Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

George R. Clark,* Kit Yee Tsang and Margaret A. Brimble

Chemistry Department, University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence e-mail: g.clark@auckland.ac.nz

Key indicators

Single-crystal X-ray study T = 200 KMean σ (C–C) = 0.003 Å R factor = 0.030 wR factor = 0.080 Data-to-parameter ratio = 7.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The crystal structure of the title compound, $C_{17}H_{16}O_3$, has been determined to establish the relative stereochemistry at the spiro ring junction. Both O atoms adjacent to the junction

adopt axial positions because of anomeric effects.

5-Methoxyspiro[1-benzofuran-2(3H),2'-chroman]

Received 11 March 2005 Accepted 18 March 2005 Online 25 March 2005

Comment

The rubromycins (Brockmann et al., 1969; Brockmann & Zeeck, 1970) are microbial secondary metabolites (Puder et al., 2000) that exhibit antibacterial and cytostatic activity. β -Rubromycin contains naphthoquinone and isocoumarin rings linked to a 5,6 spiroacetal system. β -Rubromycin is one of the most potent human telomerase inhibitors, with 50% inhibitory concentrations (IC₅₀) of about 3 μ M (Ueno *et al.*, 2000). It also exhibits inhibitory activity towards retroviral reverse transcriptase and human immunodeficiency virus type 1 reverse transcriptase. In order to examine the ability of the 5,6-aryl spiroacetal unit to inhibit human telomerase, the analogue of rubromycin, 5-methoxyspiro[1-benzofuran-2(3H),2-chroman], (2), was synthesized. The conformation of this 5,6-aryl spiroacetal was determined and is reported here. The title molecule is shown in Fig. 1 and selected bond lengths and angles are given in Table 1. The geometry at the spiro ring junction reflects the constraints of fusing five-membered and sixmembered rings together, i.e. the angles O1-C1-C2 and O2-C1-C10 are 111.6 (2) and 117.1 (2) ° respectively.

Experimental

A solution of ketone (1) (0.27 mmol) in dry dichloromethane (1.5 ml) containing 4 Å molecular sieves (75 mg) was treated with bromotrimethylsilane (2.47 mmol) at 243 K. After 2 h, the reaction mixture was warmed to 273 K for 4 h then warmed to room temperature for another 2 h. The reaction mixture was poured into a solution of saturated sodium bicarbonate (2 ml) and extracted with diethyl ether (4 \times 2 ml). The combined organic extracts were washed with brine (5 ml), dried over magnesium sulfate and concentrated under reduced pressure to give a white solid. Purification by flash column

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Acta Cryst. (2005). E61, o1123-o1124

doi:10.1107/S1600536805008743

Figure 1

The structure of (I) (Burnett & Johnson, 1996), showing 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitary radius.

chromatography using hexane- ethyl acetate (80:20) afforded the title compound (2), as a white solid that was recrystallized from ethyl acetate to give colourless needles (37 mg, 51%, m.p. 363-365 K, MS (EI, %) 268 $(M^+, 32)$, 161 (100), 131 (6), 107 (12), 77 (6), 65 (3), 45 (3). HR-MS (EI) Found M^+ , 268.10970, C₁₇H₁₆O₃ requires 268.10994. ν_{max} (film)/cm⁻¹ 3054, 2986, 2959, 2930, 2305, 1584, 1488, 1457, 1466, 1433, 1422, 1265, 1222, 1209, 1177, 736, 705. δ_H (300 MHz, CDCl₃) 2.17 (1H, ddd, J_{3'ax,4'eq} 6.0, J_{3'ax,4'ax} 13.3 Hz and J_{gem} 13.3 Hz, H-3'_{ax}), 2.31 (1H, ddd, $J_{3'eq,4'eq}$ 2.8, $J_{3'eq,4'ax}$ 6.0 and J_{gem} 13.3 Hz, H-3'eq), 2.81 (1H, ddd, J_{4'eq,3'eq} 2.8, J_{4'eq,3'ax} 6.0 and J_{gem} 16.4 Hz, H-4'eq), 3.17-3.27 (1H, m, H-4'ax), 3.26 (1H, Jgem 16.6 Hz, HA-3), 3.41 (1H, J_{gem} 16.6 Hz, H_B-3), 3.76 (3H, s, OMe), 6.69 (2H, m, H-4 and H-6), 6.77-6.82 (2H, m, H-7 and H-8'), 6.90 (1H, dt, J 1.1 and 7.9 Hz, H-6'), 7.07-7.13 (2H, m, H-5' and H-7'). δ_C(75 MHz, CDCl₃) 21.9 (CH₂, C-4'), 30.4 (CH₂, C-3'), 42.3 (CH₂, C-3), 56.0 (CH₃, OMe), 109.2 (quat., C-2), 109.8 (CH, C-6), 111.2 (CH, C-8'), 113.0 (CH, C-4), 117.1 (CH, C-7), 121.1 (CH, C-6'), 121.4 (quat., C-4'a), 126.3 (quat., C-3a), 127.4 (CH, C-7'), 129.1 (CH, C-5'), 152.0 (quat., C-7a), 152.3 (quat., C-8'a), 154.6 (quat., C-5).

Crystal data

C ₁₇ H ₁₆ O ₃	$D_x = 1.327 \text{ Mg m}^{-3}$
$M_r = 268.30$	Mo $K\alpha$ radiation
Monoclinic, Pc	Cell parameters from 3003
a = 10.3982 (7) Å	reflections
b = 5.7749 (4) Å	$\theta = 3.5 - 26.4^{\circ}$
c = 11.2480 (8) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 96.132 \ (1)^{\circ}$	T = 200 (2) K
V = 671.56 (8) Å ³	Block, colourless
Z = 2	$0.34 \times 0.30 \times 0.24 \text{ mm}$

Data collection

Bruker SMART CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1997) $T_{min} = 0.970, T_{max} = 0.979$ 3951 measured reflections 1367 independent reflections 1250 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.017$ $\theta_{\text{max}} = 26.4^{\circ}$ $h = -12 \rightarrow 12$ $k = -7 \rightarrow 7$ $l = -14 \rightarrow 14$

Refinement

F F и S

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0556P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.030$	+ 0.0273P]
$wR(F^2) = 0.080$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
1367 reflections	$\Delta \rho_{\rm max} = 0.11 \ {\rm e} \ {\rm \AA}^{-3}$
181 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1		_	
Selected	geometric parameters	(Å,	°).

O1-C5	1.384 (3)	C2-C3	1.518 (3)
O1-C1	1.421 (2)	C3-C4	1.506 (3)
O2-C12	1.381 (2)	C4-C5	1.395 (3)
O2-C1	1.454 (2)	C10-C11	1.506 (3)
C1-C2	1.507 (3)	C11-C12	1.394 (3)
C1-C10	1.535 (3)		
C5-O1-C1	117.56 (16)	C1-C2-C3	110.20 (18)
C12-O2-C1	107.62 (15)	C4-C3-C2	110.06 (18)
O1-C1-O2	107.49 (15)	C5-C4-C3	119.54 (18)
O1-C1-C2	111.63 (18)	O1-C5-C4	123.44 (18)
O2-C1-C2	107.36 (17)	C11-C10-C1	102.72 (17)
O1-C1-C10	106.41 (17)	C12-C11-C10	107.80 (19)
O2-C1-C10	106.37 (16)	O2-C12-C11	112.73 (17)
C2-C1-C10	117.11 (18)		. ,

H atoms were placed in calculated positions [C-H 0.93-0.97 Å]and refined using a riding model, with $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$. In the absence of significant anomalous dispersion effects, the Friedel pairs were merged before refinement.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SAINT* (Siemens, 1995); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXTL* (Siemens, 1995).

References

- Brockmann, H., Lenk, W., Schwantje, G. & Zeeck, A. (1969). Chem. Ber. 102, 126–151.
- Brockmann, H. & Zeeck, A. (1970). Chem. Ber. 103, 1709-1726.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Puder, C., Loya, S., Hizi, A. & Zeeck, A. (2000). Eur. J. Org. Chem. 729-735.
- Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1995). SMART, SAINT and SHELXTL. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.
- Ueno, T., Takahashi, H., Mizunuma, M., Yokoyama, A., Goto, Y., Mizushina, Y., Sakaguchi, K. & Jayashi, H. (2000). *Biochemistry*, **39**, 5995–6002.