Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

George R. Clark,* Kit Yee Tsang and Margaret A. Brimble

Chemistry Department, University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence e-mail:
g.clark@auckland.ac.nz

Key indicators

Single-crystal X-ray study
$T=200 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.030$
$w R$ factor $=0.080$
Data-to-parameter ratio $=7.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

5-Methoxyspiro[1-benzofuran-2(3H),2'-chroman]

The crystal structure of the title compound, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$, has been determined to establish the relative stereochemistry at the spiro ring junction. Both O atoms adjacent to the junction adopt axial positions because of anomeric effects.

Comment

The rubromycins (Brockmann et al., 1969; Brockmann \& Zeeck, 1970) are microbial secondary metabolites (Puder et al., 2000) that exhibit antibacterial and cytostatic activity. β Rubromycin contains naphthoquinone and isocoumarin rings linked to a 5,6 spiroacetal system. β-Rubromycin is one of the most potent human telomerase inhibitors, with 50% inhibitory concentrations (IC_{50}) of about $3 \mu M$ (Ueno et al., 2000). It also exhibits inhibitory activity towards retroviral reverse transcriptase and human immunodeficiency virus type 1 reverse transcriptase. In order to examine the ability of the 5,6-aryl spiroacetal unit to inhibit human telomerase, the analogue of rubromycin, 5-methoxyspiro[1-benzofuran-2(3H),2-chroman], (2), was synthesized. The conformation of this 5,6 -aryl spiroacetal was determined and is reported here. The title molecule is shown in Fig. 1 and selected bond lengths and angles are given in Table 1. The geometry at the spiro ring junction reflects the constraints of fusing five-membered and sixmembered rings together, i.e. the angles $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 10$ are 111.6 (2) and 117.1 (2) ${ }^{\circ}$ respectively.

Received 11 March 2005 Accepted 18 March 2005 Online 25 March 2005

Experimental

A solution of ketone (1) (0.27 mmol) in dry dichloromethane (1.5 ml) containing $4 \AA$ molecular sieves (75 mg) was treated with bromotrimethylsilane (2.47 mmol) at 243 K . After 2 h , the reaction mixture was warmed to 273 K for 4 h then warmed to room temperature for another 2 h . The reaction mixture was poured into a solution of saturated sodium bicarbonate (2 ml) and extracted with diethyl ether $(4 \times 2 \mathrm{ml})$. The combined organic extracts were washed with brine (5 ml), dried over magnesium sulfate and concentrated under reduced pressure to give a white solid. Purification by flash column

Figure 1
The structure of (I) (Burnett \& Johnson, 1996), showing 50\% probability displacement ellipsoids. H atoms are shown as spheres of arbitary radius.
chromatography using hexane- ethyl acetate (80:20) afforded the title compound (2), as a white solid that was recrystallized from ethyl acetate to give colourless needles ($37 \mathrm{mg}, 51 \%$, m.p. $363-365 \mathrm{~K} . \mathrm{MS}$ (EI, \%) 268 ($M^{+}, 32$), 161 (100), 131 (6), 107 (12), 77 (6), 65 (3), 45 (3). HR-MS (EI) Found M^{+}, 268.10970, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$ requires 268.10994. $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3054,2986,2959,2930,2305,1584,1488$, $1457,1466,1433,1422,1265,1222,1209,1177,736,705 . \delta_{H}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.17\left(1 \mathrm{H}, d d d, J_{3^{\prime} \text { ax, } 4^{\prime} \text { eq }} 6.0, J_{3^{\prime} \text { ax, } 4^{\prime} \text { ax }} 13.3 \mathrm{~Hz}\right.$ and $J_{\text {gem }} 13.3 \mathrm{~Hz}$, $\left.\mathrm{H}-3^{\prime}{ }_{\mathrm{ax}}\right), 2.31\left(1 \mathrm{H}, d d d, J_{3^{\prime} \mathrm{eq}, 4^{\prime} \mathrm{eq}} 2.8, J_{3^{\prime} \mathrm{eq}, 4^{\prime} \mathrm{ax}} 6.0\right.$ and $J_{\text {gem }} 13.3 \mathrm{~Hz}, \mathrm{H}-$ $\left.3^{\prime}{ }_{\text {eq }}\right), 2.81\left(1 \mathrm{H}, d d d, J_{4^{\prime} \text { eq. } 3^{\prime}{ }^{\prime}{ }^{\prime}} 2.8, J_{4^{\prime} \text { eq, } 3^{\prime} \text { ax }} 6.0\right.$ and $\left.J_{\text {gem }} 16.4 \mathrm{~Hz}, \mathrm{H}-4^{\prime}{ }_{\text {eq }}\right)$, $3.17-3.27\left(1 \mathrm{H}, m, \mathrm{H}-4^{\prime}{ }_{\mathrm{ax}}\right), 3.26\left(1 \mathrm{H}, J_{\mathrm{gem}} 16.6 \mathrm{~Hz}, \mathrm{H}_{A}-3\right), 3.41(1 \mathrm{H}$, $\left.J_{\text {gem }} 16.6 \mathrm{~Hz}, \mathrm{H}_{B}-3\right), 3.76(3 \mathrm{H}, s, \mathrm{OMe}), 6.69(2 \mathrm{H}, m, \mathrm{H}-4$ and $\mathrm{H}-6)$, $6.77-6.82\left(2 \mathrm{H}, m, \mathrm{H}-7\right.$ and $\left.\mathrm{H}-8^{\prime}\right), 6.90\left(1 \mathrm{H}, d t, J 1.1\right.$ and $\left.7.9 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right)$, 7.07-7.13 ($2 \mathrm{H}, m, \mathrm{H}-5^{\prime}$ and $\left.\mathrm{H}-7^{\prime}\right) . \delta_{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.9\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ $\left.4^{\prime}\right), 30.4\left(\mathrm{CH}_{2}, \mathrm{C}-3^{\prime}\right), 42.3\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 56.0\left(\mathrm{CH}_{3}, \mathrm{OMe}\right)$, 109.2 (quat., C-2), 109.8 (CH, C-6), 111.2 (CH, C-8'), 113.0 (CH, C-4), 117.1 (CH, C-7), 121.1 (CH, C-6'), 121.4 (quat., C-4'a), 126.3 (quat., C-3a), 127.4 (CH, C-7'), 129.1 (CH, C-5'), 152.0 (quat., C-7a), 152.3 (quat., C-8'a), 154.6 (quat., C-5).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \\
& M_{r}=2688.30 \\
& \text { Monoclinic, } P c \\
& a=10.3982(7) \AA \\
& b=5.7749(4) \AA \AA \\
& c=11.2480(8) \AA \\
& \beta=96.132(1)^{\circ} \\
& V=671.56(8) \AA^{3} \\
& Z=2
\end{aligned}
$$

$D_{x}=1.327 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo K α radiation

Cell parameters from 3003
reflections
$\theta=3.5-26.4^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=200$ (2) K
Block, colourless
$0.34 \times 0.30 \times 0.24 \mathrm{~mm}$

Data collection

Bruker SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1997)
$T_{\min }=0.970, T_{\max }=0.979$
3951 measured reflections

1367 independent reflections 1250 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-12 \rightarrow 12$
$k=-7 \rightarrow 7$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0556 P)^{2}\right. \\
\quad+0.0273 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.11 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }= \\
=0.16 \mathrm{e} \AA^{-3}
\end{gathered}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.080$
$S=1.02$
1367 reflections
181 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

O1-C5	$1.384(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.518(3)$
O1-C1	$1.421(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.506(3)$
O2-C12	$1.381(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.395(3)$
O2-C1	$1.454(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.506(3)$
C1-C2	$1.507(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.394(3)$
$\mathrm{C} 1-\mathrm{C} 10$	$1.535(3)$		
C5-O1-C1	$117.56(16)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$110.20(18)$
$\mathrm{C} 12-\mathrm{O} 2-\mathrm{C} 1$	$107.62(15)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$110.06(18)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$107.49(15)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.54(18)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$111.63(18)$	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	$123.44(18)$
O2-C1-C2	$107.36(17)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 1$	$102.72(17)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 10$	$106.41(17)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$107.80(19)$
O2-C1-C10	$106.37(16)$	$\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 11$	$112.73(17)$
C2-C1-C10	$117.11(18)$		

H atoms were placed in calculated positions [C-H 0.93-0.97 Å] and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$. In the absence of significant anomalous dispersion effects, the Friedel pairs were merged before refinement.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1995).

References

Brockmann, H., Lenk, W., Schwantje, G. \& Zeeck, A. (1969). Chem. Ber. 102, 126-151.
Brockmann, H. \& Zeeck, A. (1970). Chem. Ber. 103, 1709-1726.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Puder, C., Loya, S., Hizi, A. \& Zeeck, A. (2000). Eur. J. Org. Chem. 729735.

Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART, SAINT and SHELXTL. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.
Ueno, T., Takahashi, H., Mizunuma, M., Yokoyama, A., Goto, Y., Mizushina, Y., Sakaguchi, K. \& Jayashi, H. (2000). Biochemistry, 39, 5995-6002.

[^0]: © 2005 International Union of Crystallography

