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Abstract

Non-invasiveelectrical imaging of the heart aimsto quantitatively reconstruct information about the
electrical activity of the heart from multiple thoracic ECG signals. The computational framework
required to produce such electrical images of the heart from non-invasive torso surface signals
is presented. It is shown reliable electrical images of the heart can be obtained under a controlled
environment. This has been demonstrated using an anatomically realistic boundary element porcine
torso model.

The procedures required to create a subject specific model using a small number of control
points and to create a specific heart model from three-dimensional ultrasound images using alinear
fitting procedure are presented. From discrete ECG electrodes a continuous representation of the
potential field over the entire torso surface can also be produced using this linear fitting procedure.

The construction of the transfer matrices for the two predominant el ectrocardiographic sources
(epicardia potentialsand myocardial activation times) are described in detail. Thetransfer matrices
are used to compute activation times within the heart and epicardial potentials on the heart surface.
Myocardial activation times are computed using an algorithm based on the Critical Point Theorem
while epicardia potentials are computed using standard Tikhonov and Truncated SVD spatially
regularised methods as well as Greensite’s spatial and temporal regularisation method. The regu-
larisation parameters for the epicardial potentials are determined using a variety of methods (e.g.,
CRESO criterion, L-curve, zero-crossing).

The potential and activation based formulations are compared in a comprehensive inverse sim-
ulation study. To try and capture the dynamic and variable nature of cardiac electrical activity,
the study is performed with three different types of cardiac sources with arealistic porcine model.
These simulations investigate the effect on the computed solutions of individual and combinations
of modelling errors. These errorsinclude corruption in thetorso surface signal's, changesin material
properties and geometric distortion.

In general, the activation based formulation is preferred over the epicardial potential formula-
tions, with Greensite’s method found to be the best method for reconstructing epicardial potentials.
Under optimal conditions, the activation approach could reconstruct the activation times to within
4 ms RMS. Both potential and activation based formul ations were found to be relatively insensitive
to changes in material properties such as lung conductivities and activation function shapes. When
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examining individual errors, the geometry and positions of the torso and heart had the greatest ef-
fectson theinverse solutions. Therelative heart position needed to be determined to within 5 mm to
obtain results within 2 ms of the solutions obtained under control conditions. When the modelling
errors are combined to produce errors which can be expected in aclinical or experimental situation
the activation based solutions were consistently more accurate than potential based solutions.

The next necessary step in this project is the detailed validation of the results against in-vivo
data. Thisstep isnecessary before such algorithms can be reliably used to aid in the assessment of
heart function in aclinical environment.
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Notation

e Mathematical variables represented by bold lower case symbols are vector quantities (e.g.,
a) and bold upper case symbolsrefer to tensor quantities (e.g., X).

e Einstein summation is used, where repeated indices imply summation over the individual
components. For example a vector dot product may be written as

N
(libi =a-b= Z(lzbz
i—1

where NN isthe length of the vector.

e Aninner product of two column vectorsisdenoted by ( , ).
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Glossary of Symbols & Abbreviations

Scalar Symbols

| Symbol | Description

resting potential

transmembrane potential jump

data point number

total number of data points

element number

characteristic element size

local node number

globa node number or full rank of matrix
element based scale factors

nodal based scale factors

time

total number of time steps

dependant variable at local node n

Sobolev weighting on the first derivative terms
Sobolev weighting on the second derivative terms
extracellular potential

intracellular potential

transmembrane potential

local element coordinates

regularisation parameter

regularisation parameter at time ¢

activation window

an unspecified basis function

Lagrange basis function

Hermite basis function

Hermite sector basis function collapsed at local node 1
Hermite sector basis function collapsed at local node 3
surface Laplacian at node n
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Vector & Matrix Symbols

| Symbol | Description

a
A
Al
B
d
D

&

o

@ 8 <Co ORI SSU~NTQ

Me D=9

column of transfer matrix

transfer matrix

pseudo inverse of transfer matrix regularised at 4
magnetic induction

dipole source vector

electric displacement

electric field intensity

Gaussian noise

correlated noise

first-order Tikhonov regularisation matrix (surface gradient)
magnetic field intensity

zero-order Tikhonov regularisation matrix (identity matrix)
current density

impressed source current density

second-order Tikhonov regularisation matrix (surface Laplacian)
unit outward normal

boundary element global potential matrix

flux vector

boundary element global flux matrix

reduced global matrix or Tikhonov regularisation matrix
solution vector

spatial SVD decomposition of a matrix

temporal SVD decomposition of a matrix

node on heart surface

node on torso surface

global position of data point d

extracellular conductivity tensor

intracellular conductivity tensor

calculated torso potentials from a cardiac source
measured torso potentials

activation field on the heart

surface mesh domain

mesh domain

signal data matrix

singular values from an SVD




NOTATION

XXVii

Abbreviations

| Abbreviation |

Description

AHA
ARI

AT

AV node
BEM
BSM
BSPM

CMISS

CPA

CT

ECG
FEM

LA

LV

MRI

RA

RV

SA node
UnEmap
WCT

American Heart Association
Activation Recovery Interval
Activation Time
Atrioventricular node

Boundary Element Method
Body Surface Map

Body Surface Potential Mapping
Continuum Mechanics, Image analysis, Signal processing and Sys-
tem identification

Critical Point Algorithm
Computed Tomography
ElectroCardioGram

Finite Element Method

Left Atria

Left Ventricle

M agnetic Resonance Imaging
Right Atria

Right Ventricle

Sinoatrial node

Universal Electrophysiological Mapping System
Wilson Central Terminal






