[4R*,5R*,6S*]-1,7-Dioxaspiro[5.5]undec-4,5-diyl Diacetate

Margaret A. Brimble* and Andrew D. Johnston

Division of Organic Chemistry, School of Chemistry F11, The University of Sydney, N.S.W 2006, Australia. phone +61-2-9351-2750, fax +61-2-9351-6650, e-mail brimble_m@alf.chem.su.oz.au, http://www.chem.usyd.edu.au/~brimble

Received: 18 June 1997 / Published: 20 June 1997

 DMAP (cat), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., 1h,

To a solution of $\left[4 \mathrm{R}^{*}, 5 R^{*}, 6 S^{*}\right]$-1,7-dioxaspiro[5.5]undecane-4,5-diol (1) ($50 \mathrm{mg}, 0.27 \mathrm{mmol}$) in dichloromethane (10 ml) was added triethylamine ($100 \mathrm{mg}, 0.99 \mathrm{mmol}$), acetic anhydride ($67 \mathrm{mg}, 0.66$ mmol) and 4-dimethylaminopyridine (3 mg). The reaction mixture allowed to stand at room temperature for 1 h , then quenched with water (2.0 ml), extracted with dichloromethane (2 x 50 ml) and dried over sodium sulphate. Removal of the solvent under reduced pressure gave a pale yellow oil, that was purified by flash chromatography using hexane-ethyl acetate (2:1) as eluent to afford [$\left.4 R^{*}, 5 R^{*}, 6 S^{*}\right]-1,7-$ dioxaspiro[5.5]undec-4,5-diyl diacetate (2) ($69 \mathrm{mg}, 94 \%$) as a colourless oil.

High Res. MS calc. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{M}^{+} \mathrm{H}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ 273.1338, found: M^{+}273.1337.
IR (Nujol) $\mathrm{cm}^{-1} 1731$ [s, C=O (ester)], 1080 (s, C-O).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.39-1.82 ($8 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2}, 9-\mathrm{CH}_{2}, 10-\mathrm{CH}_{2}$, and $\left.11-\mathrm{CH}_{2}\right), 2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$, $2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.53-3.82\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{CH}_{2}\right.$, and $\left.8-\mathrm{CH}_{2}\right), 3.94\left(1 \mathrm{H}, \mathrm{ddd}, J_{2 \mathrm{ax}, 2 \mathrm{eq}} 11.3\right.$, 2ax,3ax 11.3 , and 2ax,3eq $3.0 \mathrm{~Hz}, 2 \mathrm{ax}-\mathrm{H}$), 4.81-4.85 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.6,24.6\left(\mathrm{CH}_{2}, \mathrm{C}-9\right.$ and $\left.\mathrm{C}-10\right), 20.8,21.1\left(\mathrm{CH}_{3}, 2 \mathrm{x} \mathrm{Ac}\right), 26.3\left(\mathrm{CH}_{2}, \mathrm{C}-3\right)$, $29.3\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 55.9\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 60.8\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 67.9(\mathrm{CH}, \mathrm{C}-4), 70.0(\mathrm{CH}, \mathrm{C}-5), 96.1$ (quat, C-6), 170.1, 171.0 (quat, $2 \mathrm{x} \mathrm{C=O}$).

CI-MS $273\left(\mathrm{M}^{+} \mathrm{H}, 20 \%\right), 213$ (100), 153 (30), 101 (5).
Acknowledgment: The authors gratefully acknowledge financial support from the Australian Research Council and The University of Sydney.

Sample Availability: No sample available.
© 1997 MDPI. All rights reserved.

