software with similar
functionality.

Core API
The scope of the core API is the basic manipulation of,
and access to, the content of CellML models. The facil-
ities for information retrieval in the API are closely
aligned to the arrangement of XML elements in a
CellML document. The IDL specification for the core
API can be found in the file interfaces/CellML APIS-
PEC.idl, in the CellML API source tree.
There is one object for each CellML element in the

document. These objects implement an interface,
which is specific to the type of the CellML element.
The interfaces of these elements all inherit (directly or
indirectly) from the CellMLElement interface. This
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interface provides functionality which is useful on all
elements. For example, it provides the ability to insert
or remove any of the child elements of the element
concerned, and to set temporary user data annotations,
identified by a unique key, against the elements. These
annotations do not form part of the in-memory DOM
representation, and so do not, for example, appear in
the generated XML when the model is serialised.
The interfaces for CellML elements which have a

mandatory name attribute all inherit from the Name-
dCellMLElement interface. This interface provides a
name attribute (which can be fetched or set), and
inherits from the CellMLElement interface. For

example, CellMLComponent inherits from Name-
dCellMLElement, because the CellML specifications
require that all component elements have a name
attribute.
For each type of child CellML element allowed by the

CellML specification, the interface for the parent ele-
ment has a read-only attribute for retrieving all the
CellMLElements of that type. The returned set imple-
ments an interface specific to the type of element
expected. For example, component elements can contain
variable elements, so the CellMLComponent interface
has an attribute called variables, of type
CellMLVariableSet.

Figure 1 UML Component diagram of the CellML API. This standard UML Component Diagram [43] shows the dependencies between the
different components of the CellML API. This diagram applies equally well to the dependencies between the interfaces, and the dependencies
required by our implementation. Some indirect dependencies have been omitted for clarity.

Miller et al. BMC Bioinformatics 2010, 11:178
http://www.biomedcentral.com/1471-2105/11/178

Page 3 of 12



These specific types of set follow an inheritance hier-
archy parallel to those of the element objects in the set.
Each set interface has a corresponding iterator interface,
which allows each object to be fetched in sequence.
Because the iterator interface is specific to the object
being fetched, the required interface is returned, avoid-
ing the need to call QueryInterface (see the section on
the object model and memory management for informa-
tion on QueryInterface). However, it is also possible to
use the less specific (ancestors in the interface inheri-
tance hierarchy) set interfaces to retrieve a less specific
(ancestor) iterator object (for example, for use in generic
code which works on more than one type of element).
Iterators derived from NamedCellMLElementIterator

also provide interfaces for fetching elements by name.
All descendant iterator interfaces provide more specific
fetch by name operations.
Set interfaces also provide facilities for modifying the

relevant sets by inserting CellML elements. Because
order is not important to the meaning of the model, the
iteration and insertion facilities provide no control over
the actual order of the elements in the model.
CellML makes heavy use of the namespace facilities

in XML [22]. CellML provides for extension elements,
that is, elements which are not in the usual CellML,
MathML, or RDF namespaces. The CellMLElement
interface provides an attribute extensionElements, of
type ExtensionElementList. The ExtensionElementList
interface allows for DOM elements which are not in
the CellML namespace to be examined and
manipulated.

Handling CellML Metadata
In addition, CellML models commonly contain meta-
data [23] encoded in RDF/XML [24]. There are many
different ways to process the RDF data encoded in
RDF/XML. The Model interface provides an opera-
tion called getRDFRepresentation, which takes a type
URI to describe the type of RDF representation
requested. These representations provide an interface
deriving from the RDFRepresentation interface. The
API requires that all implementations provide at least
an implementation which provides a serialised RDF/
XML document as a string, and an implementation
which provides a DOM Document node for the data
as a single RDF/XML. In order to produce these
RDF/XML outputs, implementations need to pool
several different fragments of RDF found throughout
the document into a single RDF/XML document.
Applications can also modify the RDF/XML and push
it back into the model.
Our implementation of the CellML API also provides

an interface allowing access to and modification of the
RDF triples [25] found in the model.

Dealing with model imports in CellML 1.1
CellML 1.1 provides for components and physical units
to be imported into models from other models [13]. An
import is created by adding an import element, which
refers to another model to be imported by URI. The
import element has child elements which describe
which components and units from the imported model
are accessible in the importing model. The CellML API
provides facilities to allow such information to be
accessed.
The result of supporting CellML 1.1 is that processing

one mathematical model can require that more than
one CellML file be examined. To deal with this issue,
the API introduces the following two concepts: an
imported model is said to be instantiated once it has
been loaded. When all imports required for a mathema-
tical model have been loaded (including models which
are imported by an imported model), the model is said
to be fully instantiated.
The API has an operation for selectively instantiating

particular imports, as well as an operation for fully
instantiating the model. For imports that are instan-
tiated, the model element is also accessible, as well as
the components they import.
We have included three separate attributes for sets of

components in the model, with three corresponding sets
of units:

• local component set - contains only the compo-
nents in the particular CellML file (excluding
imported components);
• model set - contains all components which are in
the local set, and also the import component ele-
ments (that is, the component element children of
import elements, describing which components are
imported) in the same file; and
• full set - contains all components in the model,
across all files making up the model. Where the
model containing a component is uninstantiated, the
import component element is provided by iterators.
When a model is instantiated, the components in
the imported model are returned by the iterators,
and in addition, these models are examined to iden-
tify further imported models to search for compo-
nents, as appropriate.

The three corresponding sets of units follow the exact
same semantics as the sets of components, except over
units rather than components.

Some technical details
The interfaces defined in the API all use the inheritance
capabilities of OMG IDL to derive from a base interface,
called IObject. IObject is modelled after the similarly
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named interface in the XPCOM object model. The IOb-
ject interface is used to provide interfaces for basic com-
mon facilities relating to the object underlying the
interface, such as maintaining the reference count (as
discussed later), and providing a unique identifier for
each object. This unique identifier is useful for deter-
mining if two interface references describe the same
object, and for building data structures which require
that objects can be compared. API implementations use
reference counting [26] to determine when there are no
remaining references to a particular object. The IObject
interface has operations for incrementing and decre-
menting the reference count. In order to ensure refer-
ence counting works correctly, a few simple rules are
followed consistently throughout the API design (and
the API design relies on the same rules being followed
by code which deals with the API). All operations and
attributes which provide an interface reference also
increase the reference count of the underlying object.
For example, in the case where the operation creates a
new object, but no internal references to the new object
are kept, the reference count of the returned interface
should be one. Secondly, for every time the reference
count is incremented by invoking the add_ref operation
(or by obtaining a returned interface), the programmer
must ensure that eventually, the reference count is
decremented by invoking the release_ref operation. The
API is designed to be accessed through wrappers, and
so the actual storage of the object may even reside on a
different machine to the wrapper providing the interface
being used. For this reason, the third rule arises: add_ref
invocations must always be matched with a release_ref
invocation on the exact same interface pointer (as
opposed to a different interface pointer for the same
object, which may point to a different wrapper around
the same object).
It is worth noting that while IObject provides facilities

for reference counting, many programming languages
perform automatic garbage collection. When using a
direct bridge to these languages, the wrapper code will
automatically call add_ref and release_ref on behalf of
the user, and so the need for explicit memory manage-
ment is avoided. For example, the Java bridge makes use
of the finalisation facilities in Java, combined with the
memory management facilities provided by the Java
Native Interface, so that Java users do not need to expli-
citly modify reference counts.
In addition to the reference counting scheme, the

IObject interface also provides a QueryInterface opera-
tion. This operation is used to ask an object if it sup-
ports a particular interface, and if it does, to provide an
interface representation. As discussed earlier, the API is
often accessed through wrapper code, and so users of
the API should always perform QueryInterface

operations on API interfaces, rather than directly using
the language-specific casting mechanisms.
Objects which are created by API implementations

exist purely in memory (whether the model was, for
instance, created ab initio, or loaded from a file). Modi-
fications can be made to the model in memory. The ori-
ginal file will only be updated if the application uses the
API to serialise the CellML model back to XML, and
then writes that XML to disk, replacing the original file.
Likewise, if the same model is loaded twice, there will
be two separate, and independent instances of the
model in memory. Modifying one instance will not auto-
matically change the other instance. Where a model is
imported, a separate instance of the imported model
exists for each import element, and for each instance of
the importing model. However, all elements, sets, and
iterators in the core CellML API are ‘live’, in the sense
that making any change to an in-memory instance of a
model through the API will immediately affect responses
from the API, even if the element, set or iterator was
retrieved prior to when the change was made. For
example, if an iterator is created, and has iterated
through all units elements but one in a model, and that
remaining units element is deleted, and next element is
retrieved from the iterator, it will return a null value,
signifying that there are no remaining units elements to
iterate.
The API makes use of the exception mechanism in

OMG IDL to handle exceptional conditions (for exam-
ple, when the API cannot perform the requested opera-
tion, because of element structure which is inconsistent
with the CellML specification). Our implementation
makes consistent use of exception safety techniques
[27], such as the Resource Acquisition Is Initialisation
(RAII) pattern, to ensure that memory leaks do not
occur when exceptions are raised.
The language independent IDL based interfaces do not

provide a solution to the ‘bootstrap’ problem of how an
interface is initially obtained, for example, the interface
for creating a new model. The solution to this problem
is language dependent. In each language, we provide
functionality to retrieve a pointer to a bootstrap inter-
face. For example, in C++, this is obtained by a method
defined in a header. The bootstrap interface is defined
in IDL, and therefore standardised across all language
bindings. Each extension API has a separate bootstrap
interface.
Our implementation of the API is not designed to

allow for two writes (for example, a modifying opera-
tion, or use of an attribute setter) to occur concurrently,
or for a read to occur concurrently with a write, on the
same model. Applications accessing the same model on
multiple threads need to either protect all access to the
API with a mutex, or more efficiently, use a read-write
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lock to ensure that there is no activity concurrent with a
write.

Extension APIs
In addition to the core API, we have also produced APIs
to provide services which are beyond the scope of the
core API.
The core API does not depend upon the extensions,

and so individual API implementations can choose not
to support all extension APIs. However, all extensions
depend upon the core API, and some extensions also
depend on other extensions (see figure 1).

The Annotation Tools Service
The core CellML API provides basic facilities for in-
memory annotation of elements in the CellML model
with arbitrary user-supplied objects. However, the user
data annotations are difficult to use for some applica-
tions, because the core API requires that user data be
associated with a key, which must be manually removed
when the application has finished with it.
The Annotation Tools (AnnoTools) API provides the

ability to allocate and release a set of annotations, with-
out needing to worry about interfering with other anno-
tations being placed by independent calls to the same
code, or about needing to individually remove all anno-
tations left on objects.
The IDL specification for the AnnoTools API can be

found in the file interfaces/AnnoTools.idl, in the CellML
API source tree.
AnnoTools implementations generate a unique prefix

for each AnnotationSet, and allow the user to set anno-
tations with that prefix. They keep an internal list of all
annotations which were added, and clear all annotations
in the AnnotationSet when the AnnotationSet is
destroyed.
The AnnoTools API also includes facilities for more

easily setting and retrieving string, integer, and floating
point annotations.

The CellML Variable Association Service
The CellML Variable Association Service (CeVAS) API
facilitates the treatment of interconnected CellML vari-
ables as the same mathematical variable (albeit possibly
in different units). These variables may come from dif-
ferent components, some of which may be imported
from different models.
The IDL specification for the CeVAS API can be

found in the file interfaces/CeVAS.idl, in the CellML
API source tree.
CellML 1.0 and 1.1 require that variables which are

connected to variables in other components have a pub-
lic or private interface value of ‘in’ or ‘out’. Whether the
public or private interface applies depends on the

encapsulation relationship between the components. In
CellML, all ‘in’ interfaces must be connected to an ‘out’
interface, encapsulation is always acyclic, and valid
CellML models have a finite number of variable ele-
ments. This means that, in a complete and valid model,
there is always a variable in each connected network of
variables that has no ‘in’ interfaces. This variable is
called the source variable, and is used by CeVAS as a
representative of all variables connected (directly or
indirectly) to it.
The interface allows users to supply a CellML Model

interface, and pre-compute which variables are con-
nected. All variables connected to a particular variable
can be iterated, and the source variable can be retrieved.
This is implemented using an efficient disjoint sets

algorithm, which allows for inverse Ackerman amortised
time merges of sets [28]. Initially, every variable in the
model is treated as a set of size 1. The algorithm itera-
tively processes all connections in the model, merging
the disjoint sets associated with each of the two con-
nected variables. Therefore, the amortised time com-
plexity of processing a model with n components and m
connections is in O(na(m, n)), where a is the inverse
Ackerman function. Note that the inverse Ackerman
function grows very slowly; for example, a(2, 2) = 1,
while a(1020, 1020) = 3.

The CellML Units Simplification and Expansion Service
The CellML Units Simplification and Expansion Service
(CUSES) API provides facilities for processing physical
units in a CellML model.
The IDL specification for the CUSES API can be

found in the file interfaces/CUSES.idl, in the CellML
API source tree.
CellML has a set of built-in units. These units are

defined in terms of the SI [29] base units; ampere, can-
dela, kelvin, kilogram, metre, mole, and second. Other
pre-defined units are defined in terms of these. For
example, the Joule is defined as kg.m2.s-1. In addition,
the modeller can define their own derived units (for
example, mmol/L for concentrations), or a new base
unit. However, when processing models, it is important
to know what the relationship between connected vari-
ables is, so the appropriate conversions can be per-
formed, if necessary. For example, when a variable in
metres is connected to a variable in millimetres, tools
are expected to insert an implicit conversion factor, so
the same variable is compatible across the two compo-
nents. CUSES allows tools to implement this more
simply.
All units are firstly expanded to be expressions in

terms of the base units. SI Prefixes are converted to
multipliers. All units are converted to a canonical form,
consisting of the product of powers of base units, each
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base unit occurring at most once, possibly with a single
multiplier and/or offset. The base units, and their corre-
sponding exponents, are exposed to users of the API in
an enumerable list of base unit instances. Facilities are
provided to enquire whether two units are dimensionally
equivalent. This is useful for determining if a connection
is valid. The necessary offset and multiplier needed to
perform a conversion can also be retrieved.

The Validation Against CellML Specification Service
The Validation Against CellML Specification Service
(VACSS) API accepts files which are putatively CellML
files, and identifies whether or not the CellML is valid,
and where the file is not valid, it attempts to build a list
of the problems.
The IDL specification for the VACSS API can be

found in the file interfaces/VACSS.idl, in the CellML
API source tree.
Errors that can be detected fall into two types:

• representational - errors relating to the encoding
of CellML in XML, such as essential elements or
attributes which are missing, or illegal extraneous
elements; and
• semantic - higher-level errors, where the basic ele-
ments of the CellML are in the correct form, but
there are inconsistencies, such as references to
names which are required to exist but do not, or
violations of any of the numerous rules specified in
the CellML Specification. Semantic warnings, such
as about potential units problems in mathematical
equations, due to dimensional inconsistency, are also
made available.

MathML Language Expression Service
One task which is common to many applications is to
convert the fragments of MathML embedded in CellML
documents into fragments of text in some other linear
text-based representation, such as programming lan-
guage source code.
The MathML Language Expression Service (MaLaES)

API provides functionality to assist with this task.
MaLaES makes use of CeVAS in order to identify the
source variable corresponding to each MathML ci ele-
ment (i.e. reference to a variable by identifier). It then
makes use of AnnoTools to retrieve an annotation
(which the user can set) containing the symbol to be
used for that variable in the output. The IDL specifica-
tion for the MaLaES API can be found in the file inter-
faces/MaLaES.idl, in the CellML API source tree.
It is often the case that these transformations need to

take units into account, to ensure that all variables in
the MathML contain any necessary conversion factors.

MaLaES thus allows variables (referenced by ci) to be
converted into the units of the source variable, and also
for the result of an expression to be converted. In order
to allow for conversion into many different languages to
occur, MaLaES uses a specification in a custom format
called MAL (MathML to Language). The MAL descrip-
tion describes the mapping between MathML elements
and their forms in the output text-based representation
(allowing for pre-order, in-order, or post-order traversal
of the MathML expression tree, with arbitrary separa-
tors between arguments), as well as describing the pre-
cedence of each operation, what strings are used to
begin and end groupings of low precedence operators
inside a higher precedence operator, and the format of
conversions. The MAL is precompiled into an efficient
in-memory representation, which can then be used to
generate output.

The CellML Code Generation Service
Another common task is to convert an entire CellML
model into code in a procedural programming language,
capable of solving the model. The CellML Code Genera-
tion Service (CCGS) API simplifies this task.
The IDL specification for the CCGS API can be found

in the file interfaces/CCGS.idl, in the CellML API
source tree.
The CCGS is specialised for the common case where

there is a single independent variable (in many models,
time) and the index of the DAE system is at most one
[30,1]. Users of the API obtain the CodeGeneratorBoot-
strap interface pointer through the language specific
bootstrap process, and then use the createCodeGenera-
tor operation to obtain a CodeGenerator interface.
On this CodeGenerator interface, it is possible to spe-

cify a wide range of different attributes about the lan-
guage to be generated. This means that code can be
generated for a wide range of procedural programming
languages (in some cases, with a requirement for some
post-processing to fold long lines or perform similar
transformations).
Because CCGS relies upon MaLaES to translate indivi-

dual mathematical expressions into the correct text-
based form, the user also needs to supply a MAL
description for the language of interest.
CCGS uses the terminology ‘computation target’

(represented by a ComputationTarget interface pointer)
to represent anything which is required to be computed
to evaluate the equations in a CellML model (including
those with a constant value, in which case computation
is merely assignment to that value). There is not a one-
to-one relationship between variables in the CellML
model and computation targets. For example, there may
be a variable called x, with an initial value of 0, and
then an equation such as d

d
x
t

x
t . In this case, x and
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d
d
x
t

are both computation targets (t, the independent
variable, is also treated as a computation target for con-
sistency). Note that when a variable is used in several
components, but the variables are connected together
(making them the same mathematical variable), there
will only be one computation target for all the variable
elements.
CCGS gives every computation target a degree (degree

zero means that it is the original variable, degree one
means it is the first derivative of the variable, degree 2
means it is the second derivative, and so on). All com-
putation targets which have a corresponding computa-
tion target of higher degree are treated as being state
variables, while computation targets with a lower degree
computation target are treated as being rates. Computa-
tion targets which have both a higher and lower degree
computation target are in the unique position of being
both a rate and a state variable. CCGS generates code
for this case by making use of the standard technique
for transforming an ordinary differential equation (ODE)
system with higher derivatives into an equivalent ODE
system with no higher than first order derivatives [31].
Initially, CellML variables which are in fact constant in

value are identified and marked as such. Variables which
are computable using only constants are in turn classified
as constants (with this process repeating until no further
constants can be identified). It is possible that a system of
simultaneous equations may need to be solved in order
to determine n otherwise unknown constants from n
equations (but when it is possible to split this into small
subsystems, it is more efficient to do so). This is done in
our implementation using a heuristic algorithm which
guarantees that the smallest possible systems are found
when the largest indivisible system needed to be solved
has at most three equations with three unknowns, and
has given good results in our testing.
After identifying the order in which equations or sys-

tems need to be solved, code is generated for them.
This is done using one of three different patterns sup-
plied to CCGS by the application. Where CCGS needs
to compute a computation target y using an equation
like y = f (x1, x2, ..., xn), CCGS will use the assignment
pattern to directly assign into the symbol for y. In other
cases, the equation might be in the form f (y, x1, x2,
x3, ..., xn) = g(y, x1, x2, x3, ..., xn), in which case the uni-
variate solve pattern is used to compute y. Finally, for
systems of equations, the multivariate solve pattern is used.
Any computation targets which are not constants,

states, nor are rates, are classified as being ‘algebraic
computation targets’. In the same fashion as is done for
constants, CCGS works out a directed acyclic graph for
the order in which systems or equations are used to
work out the rate and algebraic computation targets,
using the constants, states, and the independent

variables. However, these computations are split into
two code fragments. The first code fragment contains
all computations necessary to compute the rates from
the states, constants, and independent variables, while
the second code fragment computes any remaining alge-
braic computation targets not computed in the first
code fragment. This separation allows for more efficient
processing of models, because at many time steps, the
integrator may not want to report back any results, and
so there is no need to evaluate computation targets that
are not required to compute the next time step.
CCGS has the capability to automatically assign

indices into four different arrays:

• constants array - stores the values of any computa-
tion targets which do not depend on the indepen-
dent variable, or upon any of the rate or state
computation targets;
• states array - used to store the values of each state
computation target;
• rates - used to store the values of the rate of
change corresponding to each state computation tar-
get; and,
• algebraic array - used for all remaining variables.

The CodeGenerator object allows the first index to be
assigned in each array to be set (for example, to be 0 in
languages like C [32] where array indices start at 0, and
1 in other languages like MATLAB). In addition, the
user can supply a pattern, for example STATES [%], to
describe how the arrays are dereferenced in the output
programming language. The caller can also supply their
own AnnoSet object, and explicitly provide a name for
each computation target if this is required.
Overall, four different code fragments are available.

Firstly, the fragment to initialise constants, as discussed
above. Secondly, the fragment to compute the rates (and
all algebraic computation targets needed to compute
these rates). Thirdly, the fragment for the remaining
variables. The final code fragment contains any func-
tions which needed to be generated (using a pattern
supplied to the CCGS) in order to evaluate the code.
These functions can then be called from the univariate
and multivariate solver patterns, and also in MAL speci-
fications, such as those for evaluating definite integrals.
As a CCGS implementation processes models, it will

also check for and report back on certain error condi-
tions, such as models which have extraneous equations
(reported as being overconstrained), or models which
have too few equations to compute all computation tar-
gets (i.e. underconstrained models). As CCGS only sup-
ports DAEs of index one or lower, it will, for example,
report that the model is incorrectly constrained if the
model is a valid index two DAE.
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The CellML Language Export Definition Service
Defining a new programming language for use with
MaLaES requires setting up a MAL description of the
language, and configuring this through the API. How-
ever, it is convenient to be able to exchange this infor-
mation with other users, in order to allow for the
definition of arbitrary languages by the user. The
CellML Language Export Definition Service (CeLEDS)
allows for the MAL description of a language to be
embedded in an XML file. In addition, it provides a gen-
eralised dictionary service, to allow information required
to generate output for different languages to be provided
to the consumer of the CeLEDS service. The IDL speci-
fication for the CeLEDS API can be found in the file
interfaces/CeLEDS.idl, in the CellML API source tree.
The CeLEDSExporter service builds upon that offered

by CeLEDS to support full code generation (based upon
CCGS). Instead of programmatically setting attributes
on the CodeGenerator interface, all information is speci-
fied in a standardised XML format, along with the MAL
description. In addition, CeLEDS contains information
on the super-structure of the program, including
unchanging fragments of code which are required to
allow the program to run (such as any supplementary
function definitions).
This means that all the information required to gener-

ate code for a language is encapsulated in a single XML
file, which can be read in at run-time. Users can easily
modify these definitions in order to customise aspects of
code generation, and to create new definitions for con-
versions to other languages.
Due to this standardisation of how conversions are

specified, we have created a small repository of CeL-
EDS/CeLEDSExporter compatible conversion defini-
tions, including definitions for C, MATLAB, and
Python. This repository can be found in the CeLEDS/
languages subdirectory of the CellML API source code.
We have also created a definition for FORTRAN77,
although it requires further testing before being consid-
ered ready for widespread use.

The CellML Integration Service
The CellML Integration Service (CIS) API provides an
interface for performing simulations of models, and
receiving asynchronous notifications as results become
available.
The IDL specification for the CIS API can be found in

the file interfaces/CIS.idl, in the CellML API source tree.
CellML Model interface pointers are given to CIS,

which then creates a CellMLCompiledModel object. The
application then specifies the algorithm to be used, and
the parameters of the simulation (such as error toler-
ances, maximum step sizes, and parameters controlling
which points are reported back). The application may

also choose to override an initial value without recom-
piling the model.
The IntegrationProgressObserver interface can

be implemented by the application, and given to the
CellMLIntegrationRun interface prior to starting
the simulation. This interface receives information about
the values of constants which were computed, as well as
the results from each time-step, and an indication of
whether the integration has succeeded or failed (with an
error message in the latter case).
Our implementation of the CellML API internally

makes use of CCGS to generate C code. The C code is
then compiled using a compiler. For example, in one of
our applications based on the CellML API, we bundle a
stripped down version of the C compiler from the Free/
Open Source GNU Compiler Collection [33] (gcc) with
our application. The code is then linked into a shared
object and dynamically loaded into the CIS implementa-
tion, which then uses a separate program thread to
simulate the model (using either an ODE solver from
the SUNDIALS CVODE project [34], or an ODE solver
from the GNU Scientific Library [35], depending on the
algorithm requested).

Test-suite
We have also developed an extensive test-suite for vali-
dating API implementations. For the core API (includ-
ing DOM and MathML DOM), and some extension
APIs, a program included with the test-suite makes use
of every attribute and operation in the API, and checks
that invariants which are expected to be true, if the
implementation behaves correctly, are in fact true. In
addition, the test-suite also includes a series of small
programs, as well as a series of inputs to those pro-
grams, and expected outputs. For example, the program
CellML2C is a small, command-line driven test pro-
gram, that takes a CellML model as input, and uses the
CCGS extension API to generate C code from it. The
test-suite calls CellML2C with 17 different models (each
of which are crafted to contain peculiarities to test dif-
ferent features). Our API implementation is automati-
cally tested against this test-suite after every commit, on
Linux, Mac OS X, and Windows XP, with ad hoc testing
on a range of other platforms. The API implementation
currently passes all of the above tests.
In the future, we plan to add tests which can confirm

that the numerical results provided by implementations
of the CellML Integration Service are correct, in a simi-
lar vein to the SBML test-suite http://sourceforge.net/
projects/sbml/files/test-suite/2.0.0%20alpha/.

Comparison with libSBML
The CellML API is, to our knowledge, the first publicly
available API that supports the processing of CellML
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models. However, there are other similar projects
designed to process mathematical models in different
encodings.
LibSBML is, in many ways, analogous to the CellML

API, except that it processes SBML models. As CellML
provides a higher level of domain independence than
SBML, it is expected that tools used across many differ-
ent domains of expertise will need to exchange CellML
models. In addition, some tools, such as generic model-
ling environments, may need to import and export both
SBML and CellML models, in which case, both a
CellML API implementation, and libSBML can be used
together in the same program. Aside from the difference
in language support, there are some additional major
differences between the CellML API and libSBML.
The CellML API emphasises the technical separation

of the interface definition (i.e. the API itself, described
using IDL) and implementations of the interface. With
the CellML API, adding a new language binding
involves developing code to automatically produce a
wrapper from the IDL description, rather than using
SWIG [36] (which may require this to be followed by
manual creation of wrappers to tidy up the details). We
therefore expect that the CellML API approach is more
robust to changes to the API, and to the addition of
completely new modules.
In addition, the CellML API takes a different approach

to the manipulation of MathML. The CellML API
requires implementations to support an existing API, the
MathML DOM [20], while libSBML provides a more lim-
ited Abstract Syntax Tree (AST) based approach. The
libSBML approach, however, does allow for translations
to and from plain text; this feature is available in Open-
Cell (see below), and we plan to include the feature in a
future version of the CellML API.

Discussion
Applications of the API
Our CellML API implementation is at the point at
which it is stable enough for widespread use. It is
already used extensively by the OpenCell [37] environ-
ment (formerly known as PCEnv), which provides sup-
port for viewing, editing, and running simulations from
CellML models. It is also used by the Physiome Model
Repository [38].
In addition, third-party users have applied the API to

process CellML models and carry out simulations and
post-processing [39,40].

Ongoing support for the API
The CellML API is a Free/Open Source project, and
contributions from any interested parties are encour-
aged. The project is regularly updated to support new
features.

A public mailing list has been set up to allow commu-
nication amongst developers using and improving on
the CellML API and other CellML tools. Users can view
the archives and subscribe at http://www.cellml.org/
mailman/listinfo/cellml-tools-developers/.
In addition, other development facilities, including an

issue tracker for bugs and feature ideas https://tracker.
physiomeproject.org, and an automated build and test
monitoring system http://autotest.bioeng.auckland.ac.nz/
cellml-build/, are provided.

Future developments
A number of potential future contributions to the API
and implementation are under consideration. For exam-
ple, there is a proposal for a new API for converting
CellML models to and from input languages (non-
CellML text-based languages that are more easily
human readable).
In addition, there are plans to make CCGS support

dedicated DAE solvers such as IDA [41], which could
allow for DAEs of arbitrary index to be solved.
Another important future improvement is the addition

of more language bindings. The choice of language
bindings will depend on the input we receive from the
community, but could, for instance, include Python,
Ruby, and Haskell.
Other important improvements for future considera-

tion include improving the documentation of the API,
providing better support for working with metadata, and
providing utilities for easier symbolic manipulation of
mathematics.

Conclusions
The CellML API and its implementation are available,
and are ready for widespread adoption by the commu-
nity. Developers of tools which process mathematical
models are strongly encouraged to support CellML, so
that users of the tool can participate in model sharing,
with all the associated benefits to the scientific commu-
nity. The CellML API and its implementation provide
facilities which should make this task substantially
easier.

Availability and requirements
• Project name: The CellML API. Version 1.6 was
the latest release at the time of writing.
• Project home page: http://www.cellml.org/tools/
api/
• Operating systems: The API implementation can
be built on any POSIX like system, including Linux,
Mac OS X, and Cygwin. It can also be built using
Microsoft Visual C++ 2008. It has been tested on
Linux (x86, AMD64, PowerPC), AIX, Windows (XP
and Vista) and Mac OS X.

Miller et al. BMC Bioinformatics 2010, 11:178
http://www.biomedcentral.com/1471-2105/11/178

Page 10 of 12

http://www.cellml.org/mailman/listinfo/cellml-tools-developers/
http://www.cellml.org/mailman/listinfo/cellml-tools-developers/
https://tracker.physiomeproject.org
https://tracker.physiomeproject.org
http://autotest.bioeng.auckland.ac.nz/cellml-build/
http://autotest.bioeng.auckland.ac.nz/cellml-build/
http://www.cellml.org/tools/api/
http://www.cellml.org/tools/api/


• Programming language: The API is in IDL (lan-
guage independent), and the implementation in
C++, callable through bridges from C++, Java, Java-
Script, and from other languages through CORBA.
• Other requirements: The build requires the
omniidl tool, which is part of omniORB [42], as well
as libxml2 [18], and optionally the GNU Scientific
Library (GSL) [35]. If the Java bindings are desired,
the Java Development Kit is required. If JavaScript
(XPCOM) bindings are desired, XULRunner is
required [17].
• License: The CellML API and implementation can
be redistributed under any one of: the GNU GPL
version 2 or later, the GNU LGPL version 2.1 or
later, or the Mozilla Public License version 1.1. This
allows the API and implementation to be used in a
wide range of public and private research and
applied settings.
• Any restrictions to use by non-academics: There
are no restrictions on usage of the API. Redistribu-
tion requires compliance with one of the licenses
above, as well as the licenses of any dependencies
being used (for example, if GSL support is enabled,
redistribution must be under the terms of the GPL).

The source code and change history is available on
SourceForge. Documentation on how to build the API
on various platforms is included in the ‘docs’ directory
of the source tree. In addition, the documentation
extracted from the IDL files using the Doxygen tool are
available in HTML form. Links to these resources can
be found on the project home page.

List of abbreviations used
AnnoTools: The Annotation Tools; API: Application Programming Interface;
CCGS: The CellML Code Generation Service; CeLEDS: The CellML Language
Export Definition Service; CellML: An XML-based language for describing
mathematical models; CeVAS: The CellML Variable Annotation Service; CIS:
The CellML Integration Service; CORBA: Common Object Request Broker
Architecture; CUSES: The CellML Units Simplification and Expansion Service;
DAE: Differential Algebraic Equation; DOM: Document Object Model; IDL:
Interface Definition Language; MAL: MathML to Language; MaLaES: The
MathML Language Expression Service; ODE: Ordinary differential equation;
RDF: Resource Description Format; URI: Uniform Resource Indicator; VACSS:
The Validation Against CellML Specification Service; XML: The Extensible
Markup Language; XPCOM: Cross-platform Common Object Model.
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